JP3986529B2 - 高密度伝熱管束 - Google Patents

高密度伝熱管束 Download PDF

Info

Publication number
JP3986529B2
JP3986529B2 JP2005054873A JP2005054873A JP3986529B2 JP 3986529 B2 JP3986529 B2 JP 3986529B2 JP 2005054873 A JP2005054873 A JP 2005054873A JP 2005054873 A JP2005054873 A JP 2005054873A JP 3986529 B2 JP3986529 B2 JP 3986529B2
Authority
JP
Japan
Prior art keywords
meandering
coil assembly
heat exchanger
heat exchange
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005054873A
Other languages
English (en)
Other versions
JP2005241240A (ja
Inventor
デビッド・エー・アロン
トマス・ピー・カーター
フランク・ティー・モリソン
Original Assignee
バルチモア・エアコイル・カンパニー・インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=33435665&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3986529(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by バルチモア・エアコイル・カンパニー・インコーポレイテッド filed Critical バルチモア・エアコイル・カンパニー・インコーポレイテッド
Publication of JP2005241240A publication Critical patent/JP2005241240A/ja
Application granted granted Critical
Publication of JP3986529B2 publication Critical patent/JP3986529B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/06Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using air or other gas as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D5/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation
    • F28D5/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation in which the evaporating medium flows in a continuous film or trickles freely over the conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • F28D7/082Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration
    • F28D7/085Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration in the form of parallel conduits coupled by bent portions
    • F28D7/087Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration in the form of parallel conduits coupled by bent portions assembled in arrays, each array being arranged in the same plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、均一に高密度化された構造を有する熱交換管束に関する。特に、本発明は、複数の返しベンドを重ねる領域に少なくとも窪みを設け、各管の投影断面積の直径より小さい隣接する管の管路間距離で、重なる複数の管を高密度に充填できる管束及びその製造法に関する。
種々の熱伝達用管束装置は公知である。一般の凝縮器及び閉管路式冷却塔は、多数の長配管アレイを有する管束を含む。ヘッダ部内に接続される蛇状管又は一連の独立管として配管を構成できる。凝縮する蒸気又は水等の被冷却すべき媒体が配管内に導入される。完成した熱伝達用管束装置では、空気及び/又は水が管の外面上に圧送されて流動する。
対向流蒸発式熱交換器は、例えば特許文献1及び特許文献2に開示される。前記熱交換器は、コイル組立体を形成する複数の管を含むアレイを収容する直立型ハウジングを含む。直立型ハウジング内のコイル組立体の上方に噴霧部を設け、管全体に向かい水を下方に噴霧し、直立型ハウジング底部付近に配置した管内に空気を導入する送風機を設けて、下向の噴霧水に対し対向流方式により、複数の管の間に上向流空気を導入する。コイル組立体管を通過する流体からの熱は、管壁を通じて管上を降下する噴霧水に移動し、上向流空気により、水の一部は部分的に蒸発し、水から空気に熱移動及び質量移動が行われる。従って、湿気を含む加熱された空気は、上方に流動し熱交換装置から排気される。残りの水は、直立型ハウジングの底部で捕集され、再循環方式により噴霧ノズルに戻して噴出される。
同一方向に液体と気体とがコイル組立体上を流動する他の蒸発式熱交換器も存在する。一般に並流熱交換器と指称される装置の例は、特許文献3〜7に開示される。
前記米国特許は、単独コイル型熱交換器である。間接蒸発式熱交換部と直接蒸発式熱交換部との両方を備えるコイル/フィル式等の他の型式の熱交換器も存在する。特許文献8は、直接間接式蒸発式熱交換器の一例を示す。
前記従来の熱交換器では、熱伝達管束の種々の異なる構成法が試みられた。従前の設計構造では、円形配管のコイル組立体を緊密なアレイ状に充填して、コイル表面積を増加した。蛇行管束に充填できる管路数は、配管の直径により制限された。複数の返しベンドを重ねかつ緊密にずらして配置しても、返しベンド間で管が接触するため、充填できる管路数が制限された。
特許文献9等の構造は、管の間隙を増大し、管の間を通る気体流量を増加して、管内部の境膜係数を増加しかつ管を良好に湿潤させて、全熱伝達率を増加する高密度熱伝達管束に関するものであった。特許文献10及び11等の構造では、高充填密度を維持しかつ円形断面の返しベンド装置を使用するが、気体流量を増加するためのため、直管部に楕円形断面管を設けた。前記米国特許の充填法も、円形断面の返しベンドの直径により再び制限された。特許文献12は、卵形断面管を示し、卵形断面管をU字ベンドに形成する課題を開示する。
例えば組立て中に、束ねた管を僅かに「折畳」み、全管束を圧縮し固定することにより、管束の収容量増大を試みる従来法もあった。これにより、所定の熱交換器の大きさに対し、管の間隔を僅かにしか接近できない(一般に0.040cm(1/64インチ)程度)ことが判明したが、これは、管束に圧縮力を均一に及ぼすことができない代わり、末端管上に圧縮力が集中する難点がある。このため、(最上部及び最低部の)末端管は、不均衡に変形されて、末端管の管路で流量又は圧力の問題が生じるため、過剰に管を折畳む場合に、不均一な流量特性の管束となる。このため、「折畳み」は、一般に返しベンド幅の僅か2%だけに制限される。従って、「折畳み」では、ほぼ1.0未満、及び可能でも1.0より僅かに大きい(最高1.02)密度に高密度化が制限されていた。しかしながら、高密度化は、制御可能に均一又は精密に実施できなかった。
