JP3985039B2 - Highly dispersed and highly spherical aluminum oxynitride powder, manufacturing method and manufacturing apparatus thereof - Google Patents

Highly dispersed and highly spherical aluminum oxynitride powder, manufacturing method and manufacturing apparatus thereof Download PDF

Info

Publication number
JP3985039B2
JP3985039B2 JP2001247594A JP2001247594A JP3985039B2 JP 3985039 B2 JP3985039 B2 JP 3985039B2 JP 2001247594 A JP2001247594 A JP 2001247594A JP 2001247594 A JP2001247594 A JP 2001247594A JP 3985039 B2 JP3985039 B2 JP 3985039B2
Authority
JP
Japan
Prior art keywords
powder
flame
raw material
gas
material powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001247594A
Other languages
Japanese (ja)
Other versions
JP2003054919A (en
Inventor
泰正 高尾
優喜 大橋
睦夫 山東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001247594A priority Critical patent/JP3985039B2/en
Publication of JP2003054919A publication Critical patent/JP2003054919A/en
Application granted granted Critical
Publication of JP3985039B2 publication Critical patent/JP3985039B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、新規な酸窒化アルミニウム粉体、その製造方法及び製造装置に関するものであり、更に詳しくは、原料粉体の酸窒化反応を火炎の存在下、大気圧下の気相中で適用し、火炎の熱エネルギー及び還元力を酸窒化反応の駆動力とし、気相中で酸窒化反応が進行するようにして生成物の溶融凝固や凝集を防止して、特に、プロセスが単純でコスト的に有利な原料金属粉の直接窒化法で原料粉融着や粒成長抑制を実現し、主たる用途として、等方的結晶構造による透光性を利用した光学系材料、高耐熱衝撃性あるいは溶鋼に対する低濡れ性・低反応性を利用した耐溶融材料などにおいて、その原料として必要な粒子径と球形度を同時に達成し、特に、原料粉体の粒成長を抑制して一次粒子径の範囲が0.05〜100ミクロンに含まれ、生成物の溶融凝固や凝集が小さく、高分散性及び/又は粒子の外形が角張らないことを同時に実現した新規な酸窒化アルミニウム粉体、その製造方法及び製造装置に関するものである。
【0002】
【従来の技術】
一般に、光学系材料において、可視及び赤外線波長での透光性に優れ、同時に耐熱性・耐磨耗性も高い材料が発光管用材料、高温用窓材料、スペースシャトルなど真空雰囲気下での高強度窓材料などとして求められている。この種の材料の一つとして、透光性アルミナ焼結体は、高圧ナトリウム発光管にも広く実用化されている。しかしながら、アルミナは、異方性を持つ六方晶構造を有し、結晶粒界での複屈折による光散乱が避けられない。そこで、結晶粒子径の粗大化による散乱低減が図られているが、強度低下が不可避の問題となっている。
また、耐火物などの耐溶融材料は、溶鋼との低活性、高温安定性や耐酸化性、溶鋼流動による損耗が低いこと(即ち、高温機械的強度)が重要である。この材料として、サイアロンが良好とされているが、高温でのSiとFeの親和性から耐溶融材料に不適との見解も示されている。
【0003】
窒化アルミニウム及び酸化アルミニウムの多系である酸窒化アルミニウムは、等方性の立方晶構造から成り、粒界散乱の無い優れた透光性を示すと共に、高耐熱衝撃性あるいは溶鋼に対する低濡れ性、更に、非Si系であることから、耐溶融材料としても有望視されている。多系は、これまでに、AlN、Al16314、Al1038 、Al937 、A1735 、A 6 34 、Al23275 、Al19.729.52.5 、Al22302 、Al1927N、Al2739N、Al2 O3 などが知られており(Al元素÷O元素の比が0.67〜5.3に含まれ、Al元素÷N元素の比が1〜27に含まれる)、特に、立方晶スピネル型Al(64+x)/3(8-x)/332-xx (但し、□は陽イオン空孔、0≦x≦8)が良く研究されている。
【0004】
酸窒化アルミニウムの製造方法としては、窒化アルミニウムと同様の金属Al粉の直接窒化法や、Al23 と黒鉛の還元窒化法の他、Al23 とAlNの混合物を窒素雰囲気中で高温焼成する方法、また、近年では、低圧雰囲気下アークプラズマによる気相合成法も報告されている。この内、Al23 −AlN混合物の高温焼成法は、多くの多系を持つ酸窒化アルミニウムの組成制御が比較的容易であるという利点を有し、その製造法として一般的な方法である〔例えば、1)平井伸治、村上英明、片山博、上村揚一郎、三友護“アルミナと窒化アルミニウムからの酸窒化アルミニウムスピネルの生成”、2)日本金属学会誌、Vol.58、p.648、1994〕。しかしながら、Al23 −AlN高温焼成法は、固―固反応であり、高温で長時間の熱処理が必須であり、実際の焼成温度が2000℃以上に及ぶ場合も報告されている。このような焼成条件下で生成された粉体は、粗大化し、その後の粉砕も容易ではない。従って、高強度焼結体を製造するための易焼結性原料粉体の供給ルートとして、十分に満足した特性を発揮できていないという問題点があった。更に、長時間の熱処理と粉砕は、純度の点でも問題である。
【0005】
一方、金属Alの高活性による発熱反応を利用した直接窒化法は、いわゆる燃焼合成法としては100年程前から検討されてきた。これは、プロセスが単純で、コスト的には最も有利とされるが、生成粉体の粒成長が起こり易いのが一般的である。しかも、現状の“常圧”下での直接窒化プロセスでは、窒素雰囲気中1000〜1500℃程度のAl融点以上の熱処理が必要とされる。即ち、既往の直接窒化製造方法によると、(1)激しい発熱反応、(2)Al融点以上の熱処理、により、生成粉体が固く凝集(融着)した状態となっていた。従って、この方法でも、生成物の粗大化と低純度の問題が解決されない〔例えば、1)Normand D.Corbin,Aluminum Oxynitride Spinel、2)A Review,Journal of the European Ceramic Society,Vol.5、p.143、1989、3)Jason Shin,Do−Hwan Ahn,Mee−Shik Shin and Yong−Seog Kim,Self−propagating High Temperature Synthesis of Aluminum Nitride under Lower Nitrogen Pressures,Journal of the American Ceramic Society,Vol.83、p.1021、2000〕。
【0006】
酸窒化アルミニウムは、通常、不安定であり、上記の非化学量論的な構造を持つのが一般的である。化学量論組成のスピネル酸窒化アルミニウムは、現在までのところ、アークイメージ炉による溶解法でのみ製造されている(桑野義博、平井敏雄、AlN基セラミックスとその気相合成、日本金属学会会報、Vol.30、p.913、1991)。プラズマアーク溶融法は、微細且つ高純度で、比較的球形度の高い粉体製造が可能という気相(エアロゾル)合成の利点を有し、更に、反応雰囲気調整による量論組成の微細制御の可能性を持つ点で、今後の発展が期待される(例えば、Hiroyuki Fukuyama,WataruNakao,Masahiro Susa and Kazuhiro Nagata,New Synthetic Method of FormingAluminum Oxynitride by Plasma Arc Melting,Journal of the American Ceramic Society,Vol.82、p.1381、1999;又は特開平11−268910公報)。しかしながら、既往の酸窒化アルミニウムの気相法は、減圧気相プロセスであり、減圧(真空)化設備を必須とする点で製造コストの問題がある。それに付随して、工業的プロセスとした場合(例えば、スケールアップ化)、上記の高特性を保持できるかどうかは現時点では未知であるという問題点が指摘される。更に、減圧下での気相法は、蒸発−凝縮反応を駆動原理とすることから、必然的に、ナノメーターレベル(大きくても数10ナノメーター)の粉体合成は可能であるが、それが本発明で対象とする技術分野の材料系に必ずしも好適なわけではない。一般に、上記のような“超微粒子”は、捕集や分散、成形などの粉体工学的取り扱いが難しく、易凝集性粉体で、焼結体用原料粉体としては余り用いられない。むしろ粘稠剤用フィラーとして利用されている。即ち、焼結体原料粉体供給プロセスとしては、平均粒子径がサブミクロンレベルから、ミクロンレベル程度の粉体を制御性良く合成可能なことが求められるが、ビルディングアップ法であるプラズマアーク溶融法は、そのために長時間を要したり、前駆体の高濃度化が必要となって生成物の制御性が低下する恐れがある。しかも、減圧気相プロセスであるため、前駆体・高濃度化の融通性は比較的小さい。
【0007】
難合成系で優位性を発揮し得る気相法では、その他、Alの低沸点前駆体のCVD気相合成法(例えば、B.Aspar,B.Armas,C.Combescure and D.Thenegal,Organometallic Chemical Vapour Deposition IntheAl−O−N System,Journal of the European Ceramic Society,Vol.8、p.251、1991)も検討されているが、プラズマアーク溶融法と同様の問題点を有する。
また、酸窒化アルミニウムは、1960年頃、日本で発見されたが、Al2 O3 などに比べると比較的歴史の浅い材料系で、その製造方法自体、未だ必ずしも最適化されたものとは考え難い点も指摘される。
即ち、既往の酸窒化アルミニウム粉体の主な三つの製造方法によると、(1)Al23 −AlN高温焼成法では粗大粒子径と低純度が不可である、(2)Al直接窒化法でも粗大粒子径と低純度が不可である、(3)プラズマアーク溶融法などの気相合成法は所望の粒子径範囲と減圧気相プロセスで難点がある、となり、高焼結性に必要な粒子径を満たす粉体も、それを生産性・経済性良く製造する方法・装置の何れも、現時点では得られていなかった。
【0008】
本発明者らは、このような状況を踏まえ、種々検討を重ねる中で、上記サイズの高純度粉体を、経済性良く製造し得る方法として、これまでだれも予期し得なかった現行の代表的フィラーである非晶質球状シリカ粉体に着目した。この粉体では「化学炎プロセス」が一般的であり、可燃性ガスと酸素の混合ガスの燃焼火炎中に硅石原料やSi金属粉を投入し、原料表面の溶融や、気相中の蒸発−反応−結晶化プロセスの併用により、球形度の高いシリカ粒子を、しかも、粒子径範囲を任意に調整して製造することが行われている。この手法による球状粒子化は、気相中で化学反応が進行した場合に、立体的に周囲から作用を及ぼされることが少ないため、球状に形を構成し易いというエアロゾル合成の特長を利用している。また、この手法は、蒸発−凝縮反応のみを駆動原理としているわけではないので、超微粒子だけでなく、ミクロンレベルから10数ミクロンのフィラー粉体サイズまで適用可能である。
【0009】
この方法や製造装置を、酸窒化アルミニウム粉体に適用できれば、(1)粒子径が不適(粗大あるいは過小)、あるいは(粉砕による)形状異方性が大きいという欠点の解消、(2)シリカフィラー合成で蓄積されてきた粉体合成の知的資産やノウハウの利用により、粒子径分布など粉体特性の制御性向上や、必要な特性を得るための検討時間の短縮、(3)化学炎法の製造装置の流用による初期設備投資の優位性など、多くの利点が期待されると考えられる。
しかしながら、これまで、「酸窒化アルミニウム粉体・化学炎プロセス」はだれも予期し得ず、実現されてこなかった。その理由については、(1)「酸素」の存在する火炎中で非酸化物を合成し得るとは考えられず、内炎又は還元性燃焼火炎などの対酸素還元力を利用する発想がなかったこと、(2)「酸素」の存在する火炎中へ単純に原料を投入するだけでは、完全な酸化物ではない酸窒化アルミニウムが製造できないこと、(3)シリカと異なり高融点の耐溶融セラミックスでもある酸窒化アルミニウムでは「原料粉体表面の溶融」による球状化は期待できないこと、(4)一度の反応(1プロセス)で完全な酸窒化アルミニウム結晶構造(特に、γスピネル)を有した粉体を合成しなければならないと考え、気相合成の特徴である複数の反応を比較的容易に連続化できる点に着目しなかったこと、などによるものと考えられる。
【0010】
【発明が解決しようとする課題】
本発明は、このような状況を踏まえて新たに開発されたものであって、上記従来の酸窒化アルミニウム粉体、その製造方法及び製造装置が持つ欠点を克服し、火炎の熱エネルギー及び還元力を酸窒化反応の駆動力とし、気相中で酸窒化反応が進行するようにして生成物の溶融凝固や凝集を防止(特に、プロセスが単純でコスト的に有利な原料金属粉の直接窒化法で原料粉融着や粒成長抑制を実現)し、主たる用途として等方的結晶構造による透光性を利用した光学系材料、又は高耐熱衝撃性あるいは溶鋼に対する低濡れ性・低反応性を利用した耐溶融セラミックスなどにおいて、その原料として必要な粒子径と球形度を同時に達成し、特に、原料粉体の粒成長を抑制して一次粒子径の範囲が0.05〜100ミクロンに含まれ、生成物の溶融凝固や凝集が小さく、高分散性及び/又は粒子の外形が角張らないことを同時に実現した新規な酸窒化アルミニウム粉体、その製造方法及び製造装置を提供することを目的とするものである。
【0011】
【課題を解決するための手段】
上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)原料粉体を火炎の存在下、気相中で酸窒化反応に付して作製された100%酸窒化アルミニウム組成の粉体であって、1)一次粒子径の範囲が0.05〜100ミクロンに含まれ、生成物の溶融凝固や凝集が小さく、高分散で、粒子の外形が角張らないこと、2)Al元素÷O元素の比が、0.67〜5.3に含まれ、Al元素÷N元素の比が1〜27に含まれること、を特徴とする酸窒化アルミニウム粉体。
(2)原料粉体を、可燃性ガスの火炎、可燃性ガスと酸素の混合ガスの燃焼火炎、可燃性ガスと酸素の割合を完全燃焼比より酸素を少なくした還元性燃焼火炎、不活性ガスのプラズマによる火炎、又は非接触状態下の物質間に発生するアーク炎から選択される火炎、の存在下、その熱エネルギーと還元力を利用して気相中で酸窒化反応に付して作製されたことを特徴とする、前記(1)に記載の酸窒化アルミニウム粉体。
(3)前記(1)又は(2)に記載の酸窒化アルミニウム粉体を製造する方法であって、Al元素から成る粉体、又はAl及びO元素から成る粉体とC元素から成る粉体の混合物で、1次粒子径の範囲が0.05〜100ミクロンに含まれる原料粉体を気相中で分散状態に形成する工程、スパッド型の火口を有する拡散火炎式の反応器を具備した構造を有する火炎発生装置を用いて、原料粉体を火炎の存在下、気相中で直接窒化又は還元窒化する酸窒化反応に付して原料粉末と反応ガスとの拡散混合及び炭素が残らないようにする制御を行うことにより原料粉の融着と粒成長を抑制して酸窒化物を製造する工程、又は、これらの工程及び上記酸窒化物を熱処理する工程、から成ることを特徴とする酸窒化アルミニウム粉体の製造方法。
(4)前記(1)〜(3)のいずれかに記載の酸窒化アルミニウム粉体の製造方法に使用するための装置であって、火炎の発生装置と、原料粉体の供給装置と、反応ガスの供給装置とを構成要素として含み、火炎の発生装置が、スパッド型の火口と同軸上に内径の異なる複数個の円筒管を組み合わせた二重円筒管による拡散火炎式の反応器を具備した構造を有し、いずれかの円筒管へ原料粉体を供給し、他の円筒管へ反応ガスを供給して、該円筒管の先端部付近で、原料粉体と反応ガスとが拡散混合され、炭素が残らないように燃料と酸素量の比を制御するpre−mixing zoneを有し、原料粉体の酸窒化反応が、火炎の存在下、気相中で進行するようにしたことを特徴とする、製造装置。
【0012】
【発明の実施の形態】
次に、本発明について更に詳細に説明する。
本発明者らは、前述のように、種々検討を重ねる中で、(1)第一に、「酸素」の存在する火炎は、むしろ還元活性の大きい反応場と考えることができること、(2)第二に、可燃性ガス過多の内炎中や、可燃性ガスと酸素割合を完全燃焼量論比より酸素を減少させた還元性燃焼火炎を利用し、そこへ反応物を“有効に”供給することで酸窒化物(又は窒化物)の反応場として見なし得ること、(3)第三に、シリカのように溶融過程を利用できなくとも、気相中で化学反応が進行した場合に、立体的に周囲から作用を及ぼされることが少ないため、球状に形を構成し易いというエアロゾル合成の特長が利用し得る上に、気相中で酸窒化反応が進行するようにすることは、球状化と同時に、生成物の溶融凝固や凝集を防止できることが見込める(特に、プロセスが単純でコスト的に有利な原料金属粉の直接窒化法で原料粉融着や粒成長抑制を実現し得る)こと、更に、気相合成の制御因子の豊富さは生成粒子特性の高制御性を意味すること、(4)第四に、化学炎法では、気相合成の特徴である複数の反応を連続化して用いることが可能(あるいは比較的容易)であること、に着目した。
【0013】
そして、上記の着想を実現すべく鋭意検討した結果、具体的には、(1)燃焼火炎あるいはプラズマ火炎中の酸素濃度を調整し、また、安定した内炎や還元性燃焼火炎を維持すること、(2)好適な粒子径の実現並びに生産性の観点から、火炎による熱エネルギーを駆動力にした直接窒化法又は還元窒化法を主反応系として適用すること、(3)流動化媒体を併用する流動層プロセスを利用するなど、粉体状の原料を凝集の少ない高分散状態で、且つ効率的に反応場へ供給すること、(4)原料と火炎の量比率の適正化により酸窒化アルミニウム結晶構造の生産性を高めること、あるいはAl元素及び/又はO元素及び/又はN元素から成る多系相を前駆体として製造し、後段に熱処理工程を連続化することで酸窒化アルミニウム結晶構造とすること、そして、以上4点の制御を同時且つ効果的に組み合わせることで、焼結体原料粉体として必要な粒子径と球形度を達成した酸窒化アルミニウム粉体を製造することを実現した。
【0014】
即ち、本発明は、(これまで想像の産物でしかなかった)焼結体原料粉体として必要な粒子径と球形度を同時に達成し、特に、原料粉体の粒成長を抑制して一次粒子径の範囲が0.05〜100ミクロンに含まれ、生成物の溶融凝固や凝集が小さく、高分散性及び/又は粒子の外形が角張らないことを同時に実現した酸窒化アルミニウム粉体、並びにそれを粉砕を行わずに直接合成する製造方法、及びその製造装置を提供するものであり、火炎の熱エネルギー及び還元力を酸窒化反応の駆動力とし、気相中で酸窒化反応が進行するようにして生成物の溶融凝固や凝集を防止したことを特徴とするものである。
【0015】
上記のように、本発明の重要な技術的要件は、次の4点にある。即ち、(1)火炎中のガス雰囲気の調整、及び内炎や還元性燃焼火炎の安定化、(2)火炎による熱エネルギーを駆動力にした直接窒化法又は還元窒化法の利用、(3)原料粉体の気相分散(エアロゾル)状態の形成、且つ効率的な反応場への供給、(4)原料及び火炎量の比率の制御、又は熱処理工程の連続化、である。
【0016】
本発明において、原料粉体の流動化又は気相分散(エアロゾル)状態の形成・利用方法としては、気流にのせて粉体を滞留化させる各種の流動層法(原料粉体より大きく流動化し易い数100μm直径の媒体メディアを同時に用いて、原料粉体の凝集を防止しながら高分散化を図る媒体流動層法、粉体層に振動を印加して微粒子のチャネリングを防止する振動流動層法などを含む)が好適に用いられるが、例えば、更に、回転円板やガスノズルを用いて粉体を気流にのせる各種噴霧法、液体媒体中に粉体を分散させ超音波噴霧器や遠心噴霧器などで液体ごと粉体を液滴化する液体噴霧法なども適宜使用可能であり、特に、制限されるものではなく、いずれの方法で調製された流動化原料粉体も使用できる。
空気、窒素、アンモニア又は不活性ガスの供給・制御装置としては、コンプレッサーなどの圧縮ガス式供給機、ガス製造設備より供給される高圧ガスボンベの内圧利用、浮き玉式流量計、マスフローコントローラーなどが例示される。
【0017】
また、気相分散状態の利用による原料粉体の反応場への供給方法としては、火炎ごと内包可能な、石英、アルミナ、コーディエライト又は耐熱鋼などの、反応管又は壁を設け、発生熱エネルギーの封止による反応効率の向上や、供給粉体の搬送精度を高める方法が好適に用いられるが、例えば、更に、(但し、反応効率に問題が無ければ)自由空間において発生させた火炎中に原料粉体を供給する手法も適宜使用可能であり、特に制限されるものではなく、いずれの方法で調製された供給方法も使用できる。
更に、火炎中への原料粉体及び窒化源(窒素、アンモニア又は不活性ガスなど)の導入経路においては、同軸上に内径の異なる複数個の円筒管を組み合わせた構造を有する原料供給管を設け、火炎原料である可燃性ガス又はプラズマ発生用の不活性ガスを外側から、酸素及び原料粉体及び窒化源を内側から供給する二重円筒方式が好適に用いられるが、例えば、更に、(但し、反応系の駆動原理や、原料粉体及び窒化源の混合状態、火炎の過冷却において問題が無ければ)上記の原料供給管とは別に、火炎原料と酸素から発生させた火炎中に周囲から、原料粉体及び窒化源を供給する手法も適宜使用可能であり、特に制限されるものではなく、いずれの方法で調製された導入経路も使用できる。
【0018】
また、気相分散状態の利用による原料粉体の反応場への供給の際は、サイクロン分級による原料粉体の粒子径分布調整や粗大粒子除去を行い、反応効率や制御性向上を図ることが好適なものとして例示されるが、例えば、更に、邪魔板によるインパクター分級や、比較的長めの供給管を用いることで粗大粒子が必然的に除去されるようにすること、あるいは粒子径分布幅の狭い原料粉体の場合は特に分級操作を行わない方式も適宜使用可能であり、特に制限されるものではなく、いずれの方法で調製された供給方法も使用できる。
【0019】
