JP2003054919A - Highly dispersible high sphericity aluminum oxynitride powder, method and apparatus for manufacturing the same - Google Patents

Highly dispersible high sphericity aluminum oxynitride powder, method and apparatus for manufacturing the same

Info

Publication number
JP2003054919A
JP2003054919A JP2001247594A JP2001247594A JP2003054919A JP 2003054919 A JP2003054919 A JP 2003054919A JP 2001247594 A JP2001247594 A JP 2001247594A JP 2001247594 A JP2001247594 A JP 2001247594A JP 2003054919 A JP2003054919 A JP 2003054919A
Authority
JP
Japan
Prior art keywords
flame
raw material
powder
gas
material powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001247594A
Other languages
Japanese (ja)
Other versions
JP3985039B2 (en
Inventor
Yasumasa Takao
泰正 高尾
Masayoshi Oohashi
優喜 大橋
Mutsuo Santo
睦夫 山東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001247594A priority Critical patent/JP3985039B2/en
Publication of JP2003054919A publication Critical patent/JP2003054919A/en
Application granted granted Critical
Publication of JP3985039B2 publication Critical patent/JP3985039B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide novel high sphericity aluminum oxynitride powder and a method and an apparatus for manufacturing the same. SOLUTION: The aluminum oxynitride powder in which it is attained simultaneously that the grain growth of raw material powder is suppressed to have a primary particle diameter ranging from 0.05 μm to 100 μm, the melting, solidification or aggregation of a product is prevented and high dispersibility and/or the rounded external shape of the particles are exhibited is manufactured using a manufacturing method and a manufacturing apparatus for advancing an oxynitride reaction in a vapor phase in the presence of flame by controlling the following technical requirements at the same time, that is (1) the adjustment of gaseous atmosphere in the flame and the stabilization of the inner flame or a reduction combustion flame, (2) the utilization of a direct nitriding method or a reduction nitriding method using heat energy by the flame as driving force, (3) the formation of vapor phase dispersion (an aerosol state) of the raw material powder and the efficient supply to the reaction field and (4) the ratio control of the raw materials and the flame quantity or the continuity of a heat treatment process. Then the particle diameter and the sphericity necessary as a sintered compact raw material powder in an optical material utilizing translucency by an isotropic crystal structure or a melting resistant material utilizing high thermal shock resistance and the low wettability/low reactivity to molten steel are attained simultaneously.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、新規な酸窒化アル
ミニウム粉体、その製造方法及び製造装置に関するもの
であり、更に詳しくは、原料粉体の酸窒化反応を火炎の
存在下、大気圧下の気相中で適用し、火炎の熱エネルギ
ー及び還元力を酸窒化反応の駆動力とし、気相中で酸窒
化反応が進行するようにして生成物の溶融凝固や凝集を
防止して、特に、プロセスが単純でコスト的に有利な原
料金属粉の直接窒化法で原料粉融着や粒成長抑制を実現
し、主たる用途として、等方的結晶構造による透光性を
利用した光学系材料、高耐熱衝撃性あるいは溶鋼に対す
る低濡れ性・低反応性を利用した耐溶融材料などにおい
て、その原料として必要な粒子径と球形度を同時に達成
し、特に、原料粉体の粒成長を抑制して一次粒子径の範
囲が0.05〜100ミクロンに含まれ、生成物の溶融
凝固や凝集が小さく、高分散性及び/又は粒子の外形が
角張らないことを同時に実現した新規な酸窒化アルミニ
ウム粉体、その製造方法及び製造装置に関するものであ
る。
TECHNICAL FIELD The present invention relates to a novel aluminum oxynitride powder, a method for producing the same, and an apparatus for producing the same. More specifically, the present invention relates to an oxynitriding reaction of a raw material powder in the presence of a flame under atmospheric pressure. Applied in the gas phase, the heat energy and reducing power of the flame are used as the driving force for the oxynitriding reaction, and the oxynitriding reaction proceeds in the gas phase to prevent melting and solidification or aggregation of the product. , The process is simple and cost-effective, the direct nitriding method of the raw material metal powder realizes the raw material powder fusion and the grain growth suppression, and the main application is the optical system material utilizing the translucency due to the isotropic crystal structure, In melt-resistant materials that utilize high thermal shock resistance or low wettability / reactivity with molten steel, achieve the particle size and sphericity required for the raw materials at the same time, and especially suppress the grain growth of the raw material powder. The range of primary particle size is 0.05 to 1 The present invention relates to a novel aluminum oxynitride powder, which is included in 0 micron and has small melting and solidification and aggregation of the product, high dispersibility and / or non-angular outer shape of particle, and a manufacturing method and manufacturing apparatus thereof. Is.

【0002】[0002]

【従来の技術】一般に、光学系材料において、可視及び
赤外線波長での透光性に優れ、同時に耐熱性・耐磨耗性
も高い材料が発光管用材料、高温用窓材料、スペースシ
ャトルなど真空雰囲気下での高強度窓材料などとして求
められている。この種の材料の一つとして、透光性アル
ミナ焼結体は、高圧ナトリウム発光管にも広く実用化さ
れている。しかしながら、アルミナは、異方性を持つ六
方晶構造を有し、結晶粒界での複屈折による光散乱が避
けられない。そこで、結晶粒子径の粗大化による散乱低
減が図られているが、強度低下が不可避の問題となって
いる。また、耐火物などの耐溶融材料は、溶鋼との低活
性、高温安定性や耐酸化性、溶鋼流動による損耗が低い
こと(即ち、高温機械的強度)が重要である。この材料
として、サイアロンが良好とされているが、高温でのS
iとFeの親和性から耐溶融材料に不適との見解も示さ
れている。
2. Description of the Related Art Generally, among optical materials, materials that are excellent in light transmission in visible and infrared wavelengths, and at the same time have high heat resistance and abrasion resistance are used in arc atmosphere materials such as arc tube materials, high temperature window materials, and space shuttles. It is sought after as a high-strength window material. As one of the materials of this type, a translucent alumina sintered body has been widely put into practical use for a high pressure sodium arc tube. However, alumina has a hexagonal crystal structure having anisotropy, and light scattering due to birefringence at crystal grain boundaries is unavoidable. Therefore, although scattering is reduced by coarsening the crystal grain size, the reduction in strength is an unavoidable problem. In addition, it is important for the melt resistant material such as a refractory material to have low activity with molten steel, high temperature stability and oxidation resistance, and low wear due to molten steel flow (that is, high temperature mechanical strength). Sialon is a good material for this, but S at high temperatures
There is also a view that it is not suitable as a melt-resistant material due to the affinity between i and Fe.

【0003】窒化アルミニウム及び酸化アルミニウムの
多系である酸窒化アルミニウムは、等方性の立方晶構造
から成り、粒界散乱の無い優れた透光性を示すと共に、
高耐熱衝撃性あるいは溶鋼に対する低濡れ性、更に、非
Si系であることから、耐溶融材料としても有望視され
ている。多系は、これまでに、AlN、Al163
14、Al1038 、Al937 、A173
5 、Al6 34 、Al23 275 、Al19.729.5
2.5 、Al22302 、Al1927N、Al27
39 N、Al2 O3 などが知られており(Al元素÷O元
素の比が0.67〜5.3に含まれ、Al元素÷N元素
の比が1〜27に含まれる)、特に、立方晶スピネル型
Al(64+x)/3(8-x)/332-xx (但し、□は陽イオン
空孔、0≦x≦8)が良く研究されている。
Of aluminum nitride and aluminum oxide
Aluminum oxynitride, which is polymorphic, has an isotropic cubic crystal structure.
It has excellent translucency without grain boundary scattering,
High thermal shock resistance or low wettability with molten steel,
Since it is a Si-based material, it is considered to be a promising material as a melting resistant material.
ing. Up to now, the multi-system has been AlN, Al16O3 
N14, AlTenO3 N8 , Al9 O3 N7 , A17O3 N
Five , Al6O3 NFour , Altwenty three O27NFive, Al19.7O29.5
N2.5 , Altwenty twoO30N2, Al19O27N, Al27O
39 N, Al2 O3, etc. are known (Al element / O element
The element ratio is included in 0.67 to 5.3, and Al element / N element
Ratio of 1 to 27), especially cubic spinel type
Al(64 + x) / 3 (8-x) / 3 O32-xNx (However, □ is a cation
Voids, 0 ≦ x ≦ 8) are well studied.

【0004】酸窒化アルミニウムの製造方法としては、
窒化アルミニウムと同様の金属Al粉の直接窒化法や、
Al23 と黒鉛の還元窒化法の他、Al23 とAl
Nの混合物を窒素雰囲気中で高温焼成する方法、また、
近年では、低圧雰囲気下アークプラズマによる気相合成
法も報告されている。この内、Al23 −AlN混合
物の高温焼成法は、多くの多系を持つ酸窒化アルミニウ
ムの組成制御が比較的容易であるという利点を有し、そ
の製造法として一般的な方法である〔例えば、1)平井
伸治、村上英明、片山博、上村揚一郎、三友護“アルミ
ナと窒化アルミニウムからの酸窒化アルミニウムスピネ
ルの生成”、2)日本金属学会誌、Vol.58、p.
648、1994〕。しかしながら、Al23 −Al
N高温焼成法は、固―固反応であり、高温で長時間の熱
処理が必須であり、実際の焼成温度が2000℃以上に
及ぶ場合も報告されている。このような焼成条件下で生
成された粉体は、粗大化し、その後の粉砕も容易ではな
い。従って、高強度焼結体を製造するための易焼結性原
料粉体の供給ルートとして、十分に満足した特性を発揮
できていないという問題点があった。更に、長時間の熱
処理と粉砕は、純度の点でも問題である。
As a method for producing aluminum oxynitride,
Direct nitriding method of metal Al powder similar to aluminum nitride,
In addition to the reduction nitriding method of Al 2 O 3 and graphite, Al 2 O 3 and Al
A method of firing a mixture of N at a high temperature in a nitrogen atmosphere,
Recently, a vapor phase synthesis method using arc plasma under a low pressure atmosphere has been reported. Among them, the high temperature firing method of an Al 2 O 3 -AlN mixture has an advantage that the composition control of aluminum oxynitride having many polysystems is relatively easy, and is a general method as a manufacturing method thereof. [For example, 1) Shinji Hirai, Hideaki Murakami, Hiroshi Katayama, Yoichiro Uemura, Mamoru Santomo "Production of Aluminum Oxynitride Spinel from Alumina and Aluminum Nitride", 2) Japan Institute of Metals, Vol. 58, p.
648, 1994]. However, Al 2 O 3 -Al
The N high-temperature firing method is a solid-solid reaction, requires heat treatment at high temperature for a long time, and it has been reported that the actual firing temperature reaches 2000 ° C. or higher. The powder produced under such firing conditions becomes coarse, and subsequent pulverization is not easy. Therefore, there has been a problem that a sufficiently satisfactory characteristic cannot be exhibited as a supply route of the easily sinterable raw material powder for producing a high strength sintered body. Furthermore, long-time heat treatment and pulverization are also problems in terms of purity.

