JP2003054920A - Aluminum nitride powder having equal to or above micrometer-ordered average particle diameter and high sphericity, method and apparatus of manufacturing the same - Google Patents

Aluminum nitride powder having equal to or above micrometer-ordered average particle diameter and high sphericity, method and apparatus of manufacturing the same

Info

Publication number
JP2003054920A
JP2003054920A JP2001246885A JP2001246885A JP2003054920A JP 2003054920 A JP2003054920 A JP 2003054920A JP 2001246885 A JP2001246885 A JP 2001246885A JP 2001246885 A JP2001246885 A JP 2001246885A JP 2003054920 A JP2003054920 A JP 2003054920A
Authority
JP
Japan
Prior art keywords
flame
powder
raw material
gas
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001246885A
Other languages
Japanese (ja)
Inventor
Yasumasa Takao
泰正 高尾
Masayoshi Oohashi
優喜 大橋
Mutsuo Santo
睦夫 山東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001246885A priority Critical patent/JP2003054920A/en
Publication of JP2003054920A publication Critical patent/JP2003054920A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide novel high sphericity aluminum nitride powder in which it is attained simultaneously that the melting, solidification or aggregation of a product is prevented, high dispersibility is exhibited, a primary particle diameter is within a range from 0.05 μm to 100 μm, an average particle diameter is >=1 μm and the external shape of the particles is rounded, and a method and an apparatus for manufacturing the same. SOLUTION: The powder containing Al element and N element is manufactured using a manufacturing method and a manufacturing apparatus for advancing an oxynitride reaction in a vapor phase or in the presence of flame by controlling the following technical requirements at the same time, that is (1) the high dispersion and the stable fluidization or the formation of aerosol state of raw material powder having a primary particle diameter within a range from 0.001 μm to 500 μm, (2) the utilization of a direct nitriding method or a reduction nitriding method using the high temperature by the flame as driving force and (3) the ratio control of the raw materials and the flame quantity, the optimization of the quantity of produced carbon using as a reducing agent or the continuity of a heat treatment process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、新規な球形度の高
い窒化アルミニウム粉体、その製造方法及び製造装置に
関するものであり、更に詳しくは、火炎の熱エネルギー
及び還元力を酸窒化反応の駆動力として、予め反応活性
な酸窒化アルミニウム粉体を製造し、製造過程のその場
で還元剤を同時に作り、それを個々の酸窒化アルミニウ
ム粉体の周りに均一且つ高分散させ、それらを前駆体原
料として用いることで、従来の固相反応プロセスでは不
可能な低温条件下でAlONからAlNヘの窒化反応が
進行するようにしたことにより、フィラーとして有用
な、生成物の溶融凝固や凝集が小さく、高分散性で、一
次粒子径の範囲が0.05〜100ミクロンに含まれ、
平均粒子径が1ミクロン以上及び粒子の外形が角張らな
いことを同時に達成した新規な球形度の高い窒化アルミ
ニウム粉体、その製造方法及び製造装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel aluminum sphere powder having a high sphericity, a method for producing the same and an apparatus for producing the same. As a force, it is possible to produce reactively active aluminum oxynitride powder in advance, simultaneously make a reducing agent in-situ during the production process, and disperse it uniformly and highly around the individual aluminum oxynitride powders to form precursors for them. By using it as a raw material, the nitriding reaction from AlON to AlN proceeds under low temperature conditions that are not possible with the conventional solid-phase reaction process, so that melting and solidification or aggregation of the product, which is useful as a filler, is small. , High dispersibility, the range of primary particle size is included in 0.05-100 microns,
The present invention relates to a novel aluminum nitride powder having a high sphericity, which simultaneously achieves an average particle diameter of 1 micron or more and an outer shape of particles that is not angular, a manufacturing method and a manufacturing apparatus thereof.

【0002】[0002]