本発明において、火炎の原料や発生・利用方法としては、例えば、水素、メタン、ブタン、アセチレンなどの液化石油ガス、アンモニアなど、各種の可燃性ガス、及び酸素などの支燃性ガスが好適に用いられるが、更に、アルゴンなど不活性ガスの電離によるプラズマ火炎、又は被覆棒アーク、ザブマージアーク、イナートガスアークなど高電圧を印加された非接触状態下の物質間に発生するアーク炎なども適宜使用可能であり、特に制限されるものではなく、いずれの方法で調製された火炎も使用できる。
更に、火炎の発生装置としては、液化ガスあるいは都市ガス用のガスバーナー、ガス溶接ガン、アーク溶接ガン、熱プラズマ装置などが例示されるが、好適には、例えば、同軸上に内径の異なる複数個の円筒管を組み合わせた構造を有する火炎の発生装置を構成要素として含み、いずれかの円筒管へ原料粉体を供給し、他の円筒管へ反応ガスを供給して、原料粉体の該円筒管先端部付近で、原料粉体と反応ガスとが拡散混合され、原料粉体の窒化反応が火炎の存在下、気相中で進行するようにした装置が例示される。
【0020】
また、同軸上に内径の異なる複数個の円筒管を組み合わせた構造を有する原料供給管を設け、火炎原料であるC又はH元素から成る可燃性ガス又はプラズマ発生用の不活性ガスを外側から、酸素及び原料粉体及び窒化源を内側から供給する二重円筒方式において、火炎原料ガスと、原料粉体及び窒化源(及び酸素)を混合し、同時に安定した内炎(及び外炎)又は還元性燃焼火炎を発生させる火口形状については、火炎原料ガスが数本の噴射管に分けられて外周より噴出され、それより供給源に近い位置で内側から噴出された酸素などを包囲し、良好な混合状態が得られるスパッド型が好適に用いられる。しかしながら、これらは、特に制限されるものではなく、単体の火炎原料ガス供給管を用いる高圧型のガン型、輪状の火炎原料ガス供給管円周に沿って多数の噴出口が設けられたリング型、太口径ノズルが放射状に分割されて火炎原料ガスと酸素などが並列して噴出されるアニュラー型、火口端で段差を設けて渦流制御に拠り火炎の存在しないデッドスペースを減少させるウォールリセス型、ウォールリセス型に加え火炎原料ガス供給管を主管と袖火管に分割したステクタイト型、主管断面積を袖火管断面積の10倍以上にして袖火噴出速度低減を図ったフェロックス型(又はピアン型)、火炎が並列して横に並ぶライン型及びシェパード型、未燃ガス流中に邪魔板を設けて高温渦流と再循環域を作り連続着火するブラフボディ型、混合ガスを高速で赤熱した耐火物に衝突させて連続着火するラジアントカップ型、なども適宜使用可能であり、いずれの方法で調製された火炎も使用できる。
【0021】
本発明において、原料をAl元素から成る粉体とし、窒素、アンモニア又は不活性ガスの存在下で、酸窒化反応を進行させること、原料をAl及びO元素から成る粉体と、C元素から成る粉体の混合物とし、窒素、アンモニア又は不活性ガスの存在下で、酸窒化反応を進行させること、により上記Al、O及びN元素を含む粉体とすることができる。ここで、「Al元素から成る粉体」として記述した粉体状の原料の材料系については、任意の粒子径のアルミニウム金属粉体、水・ガス・遠心の各アトマイズ法で製造された球形度の高い気相合成・Al系粉体群が好適に用いられ、更に、AlCl3 などの塩化物、アルミニウムイソプロポキシド(化学式Al(iso−OC353 )などのアルコキシド原料、アルミニウムアセチルアセトナト(化学式Al(iso−C5723 )などのβジケトン錯体、トリメチルアルミニウム(化学式Al(CH33 )などのアルキルメタルなどの低沸点の気相合成原料群、などが例示されるが、特に制限はない。
【0022】
また、「Al及びO元素から成る粉体と、C元素から成る粉体の混合物」として記述した粉体状の原料の材料系について、まず「Al及びO元素から成る粉体」としては、市販のバイヤー法・改良バイヤー法・アルコキシド法・アンモニウムドーソナイト法・気相法などで製造されたアルミナ粉体群を好適とするが、更に、α・γ・θ・κの各Al23 多系(中間アルミナ)、AlOOHやAl(OH)3 の化学式で表現される水酸化物前駆体、アセチルアセトナト(化学式Al(C5723 )や、アンモニウムドーソナイト(化学式NH4 AlCO3 (OH)2 )などの炭酸塩前駆体、アルミニウムイソプロポキシド(化学式Al(iso−OC353 )などのアルコキシド原料、アルミニウムアセチルアセトナト(化学式Al(iso−C5723 )などのβジケトン錯体、トリメチルアルミニウム(化学式Al(CH33 )などのアルキルメタルなどの低沸点の気相合成原料群、などが例示されるが、特に制限はない。
また、「C元素から成る粉体」としては、任意の粒子径の炭素粉体、カーボンブラックやアセチレンブラックなど純度の高い気相合成・炭素粉体、などが例示されるが、特に制限されるものではない。
なお、上記の原料粉体は、一次粒子径の範囲が0.05〜100ミクロンに含まれること求められる。この理由は、原料粉体の特性(主に、粒子径と形状)が、合成される酸窒化アルミニウム粉体特性に反映されるためである。
【0023】
また、原料粉体の供給装置としては、ニーダーなどのスクリュー式、二軸ミルなどのローター式供給装置、粉体搬送用の気流供給などが例示される。
本発明においては、炭素が残らないように燃料と酸素量の比を制御する。火炎中で合成された粉体に連続的又は断続的に高温を付与する方法・装置としては、熱CVD法などで採用される通常の電気炉加熱が好適に用いられるが、熱処理用の燃焼火炎を複数設けることによる火炎再加熱、プラズマ炎やアーク炎の利用、イメージ炉式加熱なども適宜使用可能であり、特に制限されるものではない。
更に、熱処理の条件は、火炎中で合成された直後の状態の粉体の形態や結晶相により決定され、合成直後の粉体の特性で満足される場合、熱処理は必ずしも必要ない。一般的な条件として、窒素、アンモニア又は不活性ガス雰囲気が例示される。熱処理により、酸窒化アルミニウム多系の相の割合、その高制御化の格段の効果が得られる。
【0024】
本発明による、光学系材料及びその原料粉体は、可視及び赤外線波長での透光性に優れ、同時に耐熱性・耐磨耗性も高い材料が必要な高圧ナトリウム発光管などの発光管用材料、高温用窓材料、スペースシャトルなど真空雰囲気下での高強度窓材料の製造用原料粉体として好適に用いられるが、特に制限はない。
本発明による、耐溶融材料及びその原料粉体は、サイアロンなどが用いられる溶鋼との低活性、高温安定性や耐酸化性、溶鋼流動による損耗が低いこと(即ち、高温機械的強度が高いこと)が求められる坩堝などの耐火物の製造用原料として好適に用いられるが、特に制限されるものではない。
【0025】
本発明において、組成が無機材料から成る粉体を、組成が有機材料から成る樹脂系原料に充填して作製する複合材料系としては、半導体素子の保護・絶縁などを目的としたパッケージング材料が好適に例示されるが、更に、絶縁材料や電極・導電材料、電気粘性流体、化学機械研磨用スラリー、射出成形や鋳込み成形などのセラミック成形プロセス原料などの材料系も例示される。充填するフィラーである無機材料から成る粒子状材料としては、半導体パッケージング材料で多用されるシリカ又は窒化アルミニウムが好適に例示されるが、例えば、Al23、SiC、Si34 などの他の酸化物系、Au、Ag、Pd、Pt、Cu、Al、Au−Pdなど金属系も当然適用可能であり、特に制限はない。また、結晶性についても制限は無く、結晶性又は非晶質のいずれでも構わない。媒体である液状材料については、イオン交換水や蒸留水などの水系、エタノールなどの有機非水系のほか、レゾール型やノボラック型のフェノール樹脂、ビスフェノール型クレゾールノボラック多官能型のエポキシ樹脂、ハロゲン化樹脂など、常温で固形タイプの樹脂材料や、常温で液状タイプの次世代半導体素子用のパッケージング材料で多用される樹脂材料が好適に例示されるが、特に制限はない。
【0026】
本発明において、基板材料及びその原料粉体としては、LSIやICが単体では無く、複数素子が多層化・高集積化され、単体のシリコンチップ中に全システムを内包するシステムLSI、マルチチップモジュール、又は三次元実装などシステムレベルの多機能高密度化を志向するシステムインパッケージ用の基板材料、又は電力変換用パワーデバイス(例えば、スイッチング電源の一次整流用ブリッジダイオード、プリンターやFAXなどのモータドライバー用IC、通信機器又はデジタル家電向けDC/DCコンバータIC、インバータ照明向け高耐圧IC、TV・VTRなどのハイブリッドICなど)が例示されるが、特に制限はない。
【0027】
本発明は、平均粒子径がサブミクロン〜数ミクロンオーダーの粒子径と、高い球形度とを同時に達成した酸窒化アルミニウム粉体、及びそれを粉砕を行わずに直接合成可能な製造技術、その用途、及び製造装置を提供することを可能とし、本発明の粉体は、特に、光学系材料あるいは耐溶融材料などの無機系材料において、その原料粉体として最適である。
本発明の方法により製造した酸窒化アルミニウム粉体の特性とその製造方法の利点を以下に示す。
即ち、上記粉体は、特に、原料粉体の粒成長を抑制して一次粒子径の範囲が0.05〜100ミクロンに含まれ、生成物の溶融凝固や凝集が小さく、高分散性及び/又は粒子の外形が角張らないことを同時に実現した。また、結晶相は、酸窒化アルミニウムの各多系相から、AlN相、Al23 相まで任意に制御して製造することが可能である。
【0028】
【実施例】
次に、実施例により本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。
(1)方法
図1に、本発明に基づく製造装置構成の一例を模式的に示す。液化石油ガスと酸素系の化学炎と、窒素又はアンモニアの窒化源、そして粒子状の原料粉体とから成る、気相(エアロゾル)製造プロセスを構築した。反応器(Diffusion Burner Flame Reactor)は、透明石英管(Quartz Tube)とステンレス製二重円筒管による拡散火炎式とし、火口はスパッド型(Spud−type)を用いた。外管へ火炎原料ガス(Hydrocarbon Gases)を供給し、内管へ原料粉体(Raw Precursor Powder)、及び反応ガス系、ここでは、NH3 の窒化ガス(Nitriding Gas)と、O2 とを搬送した。図1では、先ずAl原料粉体を流動層エアロゾル発生装置(Fluidized Bed Aerosol Generator)に搬送し、原料粉体の粒子サイズを選別(Clasification)し、火炎原料ガスと酸素比率や窒化ガスの納入経路(Controlof Nitriding Gas Inlet Position)などを調整して、内炎(Inner Luminous Flame)で気相合成、生成物(Resultant Products in Gas Phase“Aerosol”)をフィルター(Filter)を通してポンプ(Pump)引きし、有害ガスなどをトラップ(Trap)除去する構成を採用した。化学炎法へ適用する基礎反応系の一例として、ここでは、Al粉体の直接窒化法を用いたが、勿論、還元窒化法でも問題はない。
【0029】
Al原料粉体は、平均粒子径約3ミクロンのガスアトマイズ法による球状粉体を用いた。その流動化は、媒体流動層法とし、直径150ミクロンのガラスビーズを媒体として使用した。
原料粉体は、窒素ガスにより1分当たり3リッターで、液化石油ガスは1分当たり4リッターで供給し、制御因子である酸素ガスは、液化石油ガスとの化学量論比から若干還元性火炎側へ調節し、1分当たり4リッターとした。但し、不完全燃焼による炭素が過剰に発生するほどではない。更に、酸窒化反応用のアンモニアガスを、1分当たり0リッターから3リッターまで調整して供給した。
(2)結果
上記したように、気相合成法は、制御因子が豊富であり、生成粒子の制御性が高い特長を有する。ここでは、その一例として、反応系へ供給する窒化源量によって反応効率を制御し、生成粒子の平均粒子径を調整した結果を示した。
図2及び図3に、本発明の方法による、酸窒化アルミニウム粉体の一例のSEMを示す。図2はアンモニアガス1分当たり3リッター、図3は1分当たり0リッターで製造した結果である。その結果、3ミクロンの出発粒子径から、微細化は約0.1ミクロン、粗大粒子径化は約10ミクロンまで、制御可能であった。即ち、原料粉体の1/30程度から、3倍程度まで変化させることができた。
生成粒子径は、上記の合成条件の他、原料粒子径を変えることで任意に制御可能であり、現在、市販品で容易にサブミクロンから数10ミクロン程度のAl粉体を入手可能なことから、合成し得る一次粒子径の妥当な範囲として0.05〜100ミクロンが保証される。
【0030】
従って、まず、第一に、本発明が対象とする技術分野の原料粉体として主に必要な、(1)火炎のみで直接合成された段階で(熱処理などを施さずに)、100%酸窒化アルミニウム組成の粉体が製造可能である(即ち、1650℃以上の高価な熱処理設備や、余計な後段の熱処理が不要である)、(2)前駆体原料粉体の大きさを保持した、平均粒子径がミクロンオーダー程度の生成粒子・粒子径を達成できる、(3)合成された段階で粉体の粗大化が起こらず高分散状態が実現できる(即ち、粉砕工程が不要である)、(4)高い球形度を達成できる、(5)特に、金属Al粉の直接窒化を用いているにも関わらず生成粉体が固く融着又は凝集した状態が発生し難い、という格別の効果が達成された。
また、第二に、窒化源の供給量という容易に調整可能な条件で、任意に生成粒子径を制御することができた。
この他、窒化ガスの供給方法を原料粉体及び酸素ガスと予め混合、又は内炎が燃焼している中央へ後から供給、と導入経路を変えて供給することで、反応原理を変えて粒子径や生成相を制御することが可能となった。
【0031】
【発明の効果】
以上詳述したように、本発明によれば、(1)高価な熱処理設備や粉砕工程を用いず、フィラー粉体分野で構築された既往の製造設備で直接合成が可能である、(2)前駆体原料粉体の粒成長を抑制し、粉体の粗大化・凝集(融着)フリーの粉体を製造できる(即ち、前駆体原料粉体径という容易に調整可能な条件で任意に生成粒子径を制御し得る)、(3)前記の粉体特性を満たし、同時に従来製品に期待できない高い球形度が実現される(従来、酸窒化アルミニウム粉体では、粉砕工程が必須で、角張った形状異方性の高い粉体しか存在しなかった)、(4)特に、等方的結晶構造による透光性を利用した光学系材料、又は高耐熱衝撃性あるいは溶鋼に対する低濡れ性・低反応性を利用した耐溶融材料などにおいて、その原料として必要な粒子径と球形度を同時に達成し、特に、原料粉体の粒成長を抑制して一次粒子径の範囲が0.05〜100ミクロンに含まれ、生成物の溶融凝固や凝集が小さく、高分散性及び/又は粒子の外形が角張らないことを同時に実現した新規な原料粉体を提供することができる、という格別の効果が奏される。
【図面の簡単な説明】
【図1】本発明に基づく製造装置の構成の一例の模式図を示す。
【図2】実施例で製造した、酸窒化アルミニウム粉体の一例のSEM(窒化用アンモニアガス1分当たり3リッターの場合)を示す。
【図3】実施例で製造した、酸窒化アルミニウム粉体の一例のSEM(窒化用アンモニアガス1分当たり0リッターの場合)を示す。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel aluminum oxynitride powder, a production method and a production apparatus thereof. More specifically, the oxynitridation reaction of a raw material powder is applied in a gas phase under atmospheric pressure in the presence of a flame. The heat energy and reducing power of the flame are used as the driving force for the oxynitridation reaction, and the oxynitridation reaction proceeds in the gas phase to prevent the product from melting and coagulating. In particular, the process is simple and cost-effective. The direct nitridation method of raw material metal powder that is advantageous to the material realizes fusion of raw material powder and suppression of grain growth, and is mainly used for optical system materials that use light transmission by isotropic crystal structure, high thermal shock resistance or molten steel In fusion resistant materials that use low wettability and low reactivity, the particle size and sphericity required as raw materials are simultaneously achieved. In particular, the primary particle size range is 0 by suppressing the grain growth of the raw material powder. .05 to 100 microns, raw Small melt solidification or aggregation of objects, highly dispersed and / or novel aluminum oxynitride powder outline of the granules is realized that at the same time not having any sharp angles, it relates to a manufacturing method and manufacturing apparatus.
[0002]
[Prior art]
In general, in optical materials, materials with excellent translucency at visible and infrared wavelengths and at the same time high heat resistance and wear resistance are high strength under vacuum atmosphere such as arc tube materials, high temperature window materials, space shuttles, etc. It is required as a window material. As one of these types of materials, translucent alumina sintered bodies are widely used in high-pressure sodium arc tubes. However, alumina has an anisotropic hexagonal crystal structure, and light scattering due to birefringence at crystal grain boundaries is inevitable. Therefore, although scattering reduction is achieved by increasing the crystal particle diameter, a decrease in strength is an inevitable problem.
In addition, it is important for a melt resistant material such as a refractory to have low activity with molten steel, high temperature stability and oxidation resistance, and low wear due to molten steel flow (that is, high temperature mechanical strength). Although sialon is considered to be good as this material, the view that it is unsuitable for a fusion-resistant material due to the affinity between Si and Fe at high temperatures has also been shown.
[0003]
Aluminum oxynitride, which is a multi-system of aluminum nitride and aluminum oxide, has an isotropic cubic structure, exhibits excellent translucency without grain boundary scattering, and has high thermal shock resistance or low wettability to molten steel, Furthermore, since it is non-Si-based, it is considered promising as a melt-resistant material. So far, the multi-system has been AlN, Al16OThree N14, AlTenOThree N8 , Al9 OThree N7 , A17OThree NFive , Al 6OThree NFour , Altwenty threeO27NFive, Al19.7O29.5N2.5 , Altwenty twoO30N2, Al19O27N, Al27O39N, Al2 O3, etc. are known (the ratio of Al element / O element is included in 0.67 to 5.3, and the ratio of Al element / N element is included in 1-27). Spinel type Al(64 + x) / 3 (8-x) / 3 O32-xNx (However, □ is a positive ion vacancy, 0 ≦ x ≦ 8) is well studied.
[0004]