米国特許第3,132,190号 米国特許第3,265,372号 米国特許第2,752,124号 米国特許第2,890,864号 米国特許第2,919,559号 米国特許第3,148,516号 米国特許第3,800,553号 米国特許第5,435,382号 米国特許第4,196,157号 米国特許第5,425,414号 米国特許第5,799,725号 ドイツ特許公開第DE3,413,999C2
所与の大きさの熱交換器に対し、熱伝達表面積を増大できる改良された熱交換器管束の設計構造及びその製法が要求されている。
また、管束密度を増加できる熱交換管束の設計構造も望まれている。管束密度を均一に増加し、全管路で一定の機能を維持できる熱交換器管束の設計構造が特に必要である。
本発明は、従来の設計構造と同一の空間/大きさの制約で充填すべき熱伝達表面積を増加し、又は、逆に言えば、従来と同一の熱伝達表面積をより小空間の外囲体内に充填できる。何れの方法も熱伝達表面積/コスト比を増加できる。また、本発明は、従来の設計構造より多くの管路を設けることにより、熱交換器の圧力降下を低減できる。
本発明は、新規な方法により前記目的を達成できる。本発明の一実施の形態では、所定の大きさの熱交換器に対し最大の熱伝達表面積と従来考えられた管数から、熱交換器のコイル組立体の管数を増加できる。コイル組立体は、コイル組立体内の異なるレベルに配置されるほぼ等間隔に離間する複数の管セグメントアレイから構成される。本発明の実施の形態では、有効直径Dと、有効直径D未満の管路間距離Sとを有する各管路を設けるコイル組立体が配置される。非円形断面を使用するとき、管外周をπで割った値を有効直径Dとみなす。
配管の重なる管路を備えるほぼ全型式の熱交換器に本発明のコイル組立体を実施できる。配管は、個別に製造される返しベンドを有する直配管等の連続管又は不連続管でもよい。非限定的な例は、蒸発冷却式熱交換器と、空冷式熱交換器と、シェルチューブ式熱交換器とを含む。本発明のコイル組立体は、蛇行配管との使用に特に有利である。本発明のコイル組立体により、同一の空間的制約下で、熱伝達表面積を増加できるため、単独コイル型熱交換器は、改良された動作特性を示す。しかしながら、特定の用途では、管路間の流路が僅かに減少するため、逆に気体流量が減少し、これにより熱伝達を行う表面積の更なる増加による熱的効果の一部が相殺される。しかしながら、本発明では、管束密度の増加により、従来の単独コイル型管束と同程度まで装置気体全流量が低下しないので、コイル/フィル型熱交換器により好適である。
返しベンド全体を圧縮する場合に比べて、管の外部寸法を重ね領域内で部分的に減少する窪みの使用は、内部流体の圧力降下の増加を最小限に抑制できるため有利である。また、返しベンド全体の圧縮よりも窪みの形成は容易であり、配管の構造的特性に対する影響は、あっても最小である。更に、隣接する配管を窪みで組み合わせる積層構造は、窪み領域を補強し、管の構造的特性への影響を低減するのに有効である。
本発明の実施の形態では、予め決められた寸法を有する凹み又は「窪み」は、配管直径の2.5%〜50%の深さを有することが好ましく、隣接して重ねられる2つの管部のうち少なくとも1つの管部上の1又は2以上の予め決められた位置に部分的に設けられる。複数の管部を互いに積層するとき、隣接する複数の返しベンドは、窪み内に組み合わされ、窪みの無い従来の返しベンドに比べてより緊密に管路を充填できる。例示的な実施の形態は、0.16cm(1/16インチ)〜0.48cm(3/16インチ)の深さの窪みを有する。しかしながら、窪みは、前記の深さに限定されない。所望の圧縮度/密度と、構造的条件と、流体、気体又は二相の速度及び/又は圧力降下に許容される管断面積の最大減少量とを含むいくつかの基準に基づき、実際の窪みの大きさを選択できる。
例示的な実施の態様では、全返しベンドの両側に窪みが設けられる。他の実施の形態では、1つ置きの返しベンドの両側に窪みが設けられ、隣接する返しベンドに窪みを形成しなくても前記同様の全効果を生ずる。更に他の例示的な実施の態様では、配管の片側上の2箇所で各返しベンドに窪みを設け、管路の積層順序に無関係に、管束を常に均一に重ねることができる。更に他の例示的な実施の形態では、小さい又は目立たない窪みの大きさで全管の両側に窪みを形成してもよい。これは、片側のみに大型の窪みを形成するのと同一の最終結果となる。更に他の実施の形態では、流体の処理方向に減少する非円形断面を用いて同一の効果を達成できる。非円形断面の一例は、楕円形断面である。
本発明の例示的な実施の態様では、管路上の所望の全領域にほぼ同時に窪みを形成する金型又はジグによって、複数の窪みを同時に形成してもよい。別法として、蛇管返しベンドを形成する間に、各窪みを形成することもできる。使用する特定の管形成法に基づき、窪みの特定の形成法を選択できる。
本発明では、隣接する一方の蛇行管路の返しベンドとの重なる位置に一致する少なくとも1つの凹部領域を少なくとも2本の蛇行管路のうちの少なくとも1本に設け、隣接する各管路間の距離をS、管路の有効直径をDとすると、蛇行管の隣接する複数の管路が少なくとも1つの凹部領域で嵌合して1.02を超える管路間充填密度D/Sで、少なくとも2本の蛇行管路を高密度に充填できる。このため、所与の大きさの熱交換器に対し、熱伝達表面積を増大できる改良された熱交換用コイル組立体が得られる。この熱交換用コイル組立体は、管束密度を増加できる熱交換管束の設計構造を有し、管束密度を均一に増加し、全管路で一定の機能を維持できる。本発明による熱交換用コイル組立体では、従来の設計構造と同一の空間/大きさの制約で充填すべき熱伝達表面積を増加し、又は、逆に言えば、従来と同一の熱伝達表面積をより小空間の外囲体内に充填でき、何れの方法も熱伝達表面積/コスト比を増加できる。また、本発明は、従来の設計構造より多くの管路を設けることにより、熱交換器の圧力降下を低減でき、所定の大きさの熱交換器に対し最大の熱伝達表面積と従来考えられた管数から、熱交換器のコイル組立体の管数を増加できる。
本発明による熱交換用コイル組立体の実施の形態を以下図面について説明する。
本発明のコイル組立体の構成は、間接蒸発式熱交換器、空冷式熱交換器、蓄熱装置並びにシェルチューブ式熱交換器を含むが、これらに限定されず、異なる多型式の熱交換器にも適用できる。間接蒸発式熱交換器は、空気流と、蒸発性液体流と、液体又は気体である密封流体流との3つの流体を含む。密封流体流は、最初に蒸発性液体に直接接触せず、間接式熱伝達によって、蒸発性液体と熱交換し、次に、蒸発性液体及び空気流は、互いに直接接触して、蒸発による熱交換を行う。直接蒸発式熱交換器では、空気流及び蒸発性液体流のみを使用して、空気流及び蒸発性液体流を互いに直接接触させて、蒸発による熱交換を行う。蒸発性液体は一般に水である。
1)独立型間接蒸発式熱交換器と、2)直接及び間接蒸発式熱交換器と、3)コイル格納部とを含む3種の包括的範疇に閉管路蒸発式熱交換器を大別できる。
対向流の設計構造が主流であるが、独立型間接蒸発式熱交換器は、対向流、直交流又は並行流による空気流と蒸発性液体流とを使用する第1の市販製品群を示す。
第2の製品群は、間接蒸発式熱交換部と直接蒸発式熱交換部の両方を組み合わせた装置を含む。最後の製品群は、直接蒸発式熱交換器及び間接非換気熱交換器により構成されるコイル格納部を備える。
高密度管コイル組立体を設けた本発明の第1の実施の形態による熱交換器を図1に示す。熱交換装置10は、コイル充填型であり、閉管路式冷却塔として使用してもよい。約言すれば、熱交換装置10は、多重管路式間接蒸発流体冷却部80と、直接蒸発式熱交換部90と、ノズル52を有する分配管装置50を通じて、最上部の水噴霧組立体14に液体を供給する最下部の蒸発性液体貯留部と、送風機組立体18とを含む密封構造体を備える。水噴霧組立体14は、熱交換装置10内で上方から下方に蒸発性液体を噴霧する。ベルト40を介してモータ42で駆動される送風機18は、各熱交換部80及び90を通過する空気流を搬送するが、空気を移送する自然通風を利用してもよい。送風機18は、誘因通気式若しくは強制通気式の遠心送風機又は一般的なプロペラ型送風機である。
熱交換装置10は、熱交換分野に幅広く適用できる。例えば、熱交換装置10を使用して、外部供給閉管路装置内に流れる水等の単相の顕熱流体を冷却するか、又は外部供給閉管路装置から供給される冷媒ガス等の多相の顕熱及び潜熱流体を熱交換装置10により過熱を防止しかつ凝縮できる。最後に、熱交換装置10の使用可能な分野は、鉱山等での作業に新鮮な冷却供給空気として放出される空気を離間位置から管送する湿式空気冷却器の用途も含む。