【従来の技術】一般に、電子材料関連技術の中で、組成
が無機材料から成る粉体を、組成が有機材料から成る樹
脂系原料に充填して用いる複合材料系は、例えば、絶縁
材料や電極・導電材料、電気粘性流体、化学機械研磨用
スラリー、射出成形や鋳込み成形などのセラミック成形
プロセス原料などとして使用される重要な材料系であ
る。更に、近年では、この複合材料系は、半導体素子の
保護・絶縁などを目的としたパッケージング材料に広く
利用されるようになっている。そして、VLSI化の進
展に伴う素子の微細化に対応するために、微小な電極間
への注入や任意の形状化を実現するパッケージング材料
は、その高放熱性・高熱伝導性・低熱膨張性と同時に、
低粘性・高成形性が不可欠となっている。
2. Description of the Related Art In general, among electronic material-related technologies, a composite material system in which a powder made of an inorganic material is filled in a resin material made of an organic material is used, for example, as an insulating material or an electrode. -It is an important material system used as a conductive material, an electrorheological fluid, a slurry for chemical mechanical polishing, a raw material for a ceramic molding process such as injection molding and casting molding. Furthermore, in recent years, this composite material system has been widely used as a packaging material for the purpose of protecting and insulating semiconductor elements. In order to cope with the miniaturization of elements accompanying the progress of VLSI, packaging materials that realize injection between minute electrodes and arbitrary shape have high heat dissipation, high thermal conductivity, and low thermal expansion. At the same time
Low viscosity and high moldability are essential.

【0003】現在のところ、放熱性などを向上させる目
的で充填される無機フィラー粉体は、Si及びO元素か
ら成る、非晶質で球状のシリカ粉体が主流を占めてい
る。熱的特性の観点からは、多くのシリカを充填する方
が望ましいが、その場合には、粘性・成形性が低下する
ため、一定の限界がある。そこで、成形性を損なわず
に、できるだけ多くのシリカを充填する目的で、シリカ
の粒子径分布や表面修飾の検討、微粒子の添加などが試
みられ、これらの各種の制御を組み合わせた工程が採用
されている。しかしながら、急速に進展する半導体素子
の開発競争の潮流下にあって、単体のシリコンチップ中
に全システムを内包するシステムLSIや、三次元実装
などのシステムレベルの多機能及び高密度化を志向する
システムインパッケージ等において、高度化する要求や
精度に応えるには、現時点の封止技術やフィラー特性で
はその対応に限界があることが指摘されていた(例え
ば、萩原伸介、”半導体用封止材の開発現況”、プラス
チックス、Vol.49、p.58、1998)。
At present, as the inorganic filler powder to be filled for the purpose of improving the heat radiation property, the amorphous and spherical silica powder composed of Si and O elements is predominant. From the viewpoint of thermal characteristics, it is desirable to fill a large amount of silica, but in that case, there is a certain limit because the viscosity and moldability deteriorate. Therefore, for the purpose of filling as much silica as possible without impairing moldability, investigation of particle size distribution and surface modification of silica, addition of fine particles, and the like were tried, and a process combining these various controls was adopted. ing. However, in the current trend of rapidly developing semiconductor device competition, we are aiming for system LSIs that include the entire system in a single silicon chip, and system-level multi-functionality and high density such as three-dimensional mounting. In system-in-package, etc., it has been pointed out that the current encapsulation technology and filler properties have a limit in meeting such advanced requirements and accuracy (eg Shinsuke Hagiwara, “Encapsulation materials for semiconductors”). Development status ", Plastics, Vol.49, p.58, 1998).

【0004】ところで、シリカの理論的熱伝導率が約2
Wm-1-1であるのに対し、例えば、窒化アルミニウム
のそれは約300Wm-1-1であり、窒化アルミニウム
は、シリカより少量の添加でも高い放熱性が期待でき
る。即ち、熱的特性以外の、粒子径分布や球形度等の点
でも現行のシリカフィラーと同等の特性を有する窒化ア
ルミニウムフィラーが実現できれば、熱的特性と粘性・
成形性を同時に達成できる、画期的なフィラー及び封止
技術に発展する可能性がある。この観点から、既に、シ
リカの“一部”を窒化アルミニウム粉体に代替する試み
が発表されている(例えば、特開平9−183610公
報)。しかしながら、現時点では、フィラー粉体として
必要な粒子径(平均粒子径が数〜数10ミクロン程度)
を有する窒化アルミニウム粉体は、粉砕工程を経て製造
される直接窒化法が主流であるため、形状が角張った形
をした非球状粉体となっており、そのため、粘性・成形
性が著しく低下するという欠点があった。更に、粉砕工
程の採用は純度の点でも問題であり、ソフトリードエラ
ーの低減要請が、高度化する封止材料では重要課題とな
っている。そのため、窒化アルミニウム粉体のみをフィ
ラーとして使用することは現時点では実現できておら
ず、球状シリカフィラーを同時に添加することを余儀な
くされており、そのために、シリカの“一部”を代替す
るようないわば添加剤的な使用法しかできない状況にあ
った。
By the way, the theoretical thermal conductivity of silica is about 2
In contrast to Wm −1 K −1 , for example, that of aluminum nitride is about 300 Wm −1 K −1 , and aluminum nitride can be expected to have high heat dissipation even if added in a smaller amount than silica. That is, if it is possible to realize an aluminum nitride filler having properties similar to the current silica filler in terms of particle size distribution, sphericity, etc., in addition to thermal properties, thermal properties and viscosity
There is a possibility of developing an epoch-making filler and encapsulation technology that can achieve moldability at the same time. From this point of view, an attempt to replace "a part" of silica with aluminum nitride powder has already been announced (for example, JP-A-9-183610). However, at present, the particle size required for the filler powder (average particle size is several to several tens of microns)
The aluminum nitride powder having a is a non-spherical powder having an angular shape because the direct nitriding method, which is manufactured through a crushing process, is the mainstream, and therefore the viscosity and formability are significantly reduced. There was a drawback. Furthermore, the adoption of the crushing process is also problematic in terms of purity, and the demand for reduction of soft read errors has become an important issue for advanced sealing materials. Therefore, the use of aluminum nitride powder alone as a filler has not been realized at this time, and it is unavoidable to add a spherical silica filler at the same time. In other words, it was in a situation where it could only be used as an additive.