As a method for producing aluminum oxynitride, a direct nitriding method of metal Al powder similar to aluminum nitride, Al2 OThreeIn addition to the reductive nitriding method of graphite and Al2 OThree A method of firing a mixture of AlN and AlN at a high temperature in a nitrogen atmosphere, and in recent years, a gas phase synthesis method using arc plasma in a low-pressure atmosphere has been reported. Of these, Al2 OThree The high-temperature firing method of the AlN mixture has the advantage that the composition control of many multi-system aluminum oxynitrides is relatively easy, and is a general method for its production [for example, 1) Shinji Hirai Hideaki Murakami, Hiroshi Katayama, Yoichiro Uemura, Mamoru Mitomo “Formation of aluminum oxynitride spinel from alumina and aluminum nitride”, 2) Journal of the Japan Institute of Metals, Vol. 58, p. 648, 1994]. However, Al2 OThree -The AlN high-temperature firing method is a solid-solid reaction, and heat treatment at a high temperature for a long time is essential, and the actual firing temperature has been reported to reach 2000 ° C or higher. The powder produced under such firing conditions is coarsened and subsequent pulverization is not easy. Therefore, there has been a problem that sufficiently satisfactory characteristics cannot be exhibited as a supply route of the easily sinterable raw material powder for producing a high-strength sintered body. Furthermore, long-time heat treatment and pulverization are also problematic in terms of purity.
[0005]
On the other hand, the direct nitriding method using the exothermic reaction due to the high activity of metallic Al has been studied as a so-called combustion synthesis method for about 100 years. This is a simple process and is most advantageous in terms of cost, but it is common that grain growth of the resulting powder is likely to occur. Moreover, the current direct nitridation process under “normal pressure” requires a heat treatment at an Al melting point of about 1000 to 1500 ° C. in a nitrogen atmosphere. That is, according to the existing direct nitridation production method, the product powder was tightly agglomerated (fused) by (1) intense exothermic reaction and (2) heat treatment above the Al melting point. Therefore, this method also does not solve the problem of product coarsening and low purity [eg 1) Normand D. et al. Corbin, Aluminum Oxynitride Spinel, 2) A Review, Journal of the European Ceramic Society, Vol. 5, p. 143,1989,3) Jason Shin, Do-Hwan Ahn, Mee-Shik Shin and Yong-Seog Kim, Self-propagating High Temperature Synthesis of Aluminum Nitride under Lower Nitrogen Pressures, Journal of the American Ceramic Society, Vol. 83, p. 1021, 2000].
[0006]
Aluminum oxynitride is usually unstable and generally has the above non-stoichiometric structure. Stoichiometric aluminum spinel oxynitride has so far been produced only by the melting method using an arc image furnace (Yoshihiro Kuwano, Toshio Hirai, AlN-based ceramics and their vapor phase synthesis, Journal of the Japan Institute of Metals, Vol. .30, p.913, 1991). The plasma arc melting method has the advantage of gas-phase (aerosol) synthesis that enables the production of fine powders with high purity and relatively high sphericity, and also enables fine control of the stoichiometric composition by adjusting the reaction atmosphere. in terms of having a gender, it is expected in the future of development (for example, Hiroyuki Fukuyama, WataruNakao, Masahiro Susa and Kazuhiro Nagata, New Synthetic Method of FormingAluminum Oxynitride by Plasma Arc Melting, Journal of the American Ceramic Society, Vol.82, p 1381, 1999; or JP-A-11-268910). However, the conventional vapor phase method of aluminum oxynitride is a reduced pressure vapor phase process, and there is a problem of manufacturing cost in that a reduced pressure (vacuum) facility is essential. Along with this, when an industrial process is used (for example, scaling up), it is pointed out that it is unknown at this time whether the above-mentioned high characteristics can be maintained. Furthermore, since the vapor phase method under reduced pressure is based on the evaporation-condensation reaction, powder synthesis at the nanometer level (several tens of nanometers at most) is inevitably possible. However, this is not necessarily suitable for the material system in the technical field targeted by the present invention. In general, the “ultrafine particles” as described above are difficult to handle by powder engineering such as collection, dispersion, and molding, are easily agglomerated powders, and are not used as raw material powders for sintered bodies. Rather, it is used as a thickener filler. That is, as a powder supply process for sintered body raw materials, it is required to be able to synthesize powders with an average particle size from submicron level to about micron level with good controllability. Therefore, it may take a long time, or it may be necessary to increase the concentration of the precursor, which may reduce the controllability of the product. Moreover, since it is a vacuum gas phase process, the flexibility of the precursor / high concentration is relatively small.
[0007]
Other gas phase methods that can exhibit superiority in difficult-to-synthesize systems include other CVD vapor phase synthesis methods for Al low-boiling precursors (for example, B. Aspar, B. Armas, C. Combesure and D. Thenegal, Organometallic Chemical). Vapor Deposition IntheAl-O-N System, Journal of the European Ceramic Society, Vol. 8, p.251, 1991) has been studied, but has the same problems as the plasma arc melting method.
Aluminum oxynitride was discovered in Japan around 1960.Three It is pointed out that it is a material system with a relatively short history compared to the above, and its manufacturing method itself is still not necessarily optimized.
That is, according to the three main production methods of the existing aluminum oxynitride powder, (1) Al2 OThree -Coarse particle size and low purity are not possible with AlN high temperature firing method, (2) Coarse particle size and low purity are not possible with Al direct nitriding method, (3) Gas phase synthesis method such as plasma arc melting method is There are difficulties in the desired particle size range and reduced-pressure gas phase process, and both powder and powder that satisfy the particle size required for high sinterability, both methods and equipment for producing it with high productivity and economy, are currently available. It was not obtained.
[0008]
In light of such circumstances, the present inventors have made various studies, and as a method for producing a high-purity powder of the above-mentioned size with good economic efficiency, no one has ever anticipated any of the current representatives. We focused on amorphous spherical silica powder, which is a typical filler. In this powder, the “chemical flame process” is generally used, and a meteorite raw material or Si metal powder is introduced into a combustion flame of a mixed gas of combustible gas and oxygen, and the surface of the raw material is melted or evaporated in the gas phase. Silica particles having high sphericity are produced by arbitrarily adjusting the particle diameter range by using a combination of reaction and crystallization processes. Spherical particle formation by this method is less likely to be affected sterically by the surroundings when a chemical reaction proceeds in the gas phase, making use of the advantage of aerosol synthesis that it is easy to form a spherical shape. Yes. Further, since this method does not use only the evaporation-condensation reaction as a driving principle, it can be applied not only to the ultrafine particles but also to the filler powder size from the micron level to several tens of microns.
[0009]
If this method and production apparatus can be applied to aluminum oxynitride powder, (1) elimination of the disadvantage that the particle diameter is inappropriate (coarse or under) or the shape anisotropy is large (by grinding), (2) silica filler Improve controllability of powder properties such as particle size distribution and shorten examination time to obtain necessary properties by utilizing intellectual property and know-how of powder synthesis accumulated in synthesis, (3) Chemical flame method Many advantages are expected, such as the advantage of initial capital investment by diverting the manufacturing equipment.
However, until now, no “aluminum oxynitride powder / chemical flame process” has been anticipated and realized. Regarding the reason, (1) it was not considered that non-oxides could be synthesized in a flame in which “oxygen” was present, and there was no idea of utilizing the ability to reduce oxygen such as internal flame or reductive combustion flame. (2) It is impossible to produce aluminum oxynitride, which is not a complete oxide, simply by introducing the raw material into a flame in which “oxygen” exists. Certain aluminum oxynitrides cannot be expected to be spheroidized due to “melting of the raw material powder surface”, and (4) powder having a complete aluminum oxynitride crystal structure (especially γ spinel) in one reaction (one process) This is considered to be due to the fact that a plurality of reactions, which are characteristic of gas phase synthesis, can be continued relatively easily.
[0010]
[Problems to be solved by the invention]
The present invention has been newly developed in view of such a situation, and overcomes the drawbacks of the conventional aluminum oxynitride powder, its manufacturing method and manufacturing apparatus, and the thermal energy and reducing power of the flame. Is the driving force of the oxynitridation reaction, so that the oxynitridation reaction proceeds in the gas phase to prevent melt solidification and aggregation of the product (especially the direct nitridation method of the raw material metal powder which is simple and advantageous in terms of cost) Material powder fusion and suppression of grain growth), and the main applications are optical materials that utilize the light-transmitting properties of isotropic crystal structures, or high thermal shock resistance or low wettability and low reactivity to molten steel In the fused ceramics, etc., the particle size and sphericity required as the raw material are simultaneously achieved, and in particular, the primary particle size range is included in 0.05 to 100 microns by suppressing the grain growth of the raw material powder, Product melting Solid or aggregate is small, highly dispersed and / or novel aluminum oxynitride powder outline of the granules is realized that at the same time not having any sharp angles, it is an object to provide a manufacturing method and a manufacturing apparatus.