【0005】一方、金属Alの高活性による発熱反応を
利用した直接窒化法は、いわゆる燃焼合成法としては1
00年程前から検討されてきた。これは、プロセスが単
純で、コスト的には最も有利とされるが、生成粉体の粒
成長が起こり易いのが一般的である。しかも、現状の
“常圧”下での直接窒化プロセスでは、窒素雰囲気中1
000〜1500℃程度のAl融点以上の熱処理が必要
とされる。即ち、既往の直接窒化製造方法によると、
(1)激しい発熱反応、(2)Al融点以上の熱処理、
により、生成粉体が固く凝集(融着)した状態となって
いた。従って、この方法でも、生成物の粗大化と低純度
の問題が解決されない〔例えば、1)Normand
D.Corbin,Aluminum Oxynitr
ide Spinel、2)A Review,Jou
rnal of the European Cera
mic Society,Vol.5、p.143、1
989、3)Jason Shin,Do−Hwan
Ahn,Mee−Shik Shin and Yon
g−Seog Kim,Self−propagati
ng High Temperature Synth
esis of Aluminum Nitride
under Lower Nitrogen Pres
sures,Journal of the Amer
ican Ceramic Society,Vol.
83、p.1021、2000〕。
On the other hand, the direct nitriding method utilizing the exothermic reaction due to the high activity of metallic Al is one of the so-called combustion synthesis methods.
It has been considered since about 00 years ago. Although this is a simple process and is most advantageous in terms of cost, it is common that grain growth of the produced powder easily occurs. Moreover, in the current direct nitriding process under "normal pressure", the
A heat treatment at a melting point of Al of about 000 to 1500 ° C. or higher is required. That is, according to the existing direct nitriding manufacturing method,
(1) violent exothermic reaction, (2) heat treatment above Al melting point,
As a result, the produced powder was in a state of being solidly agglomerated (fused). Therefore, this method also does not solve the problems of coarsening of the product and low purity [eg 1) Normand
D. Corbin, Aluminum Oxynitr
ide Spinel, 2) A Review, Jou
rnal of the European Cera
mic Society, Vol. 5, p. 143, 1
989, 3) Jason Shin, Do-Hwan.
Ahn, Mee-Shik Shin and Yon
g-Seog Kim, Self-propagati
ng High Temperature Synth
sis of Aluminum Nitride
Under Lower Nitrogen Pres
sures, Journal of the Amer
ican Ceramic Society, Vol.
83, p. 1021, 2000].

【0006】酸窒化アルミニウムは、通常、不安定であ
り、上記の非化学量論的な構造を持つのが一般的であ
る。化学量論組成のスピネル酸窒化アルミニウムは、現
在までのところ、アークイメージ炉による溶解法でのみ
製造されている(桑野義博、平井敏雄、AlN基セラミ
ックスとその気相合成、日本金属学会会報、Vol.3
0、p.913、1991)。プラズマアーク溶融法
は、微細且つ高純度で、比較的球形度の高い粉体製造が
可能という気相(エアロゾル)合成の利点を有し、更
に、反応雰囲気調整による量論組成の微細制御の可能性
を持つ点で、今後の発展が期待される(例えば、Hir
oyuki Fukuyama,WataruNaka
o,Masahiro Susa and Kazuh
iro Nagata,New Synthetic
Method of FormingAluminum
Oxynitride by Plasma Arc
Melting,Journal of the A
merican Ceramic Society,V
ol.82、p.1381、1999;又は特開平11
−268910公報)。しかしながら、既往の酸窒化ア
ルミニウムの気相法は、減圧気相プロセスであり、減圧
(真空)化設備を必須とする点で製造コストの問題があ
る。それに付随して、工業的プロセスとした場合(例え
ば、スケールアップ化)、上記の高特性を保持できるか
どうかは現時点では未知であるという問題点が指摘され
る。更に、減圧下での気相法は、蒸発−凝縮反応を駆動
原理とすることから、必然的に、ナノメーターレベル
(大きくても数10ナノメーター)の粉体合成は可能で
あるが、それが本発明で対象とする技術分野の材料系に
必ずしも好適なわけではない。一般に、上記のような
“超微粒子”は、捕集や分散、成形などの粉体工学的取
り扱いが難しく、易凝集性粉体で、焼結体用原料粉体と
しては余り用いられない。むしろ粘稠剤用フィラーとし
て利用されている。即ち、焼結体原料粉体供給プロセス
としては、平均粒子径がサブミクロンレベルから、ミク
ロンレベル程度の粉体を制御性良く合成可能なことが求
められるが、ビルディングアップ法であるプラズマアー
ク溶融法は、そのために長時間を要したり、前駆体の高
濃度化が必要となって生成物の制御性が低下する恐れが
ある。しかも、減圧気相プロセスであるため、前駆体・
高濃度化の融通性は比較的小さい。
Aluminum oxynitride is usually unstable and generally has the above non-stoichiometric structure. To date, spinel aluminum oxynitride with stoichiometric composition has been produced only by the melting method using an arc image furnace (Yoshihiro Kuwano, Toshio Hirai, AlN-based ceramics and their vapor phase synthesis, Bulletin of the Japan Institute of Metals, Vol. .3
0, p. 913, 1991). The plasma arc melting method has the advantage of gas phase (aerosol) synthesis that enables the production of fine, highly pure powder with a relatively high degree of sphericity, and enables fine control of the stoichiometric composition by adjusting the reaction atmosphere. It is expected that future development will be achieved (eg, Hir
oyuki Fukuyama, WataruNaka
o, Masahiro Susa and Kazuh
iro Nagata, New Synthetic
Method of Forming Aluminum
Oxynitride by Plasma Arc
Melting, Journal of the A
Merchanic Ceramic Society, V
ol. 82, p. 1381, 1999; or JP-A-11-1999
-268910). However, the conventional vapor phase method of aluminum oxynitride is a decompression vapor phase process, and there is a problem of manufacturing cost in that decompression (vacuum) equipment is essential. Along with that, it is pointed out that it is not known at present whether it is possible to maintain the above-mentioned high characteristics in the case of an industrial process (for example, scale-up). Further, since the vapor phase method under reduced pressure uses the evaporation-condensation reaction as a driving principle, it is inevitable that powder synthesis at the nanometer level (several tens of nanometers at the maximum) is possible. Is not necessarily suitable for the material system in the technical field targeted by the present invention. In general, the above-mentioned "ultrafine particles" are difficult to handle by powder engineering such as collection, dispersion and molding, and are easily aggregating powders, and are rarely used as raw material powders for sintered bodies. Rather, it is used as a thickener filler. That is, in the powder supply process for the sintered body raw material, it is required to be able to synthesize powder with an average particle size from the submicron level to the micron level with good controllability. For that reason, there is a possibility that it takes a long time or a high concentration of the precursor is required, and the controllability of the product is lowered. Moreover, since it is a reduced pressure gas phase process, the precursor
The flexibility of increasing the concentration is relatively small.

【0007】難合成系で優位性を発揮し得る気相法で
は、その他、Alの低沸点前駆体のCVD気相合成法
(例えば、B.Aspar,B.Armas,C.Co
mbescure and D.Thenegal,O
rganometallic Chemical Va
pour Deposition IntheAl−O
−N System,Journal of the
European Ceramic Society,
Vol.8、p.251、1991)も検討されている
が、プラズマアーク溶融法と同様の問題点を有する。ま
た、酸窒化アルミニウムは、1960年頃、日本で発見
されたが、Al2 O3 などに比べると比較的歴史の浅い
材料系で、その製造方法自体、未だ必ずしも最適化され
たものとは考え難い点も指摘される。即ち、既往の酸窒
化アルミニウム粉体の主な三つの製造方法によると、
(1)Al23 −AlN高温焼成法では粗大粒子径と
低純度が不可である、(2)Al直接窒化法でも粗大粒
子径と低純度が不可である、(3)プラズマアーク溶融
法などの気相合成法は所望の粒子径範囲と減圧気相プロ
セスで難点がある、となり、高焼結性に必要な粒子径を
満たす粉体も、それを生産性・経済性良く製造する方法
・装置の何れも、現時点では得られていなかった。
[0007] In the vapor phase method which can exhibit superiority in a difficult synthesis system, in addition, a CVD vapor phase synthesis method of a low boiling point precursor of Al (for example, B. Aspar, B. Armas, C. Co.
mbscure and D.M. Thenegal, O
rganometallic Chemical Va
pour Deposition IntheAl-O
-N System, Journal of the
European Ceramic Society,
Vol. 8, p. 251, 1991) has been studied, but it has the same problems as the plasma arc melting method. Also, aluminum oxynitride was discovered in Japan around 1960, but it is a material system with a relatively short history compared to Al 2 O 3 etc., and it is hard to think that the manufacturing method itself is necessarily optimized. Is also pointed out. That is, according to the three main manufacturing methods of the existing aluminum oxynitride powder,
(1) Coarse particle size and low purity are not possible with Al 2 O 3 -AlN high temperature firing method, (2) Coarse particle size and low purity are not possible with Al direct nitriding method, (3) Plasma arc melting method The gas phase synthesis method such as has a problem in the desired particle size range and the reduced pressure gas phase process, and a method of producing a powder satisfying the particle size required for high sinterability with high productivity and economical efficiency. -None of the devices was available at this time.

【0008】本発明者らは、このような状況を踏まえ、
種々検討を重ねる中で、上記サイズの高純度粉体を、経
済性良く製造し得る方法として、これまでだれも予期し
得なかった現行の代表的フィラーである非晶質球状シリ
カ粉体に着目した。この粉体では「化学炎プロセス」が
一般的であり、可燃性ガスと酸素の混合ガスの燃焼火炎
中に硅石原料やSi金属粉を投入し、原料表面の溶融
や、気相中の蒸発−反応−結晶化プロセスの併用によ
り、球形度の高いシリカ粒子を、しかも、粒子径範囲を
任意に調整して製造することが行われている。この手法
による球状粒子化は、気相中で化学反応が進行した場合
に、立体的に周囲から作用を及ぼされることが少ないた
め、球状に形を構成し易いというエアロゾル合成の特長
を利用している。また、この手法は、蒸発−凝縮反応の
みを駆動原理としているわけではないので、超微粒子だ
けでなく、ミクロンレベルから10数ミクロンのフィラ
ー粉体サイズまで適用可能である。
The inventors of the present invention have considered such a situation,
In the course of various investigations, we focused on amorphous spherical silica powder, which is the current typical filler that no one could have expected so far, as a method for economically producing high-purity powder of the above size. did. A "chemical flame process" is generally used for this powder, in which silica raw material or Si metal powder is charged into the combustion flame of a mixed gas of combustible gas and oxygen, and the raw material surface is melted or vaporized in the gas phase. It has been practiced to produce silica particles having a high sphericity by controlling the particle size range by using the reaction-crystallization process in combination. Spherical particle formation by this method takes advantage of the feature of aerosol synthesis that it is easy to form a spherical shape because it is less sterically affected by the surroundings when a chemical reaction proceeds in the gas phase. There is. Further, since this method does not use only the evaporation-condensation reaction as a driving principle, it can be applied not only to ultrafine particles but also to a micron level to a filler powder size of 10 to several microns.