【0005】直接窒化法と並ぶ窒化アルミニウムの工業
的製造方法として、アルミナと炭素の混合物を窒素雰囲
気下で焼成する還元窒化法がある。この還元窒化法で
は、粉砕工程が不要であり、比較的球形度の高い粉体が
製造されている。しかしながら、現在の還元窒化法は、
主に焼結体原料粉体の供給プロセスとして確立されたも
のであり、平均粒子径がサブミクロンオーダーの粉体を
対象としており、そのため、フィラー粉体として必要な
数〜数10ミクロンオーダー以上の粒子径を持つ粉体が
容易に製造できるようには、現時点ではなっていない。
しかも、発熱反応である直接窒化法とは正反対の、吸熱
反応である還元窒化法では、1500〜1800℃程度
の高温度域での、且つ一定時間以上の熱処理が必須であ
り、フィラー粉体のような比較的大粒径の粉体を製造す
るために、大粒径のアルミナなどの原料粉体を用意した
場合に、電気炉加熱のみで効率よく還元窒化プロセスを
進めることが可能かどうか、現状では全く確認されてい
ない。また、高温度域の熱処理装置や、炭素源の除去が
必須であり、工程及び装置の数が増加するなど、直接窒
化法に比べてコスト的に不利である点も考慮しなければ
ならない。
As an industrial production method of aluminum nitride, which is similar to the direct nitriding method, there is a reductive nitriding method of firing a mixture of alumina and carbon in a nitrogen atmosphere. This reduction nitriding method does not require a crushing step and produces powder having a relatively high sphericity. However, the current reduction nitriding method is
It is mainly established as a process for supplying raw material powders for sintered compacts, and is intended for powders with an average particle size of submicron order. At present, it is not possible to easily produce a powder having a particle size.
Moreover, in the reduction nitriding method which is an endothermic reaction, which is the opposite of the direct nitriding method which is an exothermic reaction, heat treatment in a high temperature range of about 1500 to 1800 ° C. and for a certain period of time or more is indispensable. If a raw material powder such as alumina with a large particle size is prepared to produce a powder with a relatively large particle size, is it possible to efficiently proceed with the reduction nitriding process only by heating the electric furnace? It has not been confirmed at present. Further, it must be taken into consideration that the heat treatment apparatus in the high temperature range and the removal of the carbon source are indispensable, and the number of processes and apparatuses increase, which is more costly than the direct nitriding method.