また、熱交換装置10は、厳密に単一の形状又は配列に限定されず、多くの異なる方法により前記構成要素を含む冷却塔構造を配置し形成できることは明白である。
複数の管66を配列する単一コイル組立体を含む間接熱交換部80は、直接蒸発式熱交換部90上に重ねて配置される。間接式熱交換部80は、外部熱利用過程からの冷却すべき流動する熱流体を受け、間接顕熱交換と直接蒸発式熱交換との組合せ熱交換によって、間接熱交換部80内で熱流体が冷却される。間接熱交換部80上の水噴霧組立体14から、通常は冷却水である蒸発性液体を下方に噴霧して、冷却すべき流体と間接的に顕熱による熱交換を行うと共に、初期空気入口100に流入する周辺空気流が蒸発により冷却すべき蒸発性液体を冷却するので、2つの冷却媒体がコイル組立体を通過し下方に移動するとき、顕熱と蒸発とにより冷却が行われる。特定の本実施の形態では、冷却水に並行かつ同一の方向に進入し流動する流入する空気流を示すが、後述の横断流の気流パターンから明らかなように、気流の流れは如何なる特定の流動パターンに限定されない。空気冷却媒体及び水冷却媒体が間接熱交換部80の底部に到達すると、冷却水は、直接熱交換部90内に重力降下すると共に、空気流は送風機18により吸引されるので、空気冷却媒体と水冷却媒体とが分離される。後述のように、空気は送風機組立体18により熱交換装置10から放出され、水は熱交換部90内で直接冷却される。間接熱交換部80を通る実際の気流パターンに無関係に、空気流入口100から冷却目的にのみ使用される空気が間接熱交換部80内に供給される。
直接蒸発式熱交換部90は、間接熱交換部80から降下する加熱された水を冷却する作用がある。直接蒸発式熱交換部90は、緊密かつ離間して並行に配列されて、フィル束92を形成する樹脂シートアレイにより構成されるが、従来のスプラッシュ型充填束を形成してもよい。間接熱交換部80からフィル束92に受ける温水を各フィルシート全体に分配し、第2の吸気口から流入して供給される外部周辺空気により、フィルシート上を下降する温水が蒸発により冷却される。本実施の形態では、フィル束92に沿って排水され下降される温水に対して、直角に直接蒸発式熱交換部90に流入する周辺空気流を示すが、他の流入方式も使用できる。
本発明の管コイル組立体を有する図2に示す第2の実施の形態の熱交換器は、上部霧除去組立体12と、水噴霧組立体14と、コイル組立体16と、送風機組立体18と、下部水溝20とを異なるレベルに配置した金属シート構造のほぼ垂直な筒形ハウジング(熱交換装置)10を備える。
垂直筒形ハウジング10は、ほぼ一様な矩形横断面を有し、垂直な前壁24及び後壁22(図2)と、垂直な側壁26及び28(図3)とを備える。対角傾斜壁30は、前壁24から下方に後壁22の底部まで延伸して水溝20を形成する。対角傾斜壁30の裏側でかつ下方に送風機組立体18が取り付けられる。しかしながら、これは、単なる装置の一例を示すに過ぎない。他の従来の装置又はその後開発された装置に置き換えることもできる。送風機組立体18は、水溝20上かつコイル組立体16下方の筒形ハウジング10内に対角傾斜壁30を通じて突出する放出換気帽34を夫々有する一対の遠心送風機32を備えている。ベルト40を介し駆動モータ42に接続される駆動プーリ38によって、回転する共通の駆動軸を一対の送風機32に共用してもよい。
水溝20の底部付近から筒形ハウジング10の側壁26に沿って、水噴霧組立体14まで延伸して配置される再循環ライン44により水を再循環させてもよい。
水噴霧組立体14は、側壁26に沿って延伸する水容器48と、筒形ハウジング10の内部を横断して水容器48から対向する壁28まで水平に延伸する一対の分配管50とを備える。互いに交差する扇状水噴霧を放出する複数のノズル52が各分配管50に固定され、ノズル52は、全コイル組立体16上に水を均一に分散させる。
霧除去組立体12は、長さ方向に沿って湾曲しかつ緊密に離間する細長い複数の小板54を含み、小板54は、筒形ハウジング10の上部を通過し水噴霧組立体14の領域から外方に湾曲経路を形成する。霧除去組立体12は、筒形ハウジング10のほぼ全断面に延伸し、筒形ハウジング10は、実質的に均一な横断面であるため、霧除去組立体12は、コイル組立体16と実質的に同一の筒形ハウジング10の断面領域を占める。
図1及び図2の各実施の形態によるコイル組立体16は、図3及び図4に明示するように、上部入口多枝管56と、側壁26に隣接する筒形ハウジング10の内部全体に水平に延伸する下部出口多枝管58とを備える。多枝管56,58は、側壁26上のブラケット60により所定の位置に保持される。入口流体導管62及び出口流体導管64は、側壁26を貫通して延伸し、上部多枝管56及び下部多枝管58に夫々連絡する。空調装置(図示せず)内の圧縮器からの冷却又は凝縮すべき冷媒等の流体を受ける入口流体導管62及び出口流体導管64が接続される。
複数の冷却管66は、上部多枝管56と下部多枝管58との間に接続される。側壁26及び28近傍の180度返しベンド68(及び70)により各冷却管66を蛇管装置に形成し、側壁26と28との間で前後に筒形ハウジング10の内部をほぼ水平に、他方の冷却管の平面に対して並行かつ接近するが離間して、筒形ハウジング10内の異なるレベルで各冷却管66の異なるセグメントを延伸させることが好ましい。また、交互にずらしたアレイに複数の冷却管66を配列する点に留意すべきであろう。2つの異なるレベルに冷却管66を収容する上部列開口部及び下部列開口部を多枝管56及び58の各々に設けることが理解できよう。前記冷却管66は、例えば0.95〜5.08cm(3/8〜2インチ)の適当な外径Dを有するとよい。しかしながら、例示的な実施の態様では、冷却管は、2.54〜3.18cm(1.0〜1.25インチ)の直径を有することが好ましい。また、180度返しベンド68は、適切なベンドの半径を有する。しかしながら、例示的な実施の形態では、3.81〜6.35cm(1.5〜2.5インチ)の半径を有する。また、180度返しベンド68の半径とほぼ同量だけ、隣接する冷却管66のセグメントの対応するレベルを互いに垂直方向にずらすべきである。
複数のブラケット60間で壁26に固定された支持ロッド72及び複数のブラケット74間で壁28に固定された支持ロッド72を水平方向に延伸させて、180度返しベンド68(及び70)で冷却管66は、支持ロッド72により支持される。
断面で示すコイル組立体16は、隣合う複数の冷却管が互いにずれて配置され、異なるレベル又は高さに配列される管セグメント66のアレイを備える。コイル組立体16は、多くの従来のコイル組立体に対して設計上類似するが、以下、図5〜図8に明示するように、密度レベルが異なる。
アメリカ合衆国加熱、冷凍及び空調工学協会の標準ハンドブックに説明されるように、蒸発性熱交換器の作用に2つの異なる熱伝達過程が含まれる。第1の熱伝達過程では、冷却又は凝縮される流体からの熱は、管壁を通過して、管上を流れる水に伝達される。第2の熱伝達過程では、管上を流れる水から上向流空気に熱が伝達される。前記2つの熱伝達過程を下式に示す。
1.q=A(tc−ts)Us、及び
2.q=A(hs−hl)Uc
ここで、q=全熱伝達量、A=全管表面積、tc=管内流体温度、ts=管外水温、Us=水に対する流体の熱伝達係数、hsは、tsでの飽和空気のエンタルピー、hl=周囲空気のエンタルピー、及びUc=空気に対する水の熱伝達係数である。
両熱伝達過程では、両熱伝達係数Us,Uc間の差異による損失がなくかつ空気流が増大すれば、熱伝達量qは、全管表面積Aにほぼ比例する。これは、特に、熱伝達係数効果を最小化するコイル/フィルの構造に有利である。
図5は、重ね構造で互いに緊密に当接させて直径D1を有する複数の円形コイル管66を高密度で充填した従来の管構造のコイル組立体16の分解断面図を示す。この装置では、直径D1に等しいか又は直径D1より僅かに大きい最良の管路間距離S1を達成できた。これは、管路密度D1/S1<1.0である。
図6は、特許文献10に例示される他の従来のコイル組立体16の分解断面図を示す。この構成では、複数の楕円コイル管66は、図6に示すように、重ね構造で互いに緊密に当接して高密度で充填される。直線状部分の管形状は楕円であるが、返しベンドは、直径D2に示すように円形である。楕円管のため、より多くの気流が複数の楕円管の間に供給される。しかしながら、返しベンド領域内は、ほぼ円形断面のため、管路間距離S2は、図6の直径D2に等しいか又は直径D2より僅かに大きい。また、管路の密度は、D2/S2<1.0である。