[0011]
[Means for Solving the Problems]
  The present invention for solving the above-described problems comprises the following technical means.
(1) 100% aluminum oxynitride powder produced by subjecting raw material powder to an oxynitriding reaction in the gas phase in the presence of a flame, and 1) a primary particle size range of 0.05 Included in ~ 100 micron, melt solidification and agglomeration of the product is small, high dispersion, the outer shape of the particle is not angular, 2) the ratio of Al element ÷ O element is included in 0.67 to 5.3 The aluminum oxynitride powder is characterized in that the ratio of Al element ÷ N element is included in 1 to 27.
(2) Raw material powder, combustible gas flame, combustible gas / oxygen mixed combustion flame, reducing combustion flame with a ratio of combustible gas and oxygen less than the complete combustion ratio, inert gas It is made by subjecting it to an oxynitridation reaction in the gas phase using its thermal energy and reducing power in the presence of a flame of plasma or a flame selected from an arc flame generated between materials in a non-contact state. The aluminum oxynitride powder according to (1) above, wherein
(3) A method for producing the aluminum oxynitride powder according to (1) or (2), wherein the powder is composed of Al element, or the powder is composed of Al and O elements and the C element. A step of forming a raw material powder having a primary particle size range of 0.05 to 100 microns in a dispersed state in a gas phase in a mixture ofUsing a flame generator having a structure equipped with a diffusion flame reactor having a spud-type crater,The raw powder is subjected to an oxynitridation reaction that directly nitrides or reductively nitrides in the gas phase in the presence of a flame.By performing diffusion mixing of raw material powder and reactive gas and controlling so that no carbon remainsA method for producing an aluminum oxynitride powder comprising the steps of producing an oxynitride while suppressing fusion of raw material powder and grain growth, or a step of heat-treating these steps and the oxynitride .
(4) An apparatus for use in the method for producing an aluminum oxynitride powder according to any one of (1) to (3) above, comprising a flame generating apparatus, a raw material powder supplying apparatus, and a reaction The flame generator is provided with a diffusion flame reactor comprising a double cylindrical tube in which a plurality of cylindrical tubes having different inner diameters are coaxially arranged with a spud type crater. The raw material powder is supplied to one of the cylindrical tubes, the reaction gas is supplied to the other cylindrical tube, and the raw material powder and the reaction gas are diffused and mixed near the tip of the cylindrical tube. It has a pre-mixing zone that controls the ratio of fuel and oxygen so that no carbon remains, and the oxynitriding reaction of the raw material powder proceeds in the gas phase in the presence of a flame. And manufacturing equipment.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in more detail.
As described above, the inventors of the present invention have made various studies as described above. (1) First, the flame in which “oxygen” exists can be considered as a reaction field having a large reduction activity, (2) Second, using a reducing combustion flame in which the amount of combustible gas and oxygen is reduced from the complete combustion stoichiometric ratio in an excessively flammable internal flame, the reactants are supplied "effectively" there. Can be regarded as a reaction field of oxynitride (or nitride), (3) Third, even when the melting process cannot be used like silica, when the chemical reaction proceeds in the gas phase, Since it is less likely to have a three-dimensional effect from the surroundings, the advantage of the aerosol synthesis that it is easy to form the shape in a spherical shape can be used, and the oxynitridation reaction is allowed to proceed in the gas phase. At the same time, the product can be expected to prevent melt solidification and aggregation (In particular, the direct nitridation method of raw material metal powder, which is simple and cost-effective, can achieve raw material fusion and suppression of grain growth.) In addition, the abundance of gas phase synthesis control factors (4) Fourth, in the chemical flame method, it is possible to use (or relatively easily) a plurality of reactions that are characteristic of gas phase synthesis in a continuous manner. Pay attention.
[0013]
As a result of intensive studies to realize the above idea, specifically, (1) adjusting the oxygen concentration in the combustion flame or plasma flame, and maintaining a stable internal flame or reducing combustion flame. (2) From the viewpoint of realizing a suitable particle size and productivity, the direct nitridation method or the reduction nitridation method using the thermal energy of the flame as the driving force is applied as the main reaction system, and (3) the fluidizing medium is used in combination To supply powdery raw material to the reaction field efficiently in a highly dispersed state with little aggregation, such as by using a fluidized bed process, and (4) aluminum oxynitride by optimizing the quantity ratio of raw material to flame The aluminum oxynitride crystal structure can be obtained by increasing the productivity of the crystal structure, or by producing a multi-phase composed of Al element and / or O element and / or N element as a precursor, and continuing the heat treatment process in the subsequent stage. Rukoto and more control of the four points simultaneously and in effectively combining it was realized that the production of aluminum oxynitride powder that achieved particle diameter and sphericity required as sintered material powder.
[0014]
That is, the present invention simultaneously achieves the necessary particle size and sphericity as a sintered raw material powder (which has been an imaginary product so far), and in particular suppresses the grain growth of the raw material powder to suppress primary particles. Aluminum oxynitride powder having a diameter in the range of 0.05 to 100 microns, a product having low melt coagulation and agglomeration, high dispersibility and / or non-angular shape of particles, and the same The production method and the production apparatus for directly synthesizing the oxynitride without pulverization are used, and the thermal energy and reduction power of the flame are used as the driving force for the oxynitridation reaction so that the oxynitridation reaction proceeds in the gas phase. Thus, the product is characterized by preventing melt solidification and aggregation of the product.
[0015]
As described above, the important technical requirements of the present invention are the following four points. (1) adjustment of the gas atmosphere in the flame and stabilization of the internal flame and the reducing combustion flame; (2) use of a direct nitriding method or a reducing nitriding method using the thermal energy of the flame as a driving force; (3) The formation of a gas phase dispersion (aerosol) state of the raw material powder and the efficient supply to the reaction field, (4) the control of the ratio of the raw material and the amount of flame, or the continuation of the heat treatment process.
[0016]
In the present invention, as a method of fluidizing the raw material powder or forming and using a gas phase dispersion (aerosol) state, various fluidized bed methods for retaining the powder in an air stream (easily fluidized larger than the raw material powder). A medium fluidized bed method that uses a medium of several hundred μm in diameter at the same time to achieve high dispersion while preventing agglomeration of the raw material powder, a vibration fluidized bed method that prevents channeling of fine particles by applying vibration to the powder layer, etc. Are preferably used. For example, various spraying methods in which powder is put in an air stream using a rotating disk or a gas nozzle, and an ultrasonic sprayer or a centrifugal sprayer in which powder is dispersed in a liquid medium. A liquid spray method for forming powder into liquid droplets can be used as appropriate, and is not particularly limited, and fluidized raw material powder prepared by any method can be used.
Examples of supply / control devices for air, nitrogen, ammonia or inert gas include compressed gas supply machines such as compressors, use of internal pressure of high-pressure gas cylinders supplied from gas production facilities, floating ball type flow meters, mass flow controllers, etc. Is done.
[0017]
In addition, as a method of supplying the raw material powder to the reaction field by utilizing the gas phase dispersion state, a reaction tube or wall such as quartz, alumina, cordierite, or heat-resistant steel that can be encapsulated with the flame is provided, and the generated heat A method of improving reaction efficiency by encapsulating energy and a method of increasing the feeding accuracy of the supplied powder are preferably used. For example, in a flame generated in free space (provided there is no problem in reaction efficiency), for example. The method of supplying the raw material powder can be used as appropriate, and is not particularly limited, and a supply method prepared by any method can be used.