【0006】また、研究室レベルで検討が行われている
窒化アルミニウム粉体の製法として、有機物前駆体を原
料とした気相(エアロゾル)合成法、火炎CVD法、熱
プラズマ法などがあげられる。しかしながら、これらの
方法は、一旦、原料を完全な気体状態として、蒸発―凝
縮反応、核生成、粒成長過程を経る駆動原理を主とする
ことから、必然的に、ナノメーターレベル(大きくても
数10ナノメーター)の粉体合成は可能である。しかし
ながら、それは、本発明で対象とする技術分野の材料系
に必ずしも好適なわけではないという問題がある。本発
明で主たる技術分野として対象とする、無機フィラー粉
体の分野では、フィラー粉体として必要とされる、平均
粒子径範囲が0.1〜100ミクロンに含まれ、平均粒
子径が1ミクロン以上及び粒子の外形が角張らない球状
である窒化アルミニウム粉体は、既往の気相法では実現
できていなかった。また、本発明で第二の技術分野とし
て対象とする、基板材料及びその原料粉体としても、一
般に、上記のような“超微粒子”は、捕集や分散、成形
などの粉体工学的取り扱いが難しい、易凝集性粉体であ
り、焼結体用原料粉体としては余り用いられない。上記
超微粒子は、むしろ、粘稠剤用フィラーとして利用され
ている。即ち、焼結体原料粉体供給プロセスとしては、
平均粒子径が数10ナノメーター〜サブミクロンレベル
から、ミクロンレベル程度の粉体を制御性良く合成可能
なことが求められるが、ビルディングアップ法であるこ
れらの手法は、そのために長時間を要したり、前駆体の
高濃度化が必要となって生成物の制御性が低下する恐れ
がある。しかも、減圧気相プロセスであるため、前駆体
・高濃度化の融通性は比較的小さい。更に、熱伝導率が
長所となる窒化アルミニウム粉体は、粒子径に最適範囲
がある。一般に、窒化アルミニウムAlNは、酸素を不
純物としてその含有量が増加する程、熱伝導性が低下
し、一方、酸素含有量が少なすぎると、焼結時に焼結助
剤として機能する酸窒化アルミニウムが過少で、焼結性
が低下する。そのため、約1%前後の酸素含有量が必要
とされている報告が多い。そして、酸素含有量は、通
常、その比表面積に経験的にほぼ比例することから、
(粒子径分布にも関係するが)平均粒子径がサブミクロ
ンレベルからミクロンレベル程度の粒子径範囲が選択さ
れている。この観点において、現状の気相合成法で得ら
れる窒化アルミニウム粉体は過小である。
Further, as a method of producing aluminum nitride powder, which has been studied at the laboratory level, there are a vapor phase (aerosol) synthesis method using an organic precursor as a raw material, a flame CVD method, a thermal plasma method and the like. However, since these methods mainly use the driving principle that goes through evaporation-condensation reaction, nucleation, and grain growth process once the raw material is completely in a gaseous state, it is inevitable that the nanometer level (even if large) Powder synthesis of several tens of nanometers) is possible. However, there is a problem that it is not always suitable for the material system in the technical field targeted by the present invention. In the field of inorganic filler powder, which is the main technical field of the present invention, the average particle diameter range required for the filler powder is 0.1 to 100 microns, and the average particle diameter is 1 micron or more. Moreover, a spherical aluminum nitride powder having a non-angular outer shape has not been realized by the conventional vapor phase method. In addition, as the substrate material and the raw material powder thereof, which are the second technical field of the present invention, the above-mentioned "ultrafine particles" are generally handled in powder engineering such as collection, dispersion and molding. However, it is not easily used as a raw material powder for a sintered body. Rather, the ultrafine particles are used as a thickener filler. That is, as the sintered body raw material powder supply process,
From the average particle size of several tens of nanometers to the submicron level, it is required to be able to synthesize powder of the micron level with good controllability. However, these building-up methods require a long time for that purpose. Alternatively, it is necessary to increase the concentration of the precursor, which may reduce the controllability of the product. Moreover, since it is a reduced pressure gas phase process, the flexibility of increasing the concentration of the precursor is relatively small. Further, the aluminum nitride powder, which has an advantage in thermal conductivity, has an optimum range of particle diameter. In general, aluminum nitride AlN has a lower thermal conductivity as the content of oxygen as an impurity increases, and when the oxygen content is too low, aluminum oxynitride that functions as a sintering aid during sintering is reduced. If it is too small, the sinterability will decrease. Therefore, there are many reports that an oxygen content of about 1% is required. And since the oxygen content is usually empirically proportional to its specific surface area,
A particle size range is selected in which the average particle size is in the submicron level to the micron level (although it also relates to the particle size distribution). From this viewpoint, the amount of aluminum nitride powder obtained by the current vapor phase synthesis method is too small.