図7は、特許文献9に例示される従来のコイル組立体16の分解断面図を示す。この構成では、直径D3の複数の円形コイル管66は、スペーサ棒76により分離された重ね構造に形成される。これにより、直径D3より大きい管路間距離S3となる。特に、管路間距離S3は、管セグメント66の直径D3にスペーサ棒76の厚さを加えた距離に等しい。これは、図5及び図6の構成よりも低密度のまばらな管構成である。即ち、管路密度D3/S3≪1.0である。
従来では、達成可能な管束の密度に限界があると考えられていた。従来の管の構成では、重ね部分で管が接触するため、管路密度(Dx:Sx)は、≦1.0であった。不精密な「折畳」法でも、管路密度を≦1.02(1.02以下)に増加できるのみであった。しかしながら、本発明のコイル組立体及び方法では、1より高い管路密度(Dx:Sx)、好ましくは1.02を超える管路密度に各管路を精密に充填でき、一定の熱交換器領域内で管の表面積を増大できる。
図8は、重ね構造で互いに緊密に当接する複数のコイル管66をより高密度で充填した本発明によるコイル組立体16の分解断面図を示す。コイル管66は、アレイを構成する蛇行管路となる。コイル管66は、直管部と、各直管部に連結されかつ有効直径Dを有する返しベンド部と、入口多岐管56に接続される入口端部と、出口多岐管58に接続される出口端部とを備える。各コイル管66の直管部と返しベンド部68,70との両中心軸は、同一の配列平面上に配置され、隣接する複数の返しベンド部68,70で少なくとも部分的に重ねられかつ互いにずれた配列平面内でコイル管66が積層される。コイル管66は、直径D4を有する。しかしながら、複数のコイル管66の1又は2以上の各重ね領域に1又は2以上の凹部を形成する本発明のコイル組立体では、D/S>1.0、好ましくは1.02を超えるコイル密度を付与する直径D4より僅かに小さい管路間距離S4を達成できる。更に、組立て前に重ね領域に凹部を形成できるので、より高精度で凹部を形成することができ、組立てた管路構造全体を通じて精密で好適に均一な管路間距離S4を形成できる。これにより、実質的に同一の流量、圧力降下及びその他の熱交換特性を有する各管路を通じて所期の目的に沿う熱交換操作を実行できる。
凹部は、重ね領域で管の外形等の外側寸法を減少する凹み、穴、溝、切欠き又は窪みでもよい。扁平化/密度の所望度と、流体、気体又は二相の速度低下及び/又は圧力に認められる管断面積の最大減少量とを含むいくつかの基準に基づき、凹部は、所定の深さを有する。例えば、管直径の5%〜50%の深さで、窪みを管の片側に形成して凹部を設けることができる。特定の例示的な実施の態様では、窪みは、0.159cm〜0.477cm(1/16インチ〜3/16インチ)の程度である。しかしながら、窪みを管の両側に形成すれば、片側に窪みを設けた場合に比較して、2倍の密度増加の効果を有する相補的な窪みにより、窪みの深さを2.5%〜25%に減少できる。
図8の実施の形態では、円形断面のコイル管66を示す。円形断面のコイル管66は好適な構成であるが、非円形断面の管を使用することが好ましい場合もある。この場合、用語「直径」は、積層方向又は重ね方向に管の断面を横切る対角線距離である。また、非円形断面の管の対角線距離を投影断面積の起算値とする場合もある。
図2〜図4及び図8に例示する熱交換器を作動する際に、冷却又は凝縮すべき空調装置からの冷媒等の流体は、入口導管62を通じて熱交換器内に流入する。その後、流体は、上部多枝管56から複数の冷却管66の上端に分配され、流体は、筒形ハウジング10の内部を異なるレベルで前後に横断して管内を流れ、下部多枝管58に到達する流体を捕集し出口導管64を通じて熱交換器から流体を搬送する。冷却すべき流体が複数の管66内を流動するとき、ノズル52から下方に水が管66の外面上に噴霧され、送風機32から複数の管66間に空気が搬送される。噴霧された水は、溝20に捕集され、ノズル52を通じて再循環される。上向流空気は、霧除去組立体12を通過して装置の外部に排出される。
冷却すべき流体は、冷却管66を通じて下方又は下流に流れる間に管壁に熱を付与して冷却される。この熱は、管66の外面上を流下する水流まで管壁を通じて外側に移動する。流下水が上向空気流に接触すると、顕熱交換と、潜熱交換、即ち部分蒸発とによって、水は空気に熱を付与する。残留する水は、溝20内に降下し捕集され再循環される。上向空気流が下向水流と接触して、水から熱を取出すとき、コイル組立体16及び水噴霧組立体14から上方に飛び出す小滴の形態で、空気も一定量の水を搬送する。しかしながら、空気が霧除去組立体12を通過するとき、空気流は、横方向に急激に偏向され、空気中に担持される小滴は、空気から分離して霧除去器の部材上に付着する。その後、この水は、水噴射組立体及びコイル組立体上に落下する。一方、得られる高湿度であるが本質的に無水滴の空気は、筒形ハウジング10の上部から大気中に排出される。
本発明の特定の実施の形態では、管セグメントの表面から水平かつ外側に延伸しかつ密接して離間する複数のフィンを使用して、コイル組立体管66の表面積を更に増加してもよい。
許容できる圧力降下に関係する特定の用途では、カッドバンドル(管を2組(4本)束ねた管束)が一般に使用される。カッドバンドルは、標準の管束に比べて、使用する管の表面積及び全長が同一であるが、管長さは半分で管数は2倍である。これは、内部流体の圧力降下を約1/7に低下させるが、管内流速が更に低下するため、同等の熱伝達表面積を付与しても全熱伝達係数が低下する。しかしながら、カッドバンドルは、標準の管束より一般に高価であり、熱特性が約5%〜15%低下する。これは、管内流速の低下に伴い内部境膜係数が低下すると共に、追加の管路を製造し、取扱い及びヘッダ多枝管に溶接しなければならないことに一部起因する。しかしながら、本発明の高密度管束により、標準設計と同一の空間内により大きな内部流動面積を選択することによって、圧力降下の限界値に達する前に、標準設計の管束の熱運転範囲を拡張できる。このように、高密度管束組立体を使用することにより、カッドバンドルの必要性を低減できる。
コイル組立体の例示的な製造法を図9〜図13について説明する。図9は、連続する長い鋼鉄管66を押出しかつ曲げて蛇行形状に成形した単一の管路を示す。40本の管路を組み合わせて、40個の管路熱交換器が形成される。直径2.67cm(1.05インチ)の円形管により形成された各管66は、管端から返しベンド半径の中心線に至る内部長L1:331.43cm(130−9/16インチ)と、返しベンド半径の中心線間長さL2:338.32cm(133−1/8インチ)と、全長L3:349.25cm(137−1/2インチ)とを有する。しかしながら、具体的な長さは、例示に過ぎず発明を限定するものではない。
図10に示すように、管66の各返しベンド68は、6.59cm(2−19/32インチ)、全幅13.18cm、5−3/16インチの外部半径を有する。少なくとも1つの窪み領域68Bは、返しベンド68の最外端部上に形成される。各窪み領域68Bは、隣接して重ねられる返しベンド管の外形に組み合わされて嵌合する大きさに形成される。図10に示す実施の形態では、各返しベンド68上面の左右両側上に対称な形状の2つの窪み領域68Bが設けられる。特に、本特定の実施の形態では、管の縦軸に垂直な端部平面に対して、約30°の角度を使用した。これは、角度が縦軸と横軸とに交差する点の三角測量により算出した。しかしながら、この角度は、返しベンドの形状及び重ね状態により変化する。
窪み領域68Bは、隣接して重ねられる返しベンドを嵌合する幅を有する。実際の幅は、窪みの深さに依存する。窪みは、管外形に対応する曲率を有することが好ましい。この場合、図11に示すように、窪みは、半球状であり、約0.38cm(0.15インチ)の深さを有する。