Furthermore, in the introduction path of the raw material powder and the nitriding source (nitrogen, ammonia or inert gas) into the flame, a raw material supply pipe having a structure in which a plurality of cylindrical pipes having different inner diameters are combined on the same axis is provided. A double-cylinder system in which a combustible gas that is a flame raw material or an inert gas for generating plasma is supplied from the outside, and oxygen, a raw material powder, and a nitriding source are supplied from the inside is preferably used. Separately from the above raw material supply pipe, the driving principle of the reaction system, the mixing state of the raw material powder and the nitriding source, and the subcooling of the flame) from the surroundings in the flame generated from the flame raw material and oxygen The method of supplying the raw material powder and the nitriding source can be used as appropriate, and is not particularly limited, and an introduction route prepared by any method can be used.
[0018]
In addition, when supplying the raw material powder to the reaction field by using the gas phase dispersion state, the particle size distribution of the raw material powder can be adjusted and coarse particles removed by cyclone classification to improve the reaction efficiency and controllability. For example, the impactor classification using a baffle plate, a relatively long supply pipe is used, and coarse particles are inevitably removed, or the particle size distribution width is exemplified. In the case of a raw material powder having a narrow width, a method in which classification operation is not particularly performed can be used as appropriate, and is not particularly limited, and a supply method prepared by any method can be used.
[0019]
In the present invention, as the flame raw material and generation / utilization method, for example, liquefied petroleum gas such as hydrogen, methane, butane, and acetylene, various flammable gases such as ammonia, and combustible gas such as oxygen are preferable. In addition, plasma flames due to ionization of inert gas such as argon, or arc flames generated between non-contact materials to which high voltage is applied such as covered bar arc, sabmerge arc, inert gas arc, etc. It can be used and is not particularly limited, and a flame prepared by any method can be used.
Further, examples of the flame generating device include a gas burner for liquefied gas or city gas, a gas welding gun, an arc welding gun, a thermal plasma device, and the like. A flame generating device having a structure in which a plurality of cylindrical tubes are combined as a constituent element, supplying raw material powder to one of the cylindrical tubes, supplying reaction gas to the other cylindrical tube, An apparatus is exemplified in which the raw material powder and the reaction gas are diffused and mixed near the tip of the cylindrical tube, and the nitriding reaction of the raw material powder proceeds in the gas phase in the presence of a flame.
[0020]
In addition, a raw material supply pipe having a structure in which a plurality of cylindrical pipes having different inner diameters are combined on the same axis is provided, and a combustible gas composed of C or H element as a flame raw material or an inert gas for plasma generation from the outside, In the double cylinder system that supplies oxygen, raw material powder and nitriding source from the inside, flame raw material gas, raw material powder and nitriding source (and oxygen) are mixed, and at the same time stable inner flame (and outer flame) or reduction With regard to the shape of the crater that generates a flammable combustion flame, the flame source gas is divided into several injection pipes and injected from the outer periphery, and it surrounds oxygen and the like injected from the inside at a position closer to the supply source. A spud type capable of obtaining a mixed state is preferably used. However, these are not particularly limited, and a high-pressure gun type using a single flame source gas supply pipe, a ring type provided with a number of jets along the circumference of a ring-shaped flame source gas supply pipe An annular type in which the large-diameter nozzle is divided radially and a flame source gas and oxygen are jetted in parallel, a wall recess type that reduces the dead space where there is no flame based on eddy current control by providing a step at the end of the crater, In addition to the wall recess type, the flame raw material gas supply pipe is divided into a main pipe and a sleeve fire pipe, a sectite type, and the main pipe cross-sectional area is more than 10 times the sleeve fire pipe cross-sectional area, and a ferrox type that reduces the sleeve fire jet speed (Or Pian type), line type and shepherd type in which flames are arranged side by side, bluff body type in which a baffle plate is provided in the unburned gas flow to create a high-temperature vortex flow and recirculation zone, and continuous ignition, mixed gas Radiant cup successive ignition collide with refractories red hot at high speed, also can be appropriately used, for example, be a flame prepared by any method can be used.
[0021]
In the present invention, the raw material is a powder composed of Al element, and the oxynitridation reaction proceeds in the presence of nitrogen, ammonia or an inert gas, the raw material is composed of a powder composed of Al and O elements, and a C element. It can be set as the powder containing the said Al, O, and N element by making it a mixture of powder and advancing an oxynitridation reaction in presence of nitrogen, ammonia, or inert gas. Here, regarding the material system of the powdery raw material described as “powder composed of Al element”, aluminum metal powder of any particle diameter, sphericity produced by each atomizing method of water, gas, and centrifugal Vapor phase synthesis / Al-based powder group is preferably used.Three Such as chloride, aluminum isopropoxide (chemical formula Al (iso-OCThree HFive )Three Alkoxide raw materials such as aluminum acetylacetonate (chemical formula Al (iso-CFive H7 O2 )Three Β-diketone complexes such as trimethylaluminum (chemical formula Al (CHThree )Three The low boiling point gas phase synthesis raw material group such as alkyl metal such as) is exemplified, but there is no particular limitation.
[0022]
In addition, regarding the material system of the powdery raw material described as “a mixture of powder composed of Al and O elements and powder composed of C elements”, first, “powder composed of Al and O elements” is commercially available. Alumina powder group manufactured by the buyer's method, improved buyer's method, alkoxide method, ammonium dosonite method, gas phase method, etc. is preferred, but each of α, γ, θ, and κ Al2 OThree Multi-system (intermediate alumina), AlOOH and Al (OH)Three A hydroxide precursor represented by the chemical formula, acetylacetonate (chemical formula Al (CFive H7 O2 )Three ) And ammonium dosonite (chemical formula NHFour AlCOThree (OH)2Carbonate precursors such as aluminum isopropoxide (chemical formula Al (iso-OCThree HFive )Three Alkoxide raw materials such as aluminum acetylacetonate (chemical formula Al (iso-CFive H7 O2 )Three Β-diketone complexes such as trimethylaluminum (chemical formula Al (CHThree )ThreeThe low boiling point gas phase synthesis raw material group such as alkyl metal such as) is exemplified, but there is no particular limitation.
Examples of the “powder composed of element C” include carbon powder having an arbitrary particle diameter, and high-purity gas phase synthesis / carbon powder such as carbon black and acetylene black, but are particularly limited. It is not a thing.
In addition, said raw material powder is calculated | required that the range of a primary particle diameter is contained in 0.05-100 microns. This is because the characteristics of the raw material powder (mainly the particle size and shape) are reflected in the characteristics of the synthesized aluminum oxynitride powder.
[0023]
Examples of the raw material powder supply device include a screw type such as a kneader, a rotor type supply device such as a twin screw mill, and an air current supply for powder conveyance.
In the present invention, the ratio of fuel to oxygen is controlled so that no carbon remains. As a method and apparatus for continuously or intermittently applying a high temperature to the powder synthesized in the flame, a normal electric furnace heating employed in a thermal CVD method or the like is preferably used, but a combustion flame for heat treatment Flame reheating by providing a plurality of layers, use of plasma flame or arc flame, image furnace heating, etc. can be used as appropriate and are not particularly limited.
Furthermore, the heat treatment conditions are determined by the form and crystal phase of the powder immediately after being synthesized in a flame, and if the properties of the powder immediately after the synthesis are satisfied, the heat treatment is not necessarily required. Typical conditions include nitrogen, ammonia or an inert gas atmosphere. By heat treatment, the proportion of the aluminum oxynitride multi-phase and the remarkable effect of high control can be obtained.
[0024]
The optical system material and its raw material powder according to the present invention are materials for arc tubes such as a high-pressure sodium arc tube that require a material having excellent translucency at visible and infrared wavelengths, and at the same time having high heat resistance and wear resistance, Although it is suitably used as a raw material powder for producing a high-strength window material in a vacuum atmosphere such as a high-temperature window material or a space shuttle, there is no particular limitation.
The fusion resistant material and its raw material powder according to the present invention have low activity with molten steel in which sialon is used, high temperature stability and oxidation resistance, and low wear due to molten steel flow (that is, high temperature mechanical strength is high). ) Is preferably used as a raw material for the production of refractories such as crucibles, but is not particularly limited.
[0025]