【0007】いわゆる「フィラーサイズ」で、且つ外形
が角張らない「球形」の窒化アルミニウム粉体の、工業
的製造方法による製品を提供するためには、その多系で
あるAlONやAl23 を含めた、生成機構の再検討
が必要になるものと考えられる。例えば、Al2 3
AlNの混合物を窒素雰囲気中で高温焼成する方法は、
多くの多系を持つAlONの組成制御が比較的容易であ
るとの利点を有し、その製造方法として一般的である。
即ち、相図から、発想を転換すれば、逆にAlONをA
lNの前駆体と考えて、そこから窒化反応によって酸素
を取り除く方法も十分有り得るものと推察される。しか
しながら、Al23 −AlN高温焼成法は、固−固反
応であり、高温で長時間の熱処理が必須であり、実際の
焼成温度が2000℃以上に及ぶ場合も報告されてい
る。その理由としては、固相拡散を主たる反応機構と考
えた場合の、約1650℃以下での窒素の拡散率の低さ
などが指摘されている(例えば、1)Normand
D.Corbin,Aluminum Oxynitr
ideSpinel: A Review,Journ
al of the European Cerami
c Society,Vol.5、p.143、198
9; 2)Hiroyuki Fukuyama,Wa
taru Nakao,Masahiro Susa
and Kazuhiro Nagata,New S
ynthetic Method of Formin
g Aluminum Oxynitride by
Plasma Arc Melting,Journa
l of the American Ceramic
Society,Vol.82、p.1381、19
99)。
In order to provide a so-called "filler size" and "spherical" aluminum nitride powder having a non-angular outer shape by an industrial manufacturing method, a multi-system AlON or Al 2 O 3 is used. It is considered necessary to reexamine the generation mechanism including the above. For example, a method of firing a mixture of Al 2 O 3 and AlN at high temperature in a nitrogen atmosphere is as follows.
It has a merit that the composition of AlON having many multi-systems is relatively easy to control, and is a general method for producing it.
In other words, if you change the idea from the phase diagram, AlON
It is presumed that a method of removing oxygen from the precursor of 1N by nitriding reaction is sufficiently possible. However, the Al 2 O 3 -AlN high temperature firing method is a solid-solid reaction, requires a heat treatment at high temperature for a long time, and it has been reported that the actual firing temperature reaches 2000 ° C. or higher. As a reason for this, it has been pointed out that the diffusion rate of nitrogen at about 1650 ° C. or lower is low when the solid-phase diffusion is considered as the main reaction mechanism (eg, 1) Normand.
D. Corbin, Aluminum Oxynitr
ideSpine: A Review, Journal
al of the European Cerami
c Society, Vol. 5, p. 143, 198
9; 2) Hiroyuki Fukuyama, Wa
taru Nakao, Masahiro Susa
and Kazuhiro Nagata, New S
ynthetic Method of Formin
g Aluminum Oxynitride by
Plasma Arc Melting, Journa
l of the American Ceramic
Society, Vol. 82, p. 1381, 19
99).

【0008】このような焼成条件下で生成された粉体
は、粗大化し、その後の粉砕も容易ではない。更に、長
時間熱処理と粉砕は、前述のように、純度の点でも問題
であり、半導体への応用などを考える場合、致命的にな
りかねない。また、高温処理用の炉体などが必須とな
り、製造コストの問題もある。即ち、既往の窒化アルミ
ニウム粉体の、主たる三つの製造方法によると、(1)
直接窒化法では粒子径は満足されるが形状が不適であ
る、(2)還元窒化法では球形度は満足されるが粒子径
が不適である、(3)従来の気相合成法では粒子径が不
適である、(4)その他のAlN多系による窒化反応で
は、低温処理のための技術的要件が不足し、粒子径・形
状共に不適であり、既往の方法では、粒子径と形状の両
方を満たすことは、現時点では、できていなかった。
The powder produced under such firing conditions becomes coarse, and subsequent pulverization is not easy. Further, the long-time heat treatment and the pulverization are also problems in terms of purity as described above, and may be fatal when considering application to semiconductors. Further, a furnace body for high-temperature treatment is essential, and there is a problem of manufacturing cost. That is, according to the three main manufacturing methods of the existing aluminum nitride powder, (1)
In the direct nitriding method, the particle size is satisfied but the shape is unsuitable. (2) In the reduction nitriding method, the sphericity is satisfied but the particle size is unsuitable. (3) In the conventional vapor phase synthesis method, the particle size is unsuitable. (4) In other nitriding reactions using AlN multi-systems, the technical requirements for low temperature treatment are insufficient and both particle size and shape are unsuitable. In the existing method, both particle size and shape are not suitable. At the moment, it was not possible to meet.