本発明の例示的な実施の形態では、管路上の所望の全領域にほぼ同時に窪みを形成する金型又はジグによって、複数の窪みを同時に形成してもよい。別法として、蛇管返しベンドの形成間に、各窪みを形成することもできる。使用する特定の管形成法に基づき、窪みの具体的な形成方法を選択できる。例示的な一実施の形態では、管66の個々の返しベンド68を形成するとき、従来の凹部形成具を使用して手作業で窪みを形成し、又は各管路66が完成した後に手動で実行してもよい。他の実施の形態では、図13に示す凹部形成ジグ120等のジグを形成して、窪み形成工程を自動化することもできる。ジグ120は、両方の窪み領域68Bを同時に形成できる。更に、個々の返しベンドに対して1台の凹部形成ジグ120を複数設けることによって、窪み形成工程を自動化してもよい。全凹部形成ジグ120を接続し又は連動させると、各個の管路66に対して単一の工程又はストロークにより、窪みを形成できる。後者の実施の形態は、生産性を向上し窪みの精度を確保するのに有利である。
種々の異なる形態の窪みを管に設けることができる。図10に示す例示的な実施の形態では、各返しベンドで管の片側(上部又は底部)上の2箇所に窪みを設け、管路の積層順序に無関係に、管束を常に均一に重ねることができる。しかしながら、全返しベンドの両側に窪みを設けてもよい。他の実施の形態では、返しベンドの両側に1個おきに窪みを設け、隣接する残りの返しベンドに窪みを形成しないが、前記同様の全ての効果を生ずる。更に他の例示的な実施の形態では、窪みを全管の両側に形成するが、小さい又は目立たない窪みの大きさにしてもよい。これは、片側のみ大型の窪みを形成するときと同一の最終結果となる。更に他の実施の形態では、流体の処理方向に減少する非円形断面を用いて同一の効果を達成できる。非円形断面の一例は、楕円形断面である。しかしながら、返しベンド断面を連続的に減少すると、管の流量特性又は熱伝達特性に悪影響を与える。即ち、返しベンド全体を圧縮する場合に比べて、窪み形成は、内部流体の圧力降下を最小限の増加に抑制できる効果がある。また、管の構造上の特性に対する影響が存在しても最小であるが、窪みの形成は、全返しベンドの圧縮よりも容易である。更に、隣接する管が窪み領域で組み合わさるため、窪み領域の補強に有効である。
図12は、40本の管路66の各端部を収容する大きさに形成された40個の偏心開口部56Aを有する多枝管ヘッダ56を示す。本実施の形態では、複数の開口部56Aの各直径は、2.78cm(1−3/32インチ)である。図示のように、多枝管ヘッダ56の全高さH1は、95.89cm(37−3/4インチ)である。第1列の20個の開口部56Aは、各々19個の中心間距離4.52cm(1−25/32インチ)により等間隔に配置され、中心間総距離H2は85.96cm(33−27/32インチ)である。また、第2列の20個の開口部は、各々19個の中心間距離4.52cm(1−25/32インチ)により等間隔に配置され、中心間総距離H2は85.96cm(33−27/32インチ)である。しかしながら、第2列は、第1列からずれて配置される。第1列と第2列との開口部は、距離W1:4.76cm(1−7/8インチ)だけ離間する。
この結果、コイル組立体16は、管の直径より小さい各中心間距離Sを有する(即ちS=2.26cm(57/64インチ)、D=2.67cm(1.05インチ)、充填密度比D/S=2.67cm÷2.26cm(1.05インチ÷57/64インチ)=1.179)。(前記最大密度1.02から)中心間距離S:0.38cm(0.15インチ)だけ減少すれば管路数を乗ずるので、結局、1又は2以上の追加の管路を付与する十分に大きな差異となるので、小型の熱交換器ハウジング内に追加して管路を充填できる。更に、精密に形成された窪み等の凹部領域を設けることによって、得られるコイルアレイを均一及び/又は密度>1.02で精密に離間して形成できる。
本発明の高密度コイル組立体は、多くの異なる熱交換器環境にも有効である。高密度コイル組立体により、従来設計と同一の空間/大きさの制約で充填すべき熱伝達表面積を増加し、又は、逆に従来技術と同一の熱伝達表面積をより小型の外囲体内に充填できる。これは、外囲体の大きさが固定されるとき有利である。
また、より多くの管路を設けることにより、高密度コイル組立体は、熱交換器内の圧力降下を減少できる。これは、圧力基準を構造に組込める図1のコイル/フィル型等の多型式の熱交換器に有利である。
また、本発明の高密度コイル組立体により、管路間の距離をより精密に調節できる。例えば、均等に離間させかつ窪みを有する全管路を形成することによって、実質的に同一の空気流量、圧力降下及びその他の特性を各管路に設けることができる。これにより、熱交換器の構造を改善できる。
図1に示す直接間接組合せ式蒸発熱交換装置を含むコイル/フィル型熱交換器に本発明の高密度コイル組立体を使用すれば、最良の結果を達成できよう。図1の実施の形態では、管密度の増加により、単独コイル型熱交換器と同程度まで全装置空気流量が減少しないため、図2等の単独コイル型熱交換器に比較して、図1の実施の形態では、改善された結果を達成できる。
高密度コイルを有する組合せ式コイル/フィル熱交換器の適用例は、最初に、間接蒸発式熱交換部を含む一連の管路を通じて水等の加熱流体をほぼ上方に移動し、管路外面上を重力落下して対向流を形成する冷却蒸発液体と加熱流体とを間接蒸発式熱交換部で間接顕熱式熱交換を行う閉管路式冷却塔である。好適な実施の形態では、各管路に残留する最も冷たい冷却水は、均一の温度に最も冷却された蒸発液体と、均一の温度に最も冷却された利用可能な周辺空気流とに同時に曝露される。これは、従来達成されるものよりも更に均一で必然的に更に効率的な熱伝達法である。加熱流体からの顕熱移動により、間接蒸発式熱交換部を通じて下方に重力落下するとき、蒸発性液体の温度が上昇する。同時に、冷却用周辺空気は、重力落下する蒸発性液体と同一の経路内で管路上を下方に搬送される。蒸発性液体に吸収される熱の一部は、同時に移動する空気流に伝達されると共に、吸収される熱の残部は、管路上を下方に流動する蒸発性液体の温度を上昇する。その後、蒸発性液体は、直接蒸発式熱交換部上に落下する。直接蒸発式熱交換部は、別の冷却用周辺空気供給源を利用して、蒸発熱交換により、加熱された蒸発性液体を直接冷却する。直接蒸発式熱交換部を通過する気流は、下降する蒸発性液体に対して直交流又は対向流となる。そこで、均一温度の冷却蒸発性液体となる冷却された蒸発性液体を貯留部に捕集し、間接蒸発部の上部に再分配される。
冷媒は等温条件で凝縮するので、典型的には冷媒ガス等の流体を逆に流して凝縮物を容易に排出する点を除き、高密度コイルを有する組合せ式コイル/フィル熱交換器を蒸発凝縮器に適用するとき、閉管路流体冷却装置と同一の熱交換過程が行われる。
前記のように、特に好適な実施の形態について本発明を説明したが、本発明を理解した後、本願明細書に添付する特許請求の範囲に定義した本発明の精神及び範疇から逸脱することなく、種々変更し改良してもよいことは、本発明に関連する当業者に明白であろう。
本発明のコイル組立体の構成は、間接蒸発式熱交換器、空冷式熱交換器、蓄熱装置並びにシェルチューブ式熱交換器を含むが、これらに限定されず、異なる多型式の熱交換器にも適用できる。
本発明による高密度熱管束を使用する間接蒸発式熱交換部及び直接蒸発式熱交換部を含む例示的なコイル/フィル型熱交換器を示す部分側面図 単独コイル型熱交換器に高密度コイル組立体を設けた本発明の他の例示的な実施の形態を示す側面図 図1及び図2の例示的な熱交換器の熱管束を示す部分平面図 図3の4−4線に沿う断面図 従来の第1の熱交換器によるコイル組立体の一部分を形成する管セグメントアレイを示す部分断面図 従来の第2の熱交換器によるコイル組立体の一部分を形成する管セグメントアレイを示す部分断面図 従来の第3の熱交換器によるコイル組立体の一部分を形成する管セグメントアレイを示す部分断面図 本発明の例示的な実施の形態によるコイル組立体の一部を形成する管セグメントアレイを示す部分断面図 本発明による個々の管路を形成する例示的な蛇行管を示す正面図 図9の蛇行管の各返しベンドを示す部分正面図 図10の返しベンドの窪み領域を示す部分平面図 本発明の例示的な実施の形態による管組立体の端部を収容するヘッダ多枝管を示す端面図 返しベンドに両側窪み領域を形成する例示的なV字凹部形成具を示す部分正面図
符号の説明
(10)・・ハウジング、 (14)・・液体分配装置、 (16)・・コイル組立体、 (18)・・送風機、 (56)・・入口多枝管、 (58)・・出口多枝管、 (66)・・蛇行管路、 (68,70)・・返しベンド部、 (68B)・・凹部領域、 (80)・・間接蒸発式熱交換装置、 (90)・・直接蒸発式熱交換装置、 (100)・・気体入口、