In the present invention, a composite material system prepared by filling a powder composed of an inorganic material with a resin raw material composed of an organic material is a packaging material for the purpose of protecting or insulating a semiconductor element. Further preferably, examples thereof include material systems such as insulating materials, electrodes / conductive materials, electrorheological fluids, chemical mechanical polishing slurries, ceramic molding process raw materials such as injection molding and casting. As a particulate material made of an inorganic material that is a filler to be filled, silica or aluminum nitride frequently used in semiconductor packaging materials is preferably exemplified. For example, Al2 OThree, SiC, SiThree NFour Of course, other oxide systems such as Au, Ag, Pd, Pt, Cu, Al, Au—Pd are also applicable and are not particularly limited. Moreover, there is no restriction | limiting about crystallinity, either crystalline or amorphous may be sufficient. Liquid materials such as ion exchange water and distilled water, organic non-aqueous materials such as ethanol, resol type and novolac type phenol resins, bisphenol type cresol novolac polyfunctional type epoxy resins and halogenated resins For example, a resin material that is solid at room temperature and a resin material that is frequently used in packaging materials for next-generation semiconductor elements that are liquid at room temperature are preferably exemplified.
[0026]
In the present invention, as a substrate material and its raw material powder, LSI or IC is not a single unit, but a plurality of elements are multi-layered and highly integrated, and a system LSI and multi-chip module in which the entire system is contained in a single silicon chip System-in-package substrate materials that aim at system level multifunctional high density such as 3D mounting, or power devices for power conversion (for example, primary rectifier bridge diodes for switching power supplies, motor drivers such as printers and fax machines) ICs, DC / DC converter ICs for communication equipment or digital home appliances, high voltage ICs for inverter lighting, hybrid ICs such as TV / VTR, etc.) are exemplified, but there is no particular limitation.
[0027]
The present invention relates to an aluminum oxynitride powder having an average particle diameter of submicron to several micron order and a high sphericity at the same time, and a production technique capable of directly synthesizing the powder without pulverization, and uses thereof In addition, the powder of the present invention is most suitable as a raw material powder in an inorganic material such as an optical material or a fusion resistant material.
The characteristics of the aluminum oxynitride powder produced by the method of the present invention and the advantages of the production method are shown below.
That is, the above powder has a primary particle size range of 0.05 to 100 microns, particularly suppressing the grain growth of the raw material powder, and the product has low melt solidification and aggregation, high dispersibility and / or Alternatively, it has been realized that the outer shape of the particles is not angular. In addition, the crystal phase is composed of various aluminum oxynitride phases, AlN phase, Al2 OThree It is possible to manufacture by arbitrarily controlling up to the phase.
[0028]
【Example】
EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited at all by the following examples.
(1) Method
FIG. 1 schematically shows an example of a manufacturing apparatus configuration based on the present invention. A gas-phase (aerosol) production process was constructed, consisting of liquefied petroleum gas, oxygen-based chemical flame, nitrogen or ammonia nitriding source, and particulate raw powder. The reactor (Diffusion Burner Frame Reactor) was a diffusion flame type using a transparent quartz tube (Quartz Tube) and a stainless steel double cylindrical tube, and a spud type was used as the crater. Flame raw material gas (Hydrocarbon Gases) is supplied to the outer tube, and raw material powder (Raw Precursor Powder) and reaction gas system, here NH, are supplied to the inner tube.Three Nitriding gas of O and O2 And conveyed. In FIG. 1, first, the Al raw material powder is conveyed to a fluidized bed aerosol generator, the particle size of the raw material powder is selected (Classification), and the flame raw material gas, oxygen ratio and nitriding gas delivery route (Control Lofting Gas Inlet Position) and the like, gas phase synthesis with inner flame (Inner Luminous Frame), product (Resultant Products in Gas Phase “Aerosol”) and pump (Pump) through filter (Filter) A configuration that removes traps such as harmful gases was adopted. As an example of the basic reaction system applied to the chemical flame method, the direct nitridation method of Al powder is used here, but there is no problem even with the reduction nitridation method.
[0029]
As the Al raw material powder, a spherical powder produced by a gas atomization method having an average particle diameter of about 3 microns was used. The fluidization was a medium fluidized bed method, and glass beads having a diameter of 150 microns were used as a medium.
The raw material powder is supplied with nitrogen gas at 3 liters per minute, liquefied petroleum gas is supplied at 4 liters per minute, and oxygen gas as a control factor is slightly reducing flame from the stoichiometric ratio with liquefied petroleum gas. Adjusted to 4 liters per minute. However, it is not so much that carbon due to incomplete combustion is excessively generated. Further, ammonia gas for oxynitriding reaction was supplied after adjusting from 0 liter to 3 liter per minute.
(2) Results
As described above, the gas phase synthesis method is rich in control factors and has high controllability of generated particles. Here, as an example, the results are shown in which the reaction efficiency is controlled by the amount of nitriding source supplied to the reaction system, and the average particle diameter of the generated particles is adjusted.
2 and 3 show an SEM of an example of aluminum oxynitride powder by the method of the present invention. FIG. 2 shows the result of manufacturing with 3 liters of ammonia gas per minute, and FIG. 3 shows the result of manufacturing with 0 liter per minute. As a result, it was possible to control from a starting particle size of 3 microns to about 0.1 microns for refinement and to about 10 microns for coarse particle size. That is, it could be changed from about 1/30 of the raw material powder to about 3 times.
The generated particle size can be arbitrarily controlled by changing the raw material particle size in addition to the above synthesis conditions. Currently, Al powders of submicron to several tens of microns can be easily obtained with commercial products. As a reasonable range of primary particle sizes that can be synthesized, 0.05 to 100 microns is guaranteed.
[0030]
Therefore, first of all, it is mainly necessary as a raw material powder in the technical field to which the present invention is applied. (1) At the stage of synthesis directly by flame alone (without heat treatment etc.), 100% acid A powder having an aluminum nitride composition can be produced (that is, an expensive heat treatment facility of 1650 ° C. or higher and an unnecessary subsequent heat treatment are not required), (2) the size of the precursor raw material powder is maintained, The average particle size can achieve a generated particle / particle size on the order of microns, (3) a highly dispersed state can be realized without coarsening of the powder at the stage of synthesis (ie, a pulverization step is unnecessary), (4) A high sphericity can be achieved. (5) In particular, there is a special effect that the generated powder is hard to be fused or agglomerated in spite of using direct nitridation of metal Al powder. Achieved.
Second, it was possible to arbitrarily control the generated particle diameter under conditions that allow easy adjustment of the supply amount of the nitriding source.
In addition to this, the nitriding gas supply method is mixed with the raw material powder and oxygen gas in advance, or supplied to the center where the inner flame is burned later, and supplied by changing the introduction path, thereby changing the reaction principle. It became possible to control the diameter and the generated phase.
[0031]
【The invention's effect】
As described in detail above, according to the present invention, (1) synthesis is possible directly with existing production equipment constructed in the field of filler powder without using expensive heat treatment equipment or pulverization process, (2) Suppresses grain growth of precursor raw material powder, and can produce powder that is free of coarsening and agglomeration (fusion) of powder (that is, it can be arbitrarily generated under conditions of easily adjustable precursor raw material powder diameter) (3) Particle size can be controlled), (3) High sphericity that satisfies the above-mentioned powder characteristics and at the same time can not be expected in conventional products is realized (conventionally, pulverization process is essential for aluminum oxynitride powder, and it is angular (4) In particular, optical system materials using translucency due to isotropic crystal structure, or high thermal shock resistance or low wettability / low reaction to molten steel Necessary as a raw material for anti-melting materials that utilize properties Achieve particle size and sphericity at the same time, especially suppress the grain growth of the raw powder, the primary particle size range is included in 0.05 to 100 microns, the product is less melt solidified and agglomerated, high dispersion The special effect that the novel raw material powder which simultaneously realized that the property and / or the outer shape of the particles is not angular can be provided.
[Brief description of the drawings]
FIG. 1 shows a schematic diagram of an example of the configuration of a manufacturing apparatus according to the present invention.
FIG. 2 shows an SEM (in the case of 3 liters per minute of ammonia gas for nitriding) of an example of aluminum oxynitride powder produced in the example.
FIG. 3 shows an SEM (in the case of 0 liter per minute of nitriding ammonia gas) of an example of aluminum oxynitride powder produced in the example.