【0009】本発明者らは、上記状況を踏まえ、種々検
討を重ねる中で、上記サイズの高純度粉体を経済性良く
製造し得る方法として、これまで、だれも予期し得なか
った、現行の代表的フィラーである非晶質球状シリカ粉
体に着目した。この粉体では「化学炎プロセス」が一般
的であり、可燃性ガスと酸素の混合ガスの燃焼火炎中に
硅石原料やSi金属粉を投入し、原料表面の溶融や、気
相中の蒸発−反応−結晶化プロセスの併用により、球形
度の高いシリカ粒子を、しかも、粒子径範囲を任意に調
整して製造することが行われている。この手法による球
状粒子化は、気相中で化学反応が進行した場合に、立体
的に周囲から作用を及ぼされることが少ないため、球状
に形を構成し易いというエアロゾル合成の特長を利用し
ている。また、蒸発―凝縮反応のみを駆動原理としてい
るわけではないので、超微粒子だけでなく、ミクロンレ
ベルから10数ミクロンのフィラー粉体サイズまで適用
可能である。
In view of the above situation, the present inventors have made various studies, and as a method for economically producing a high-purity powder of the above-mentioned size, no one has been able to predict the current method. Attention was paid to amorphous spherical silica powder, which is a typical filler of A "chemical flame process" is generally used for this powder, in which silica raw material or Si metal powder is charged into the combustion flame of a mixed gas of combustible gas and oxygen, and the raw material surface is melted or vaporized in the gas phase. It has been practiced to produce silica particles having a high sphericity by controlling the particle size range by using the reaction-crystallization process in combination. Spherical particle formation by this method takes advantage of the feature of aerosol synthesis that it is easy to form a spherical shape because it is less sterically affected by the surroundings when a chemical reaction proceeds in the gas phase. There is. Further, since the driving principle is not limited to the evaporation-condensation reaction, not only ultrafine particles but also a filler powder size from the micron level to 10's of microns can be applied.

【0010】この方法や製造装置を窒化アルミニウム粉
体に適用することができれば、(1)粒子径が不適(粗
大或いは過小)、あるいは(粉砕による)形状異方性が
大きいという欠点の解消、(2)シリカフィラー合成で
蓄積されてきた粉体合成制御等の知的資産やノウハウの
利用により、粒子径分布など粉体特性の制御性の向上
や、必要な特性を得るための検討時間の短縮、(3)化
学炎法の製造装置の流用による初期設備投資の優位性、
(4)窒化反応の際に必要とされることがある炭素を反
応過程で同時に生成することができ(中性火炎から還元
性燃焼火炎とすれば実現できる)、それにより、前駆体
粉体の周りに均一且つ高分散に分布させることが可能で
あり、通常よりも低温で反応を終結させることが行い得
る、などの多くの利点が期待される。しかしながら、こ
れまで、「窒化アルミニウム“フィラー”化学炎プロセ
ス」の利用はだれも予期し得ず、全く実現されてこなか
った。これは、(1)「酸素」の存在する火炎中で非酸
化物を合成し得るとは考えられず、内炎又は還元性燃焼
火炎等の対酸素還元力を利用する発想がなかったこと、
(2)シリカと異なり、融点の存在しない窒化アルミニ
ウムでは「原料粉体表面の溶融」による球状化は期待で
きないこと、(3)「酸素」の存在する火炎中へ単純に
原料を投入するだけでは、非酸化物の窒化アルミニウム
が製造できないこと、(4)これまでは、一度の反応で
完全な窒化アルミニウムの結晶構造を有した粉体を合成
しなければならないと考え、気相合成の特徴である複数
の反応を連続化できる点に着目しなかったこと、などに
よるものと考えられる。
If this method and manufacturing apparatus can be applied to aluminum nitride powder, (1) elimination of the disadvantage that the particle size is not suitable (coarse or too small) or the shape anisotropy (due to pulverization) is large, 2) Improvement of controllability of powder properties such as particle size distribution and reduction of study time to obtain necessary properties by utilizing intellectual property and know-how such as powder synthesis control accumulated by silica filler synthesis. , (3) Superiority of initial capital investment due to diversion of chemical flame manufacturing equipment,
(4) Carbon that may be required during the nitriding reaction can be simultaneously generated in the reaction process (which can be realized by changing from a neutral flame to a reducing combustion flame), whereby the precursor powder It is expected to have many advantages such that it can be distributed uniformly and highly dispersed in the surroundings, and the reaction can be terminated at a temperature lower than usual. However, to date, the use of the "aluminum nitride" filler "chemical flame process" has been unexpected and has never been realized. This is because (1) it is not considered that non-oxides can be synthesized in a flame in which "oxygen" exists, and there was no idea to utilize the reducing power against oxygen such as an internal flame or a reducing combustion flame.
(2) Unlike silica, aluminum nitride, which has no melting point, cannot be expected to be spheroidized due to "melting of the raw material powder surface". (3) Simply adding the raw material into the flame containing "oxygen" , That non-oxide aluminum nitride cannot be produced, (4) Up until now, it was thought that powders having a complete aluminum nitride crystal structure had to be synthesized in a single reaction. It is considered that this was because we did not pay attention to the point that a plurality of reactions can be made continuous.