Claims (21)

  1. 少なくとも2本の蛇行管路のアレイを備え、
    各蛇行管路は、有効直径Dを有する直管部と、各直管部に連結されかつ有効直径Dを有する返しベンド部と、入口端部及び出口端部とを含み、
    各蛇行管路の直管部と返しベンド部との両中心軸を同一の配列平面上に配置し、
    隣接する複数の返しベンド部で少なくとも部分的に重ねられかつ互いにずれた配列平面内で少なくとも2本の蛇行管路を積層し、
    2本の蛇行管路の隣接する返しベンド部が互いに重なる位置に一致して有効直径Dの2.5〜50%の深さを有する少なくとも1つの凹部領域を蛇行管路の少なくとも一方に設け、
    隣接する各蛇行管路間の距離をS、蛇行管路の有効直径をDとすると、隣接する複数の蛇行管路が少なくとも1つの凹部領域に嵌合する1.02を超える管路間充填密度D/Sで、少なくとも2本の蛇行管路を高密度に充填することを特徴とする熱交換用コイル組立体。
  2. 凹部領域は、0.079cm〜1.27cm(1/32インチ〜1/2インチ)の深さを有する請求項1に記載の熱交換用コイル組立体。
  3. 凹部領域は、隣接する返しベンド部に重なる位置に実質的に整合する形状を有する請求項1に記載の熱交換用コイル組立体。
  4. 凹部領域の形状は、半円柱形である請求項3に記載の熱交換用コイル組立体。
  5. 複数の蛇行管路の少なくとも折り返す蛇行管路の上側及び底側の少なくとも一方に凹部領域を設けた請求項1に記載の熱交換用コイル組立体。
  6. 蛇行管路の折り返す蛇行管路の上側及び底側の両方に凹部領域を設けた請求項5に記載の熱交換用コイル組立体。
  7. アレイの蛇行管路の全中間部の上側及び底側に設けた各凹部領域は、有効直径Dの1.25%〜25%の深さを有する請求項5に記載の熱交換用コイル組立体。
  8. 蛇行管路の上側又は底側の左右両端に凹部領域を設け、何れの方向のずれ及び重なりにも対応する請求項5に記載の熱交換用コイル組立体。
  9. 少なくとも返しベンド部の重なる位置を平坦な断面形状に形成する凹部領域を設けた請求項1に記載の熱交換用コイル組立体。
  10. 窪みにより凹部領域を形成した請求項1に記載の熱交換用コイル組立体。
  11. 少なくとも2本の蛇行管路は、3本以上の蛇行管路であり、コイル組立体の全蛇行管路間に均一な管路間距離Sを付与した請求項1に記載の熱交換用コイル組立体。
  12. 少なくとも2本の蛇行管路のアレイ、蛇行管路の各入口に接続される入口多枝管及び蛇行管路の各出口に接続される出口多枝管を有するコイル組立体と、
    コイル組立体を収容しかつ気体入口及び気体出口を備えかつ予め決められた大きさのハウジングとを備え、
    各蛇行管路は、有効直径Dを有する直管部と、各直管部に連結された返しベンド部と、入口端部及び出口端部とを含み、
    各蛇行管路の直管部と返しベンド部との両中心軸を同一の配列平面上に配置し、
    少なくとも2本の蛇行管路は、互いにずれた平面配列内に積層されて少なくとも部分的に重なる隣接する複数の返しベンド部を有し、
    蛇行管路の隣接する返しベンド部が互いに重なる位置に一致して有効直径Dの2.5〜50%の深さを有する少なくとも1つの凹部領域を少なくとも一方の蛇行管路に設け、
    隣接する各蛇行管路間の距離をS、蛇行管路の有効直径をDとすると、少なくとも1つの凹部領域で隣接する複数の蛇行管路が嵌合する1.02を超える管路間充填密度D/Sで、蛇行管路のアレイを高密度に充填することを特徴とする熱交換器。
  13. ハウジングの気体入口からコイル組立体を通じハウジングの気体出口に気体を搬送する送風機を備える請求項12に記載の熱交換器。
  14. コイル組立体全体に下方に向けて液体を分配する液体分配装置をコイル組立体の上方に配置した請求項13に記載の熱交換器。
  15. 熱交換器は、蒸発式熱交換器である請求項13に記載の熱交換器。
  16. 蒸発式熱交換器は、間接熱交換器である請求項15に記載の熱交換器。
  17. 蒸発式熱交換器は、直接蒸発式熱交換装置と間接蒸発式熱交換装置との両方を含む請求項15に記載の熱交換器。
  18. 熱交換器は、コイル/フィル型である請求項17に記載の熱交換器。
  19. 少なくとも2本の蛇行管路のアレイと、
    蛇行管路の各入口に接続される入口多枝管と、
    蛇行管路の各出口に接続される出口多枝管とを備え、
    各蛇行管路は、有効直径Dを有する直管部と、直管部に連結された返しベンド部と、入口端部及び出口端部とを含み、
    各蛇行管路の直管部と返しベンド部との両中心軸を同一の配列平面上に配置し、
    蛇行管路のアレイは、互いにずれた配列平面内で積層され、隣接する複数の返しベンド部は、少なくとも一部分で重なり、
    複数の蛇行管路の隣接する返しベンド部の各重なる位置に一致して重なる返しベンド部の少なくとも1本の表面上に、有効直径Dの2.5〜50%の深さを有する小径領域を形成する凹部領域を設け、
    蛇行管路の隣接する複数の蛇行管路が凹部領域で重なり合い、各隣接する蛇行管路間に蛇行管路の有効直径Dより小さい均一な管路間距離Sを形成して、蛇行管路のアレイを高密度に充填することを特徴とする熱交換用コイル組立体。
  20. 返しベンド部の重なる位置の周囲にのみ小径領域を設けて、内部流体の圧力降下を最小化する請求項19に記載の熱交換用コイル組立体。
  21. 請求項19に記載の熱交換用コイル組立体を収容しかつ気体入口と気体出口を有する所定の大きさに形成されたハウジングを備えることを特徴とする熱交換器。
JP2005054873A 2004-02-26 2005-02-28 高密度伝熱管束 Active JP3986529B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/786,142 US6820685B1 (en) 2004-02-26 2004-02-26 Densified heat transfer tube bundle