【0009】この方法や製造装置を、酸窒化アルミニウ
ム粉体に適用できれば、(1)粒子径が不適(粗大ある
いは過小)、あるいは(粉砕による)形状異方性が大き
いという欠点の解消、(2)シリカフィラー合成で蓄積
されてきた粉体合成の知的資産やノウハウの利用によ
り、粒子径分布など粉体特性の制御性向上や、必要な特
性を得るための検討時間の短縮、(3)化学炎法の製造
装置の流用による初期設備投資の優位性など、多くの利
点が期待されると考えられる。しかしながら、これま
で、「酸窒化アルミニウム粉体・化学炎プロセス」はだ
れも予期し得ず、実現されてこなかった。その理由につ
いては、(1)「酸素」の存在する火炎中で非酸化物を
合成し得るとは考えられず、内炎又は還元性燃焼火炎な
どの対酸素還元力を利用する発想がなかったこと、
(2)「酸素」の存在する火炎中へ単純に原料を投入す
るだけでは、完全な酸化物ではない酸窒化アルミニウム
が製造できないこと、(3)シリカと異なり高融点の耐
溶融セラミックスでもある酸窒化アルミニウムでは「原
料粉体表面の溶融」による球状化は期待できないこと、
(4)一度の反応(1プロセス)で完全な酸窒化アルミ
ニウム結晶構造(特に、γスピネル)を有した粉体を合
成しなければならないと考え、気相合成の特徴である複
数の反応を比較的容易に連続化できる点に着目しなかっ
たこと、などによるものと考えられる。
If this method and manufacturing apparatus can be applied to aluminum oxynitride powder, (1) elimination of the disadvantage that the particle size is unsuitable (coarse or too small) or the shape anisotropy (due to pulverization) is large, (2) ) By utilizing the intellectual property and know-how of powder synthesis accumulated by silica filler synthesis, improving the controllability of powder properties such as particle size distribution, and shortening the study time to obtain the required properties, (3) Many advantages can be expected, including the advantage of initial capital investment due to the diversion of chemical flame manufacturing equipment. However, to date, no one has been able to anticipate the “aluminum oxynitride powder / chemical flame process” and has not been realized. The reason is as follows: (1) It is not considered that non-oxides can be synthesized in a flame in which "oxygen" exists, and there was no idea to utilize the reducing power against oxygen such as internal flame or reducing combustion flame. thing,
(2) It is impossible to produce aluminum oxynitride that is not a perfect oxide by simply introducing the raw material into the flame in which "oxygen" exists. (3) Unlike silica, an acid that is also a high melting melting resistant ceramic. With aluminum nitride, spheroidization due to "melting of raw material powder surface" cannot be expected,
(4) Comparison of multiple reactions that characterize vapor phase synthesis, considering that powder having a complete aluminum oxynitride crystal structure (especially γ spinel) must be synthesized in one reaction (1 process) It is considered that it was because we did not pay attention to the point that it can be easily serialized.

【0010】[0010]

【発明が解決しようとする課題】本発明は、このような
状況を踏まえて新たに開発されたものであって、上記従
来の酸窒化アルミニウム粉体、その製造方法及び製造装
置が持つ欠点を克服し、火炎の熱エネルギー及び還元力
を酸窒化反応の駆動力とし、気相中で酸窒化反応が進行
するようにして生成物の溶融凝固や凝集を防止(特に、
プロセスが単純でコスト的に有利な原料金属粉の直接窒
化法で原料粉融着や粒成長抑制を実現)し、主たる用途
として等方的結晶構造による透光性を利用した光学系材
料、又は高耐熱衝撃性あるいは溶鋼に対する低濡れ性・
低反応性を利用した耐溶融セラミックスなどにおいて、
その原料として必要な粒子径と球形度を同時に達成し、
特に、原料粉体の粒成長を抑制して一次粒子径の範囲が
0.05〜100ミクロンに含まれ、生成物の溶融凝固
や凝集が小さく、高分散性及び/又は粒子の外形が角張
らないことを同時に実現した新規な酸窒化アルミニウム
粉体、その製造方法及び製造装置を提供することを目的
とするものである。
The present invention has been newly developed in view of such a situation, and overcomes the drawbacks of the above conventional aluminum oxynitride powder, its manufacturing method and manufacturing apparatus. However, the thermal energy and reducing power of the flame are used as the driving force for the oxynitriding reaction, and the oxynitriding reaction proceeds in the gas phase to prevent melting and solidification or aggregation of the product (particularly,
Direct nitriding method of raw metal powder, which is simple in process and advantageous in cost, realizes raw material powder fusion and grain growth suppression), and its main application is optical system material utilizing translucency due to isotropic crystal structure, or High thermal shock resistance or low wettability with molten steel
For molten ceramics that utilize low reactivity,
Achieving the particle size and sphericity required as raw materials at the same time,
In particular, the particle growth of the raw material powder is suppressed and the range of the primary particle size is included in the range of 0.05 to 100 μm, the melt coagulation and the agglomeration of the product are small, the high dispersibility and / or the outer shape of the particles are angular. It is an object of the present invention to provide a novel aluminum oxynitride powder that simultaneously achieves the above, a manufacturing method and a manufacturing apparatus thereof.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
の本発明は、以下の技術的手段から構成される。 (1)原料粉体を火炎の存在下、気相中で酸窒化反応に
付して作製された酸窒化アルミニウム粉体であって、酸
窒化反応を大気圧下の気相中で適用し、原料粉体の粒成
長を抑制して一次粒子径の範囲が0.05〜100ミク
ロンに含まれ、生成物の溶融凝固や凝集が小さく、高分
散で、粒子の外形が角張らないことを特徴とするAl、
O及びN元素を含む粉体。 (2)火炎中の酸素濃度を調整し、Al元素÷O元素の
比が、0.67〜5.3に含まれ、Al元素÷N元素の
比が1〜27に含まれるようにすることを特徴とする、
前記(1)に記載のAl、O及びN元素を含む粉体。 (3)可燃性ガスの火炎、可燃性ガスと酸素の混合ガス
の燃焼火炎、可燃性ガスと酸素の割合を完全燃焼比より
酸素を少なくした還元性燃焼火炎、不活性ガスのプラズ
マによる火炎、又は非接触状態下の物質間に発生するア
ーク炎から選択される火炎、の存在下、その熱エネルギ
ーと還元力を利用することを特徴とする、前記(1)に
記載のAl、O及びN元素を含む粉体。 (4)前記(1)〜(3)のいずれかに記載のAl、O
及びN元素を含む粉体を製造する方法であって、原料粉
体を気相中で分散状態に形成する工程、原料粉体を火炎
の存在下、気相中で直接窒化又は還元窒化する酸窒化反
応に付して酸窒化物を製造する工程、又は、これらの工
程及び上記酸窒化物を熱処理する工程、から成ることを
特徴とするAl、O及びN元素を含む粉体の製造方法。 (5)前記(1)〜(3)のいずれかに記載のAl、O
及びN元素を含む粉体の製造方法に使用するための装置
であって、火炎の発生装置と、原料粉体の供給装置と、
反応ガスの供給装置とを構成要素として含み、火炎の発
生装置で、原料粉体と反応ガスとが拡散混合され、炭素
が残らないように燃料と酸素量の比を制御し、原料粉体
の酸窒化反応が、火炎の存在下、気相中で進行するよう
にしたことを特徴とする製造装置。 (6)同軸上に内径の異なる複数個の円筒管を組み合わ
せた構造を有する火炎の発生装置を構成要素として含
み、いずれかの円筒管へ原料粉体を供給し、他の円筒管
へ反応ガスを供給して、該円筒管の先端部付近で、原料
粉体と反応ガスとが拡散混合され、炭素が残らないよう
に燃料と酸素量の比を制御し、原料粉体の酸窒化反応
が、火炎の存在下、気相中で進行するようにしたことを
特徴とする、前記(5)に記載の製造装置。
The present invention for solving the above-mentioned problems comprises the following technical means. (1) An aluminum oxynitride powder produced by subjecting a raw material powder to an oxynitriding reaction in a gas phase in the presence of a flame, the oxynitriding reaction being applied in a gas phase under atmospheric pressure, Characterized by suppressing the particle growth of the raw material powder and having a primary particle size range of 0.05 to 100 microns, which has little melting and solidification or aggregation of the product, is highly dispersed, and has a non-angular outer shape. Al,
A powder containing O and N elements. (2) Adjusting the oxygen concentration in the flame so that the ratio of Al element / O element is included in 0.67 to 5.3 and the ratio of Al element / N element is included in 1-27. Characterized by,
A powder containing the elements Al, O and N described in (1) above. (3) Flame of combustible gas, combustion flame of mixed gas of combustible gas and oxygen, reducing combustion flame in which the proportion of combustible gas and oxygen is less than the complete combustion ratio, flame of plasma of inert gas, Alternatively, in the presence of a flame selected from arc flames generated between substances in a non-contact state, the thermal energy and reducing power thereof are utilized, Al, O and N described in (1) above. Powder containing elements. (4) Al, O described in any of (1) to (3) above
And a method for producing a powder containing N element, the step of forming a raw material powder in a dispersed state in a gas phase, an acid for directly nitriding or reducing nitriding the raw material powder in a gas phase in the presence of a flame. A method for producing a powder containing Al, O and N elements, which comprises the steps of producing an oxynitride by subjecting it to a nitriding reaction, or these steps and a step of heat-treating the oxynitride. (5) Al, O described in any of (1) to (3) above
And a device for use in a method for producing powder containing N element, comprising a flame generating device, a raw material powder supplying device,
A reaction gas supply device is included as a component, and in the flame generation device, the raw material powder and the reaction gas are diffused and mixed, and the ratio of the fuel and the oxygen amount is controlled so that carbon does not remain, and the raw material powder A production apparatus characterized in that an oxynitriding reaction is allowed to proceed in a gas phase in the presence of a flame. (6) A flame generating device having a structure in which a plurality of cylindrical tubes having different inner diameters are coaxially combined is included as a constituent element, the raw material powder is supplied to one of the cylindrical tubes, and the reaction gas is supplied to another cylindrical tube. Is supplied, the raw material powder and the reaction gas are diffused and mixed near the tip of the cylindrical tube, and the ratio of the fuel and the oxygen amount is controlled so that carbon does not remain, and the oxynitriding reaction of the raw material powder is performed. The manufacturing apparatus according to (5) above, wherein the manufacturing apparatus is configured to proceed in a gas phase in the presence of a flame.