Claims (4)

原料粉体を火炎の存在下、気相中で酸窒化反応に付して作製された100%酸窒化アルミニウム組成の粉体であって、1)一次粒子径の範囲が0.05〜100ミクロンに含まれ、生成物の溶融凝固や凝集が小さく、高分散で、粒子の外形が角張らないこと、2)Al元素÷O元素の比が、0.67〜5.3に含まれ、Al元素÷N元素の比が1〜27に含まれること、を特徴とする酸窒化アルミニウム粉体。  100% aluminum oxynitride powder produced by subjecting raw material powder to oxynitridation reaction in the gas phase in the presence of flame, 1) primary particle size range of 0.05 to 100 microns 2) The ratio of Al element / O element is included in the range of 0.67 to 5.3, and the product has low melt solidification and agglomeration and high dispersion, and the outer shape of the particles is not angular. An aluminum oxynitride powder characterized in that the ratio of element ÷ N element is included in 1-27. 原料粉体を、可燃性ガスの火炎、可燃性ガスと酸素の混合ガスの燃焼火炎、可燃性ガスと酸素の割合を完全燃焼比より酸素を少なくした還元性燃焼火炎、不活性ガスのプラズマによる火炎、又は非接触状態下の物質間に発生するアーク炎から選択される火炎、の存在下、その熱エネルギーと還元力を利用して気相中で酸窒化反応に付して作製されたことを特徴とする、請求項1に記載の酸窒化アルミニウム粉体。  The raw material powder is composed of a combustible gas flame, a combustible flame of a combustible gas and oxygen mixture, a reducing combustion flame in which the ratio of the combustible gas and oxygen is less than the complete combustion ratio, and an inert gas plasma. Made by subjecting it to an oxynitridation reaction in the gas phase using its thermal energy and reducing power in the presence of a flame, or a flame selected from an arc flame generated between materials in a non-contact state. The aluminum oxynitride powder according to claim 1, wherein: 請求項1又は2に記載の酸窒化アルミニウム粉体を製造する方法であって、Al元素から成る粉体、又はAl及びO元素から成る粉体とC元素から成る粉体の混合物で、1次粒子径の範囲が0.05〜100ミクロンに含まれる原料粉体を気相中で分散状態に形成する工程、スパッド型の火口を有する拡散火炎式の反応器を具備した構造を有する火炎発生装置を用いて、原料粉体を火炎の存在下、気相中で直接窒化又は還元窒化する酸窒化反応に付して原料粉末と反応ガスとの拡散混合及び炭素が残らないようにする制御を行うことにより原料粉の融着と粒成長を抑制して酸窒化物を製造する工程、又は、これらの工程及び上記酸窒化物を熱処理する工程、から成ることを特徴とする酸窒化アルミニウム粉体の製造方法。A method for producing an aluminum oxynitride powder according to claim 1 or 2, wherein the powder is composed of Al element, or a mixture of powder composed of Al and O elements and powder composed of C element. A process for forming a raw material powder having a particle size range of 0.05 to 100 microns in a dispersed state in a gas phase, and a flame generator having a structure including a diffusion flame reactor having a spud-type crater carried out in the presence of raw material powder of the flame, the diffusion mixing and control to avoid leaving carbon in subjected to an oxynitride reaction of nitriding or reducing direct nitriding in the gas phase and material powders and the reaction gas using An aluminum oxynitride powder comprising the steps of producing an oxynitride while suppressing fusion and grain growth of the raw material powder, or a step of heat-treating these steps and the oxynitride Production method. 請求項1〜3のいずれかに記載の酸窒化アルミニウム粉体の製造方法に使用するための装置であって、火炎の発生装置と、原料粉体の供給装置と、反応ガスの供給装置とを構成要素として含み、火炎の発生装置が、スパッド型の火口と同軸上に内径の異なる複数個の円筒管を組み合わせた二重円筒管による拡散火炎式の反応器を具備した構造を有し、いずれかの円筒管へ原料粉体を供給し、他の円筒管へ反応ガスを供給して、該円筒管の先端部付近で、原料粉体と反応ガスとが拡散混合され、炭素が残らないように燃料と酸素量の比を制御するpre−mixing zoneを有し、原料粉体の酸窒化反応が、火炎の存在下、気相中で進行するようにしたことを特徴とする、製造装置。  An apparatus for use in the method for producing an aluminum oxynitride powder according to any one of claims 1 to 3, comprising a flame generating device, a raw material powder supplying device, and a reactive gas supplying device. The flame generating device, which is included as a constituent element, has a structure including a diffusion flame type reactor using a double cylindrical tube in which a plurality of cylindrical tubes having different inner diameters are coaxially connected to a spud type crater, The raw material powder is supplied to one of the cylindrical tubes, the reaction gas is supplied to the other cylindrical tube, and the raw material powder and the reactive gas are diffusely mixed in the vicinity of the tip of the cylindrical tube so that no carbon remains. And a pre-mixing zone for controlling the ratio of the amount of fuel and oxygen, and the oxynitriding reaction of the raw material powder proceeds in the gas phase in the presence of a flame.
JP2001247594A 2001-08-17 2001-08-17 Highly dispersed and highly spherical aluminum oxynitride powder, manufacturing method and manufacturing apparatus thereof Expired - Lifetime JP3985039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001247594A JP3985039B2 (en) 2001-08-17 2001-08-17 Highly dispersed and highly spherical aluminum oxynitride powder, manufacturing method and manufacturing apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001247594A JP3985039B2 (en) 2001-08-17 2001-08-17 Highly dispersed and highly spherical aluminum oxynitride powder, manufacturing method and manufacturing apparatus thereof