【0011】[0011]

【発明が解決しようとする課題】本発明は、このような
状況を踏まえて新たに開発されたものであり、上記従来
の窒化アルミニウム粉体、その製造方法及び製造装置が
持つ欠点を克服し、火炎の熱エネルギー及び還元力を酸
窒化反応の駆動力として、予め反応活性な酸窒化アルミ
ニウム粉体を製造し、製造過程のその場で還元剤を同時
に作り、それを個々の酸窒化アルミニウム粉体の周りに
均一且つ高分散させ、それらを前駆体原料として用いる
ことで、従来の固相反応プロセスでは不可能な低温でA
lONからAlNへの窒化反応が進行するようにしたこ
とにより、フィラーとして必要な、生成物の溶融凝固や
凝集が小さく、高分散性で、一次粒子径の範囲が0.0
5〜100ミクロンに含まれ、平均粒子径が1ミクロン
以上及び粒子の外形が角張らないことを同時に達成した
新規な球形度の高い窒化アルミニウム粉体、その製造方
法及び製造装置を提供することを目的とするものであ
る。
The present invention has been newly developed in view of such a situation, and overcomes the drawbacks of the conventional aluminum nitride powder, its manufacturing method and manufacturing apparatus, Using the thermal energy and reducing power of the flame as the driving force for the oxynitriding reaction, a reaction-active aluminum oxynitride powder is manufactured in advance, and a reducing agent is simultaneously produced on the spot during the manufacturing process. By uniformly and highly disperse around A and using them as precursor raw materials, A
By allowing the nitriding reaction from lON to AlN to proceed, the melt coagulation and agglomeration of the product, which is necessary as a filler, is small, the dispersibility is high, and the range of the primary particle diameter is 0.0.
To provide a novel aluminum nitride powder having a high sphericity, which is included in the range of 5 to 100 microns and has an average particle size of 1 micron or more and the outer shape of the particles is not angular, a manufacturing method and a manufacturing apparatus thereof. It is intended.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するため
の本発明は、以下のような技術的手段から構成される。 (1)酸窒化アルミニウムを原料にして、それを熱処理
することによって製造した窒化アルミニウムであって、
生成物の溶融凝固や凝集が小さく、高分散性であり、一
次粒子径の範囲が0.05〜100ミクロンに含まれ、
平均粒子径が1ミクロン以上であり、粒子の外形が角張
らないことを特徴とするAl及びN元素を含む粉体。 (2)酸窒化アルミニウムを原料にして、それを165
0℃以下で熱処理することを特徴とする、前記(1)に
記載のAl及びN元素を含む粉体。 (3)酸窒化アルミニウムを大気圧下の気相中で製造し
たことを特徴とする、前記(1)に記載のAl及びN元
素を含む粉体。 (4)酸窒化アルミニウムを、可燃性ガスの火炎、可燃
性ガスと酸素の混合ガスの燃焼火炎、可燃性ガスと酸素
の割合を完全燃焼比より酸素を少なくした還元性燃焼火
炎、不活性ガスのプラズマによる火炎、又は非接触状態
下の物質間に発生するアーク炎、の存在下で製造したこ
とを特徴とする、前記(3)に記載のAl及びN元素を
含む粉体。 (5)前記(4)に記載の火炎で自然発生する炭素、又
は可燃性ガスと酸素割合を完全燃焼比より酸素を少なく
した還元性燃焼火炎で強制的に発生させた炭素を、酸窒
化アルミニウムの表面に高分散性の還元剤として分布さ
せたことを特徴とする、前記(4)に記載のAl及びN
元素を含む粉体。 (6)前記(1)〜(5)のいずれかに記載のAl及び
N元素を含む粉体を製造する方法であって、酸窒化アル
ミニウムの原料粉体を、気相中で分散状態に形成する工
程、原料粉体を火炎存在下直接窒化又は還元窒化する窒
化反応に付して酸窒化アルミニウムを製造する工程、又
は上記工程の後、更に酸窒化アルミニウムを熱処理する
工程、から成ることを特徴とするAl及びN元素を含む
粉体の製造方法。 (7)前記(1)〜(5)のいずれかに記載のAl及び
N元素を含む粉体の製造に使用するための装置であっ
て、火炎の発生装置と、原料粉体の供給装置と、空気、
窒素、アンモニア又は不活性ガスの供給装置とを構成要
素として含み、原料粉体の酸窒化反応が、火炎の存在
下、気相中で進行するようにしたことを特徴とする製造
装置。 (8)同軸上に内径の異なる複数個の円筒管を組み合わ
せた構造を有する火炎の発生装置を構成要素として含
み、何れかの円筒管へ原料粉体を供給し、他の円筒管へ
反応ガスを供給して、原料粉体の該円筒管先端部付近
で、原料粉体と反応ガスとが拡散混合され、原料粉体の
酸窒化反応が火炎の存在下、気相中で進行するようにし
たことを特徴とする、前記(7)に記載の製造装置。
The present invention for solving the above-mentioned problems is constituted by the following technical means. (1) Aluminum nitride produced by heat-treating aluminum oxynitride as a raw material,
The product has little melting and solidification and aggregation, has high dispersibility, and has a primary particle size range of 0.05 to 100 microns.
A powder containing Al and N elements, characterized in that the average particle diameter is 1 micron or more and the outer shape of the particles is not angular. (2) Using aluminum oxynitride as a raw material, 165
The powder containing Al and N elements as described in (1) above, which is heat-treated at 0 ° C. or lower. (3) The powder containing Al and N elements according to (1) above, which is characterized in that aluminum oxynitride is produced in a gas phase under atmospheric pressure. (4) Aluminum oxynitride is used as a flame of a combustible gas, a combustion flame of a mixed gas of a combustible gas and oxygen, a reducing combustion flame in which the ratio of the combustible gas and oxygen is less than the complete combustion ratio, and an inert gas. The powder containing Al and N elements as described in (3) above, which was produced in the presence of a plasma flame or an arc flame generated between substances in a non-contact state. (5) Carbon that naturally occurs in the flame described in (4) above or carbon that is compulsorily generated in a reducing combustion flame in which the proportion of combustible gas and oxygen is less than the complete combustion ratio is aluminum oxynitride Al and N according to (4) above, characterized in that they are distributed as a highly dispersive reducing agent on the surface of
Powder containing elements. (6) A method for producing a powder containing Al and N elements according to any one of (1) to (5) above, wherein a raw material powder of aluminum oxynitride is formed in a dispersed state in a gas phase. And a step of subjecting the raw material powder to a nitriding reaction of directly nitriding or reducing and nitriding the raw material powder to produce aluminum oxynitride, or a step of further heat treating aluminum oxynitride after the above step. And a method for producing a powder containing Al and N elements. (7) An apparatus for use in the production of powder containing Al and N elements according to any one of (1) to (5), which comprises a flame generator and a raw material powder feeder. ,air,
A manufacturing apparatus comprising a supply device of nitrogen, ammonia or an inert gas as a constituent element, and allowing an oxynitriding reaction of a raw material powder to proceed in a gas phase in the presence of a flame. (8) A raw material powder is supplied to any one of the cylindrical tubes, and a reaction gas is supplied to another cylindrical tube, including a flame generator having a structure in which a plurality of cylindrical tubes having different inner diameters are coaxially combined, as a constituent element. The raw material powder and the reaction gas are diffusively mixed near the tip of the cylindrical tube of the raw material powder so that the oxynitriding reaction of the raw material powder proceeds in the gas phase in the presence of flame. The manufacturing apparatus according to (7) above.