【0012】[0012]

【発明の実施の形態】次に、本発明について更に詳細に
説明する。本発明者らは、前述のように、種々検討を重
ねる中で、(1)第一に、「酸素」の存在する火炎は、
むしろ還元活性の大きい反応場と考えることができるこ
と、(2)第二に、可燃性ガス過多の内炎中や、可燃性
ガスと酸素割合を完全燃焼量論比より酸素を減少させた
還元性燃焼火炎を利用し、そこへ反応物を“有効に”供
給することで酸窒化物(又は窒化物)の反応場として見
なし得ること、(3)第三に、シリカのように溶融過程
を利用できなくとも、気相中で化学反応が進行した場合
に、立体的に周囲から作用を及ぼされることが少ないた
め、球状に形を構成し易いというエアロゾル合成の特長
が利用し得る上に、気相中で酸窒化反応が進行するよう
にすることは、球状化と同時に、生成物の溶融凝固や凝
集を防止できることが見込める(特に、プロセスが単純
でコスト的に有利な原料金属粉の直接窒化法で原料粉融
着や粒成長抑制を実現し得る)こと、更に、気相合成の
制御因子の豊富さは生成粒子特性の高制御性を意味する
こと、(4)第四に、化学炎法では、気相合成の特徴で
ある複数の反応を連続化して用いることが可能(あるい
は比較的容易)であること、に着目した。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the present invention will be described in more detail. As described above, the present inventors have made various investigations. (1) First, the flame in which “oxygen” exists is
Rather, it can be thought of as a reaction field with a large reduction activity. (2) Second, in the internal flame with excessive combustible gas, or with reducing the ratio of combustible gas and oxygen to the complete combustion stoichiometric ratio It can be regarded as a reaction field of oxynitride (or nitride) by using combustion flame and supplying the reactant "effectively" to it. (3) Thirdly, the melting process like silica is used. Even if it is not possible, when the chemical reaction proceeds in the gas phase, there is little effect from the surroundings sterically, so it is possible to utilize the feature of aerosol synthesis that it is easy to form a spherical shape, and By allowing the oxynitriding reaction to proceed in the phase, it is expected that melting and solidification and agglomeration of the product can be prevented at the same time as spheroidizing (particularly, direct nitriding of the raw material metal powder, which has a simple process and is cost effective). Method to suppress raw material powder fusion and grain growth Furthermore, the abundance of regulators of vapor phase synthesis means high controllability of the characteristics of particles produced. (4) Fourth, in the chemical flame method, there are a plurality of characteristic features of vapor phase synthesis. We paid attention to the fact that it is possible (or relatively easy) to use the reaction continuously.

【0013】そして、上記の着想を実現すべく鋭意検討
した結果、具体的には、(1)燃焼火炎あるいはプラズ
マ火炎中の酸素濃度を調整し、また、安定した内炎や還
元性燃焼火炎を維持すること、(2)好適な粒子径の実
現並びに生産性の観点から、火炎による熱エネルギーを
駆動力にした直接窒化法又は還元窒化法を主反応系とし
て適用すること、(3)流動化媒体を併用する流動層プ
ロセスを利用するなど、粉体状の原料を凝集の少ない高
分散状態で、且つ効率的に反応場へ供給すること、
(4)原料と火炎の量比率の適正化により酸窒化アルミ
ニウム結晶構造の生産性を高めること、あるいはAl元
素及び/又はO元素及び/又はN元素から成る多系相を
前駆体として製造し、後段に熱処理工程を連続化するこ
とで酸窒化アルミニウム結晶構造とすること、そして、
以上4点の制御を同時且つ効果的に組み合わせること
で、焼結体原料粉体として必要な粒子径と球形度を達成
した酸窒化アルミニウム粉体を製造することを実現し
た。
As a result of earnest studies to realize the above idea, specifically, (1) the oxygen concentration in the combustion flame or the plasma flame is adjusted, and a stable internal flame or reducing combustion flame is obtained. Maintaining, (2) applying a direct nitriding method or a reductive nitriding method, which uses thermal energy from a flame as a driving force, as a main reaction system, from the viewpoint of realizing a suitable particle size and productivity, (3) fluidization To efficiently supply a powdery raw material to a reaction field in a highly dispersed state with less aggregation, such as by utilizing a fluidized bed process in which a medium is used in combination,
(4) Improving the productivity of the aluminum oxynitride crystal structure by optimizing the amount ratio of the raw material and the flame, or producing a multisystem phase composed of Al element and / or O element and / or N element as a precursor, To make the aluminum oxynitride crystal structure by continuing the heat treatment process in the latter stage, and
By simultaneously and effectively combining the above four points of control, it has been possible to manufacture an aluminum oxynitride powder that achieves the particle size and sphericity required as the sintered body raw material powder.

【0014】即ち、本発明は、(これまで想像の産物で
しかなかった)焼結体原料粉体として必要な粒子径と球
形度を同時に達成し、特に、原料粉体の粒成長を抑制し
て一次粒子径の範囲が0.05〜100ミクロンに含ま
れ、生成物の溶融凝固や凝集が小さく、高分散性及び/
又は粒子の外形が角張らないことを同時に実現した酸窒
化アルミニウム粉体、並びにそれを粉砕を行わずに直接
合成する製造方法、及びその製造装置を提供するもので
あり、火炎の熱エネルギー及び還元力を酸窒化反応の駆
動力とし、気相中で酸窒化反応が進行するようにして生
成物の溶融凝固や凝集を防止したことを特徴とするもの
である。
That is, the present invention simultaneously achieves the particle size and sphericity required for the sintered body raw material powder (which was only an imaginary product until now), and in particular suppresses the grain growth of the raw material powder. The range of the primary particle size is 0.05 to 100 μm, and the melt coagulation and agglomeration of the product are small, and the high dispersibility and / or
The present invention also provides an aluminum oxynitride powder that simultaneously realizes that the outer shape of the particles is not angular, a manufacturing method for directly synthesizing the aluminum oxynitride powder, and a manufacturing apparatus therefor. The force is used as a driving force for the oxynitriding reaction, and the oxynitriding reaction is allowed to proceed in the gas phase to prevent melting and solidification or aggregation of the product.

【0015】上記のように、本発明の重要な技術的要件
は、次の4点にある。即ち、(1)火炎中のガス雰囲気
の調整、及び内炎や還元性燃焼火炎の安定化、(2)火
炎による熱エネルギーを駆動力にした直接窒化法又は還
元窒化法の利用、(3)原料粉体の気相分散(エアロゾ
ル)状態の形成、且つ効率的な反応場への供給、(4)
原料及び火炎量の比率の制御、又は熱処理工程の連続
化、である。
As described above, the important technical requirements of the present invention are the following four points. That is, (1) adjustment of gas atmosphere in flame and stabilization of internal flame and reducing combustion flame, (2) use of direct nitriding method or reduction nitriding method using thermal energy of flame as driving force, (3) Formation of gas phase dispersion (aerosol) state of raw material powder and efficient supply to reaction field, (4)
Controlling the ratio of the raw material and the flame amount, or making the heat treatment process continuous.

【0016】本発明において、原料粉体の流動化又は気
相分散(エアロゾル)状態の形成・利用方法としては、
気流にのせて粉体を滞留化させる各種の流動層法(原料
粉体より大きく流動化し易い数100μm直径の媒体メ
ディアを同時に用いて、原料粉体の凝集を防止しながら
高分散化を図る媒体流動層法、粉体層に振動を印加して
微粒子のチャネリングを防止する振動流動層法などを含
む)が好適に用いられるが、例えば、更に、回転円板や
ガスノズルを用いて粉体を気流にのせる各種噴霧法、液
体媒体中に粉体を分散させ超音波噴霧器や遠心噴霧器な
どで液体ごと粉体を液滴化する液体噴霧法なども適宜使
用可能であり、特に、制限されるものではなく、いずれ
の方法で調製された流動化原料粉体も使用できる。空
気、窒素、アンモニア又は不活性ガスの供給・制御装置
としては、コンプレッサーなどの圧縮ガス式供給機、ガ
ス製造設備より供給される高圧ガスボンベの内圧利用、
浮き玉式流量計、マスフローコントローラーなどが例示
される。
In the present invention, as a method of forming and utilizing the fluidized or vapor-phase dispersed (aerosol) state of the raw material powder,
Various fluidized bed methods in which the powder is retained by the air flow (medium that has a diameter of several hundred μm and is larger than the raw material powder and easy to fluidize is used at the same time to prevent the raw material powder from aggregating and achieve high dispersion. (Including a fluidized bed method and a vibrating fluidized bed method in which vibration is applied to the powder layer to prevent fine particles from channeling) are preferably used. For example, the powder is further flown using a rotating disk or a gas nozzle. Various spraying methods, such as a liquid spraying method in which a powder is dispersed in a liquid medium and the powder is made into droplets with an ultrasonic sprayer or a centrifugal sprayer can be appropriately used, and are particularly limited. Instead, a fluidized raw material powder prepared by any method can be used. As a supply / control device for air, nitrogen, ammonia, or an inert gas, a compressed gas type supply device such as a compressor, use of internal pressure of a high pressure gas cylinder supplied from a gas production facility,
A floating ball type flow meter, a mass flow controller, etc. are exemplified.

【0017】また、気相分散状態の利用による原料粉体
の反応場への供給方法としては、火炎ごと内包可能な、
石英、アルミナ、コーディエライト又は耐熱鋼などの、
反応管又は壁を設け、発生熱エネルギーの封止による反
応効率の向上や、供給粉体の搬送精度を高める方法が好
適に用いられるが、例えば、更に、(但し、反応効率に
問題が無ければ)自由空間において発生させた火炎中に
原料粉体を供給する手法も適宜使用可能であり、特に制
限されるものではなく、いずれの方法で調製された供給
方法も使用できる。更に、火炎中への原料粉体及び窒化
源(窒素、アンモニア又は不活性ガスなど)の導入経路
においては、同軸上に内径の異なる複数個の円筒管を組
み合わせた構造を有する原料供給管を設け、火炎原料で
ある可燃性ガス又はプラズマ発生用の不活性ガスを外側
から、酸素及び原料粉体及び窒化源を内側から供給する
二重円筒方式が好適に用いられるが、例えば、更に、
(但し、反応系の駆動原理や、原料粉体及び窒化源の混
合状態、火炎の過冷却において問題が無ければ)上記の
原料供給管とは別に、火炎原料と酸素から発生させた火
炎中に周囲から、原料粉体及び窒化源を供給する手法も
適宜使用可能であり、特に制限されるものではなく、い
ずれの方法で調製された導入経路も使用できる。
Further, as a method of supplying the raw material powder to the reaction field by utilizing the gas phase dispersion state, it is possible to include the entire flame,
Such as quartz, alumina, cordierite or heat resistant steel,
A method in which a reaction tube or a wall is provided and reaction efficiency is improved by sealing generated heat energy or the accuracy of feeding powder is improved is preferably used. For example, further (however, if there is no problem in reaction efficiency, ) A method of supplying the raw material powder into the flame generated in the free space can be appropriately used and is not particularly limited, and a supplying method prepared by any method can be used. Further, in the introduction path of the raw material powder and the nitriding source (nitrogen, ammonia or inert gas) into the flame, a raw material supply pipe having a structure in which a plurality of cylindrical pipes having different inner diameters are coaxially combined is provided. A flammable gas that is a flame raw material or an inert gas for plasma generation is supplied from the outside, and a double cylinder system in which oxygen and raw material powder and a nitriding source are supplied from the inside is preferably used.
(However, if there is no problem with the driving principle of the reaction system, the mixing state of the raw material powder and the nitriding source, and the supercooling of the flame) In addition to the above-mentioned raw material supply pipe, in the flame generated from the flame raw material and oxygen A method of supplying the raw material powder and the nitriding source from the surroundings can be appropriately used and is not particularly limited, and an introduction route prepared by any method can be used.