Publications (2)

Publication Number Publication Date
JP2005241240A JP2005241240A (ja) 2005-09-08
JP3986529B2 true JP3986529B2 (ja) 2007-10-03

Family

ID=33435665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005054873A Active JP3986529B2 (ja) 2004-02-26 2005-02-28 高密度伝熱管束

Country Status (12)

Country Link
US (1) US6820685B1 (ja)
EP (1) EP1568957B1 (ja)
JP (1) JP3986529B2 (ja)
KR (1) KR100690101B1 (ja)
CN (1) CN1690639B (ja)
AU (1) AU2005200776B2 (ja)
BR (1) BRPI0500537B1 (ja)
CA (1) CA2496484C (ja)
DE (1) DE602005020540D1 (ja)
ES (1) ES2343969T3 (ja)
MY (1) MY137426A (ja)
ZA (1) ZA200501203B (ja)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXNL03000043A (es) * 2003-11-17 2005-05-20 Melter S A De C V Panel de enfriamiento y metodo para su formado.
US8235100B2 (en) * 2003-11-17 2012-08-07 Melter, S.A. De C.V. Water cooled panel
US20050217834A1 (en) * 2004-04-06 2005-10-06 Jeroen Valensa Multi-pass heat exchanger
US7228711B2 (en) * 2004-11-12 2007-06-12 Carrier Corporation Tubes with elongated cross-section for flooded evaporators and condensers
US20070114005A1 (en) * 2005-11-18 2007-05-24 Matthias Bronold Heat exchanger assembly for fuel cell and method of cooling outlet stream of fuel cell using the same
US20070221365A1 (en) * 2006-03-24 2007-09-27 Evapco, Inc. U-shaped heat exchanger tube with a concavity formed into its return bend
US7296620B2 (en) * 2006-03-31 2007-11-20 Evapco, Inc. Heat exchanger apparatus incorporating elliptically-shaped serpentine tube bodies
US20070227713A1 (en) * 2006-03-31 2007-10-04 Bugler Thomas W Iii Heat exchanger tube with a compressed return bend, a serpentine heat exchanger tube with compressed return bends and heat exchanger implementing the same
US7779898B2 (en) * 2006-04-14 2010-08-24 Baltimore Aircoil Company, Inc. Heat transfer tube assembly with serpentine circuits
CA2573941A1 (en) 2007-01-15 2008-07-15 Coolit Systems Inc. Computer cooling system
CA2613405A1 (en) * 2007-12-11 2009-06-11 Benjamin Arquiza Harina Revcrein tank
US8541721B2 (en) 2008-12-01 2013-09-24 Daniel Moskal Wake generating solid elements for joule heating or infrared heating
ES2435550T3 (es) * 2009-11-17 2013-12-20 Balcke-Dürr GmbH Intercambiador de calor para la generación de vapor para centrales de energía solar.
US20120012292A1 (en) * 2010-07-16 2012-01-19 Evapco, Inc. Evaporative heat exchange apparatus with finned elliptical tube coil assembly
JP5619511B2 (ja) * 2010-07-29 2014-11-05 細山熱器株式会社 間接型熱風発生機
CN103732989B (zh) * 2012-01-17 2016-08-10 阿尔斯通技术有限公司 单程水平蒸发器中的管和挡板布置
CN103748414B (zh) 2012-01-17 2016-06-29 阿尔斯通技术有限公司 单程水平蒸发器中的管布置
CN102619550B (zh) * 2012-04-24 2016-04-27 中煤科工集团重庆研究院有限公司 一种矿用空调系统换热设备
US20130285266A1 (en) * 2012-04-30 2013-10-31 Roger Scott Telvick Apparatus for recovering process exhaust energy
CN102748964B (zh) * 2012-07-31 2014-02-05 淮南润成科技股份有限公司 蛇管式冷却排管
EP2720351B1 (de) * 2012-10-12 2017-04-26 Siemens Aktiengesellschaft Vorrichtung zur Entwärmung eines Bauteils einer elektrischen Maschine mittels mehrerer Kühlschlangen
US11135547B1 (en) * 2012-11-09 2021-10-05 Arkansas State University—Jonesboro Air cooled condensing heat exchanger system with acid condensate neutralizer
US10010810B1 (en) * 2012-11-09 2018-07-03 Arkansas State University—Jonesboro Condensing heat exchanger system
US20140165641A1 (en) * 2012-12-18 2014-06-19 American Sino Heat Transfer LLC Distributor for evaporative condenser header or cooler header
US9341418B2 (en) * 2013-03-01 2016-05-17 International Business Machines Corporation Thermal transfer structure with in-plane tube lengths and out-of-plane tube bend(s)
FI126014B (fi) * 2014-03-04 2016-05-31 Uponor Infra Oy Matalan lämpötilan lämmönvaihdin
US11150037B2 (en) * 2014-10-10 2021-10-19 Baltimore Aircoil Company, Inc. Heat exchange apparatus
US10161639B2 (en) * 2015-03-10 2018-12-25 Joseph Copeland Heat transfer apparatus and heat transfer system for masonry heater
CN104964593A (zh) * 2015-07-14 2015-10-07 哈尔滨精方电力设备科技有限公司 一种高效转流冷却管及其制作工艺
CN105486123B (zh) * 2015-12-24 2018-06-26 上海理工大学 一种蛇形换热管束
US10563930B2 (en) 2016-01-12 2020-02-18 Hussmann Corporation Heat exchanger including coil end close-off cover
CN108885038A (zh) 2016-03-28 2018-11-23 三菱电机株式会社 室外机
EP3436758B1 (en) * 2016-04-01 2022-02-23 Evapco, Inc. Multi-cavity tubes for air-over evaporative heat exchanger
CA3019566C (en) 2016-04-01 2023-03-28 Evapco, Inc. Multi-cavity tubes for air-over evaporative heat exchanger
US10655918B2 (en) 2016-10-12 2020-05-19 Baltimore Aircoil Company, Inc. Indirect heat exchanger having circuit tubes with varying dimensions
US10571197B2 (en) * 2016-10-12 2020-02-25 Baltimore Aircoil Company, Inc. Indirect heat exchanger
US10641554B2 (en) 2016-10-12 2020-05-05 Baltimore Aircoil Company, Inc. Indirect heat exchanger
US11892178B2 (en) * 2016-12-28 2024-02-06 Daikin Industries, Ltd. Heat exchanger unit and air conditioner using the same
WO2018148534A1 (en) * 2017-02-09 2018-08-16 Evapco, Inc. Evaporative refrigerant condenser heat exchanger
IT201700096656A1 (it) * 2017-08-28 2019-02-28 Cosmogas Srl Scambiatore di calore per una caldaia, e tubo di scambiatore di calore
JP7052341B2 (ja) * 2017-12-26 2022-04-12 株式会社ノーリツ 熱交換装置および熱源機
JP7135325B2 (ja) * 2018-01-24 2022-09-13 株式会社ノーリツ 熱交換装置および熱源機
CN108513511A (zh) * 2018-05-30 2018-09-07 江苏师范大学 一种散热通信设备箱
KR102172531B1 (ko) * 2018-11-23 2020-10-30 한국생산기술연구원 Pome에 포함된 pao를 분리 및 회수하는 장치와, 그 방법
SE545085C2 (en) * 2019-08-12 2023-03-28 Enjay Ab Patent A battery device for a ventilation system
WO2021029809A1 (en) * 2019-08-12 2021-02-18 Enjay Ab A battery device for a ventilation system
JP7484074B2 (ja) * 2020-02-26 2024-05-16 株式会社ノーリツ 熱交換器およびこれを備えた温水装置
JP7470280B2 (ja) * 2020-04-06 2024-04-18 株式会社ノーリツ 熱交換器およびこれを備えた温水装置
JP7505748B2 (ja) * 2020-07-22 2024-06-25 中山エンジニヤリング株式会社 熱交換器