Publications (2)

Publication Number Publication Date
JP2003054919A JP2003054919A (en) 2003-02-26
JP3985039B2 true JP3985039B2 (en) 2007-10-03

Family

ID=19076904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001247594A Expired - Lifetime JP3985039B2 (en) 2001-08-17 2001-08-17 Highly dispersed and highly spherical aluminum oxynitride powder, manufacturing method and manufacturing apparatus thereof

Country Status (1)

Country Link
JP (1) JP3985039B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4639363B2 (en) * 2003-06-09 2011-02-23 独立行政法人産業技術総合研究所 Method for producing non-oxide particles
JP5748500B2 (en) * 2010-02-22 2015-07-15 株式会社龍森 Inert spherical aluminum nitride powder and method for producing the same
EP3034465A4 (en) * 2013-08-16 2017-08-30 Advanced Resources Institute Holdings LLC Combustion synthesis system, reaction product, article, combustion synthesis method, power-generating system, plasma-generating device, and power-generating device
JP6450425B1 (en) * 2017-07-28 2019-01-09 國家中山科學研究院 Method for producing spherical aluminum oxynitride powder
CN111470481B (en) * 2020-05-19 2023-09-19 四川大学 Method for preparing high-purity aluminum nitride spherical powder by plasma reaction atomization
CN112756619B (en) * 2020-12-22 2023-07-25 宁波广新纳米材料有限公司 Production method of submicron-level CuSn alloy powder with controllable element proportion

Also Published As

Publication number Publication date
JP2003054919A (en) 2003-02-26

Similar Documents

Publication Publication Date Title
US6887566B1 (en) Ceria composition and process for preparing same
JP2001510134A (en) Method and apparatus for forming silica by combustion of a liquid reactant using a heater
WO2005123272A2 (en) Liquid feed flame spray modification of nanoparticles
KR20100024663A (en) Method and plasma torch for direct and continous synthesis of nano-scaled composite powders using thermal plasmas
JP3985039B2 (en) Highly dispersed and highly spherical aluminum oxynitride powder, manufacturing method and manufacturing apparatus thereof
JP3960700B2 (en) Method for producing ultrafine silica
US20020047110A1 (en) Flame synthesized aluminum nitride filler-powder
JP7261043B2 (en) Method for producing inorganic oxide particles
JP4995210B2 (en) Method for producing fine silica powder
JP2003054920A (en) Aluminum nitride powder having equal to or above micrometer-ordered average particle diameter and high sphericity, method and apparatus of manufacturing the same
JP3961007B2 (en) Method and apparatus for producing silica fine powder
JP2868039B2 (en) Method for producing lower metal oxide
KR100480393B1 (en) Vapor phase synthesis of high purity nano- and submicron particles with controlled size and agglomeration
JP3625415B2 (en) Method for producing oxide-encapsulated glass particles and oxide-encapsulated glass particles produced by this method
JP4330298B2 (en) Method for producing spherical inorganic powder
EP1204591B1 (en) Production of silica particles
JP4416936B2 (en) Method for producing fine silica powder
JP2006312583A (en) Manufacturing method of superfine powder silica
Bouyer et al. Thermal plasma processing of nanostructured Si-based ceramic materials
JP4639363B2 (en) Method for producing non-oxide particles
JP4315576B2 (en) Method for producing ultrafine silica
JP5024844B2 (en) Non-oxide particulate matter
RU2738596C1 (en) Method of producing ultrafine particles of homogeneous oxide ceramic compositions consisting of core and outer shells
Li et al. A study of processing parameters in thermal-sprayed alumina and zircon mixtures
JP4294604B2 (en) Method for producing spherical inorganic powder

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061226

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070223

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070611

R150 Certificate of patent or registration of utility model

Ref document number: 3985039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term