【0018】また、気相分散状態の利用による原料粉体
の反応場への供給の際は、サイクロン分級による原料粉
体の粒子径分布調整や粗大粒子除去を行い、反応効率や
制御性向上を図ることが好適なものとして例示される
が、例えば、更に、邪魔板によるインパクター分級や、
比較的長めの供給管を用いることで粗大粒子が必然的に
除去されるようにすること、あるいは粒子径分布幅の狭
い原料粉体の場合は特に分級操作を行わない方式も適宜
使用可能であり、特に制限されるものではなく、いずれ
の方法で調製された供給方法も使用できる。
When the raw material powder is supplied to the reaction field by utilizing the gas phase dispersion state, the particle size distribution of the raw material powder is adjusted by cyclone classification and coarse particles are removed to improve the reaction efficiency and controllability. Although it is illustrated as a preferable example, for example, further, impactor classification by a baffle plate,
Coarse particles are inevitably removed by using a relatively long supply pipe, or in the case of a raw material powder having a narrow particle size distribution width, a method without performing a classification operation can also be appropriately used. The feeding method prepared by any method can be used without any particular limitation.

【0019】本発明において、火炎の原料や発生・利用
方法としては、例えば、水素、メタン、ブタン、アセチ
レンなどの液化石油ガス、アンモニアなど、各種の可燃
性ガス、及び酸素などの支燃性ガスが好適に用いられる
が、更に、アルゴンなど不活性ガスの電離によるプラズ
マ火炎、又は被覆棒アーク、ザブマージアーク、イナー
トガスアークなど高電圧を印加された非接触状態下の物
質間に発生するアーク炎なども適宜使用可能であり、特
に制限されるものではなく、いずれの方法で調製された
火炎も使用できる。更に、火炎の発生装置としては、液
化ガスあるいは都市ガス用のガスバーナー、ガス溶接ガ
ン、アーク溶接ガン、熱プラズマ装置などが例示される
が、好適には、例えば、同軸上に内径の異なる複数個の
円筒管を組み合わせた構造を有する火炎の発生装置を構
成要素として含み、いずれかの円筒管へ原料粉体を供給
し、他の円筒管へ反応ガスを供給して、原料粉体の該円
筒管先端部付近で、原料粉体と反応ガスとが拡散混合さ
れ、原料粉体の窒化反応が火炎の存在下、気相中で進行
するようにした装置が例示される。
In the present invention, examples of the flame raw material and its generation / utilization method include liquefied petroleum gas such as hydrogen, methane, butane, and acetylene, various combustible gases such as ammonia, and combustion-supporting gases such as oxygen. Is preferably used, but further, a plasma flame by ionization of an inert gas such as argon, or an arc flame generated between substances under a non-contact state to which a high voltage is applied, such as a coated rod arc, a Zab merge arc, and an inert gas arc. And the like can be used as appropriate and are not particularly limited, and flames prepared by any method can be used. Further, examples of the flame generator include a gas burner for liquefied gas or city gas, a gas welding gun, an arc welding gun, a thermal plasma device, and the like, but preferably, for example, a plurality of coaxially different inner diameters are used. A flame generator having a structure in which individual cylindrical tubes are combined is included as a component, and the raw material powder is supplied to one of the cylindrical tubes and the reaction gas is supplied to another cylindrical tube to An example is a device in which the raw material powder and the reaction gas are diffusively mixed near the tip of the cylindrical tube, and the nitriding reaction of the raw material powder proceeds in the gas phase in the presence of a flame.

【0020】また、同軸上に内径の異なる複数個の円筒
管を組み合わせた構造を有する原料供給管を設け、火炎
原料であるC又はH元素から成る可燃性ガス又はプラズ
マ発生用の不活性ガスを外側から、酸素及び原料粉体及
び窒化源を内側から供給する二重円筒方式において、火
炎原料ガスと、原料粉体及び窒化源(及び酸素)を混合
し、同時に安定した内炎(及び外炎)又は還元性燃焼火
炎を発生させる火口形状については、火炎原料ガスが数
本の噴射管に分けられて外周より噴出され、それより供
給源に近い位置で内側から噴出された酸素などを包囲
し、良好な混合状態が得られるスパッド型が好適に用い
られる。しかしながら、これらは、特に制限されるもの
ではなく、単体の火炎原料ガス供給管を用いる高圧型の
ガン型、輪状の火炎原料ガス供給管円周に沿って多数の
噴出口が設けられたリング型、太口径ノズルが放射状に
分割されて火炎原料ガスと酸素などが並列して噴出され
るアニュラー型、火口端で段差を設けて渦流制御に拠り
火炎の存在しないデッドスペースを減少させるウォール
リセス型、ウォールリセス型に加え火炎原料ガス供給管
を主管と袖火管に分割したステクタイト型、主管断面積
を袖火管断面積の10倍以上にして袖火噴出速度低減を
図ったフェロックス型(又はピアン型)、火炎が並列し
て横に並ぶライン型及びシェパード型、未燃ガス流中に
邪魔板を設けて高温渦流と再循環域を作り連続着火する
ブラフボディ型、混合ガスを高速で赤熱した耐火物に衝
突させて連続着火するラジアントカップ型、なども適宜
使用可能であり、いずれの方法で調製された火炎も使用
できる。
Further, a raw material supply pipe having a structure in which a plurality of cylindrical pipes having different inner diameters are coaxially combined is provided, and a flammable gas consisting of C or H element which is a flame raw material or an inert gas for plasma generation is provided. In the double cylinder system in which oxygen, raw material powder and nitriding source are supplied from the outside, flame raw material gas, raw material powder and nitriding source (and oxygen) are mixed, and at the same time stable internal flame (and external flame) ) Or for the shape of the crater that produces a reducing combustion flame, the flame raw material gas is divided into several injection tubes and ejected from the outer circumference, and the oxygen etc. ejected from the inside is surrounded at a position closer to the supply source. A spud type that can obtain a good mixed state is preferably used. However, these are not particularly limited, and a high-pressure type gun type using a single flame raw material gas supply pipe, a ring type in which a large number of ejection ports are provided along the circumference of a ring-shaped flame raw material gas supply pipe. , An annular type in which a large diameter nozzle is radially divided and flame raw material gas and oxygen, etc. are jetted in parallel, a wall recess type in which a dead space where flame does not exist due to swirl control is provided by providing a step at the crater end, In addition to the wall recess type, the flame raw material gas supply pipe is divided into a main pipe and a sleeve fire pipe, a sectite type, and a ferrox type with a main pipe cross-sectional area more than 10 times the sleeve fire pipe cross-sectional area to reduce sleeve fire ejection speed ( Or Pian type), line type and shepherd type in which flames are arranged side by side in parallel, bluff body type that creates continuous igniting by creating a high-temperature vortex flow and recirculation zone by providing baffles in the unburned gas flow, mixed gas Radiant cup successive ignition collide with refractories red hot at high speed, also can be appropriately used, for example, be a flame prepared by any method can be used.

【0021】本発明において、原料をAl元素から成る
粉体とし、窒素、アンモニア又は不活性ガスの存在下
で、酸窒化反応を進行させること、原料をAl及びO元
素から成る粉体と、C元素から成る粉体の混合物とし、
窒素、アンモニア又は不活性ガスの存在下で、酸窒化反
応を進行させること、により上記Al、O及びN元素を
含む粉体とすることができる。ここで、「Al元素から
成る粉体」として記述した粉体状の原料の材料系につい
ては、任意の粒子径のアルミニウム金属粉体、水・ガス
・遠心の各アトマイズ法で製造された球形度の高い気相
合成・Al系粉体群が好適に用いられ、更に、AlCl
3 などの塩化物、アルミニウムイソプロポキシド(化学
式Al(iso−OC353 )などのアルコキシド
原料、アルミニウムアセチルアセトナト(化学式Al
(iso−C5723 )などのβジケトン錯体、
トリメチルアルミニウム(化学式Al(CH33 )な
どのアルキルメタルなどの低沸点の気相合成原料群、な
どが例示されるが、特に制限はない。
In the present invention, the raw material is a powder made of Al element, and the oxynitriding reaction is allowed to proceed in the presence of nitrogen, ammonia or an inert gas. As a mixture of powders consisting of elements,
By advancing the oxynitriding reaction in the presence of nitrogen, ammonia, or an inert gas, a powder containing the above Al, O and N elements can be obtained. Here, regarding the material system of the powdery raw material described as "powder composed of Al element", the sphericity produced by the atomizing method of aluminum metal powder of arbitrary particle diameter, water / gas / centrifuge Highly efficient vapor phase synthesis / Al powder group is preferably used.
Chlorides such as 3 and the like, alkoxide raw materials such as aluminum isopropoxide (chemical formula Al (iso-OC 3 H 5 ) 3 ), aluminum acetylacetonate (chemical formula Al
Β-diketone complexes such as (iso-C 5 H 7 O 2 ) 3 ),
Examples thereof include low boiling point gas phase synthesis raw materials such as alkylmetals such as trimethylaluminum (chemical formula Al (CH 3 ) 3 ), but there is no particular limitation.

【0022】また、「Al及びO元素から成る粉体と、
C元素から成る粉体の混合物」として記述した粉体状の
原料の材料系について、まず「Al及びO元素から成る
粉体」としては、市販のバイヤー法・改良バイヤー法・
アルコキシド法・アンモニウムドーソナイト法・気相法
などで製造されたアルミナ粉体群を好適とするが、更
に、α・γ・θ・κの各Al23 多系(中間アルミ
ナ)、AlOOHやAl(OH)3 の化学式で表現され
る水酸化物前駆体、アセチルアセトナト(化学式Al
(C5723 )や、アンモニウムドーソナイト
(化学式NH4 AlCO3 (OH)2 )などの炭酸塩前
駆体、アルミニウムイソプロポキシド(化学式Al(i
so−OC353 )などのアルコキシド原料、アル
ミニウムアセチルアセトナト(化学式Al(iso−C
5723 )などのβジケトン錯体、トリメチルア
ルミニウム(化学式Al(CH33 )などのアルキル
メタルなどの低沸点の気相合成原料群、などが例示され
るが、特に制限はない。また、「C元素から成る粉体」
としては、任意の粒子径の炭素粉体、カーボンブラック
やアセチレンブラックなど純度の高い気相合成・炭素粉
体、などが例示されるが、特に制限されるものではな
い。なお、上記の原料粉体は、一次粒子径の範囲が0.
05〜100ミクロンに含まれること求められる。この
理由は、原料粉体の特性(主に、粒子径と形状)が、合
成される酸窒化アルミニウム粉体特性に反映されるため
である。
Further, "a powder composed of Al and O elements,
Regarding the material system of the powdery raw material described as "a mixture of powders composed of C element", first of all, as "the powder composed of Al and O elements", a commercially available buyer method / improved Bayer method /
Alumina powders manufactured by the alkoxide method, ammonium dawsonite method, vapor phase method, etc. are preferable, but α, γ, θ, κ Al 2 O 3 multisystem (intermediate alumina), AlOOH Acetylacetonate, a hydroxide precursor represented by the chemical formula Al and (OH) 3 (chemical formula Al
(C 5 H 7 O 2 ) 3 ), carbonate precursors such as ammonium dawsonite (chemical formula NH 4 AlCO 3 (OH) 2 ), aluminum isopropoxide (chemical formula Al (i
Alkoxide raw materials such as so-OC 3 H 5 ) 3 ), aluminum acetylacetonate (chemical formula Al (iso-C
Examples include β-diketone complexes such as 5 H 7 O 2 ) 3 ) and low boiling point gas phase synthesis raw materials such as alkylmetals such as trimethylaluminum (chemical formula Al (CH 3 ) 3 ), but are not particularly limited. Absent. Also, "powder composed of C element"
Examples of the carbon powder include carbon powder having an arbitrary particle diameter, high-purity vapor-phase synthesis / carbon powder such as carbon black and acetylene black, but are not particularly limited. The above raw material powder has a primary particle size range of 0.
It is required to be included in the range of 05 to 100 microns. The reason for this is that the characteristics of the raw material powder (mainly the particle size and shape) are reflected in the characteristics of the synthesized aluminum oxynitride powder.