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2752124A (en) 1953-05-15 1956-06-26 Jay C Nofziger Evaporative condenser
US2890864A (en) 1956-04-18 1959-06-16 Niagara Blower Co Heat exchanger
US2919559A (en) 1956-09-20 1960-01-05 Koch Eng Co Inc Cooling system
US3132190A (en) 1961-10-12 1964-05-05 Baltimore Aircoil Co Inc Heat exchange apparatus
US3148516A (en) 1963-01-21 1964-09-15 Niagara Blower Co Air cooled vacuum producing condenser
US3265372A (en) 1964-02-27 1966-08-09 Baltimore Aircoil Co Inc Air distribution system
CH420230A (de) * 1964-09-03 1966-09-15 Sulzer Ag Wärmeübertrager
US3357484A (en) * 1966-11-15 1967-12-12 Vapor Corp Tube separator assembly for annular fluidtube coils
CA964187A (en) * 1970-06-29 1975-03-11 John Engalitcheff (Jr.) Injector type evaporative heat exchanger
US3800553A (en) 1971-05-19 1974-04-02 Baltimore Aircoil Co Inc Injector type indirect evaporative condensers
FR2301796A1 (fr) * 1975-02-21 1976-09-17 Metalliques Entrepr Cie Fse Pe
US4196157A (en) * 1978-07-06 1980-04-01 Baltimore Aircoil Company, Inc. Evaporative counterflow heat exchange
US4574112A (en) * 1983-12-23 1986-03-04 United Technologies Corporation Cooling system for electrochemical fuel cell
DE3413999A1 (de) 1984-04-13 1985-11-07 Thermal-Werke Wärme-Kälte-Klimatechnik GmbH, 6832 Hockenheim Verfahren zur herstellung eines lamellen-waermetauschers und waermetauscher nach diesem verfahren
US4683101A (en) * 1985-12-26 1987-07-28 Baltimore Aircoil Company, Inc. Cross flow evaporative coil fluid cooling apparatus and method of cooling
US4755331A (en) * 1986-12-02 1988-07-05 Evapco, Inc. Evaporative heat exchanger with elliptical tube coil assembly
US5435382A (en) 1993-06-16 1995-07-25 Baltimore Aircoil Company, Inc. Combination direct and indirect closed circuit evaporative heat exchanger
US5425414A (en) 1993-09-17 1995-06-20 Evapco International, Inc. Heat exchanger coil assembly
US5535820A (en) * 1995-07-18 1996-07-16 Blissfield Manufacturing Company Method for assembling a heat exchanger
JP3855484B2 (ja) * 1998-09-03 2006-12-13 松下電器産業株式会社 熱交換装置
US6216486B1 (en) * 1999-09-24 2001-04-17 Baltimore Aircoil Company, Inc. Ice storage coil arrangement

Also Published As

Publication number Publication date
EP1568957A3 (en) 2008-07-23
US6820685B1 (en) 2004-11-23
DE602005020540D1 (de) 2010-05-27
CA2496484C (en) 2008-02-05
ZA200501203B (en) 2005-12-28
AU2005200776A1 (en) 2005-09-15
ES2343969T3 (es) 2010-08-13
EP1568957A2 (en) 2005-08-31
CN1690639B (zh) 2010-11-10
KR20060042163A (ko) 2006-05-12
CA2496484A1 (en) 2005-08-26
BRPI0500537A (pt) 2005-11-01
BRPI0500537B1 (pt) 2018-07-17
KR100690101B1 (ko) 2007-03-09
JP2005241240A (ja) 2005-09-08
EP1568957B1 (en) 2010-04-14
AU2005200776B2 (en) 2006-09-21
CN1690639A (zh) 2005-11-02
MY137426A (en) 2009-01-30

Similar Documents

Publication Publication Date Title
JP3986529B2 (ja) 高密度伝熱管束
US20200300548A1 (en) Evaporative heat exchange apparatus with finned elliptical tube coil assembly
US11644245B2 (en) Indirect heat exchanger having circuit tubes with varying dimensions
US10641554B2 (en) Indirect heat exchanger
US20180100701A1 (en) Indirect heat exchanger
EP3056846B1 (en) Improved heat exchange apparatus
CA2355219C (en) Circuiting arrangement for a closed circuit cooling tower
KR20190118598A (ko) 다중 단면 유로 응축기
US20210010755A1 (en) Multi-cavity tubes for air-over evaporative heat exchanger
EP3436758A1 (en) Multi-cavity tubes for air-over evaporative heat exchanger
JPH05157468A (ja) 熱交換器
JPH07332880A (ja) 密閉式加熱塔

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070710

R150 Certificate of patent or registration of utility model

Ref document number: 3986529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250