【0023】また、原料粉体の供給装置としては、ニー
ダーなどのスクリュー式、二軸ミルなどのローター式供
給装置、粉体搬送用の気流供給などが例示される。本発
明においては、炭素が残らないように燃料と酸素量の比
を制御する。火炎中で合成された粉体に連続的又は断続
的に高温を付与する方法・装置としては、熱CVD法な
どで採用される通常の電気炉加熱が好適に用いられる
が、熱処理用の燃焼火炎を複数設けることによる火炎再
加熱、プラズマ炎やアーク炎の利用、イメージ炉式加熱
なども適宜使用可能であり、特に制限されるものではな
い。更に、熱処理の条件は、火炎中で合成された直後の
状態の粉体の形態や結晶相により決定され、合成直後の
粉体の特性で満足される場合、熱処理は必ずしも必要な
い。一般的な条件として、窒素、アンモニア又は不活性
ガス雰囲気が例示される。熱処理により、酸窒化アルミ
ニウム多系の相の割合、その高制御化の格段の効果が得
られる。
Examples of the raw material powder feeding device include a screw type feeding device such as a kneader, a rotor type feeding device such as a twin-screw mill, and an air flow feeding for powder feeding. In the present invention, the ratio of fuel to oxygen is controlled so that carbon does not remain. As a method / apparatus for continuously or intermittently applying a high temperature to the powder synthesized in a flame, an ordinary electric furnace heating adopted in a thermal CVD method or the like is preferably used, but a combustion flame for heat treatment is used. It is possible to appropriately use flame reheating by providing a plurality of elements, use of plasma flame or arc flame, image furnace type heating, etc., and there is no particular limitation. Further, the heat treatment conditions are determined by the morphology and crystal phase of the powder immediately after being synthesized in the flame, and the heat treatment is not always necessary when the characteristics of the powder immediately after synthesis are satisfied. Examples of general conditions include nitrogen, ammonia, or an inert gas atmosphere. By the heat treatment, the ratio of the aluminum oxynitride multi-phase phase and its control can be remarkably improved.

【0024】本発明による、光学系材料及びその原料粉
体は、可視及び赤外線波長での透光性に優れ、同時に耐
熱性・耐磨耗性も高い材料が必要な高圧ナトリウム発光
管などの発光管用材料、高温用窓材料、スペースシャト
ルなど真空雰囲気下での高強度窓材料の製造用原料粉体
として好適に用いられるが、特に制限はない。本発明に
よる、耐溶融材料及びその原料粉体は、サイアロンなど
が用いられる溶鋼との低活性、高温安定性や耐酸化性、
溶鋼流動による損耗が低いこと(即ち、高温機械的強度
が高いこと)が求められる坩堝などの耐火物の製造用原
料として好適に用いられるが、特に制限されるものでは
ない。
The optical material and the raw material powder thereof according to the present invention emit light such as a high-pressure sodium arc tube which requires a material having excellent translucency at visible and infrared wavelengths, and at the same time having high heat resistance and abrasion resistance. It is preferably used as a raw material powder for producing a high-strength window material in a vacuum atmosphere such as a tube material, a high-temperature window material, and a space shuttle, but is not particularly limited. According to the present invention, the melting resistant material and its raw material powder have low activity with molten steel such as sialon, high temperature stability and oxidation resistance,
It is preferably used as a raw material for producing a refractory such as a crucible, which requires low wear due to molten steel flow (that is, high temperature mechanical strength), but is not particularly limited.

【0025】本発明において、組成が無機材料から成る
粉体を、組成が有機材料から成る樹脂系原料に充填して
作製する複合材料系としては、半導体素子の保護・絶縁
などを目的としたパッケージング材料が好適に例示され
るが、更に、絶縁材料や電極・導電材料、電気粘性流
体、化学機械研磨用スラリー、射出成形や鋳込み成形な
どのセラミック成形プロセス原料などの材料系も例示さ
れる。充填するフィラーである無機材料から成る粒子状
材料としては、半導体パッケージング材料で多用される
シリカ又は窒化アルミニウムが好適に例示されるが、例
えば、Al23 、SiC、Si34 などの他の酸化
物系、Au、Ag、Pd、Pt、Cu、Al、Au−P
dなど金属系も当然適用可能であり、特に制限はない。
また、結晶性についても制限は無く、結晶性又は非晶質
のいずれでも構わない。媒体である液状材料について
は、イオン交換水や蒸留水などの水系、エタノールなど
の有機非水系のほか、レゾール型やノボラック型のフェ
ノール樹脂、ビスフェノール型クレゾールノボラック多
官能型のエポキシ樹脂、ハロゲン化樹脂など、常温で固
形タイプの樹脂材料や、常温で液状タイプの次世代半導
体素子用のパッケージング材料で多用される樹脂材料が
好適に例示されるが、特に制限はない。
In the present invention, the composition is composed of an inorganic material.
Fill powder with resin-based raw material composed of organic material
As a composite material system to be produced, protection and insulation of semiconductor elements
A packaging material intended for
In addition, insulation materials, electrodes, conductive materials, electrorheological flow
Body, chemical mechanical polishing slurry, injection molding or casting molding
Examples of material systems such as any ceramic forming process raw material
Be done. Particles made of inorganic material that is the filler to be filled
As a material, it is often used in semiconductor packaging materials.
Silica or aluminum nitride is preferably exemplified, but examples
For example, Al2 O3 , SiC, Si3 NFour Other oxidation such as
Physical system, Au, Ag, Pd, Pt, Cu, Al, Au-P
Of course, metallic materials such as d can be applied, and there is no particular limitation.
Also, there is no limitation on crystallinity, either crystalline or amorphous.
It doesn't matter. About liquid material that is a medium
Is an aqueous system such as ion-exchanged water or distilled water, ethanol, etc.
In addition to organic non-aqueous systems,
Nol resin, bisphenol type cresol novolac
Functional epoxy resin, halogenated resin, etc.
Type resin materials and next-generation semiconductors that are liquid at room temperature
Resin materials often used as packaging materials for body elements
It is preferably exemplified, but there is no particular limitation.

【0026】本発明において、基板材料及びその原料粉
体としては、LSIやICが単体では無く、複数素子が
多層化・高集積化され、単体のシリコンチップ中に全シ
ステムを内包するシステムLSI、マルチチップモジュ
ール、又は三次元実装などシステムレベルの多機能高密
度化を志向するシステムインパッケージ用の基板材料、
又は電力変換用パワーデバイス(例えば、スイッチング
電源の一次整流用ブリッジダイオード、プリンターやF
AXなどのモータドライバー用IC、通信機器又はデジ
タル家電向けDC/DCコンバータIC、インバータ照
明向け高耐圧IC、TV・VTRなどのハイブリッドI
Cなど)が例示されるが、特に制限はない。
In the present invention, as the substrate material and the raw material powder thereof, not a single LSI or IC, but a system LSI in which a plurality of elements are multi-layered and highly integrated, and the whole system is included in a single silicon chip, Substrate material for system-in-package, which aims at multi-functional multi-chip module or multi-functional multi-density at system level,
Alternatively, a power conversion power device (for example, a bridge diode for primary rectification of a switching power supply, a printer or an F
Motor driver ICs such as AX, DC / DC converter ICs for communication equipment or digital home appliances, high voltage ICs for inverter lighting, hybrid I such as TV / VTR
C and the like) are exemplified, but there is no particular limitation.

【0027】本発明は、平均粒子径がサブミクロン〜数
ミクロンオーダーの粒子径と、高い球形度とを同時に達
成した酸窒化アルミニウム粉体、及びそれを粉砕を行わ
ずに直接合成可能な製造技術、その用途、及び製造装置
を提供することを可能とし、本発明の粉体は、特に、光
学系材料あるいは耐溶融材料などの無機系材料におい
て、その原料粉体として最適である。本発明の方法によ
り製造した酸窒化アルミニウム粉体の特性とその製造方
法の利点を以下に示す。即ち、上記粉体は、特に、原料
粉体の粒成長を抑制して一次粒子径の範囲が0.05〜
100ミクロンに含まれ、生成物の溶融凝固や凝集が小
さく、高分散性及び/又は粒子の外形が角張らないこと
を同時に実現した。また、結晶相は、酸窒化アルミニウ
ムの各多系相から、AlN相、Al23 相まで任意に
制御して製造することが可能である。
The present invention is directed to an aluminum oxynitride powder having an average particle size of submicron to several microns at the same time and a high sphericity, and a production technique capable of directly synthesizing the powder without crushing. It is possible to provide its use and manufacturing apparatus, and the powder of the present invention is most suitable as a raw material powder for an inorganic material such as an optical material or a melt resistant material. The characteristics of the aluminum oxynitride powder produced by the method of the present invention and the advantages of the production method are shown below. That is, the above-mentioned powder has a primary particle diameter range of 0.05-
Included in 100 micron, the product has small melt solidification and agglomeration, and at the same time has realized high dispersibility and / or non-angular outer shape of particles. In addition, the crystal phase can be produced by arbitrarily controlling from the multi-system phase of aluminum oxynitride to the AlN phase and the Al 2 O 3 phase.

【0028】[0028]

【実施例】次に、実施例により本発明を具体的に説明す
るが、本発明は、以下の実施例によって何ら限定される
ものではない。 (1)方法 図1に、本発明に基づく製造装置構成の一例を模式的に
示す。液化石油ガスと酸素系の化学炎と、窒素又はアン
モニアの窒化源、そして粒子状の原料粉体とから成る、
気相(エアロゾル)製造プロセスを構築した。反応器
(Diffusion Burner Flame R
eactor)は、透明石英管(Quartz Tub
e)とステンレス製二重円筒管による拡散火炎式とし、
火口はスパッド型(Spud−type)を用いた。外
管へ火炎原料ガス(Hydrocarbon Gase
s)を供給し、内管へ原料粉体(Raw Precur
sor Powder)、及び反応ガス系、ここでは、
NH3 の窒化ガス(Nitriding Gas)と、
2 とを搬送した。図1では、先ずAl原料粉体を流動
層エアロゾル発生装置(Fluidized Bed
Aerosol Generator)に搬送し、原料
粉体の粒子サイズを選別(Clasificatio
n)し、火炎原料ガスと酸素比率や窒化ガスの納入経路
(Controlof Nitriding Gas
Inlet Position)などを調整して、内炎
(Inner Luminous Flame)で気相
合成、生成物(Resultant Products
in Gas Phase“Aerosol”)をフ
ィルター(Filter)を通してポンプ(Pump)
引きし、有害ガスなどをトラップ(Trap)除去する
構成を採用した。化学炎法へ適用する基礎反応系の一例
として、ここでは、Al粉体の直接窒化法を用いたが、
勿論、還元窒化法でも問題はない。
EXAMPLES Next, the present invention will be specifically described by way of examples, but the present invention is not limited to the following examples. (1) Method FIG. 1 schematically shows an example of a manufacturing apparatus configuration based on the present invention. Consisting of liquefied petroleum gas and oxygen-based chemical flame, nitrogen or ammonia nitriding source, and particulate raw material powder,
A gas phase (aerosol) manufacturing process was established. Reactor (Diffusion Burner Flame R
eactor is a transparent quartz tube (Quartz Tube)
e) and a diffusion flame type with a stainless steel double cylindrical tube,
The crater used was a spud-type. To the outer tube Flame source gas (hydrocarbon gas)
s) and feed the raw material powder (Raw Precur
Sor Powder), and a reaction gas system, here,
Nitrogen gas of NH 3 (Nitriding Gas),
And O 2 . In FIG. 1, first, an Al raw material powder is loaded into a fluidized bed aerosol generator (fluidized bed).
Transfer to Aerosol Generator and select the particle size of the raw material powder (Classificatio)
n), and the delivery route of the flame raw material gas to the oxygen ratio and the nitriding gas (Control of Nitriding Gas).
Inlet Position) and the like are adjusted to perform gas phase synthesis with internal flame (Inner Luminous Flame), products (Resultant Products).
in Gas Phase “Aerosol”) through a filter (Pump)
A configuration is adopted in which harmful gas and the like are removed by trapping. As an example of the basic reaction system applied to the chemical flame method, the direct nitriding method of Al powder was used here,
Of course, there is no problem in the reduction nitriding method.

【0029】Al原料粉体は、平均粒子径約3ミクロン
のガスアトマイズ法による球状粉体を用いた。その流動
化は、媒体流動層法とし、直径150ミクロンのガラス
ビーズを媒体として使用した。原料粉体は、窒素ガスに
より1分当たり3リッターで、液化石油ガスは1分当た
り4リッターで供給し、制御因子である酸素ガスは、液
化石油ガスとの化学量論比から若干還元性火炎側へ調節
し、1分当たり4リッターとした。但し、不完全燃焼に
よる炭素が過剰に発生するほどではない。更に、酸窒化
反応用のアンモニアガスを、1分当たり0リッターから
3リッターまで調整して供給した。 (2)結果 上記したように、気相合成法は、制御因子が豊富であ
り、生成粒子の制御性が高い特長を有する。ここでは、
その一例として、反応系へ供給する窒化源量によって反
応効率を制御し、生成粒子の平均粒子径を調整した結果
を示した。図2及び図3に、本発明の方法による、酸窒
化アルミニウム粉体の一例のSEMを示す。図2はアン
モニアガス1分当たり3リッター、図3は1分当たり0
リッターで製造した結果である。その結果、3ミクロン
の出発粒子径から、微細化は約0.1ミクロン、粗大粒
子径化は約10ミクロンまで、制御可能であった。即
ち、原料粉体の1/30程度から、3倍程度まで変化さ
せることができた。生成粒子径は、上記の合成条件の
他、原料粒子径を変えることで任意に制御可能であり、
現在、市販品で容易にサブミクロンから数10ミクロン
程度のAl粉体を入手可能なことから、合成し得る一次
粒子径の妥当な範囲として0.05〜100ミクロンが
保証される。
As the Al raw material powder, a spherical powder having an average particle diameter of about 3 μm by the gas atomizing method was used. The fluidization was performed by a medium fluidized bed method, and glass beads having a diameter of 150 μm were used as a medium. The raw material powder was supplied with nitrogen gas at 3 liters per minute, and liquefied petroleum gas was supplied at 4 liters per minute. Oxygen gas, which is a control factor, is slightly reducing flame from the stoichiometric ratio with liquefied petroleum gas. It was adjusted to the side and 4 liters per minute. However, carbon is not generated excessively due to incomplete combustion. Further, ammonia gas for the oxynitriding reaction was adjusted and supplied from 0 liter to 3 liters per minute. (2) Results As described above, the vapor phase synthesis method has abundant control factors and high controllability of produced particles. here,
As an example, the results of controlling the reaction efficiency by adjusting the amount of the nitriding source supplied to the reaction system and adjusting the average particle diameter of the produced particles are shown. 2 and 3 show SEMs of an example of aluminum oxynitride powder according to the method of the present invention. Fig. 2 shows 3 liters of ammonia gas per minute, and Fig. 3 shows 0 liters per minute.
This is the result of manufacturing with a liter. As a result, from the starting particle size of 3 μm, the fineness was controlled to about 0.1 μm and the coarse particle size was controlled to about 10 μm. That is, it was possible to change from about 1/30 of the raw material powder to about 3 times. The generated particle size can be arbitrarily controlled by changing the raw material particle size in addition to the above synthesis conditions,
Since Al powders of sub-micron to several tens of microns are easily available as commercial products at present, a reasonable range of the primary particle size that can be synthesized is guaranteed to be 0.05 to 100 microns.

【0030】従って、まず、第一に、本発明が対象とす
る技術分野の原料粉体として主に必要な、(1)火炎の
みで直接合成された段階で(熱処理などを施さずに)、
100%酸窒化アルミニウム組成の粉体が製造可能であ
る(即ち、1650℃以上の高価な熱処理設備や、余計
な後段の熱処理が不要である)、(2)前駆体原料粉体
の大きさを保持した、平均粒子径がミクロンオーダー程
度の生成粒子・粒子径を達成できる、(3)合成された
段階で粉体の粗大化が起こらず高分散状態が実現できる
(即ち、粉砕工程が不要である)、(4)高い球形度を
達成できる、(5)特に、金属Al粉の直接窒化を用い
ているにも関わらず生成粉体が固く融着又は凝集した状
態が発生し難い、という格別の効果が達成された。ま
た、第二に、窒化源の供給量という容易に調整可能な条
件で、任意に生成粒子径を制御することができた。この
他、窒化ガスの供給方法を原料粉体及び酸素ガスと予め
混合、又は内炎が燃焼している中央へ後から供給、と導
入経路を変えて供給することで、反応原理を変えて粒子
径や生成相を制御することが可能となった。
Therefore, first of all, at the stage (1) directly synthesized with only a flame (without heat treatment etc.), which is mainly required as a raw material powder in the technical field targeted by the present invention,
It is possible to manufacture a powder having a composition of 100% aluminum oxynitride (that is, there is no need for expensive heat treatment equipment at 1650 ° C. or higher and an extra heat treatment at a later stage). (2) Size of precursor raw material powder It is possible to achieve the generated particles and particle diameters of the average particle diameter held in the order of micron. (3) Highly dispersed state can be realized without coarsening of the powder at the stage of synthesis (that is, the pulverization step is unnecessary. A), (4) high sphericity can be achieved, (5) in particular, it is difficult to generate a solid fused or agglomerated state of the produced powder even though the direct nitriding of the metal Al powder is used. The effect of was achieved. Secondly, the generated particle size could be arbitrarily controlled under the condition that the supply amount of the nitriding source was easily adjustable. In addition to this, the nitriding gas supply method is premixed with the raw material powder and oxygen gas, or is supplied later to the center where the internal flame is burning, and the supply path is changed to supply particles with different reaction principles. It became possible to control the diameter and the generation phase.

【0031】[0031]

【発明の効果】以上詳述したように、本発明によれば、
(1)高価な熱処理設備や粉砕工程を用いず、フィラー
粉体分野で構築された既往の製造設備で直接合成が可能
である、(2)前駆体原料粉体の粒成長を抑制し、粉体
の粗大化・凝集(融着)フリーの粉体を製造できる(即
ち、前駆体原料粉体径という容易に調整可能な条件で任
意に生成粒子径を制御し得る)、(3)前記の粉体特性
を満たし、同時に従来製品に期待できない高い球形度が
実現される(従来、酸窒化アルミニウム粉体では、粉砕
工程が必須で、角張った形状異方性の高い粉体しか存在
しなかった)、(4)特に、等方的結晶構造による透光
性を利用した光学系材料、又は高耐熱衝撃性あるいは溶
鋼に対する低濡れ性・低反応性を利用した耐溶融材料な
どにおいて、その原料として必要な粒子径と球形度を同
時に達成し、特に、原料粉体の粒成長を抑制して一次粒
子径の範囲が0.05〜100ミクロンに含まれ、生成
物の溶融凝固や凝集が小さく、高分散性及び/又は粒子
の外形が角張らないことを同時に実現した新規な原料粉
体を提供することができる、という格別の効果が奏され
る。
As described in detail above, according to the present invention,
(1) Direct synthesis is possible with existing manufacturing equipment constructed in the field of filler powder, without using expensive heat treatment equipment and crushing process. (2) Suppressing grain growth of precursor raw material powder, powder It is possible to produce a powder free from coarsening / aggregation (fusion) of the body (that is, the generated particle diameter can be arbitrarily controlled under the condition that the precursor raw material powder diameter can be easily adjusted), (3) above Satisfies the powder characteristics and at the same time achieves a high sphericity that cannot be expected from conventional products. (In the past, the grinding process was essential for aluminum oxynitride powder, and there was only powder with angular and highly anisotropic shape. ), (4) In particular, as a raw material for optical system materials that utilize the translucency of an isotropic crystal structure, or melt-resistant materials that utilize high thermal shock resistance or low wettability and low reactivity with molten steel, etc. Achieve the required particle size and sphericity at the same time, especially The particle growth of the raw material powder is suppressed and the range of the primary particle diameter is included in 0.05 to 100 microns, the melt coagulation and agglomeration of the product are small, and the high dispersibility and / or the outer shape of the particles are not angular. It is possible to provide a new raw material powder that simultaneously achieves the above effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に基づく製造装置の構成の一例の模式図
を示す。
FIG. 1 shows a schematic view of an example of the configuration of a manufacturing apparatus according to the present invention.

【図2】実施例で製造した、酸窒化アルミニウム粉体の
一例のSEM(窒化用アンモニアガス1分当たり3リッ
ターの場合)を示す。
FIG. 2 shows an SEM (in the case of 3 liters per minute of nitriding ammonia gas) of an example of an aluminum oxynitride powder produced in the example.

【図3】実施例で製造した、酸窒化アルミニウム粉体の
一例のSEM(窒化用アンモニアガス1分当たり0リッ
ターの場合)を示す。
FIG. 3 shows an SEM (in the case of 0 liters per minute of ammonia gas for nitriding) of an example of aluminum oxynitride powder produced in the example.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 原料粉体を火炎の存在下、気相中で酸窒
化反応に付して作製された酸窒化アルミニウム粉体であ
って、酸窒化反応を大気圧下の気相中で適用し、原料粉
体の粒成長を抑制して一次粒子径の範囲が0.05〜1
00ミクロンに含まれ、生成物の溶融凝固や凝集が小さ
く、高分散で、粒子の外形が角張らないことを特徴とす
るAl、O及びN元素を含む粉体。
1. An aluminum oxynitride powder produced by subjecting a raw material powder to an oxynitriding reaction in a gas phase in the presence of a flame, the oxynitriding reaction being applied in a gas phase under atmospheric pressure. The particle growth of the raw material powder is suppressed, and the range of the primary particle diameter is 0.05 to 1
A powder containing Al, O, and N elements, which is contained in 00 micron, has small melting and solidification and aggregation of the product, is highly dispersed, and has a non-angular outer shape.
【請求項2】 火炎中の酸素濃度を調整し、Al元素÷
O元素の比が、0.67〜5.3に含まれ、Al元素÷
N元素の比が1〜27に含まれるようにすることを特徴
とする、請求項1に記載のAl、O及びN元素を含む粉
体。
2. The oxygen concentration in the flame is adjusted so that Al element ÷
The ratio of O element is contained in 0.67 to 5.3, and Al element ÷
The powder containing Al, O and N elements according to claim 1, characterized in that the ratio of N elements is contained in the range of 1-27.
【請求項3】 可燃性ガスの火炎、可燃性ガスと酸素の
混合ガスの燃焼火炎、可燃性ガスと酸素の割合を完全燃
焼比より酸素を少なくした還元性燃焼火炎、不活性ガス
のプラズマによる火炎、又は非接触状態下の物質間に発
生するアーク炎から選択される火炎、の存在下、その熱
エネルギーと還元力を利用することを特徴とする、請求
項1に記載のAl、O及びN元素を含む粉体。
3. A flame of a combustible gas, a combustion flame of a mixed gas of a combustible gas and oxygen, a reducing combustion flame in which the ratio of the combustible gas and oxygen is less than the complete combustion ratio, and the plasma of an inert gas. The Al, O, and O according to claim 1, characterized in that its thermal energy and reducing power are utilized in the presence of a flame or a flame selected from arc flames generated between substances in a non-contact state. Powder containing N element.
【請求項4】 請求項1〜3のいずれかに記載のAl、
O及びN元素を含む粉体を製造する方法であって、原料
粉体を気相中で分散状態に形成する工程、原料粉体を火
炎の存在下、気相中で直接窒化又は還元窒化する酸窒化
反応に付して酸窒化物を製造する工程、又は、これらの
工程及び上記酸窒化物を熱処理する工程、から成ること
を特徴とするAl、O及びN元素を含む粉体の製造方
法。
4. The Al according to claim 1,
A method for producing a powder containing O and N elements, the method comprising: forming a raw material powder in a vapor phase in a dispersed state; directly nitriding or reductive nitriding the raw material powder in a vapor phase in the presence of a flame. A method for producing a powder containing Al, O and N elements, which comprises the steps of subjecting to an oxynitriding reaction to produce an oxynitride, or these steps and the step of heat-treating the oxynitride. .
【請求項5】 請求項1〜3のいずれかに記載のAl、
O及びN元素を含む粉体の製造方法に使用するための装
置であって、火炎の発生装置と、原料粉体の供給装置
と、反応ガスの供給装置とを構成要素として含み、火炎
の発生装置で、原料粉体と反応ガスとが拡散混合され、
炭素が残らないように燃料と酸素量の比を制御し、原料
粉体の酸窒化反応が、火炎の存在下、気相中で進行する
ようにしたことを特徴とする製造装置。
5. The Al according to claim 1,
An apparatus for use in a method for producing a powder containing O and N elements, comprising a flame generating device, a raw material powder supplying device, and a reaction gas supplying device as constituent elements, and generating a flame. In the device, the raw material powder and the reaction gas are diffused and mixed,
A manufacturing apparatus characterized in that a ratio of a fuel and an oxygen amount is controlled so that carbon does not remain so that an oxynitriding reaction of a raw material powder proceeds in a gas phase in the presence of a flame.
【請求項6】 同軸上に内径の異なる複数個の円筒管を
組み合わせた構造を有する火炎の発生装置を構成要素と
して含み、いずれかの円筒管へ原料粉体を供給し、他の
円筒管へ反応ガスを供給して、該円筒管の先端部付近
で、原料粉体と反応ガスとが拡散混合され、炭素が残ら
ないように燃料と酸素量の比を制御し、原料粉体の酸窒
化反応が、火炎の存在下、気相中で進行するようにした
ことを特徴とする、請求項5に記載の製造装置。
6. A flame generating device having a structure in which a plurality of cylindrical tubes having different inner diameters are coaxially combined is included as a constituent element, and the raw material powder is supplied to any one of the cylindrical tubes and is supplied to another cylindrical tube. Oxynitriding the raw material powder by controlling the ratio of the amount of fuel and oxygen so that the raw material powder and the reaction gas are diffused and mixed in the vicinity of the tip of the cylindrical tube and no carbon remains by supplying the reaction gas. The manufacturing apparatus according to claim 5, wherein the reaction is allowed to proceed in a gas phase in the presence of a flame.
JP2001247594A 2001-08-17 2001-08-17 Highly dispersed and highly spherical aluminum oxynitride powder, manufacturing method and manufacturing apparatus thereof Expired - Lifetime JP3985039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001247594A JP3985039B2 (en) 2001-08-17 2001-08-17 Highly dispersed and highly spherical aluminum oxynitride powder, manufacturing method and manufacturing apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001247594A JP3985039B2 (en) 2001-08-17 2001-08-17 Highly dispersed and highly spherical aluminum oxynitride powder, manufacturing method and manufacturing apparatus thereof

Publications (2)

Publication Number Publication Date
JP2003054919A true JP2003054919A (en) 2003-02-26
JP3985039B2 JP3985039B2 (en) 2007-10-03

Family

ID=19076904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001247594A Expired - Lifetime JP3985039B2 (en) 2001-08-17 2001-08-17 Highly dispersed and highly spherical aluminum oxynitride powder, manufacturing method and manufacturing apparatus thereof

Country Status (1)

Country Link
JP (1) JP3985039B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005022960A (en) * 2003-06-09 2005-01-27 National Institute Of Advanced Industrial & Technology Method for producing nonoxide-based particle
JP2011190171A (en) * 2010-02-22 2011-09-29 Tatsumori:Kk Inert spherical aluminum nitride powder, and method of manufacturing the same
WO2015022947A1 (en) * 2013-08-16 2015-02-19 合同会社 新資源研究所ホールディングス Combustion synthesis system, reaction product, article, combustion synthesis method, power-generating system, plasma-generating device, and power-generating device
JP6450425B1 (en) * 2017-07-28 2019-01-09 國家中山科學研究院 Method for producing spherical aluminum oxynitride powder
CN111470481A (en) * 2020-05-19 2020-07-31 四川大学 Method for preparing high-purity aluminum nitride spherical powder by plasma reaction atomization
CN112756619A (en) * 2020-12-22 2021-05-07 宁波广新纳米材料有限公司 Production method of submicron CuSn alloy powder with controllable element proportion

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005022960A (en) * 2003-06-09 2005-01-27 National Institute Of Advanced Industrial & Technology Method for producing nonoxide-based particle
JP4639363B2 (en) * 2003-06-09 2011-02-23 独立行政法人産業技術総合研究所 Method for producing non-oxide particles
JP2011190171A (en) * 2010-02-22 2011-09-29 Tatsumori:Kk Inert spherical aluminum nitride powder, and method of manufacturing the same
WO2015022947A1 (en) * 2013-08-16 2015-02-19 合同会社 新資源研究所ホールディングス Combustion synthesis system, reaction product, article, combustion synthesis method, power-generating system, plasma-generating device, and power-generating device
JP5963967B2 (en) * 2013-08-16 2016-08-03 合同会社 新資源研究所ホールディングス Combustion synthesis system, reaction product, article, combustion synthesis method, power generation system, plasma generator and power generation apparatus
JP6450425B1 (en) * 2017-07-28 2019-01-09 國家中山科學研究院 Method for producing spherical aluminum oxynitride powder
CN111470481A (en) * 2020-05-19 2020-07-31 四川大学 Method for preparing high-purity aluminum nitride spherical powder by plasma reaction atomization
CN111470481B (en) * 2020-05-19 2023-09-19 四川大学 Method for preparing high-purity aluminum nitride spherical powder by plasma reaction atomization
CN112756619A (en) * 2020-12-22 2021-05-07 宁波广新纳米材料有限公司 Production method of submicron CuSn alloy powder with controllable element proportion

Also Published As

Publication number Publication date
JP3985039B2 (en) 2007-10-03

Similar Documents

Publication Publication Date Title
US6887566B1 (en) Ceria composition and process for preparing same
EP1232117A1 (en) Ceria composition and process for preparing same
JP3991098B2 (en) Aluminum nitride filler powder synthesized by flame
JP3960700B2 (en) Method for producing ultrafine silica
JP3985039B2 (en) Highly dispersed and highly spherical aluminum oxynitride powder, manufacturing method and manufacturing apparatus thereof
JP7261043B2 (en) Method for producing inorganic oxide particles
JP4995210B2 (en) Method for producing fine silica powder
JP2003054920A (en) Aluminum nitride powder having equal to or above micrometer-ordered average particle diameter and high sphericity, method and apparatus of manufacturing the same
JP3961007B2 (en) Method and apparatus for producing silica fine powder
KR100480393B1 (en) Vapor phase synthesis of high purity nano- and submicron particles with controlled size and agglomeration
JP2868039B2 (en) Method for producing lower metal oxide
US4719095A (en) Production of silicon ceramic powders
JP3625415B2 (en) Method for producing oxide-encapsulated glass particles and oxide-encapsulated glass particles produced by this method
JPH1192136A (en) Production of low alpha-dose alumina powder and low alpha-dose alumina powder
JP4330298B2 (en) Method for producing spherical inorganic powder
JP4416936B2 (en) Method for producing fine silica powder
JP4318872B2 (en) Method for producing fine spherical silica powder
JP4639363B2 (en) Method for producing non-oxide particles
JP4315576B2 (en) Method for producing ultrafine silica
EP1204591B1 (en) Production of silica particles
JP2006312583A (en) Manufacturing method of superfine powder silica
TW202016023A (en) A fabirication method of fine spherical alumina powder
JP2929815B2 (en) Method for producing carbide powder
RU2738596C1 (en) Method of producing ultrafine particles of homogeneous oxide ceramic compositions consisting of core and outer shells
JP5024844B2 (en) Non-oxide particulate matter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061226

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070223

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070611

R150 Certificate of patent or registration of utility model

Ref document number: 3985039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term