【0013】[0013]

【発明の実施の形態】次に、本発明について更に詳細に
説明する。本発明者らは、(1)第一に、「酸素」の存
在する火炎はむしろ還元活性の大きい反応場と考えるこ
とができること、(2)第二に、可燃性ガス過多の内炎
中や、可燃性ガスと酸素割合を完全燃焼量論比より酸素
を減少させた還元性燃焼火炎を利用し、そこへ反応物を
“有効に”供給することで酸窒化物(又は窒化物)の反
応場として見なし得る上に、窒化反応の際に必要とされ
る還元剤(炭素)を反応過程で同時且つ容易に生成で
き、既往の固相反応プロセスとは比較にならない高分散
化が見込めること、(3)第三に、シリカのように溶融
過程を利用できなくとも、気相中で化学反応が進行した
場合に、立体的に周囲から作用を及ぼされることが少な
いため、球状に形状を構成し易いというエアロゾル合成
の特長が利用し得る上に、気相中で酸窒化反応が進行す
るようにすることは、球状化と同時に生成物の溶融凝固
や凝集を防止できることが見込める(特に、プロセスが
単純でコスト的に有利な原料金属粉の直接窒化法で原料
粉融着や粒成長抑制を実現し得る)こと、更に、気相合
成の制御因子の豊富さは生成粒子特性の高制御性を意味
すること、(4)第四に、化学炎法では、気相合成の特
徴である複数の反応や、熱処理等を連続化して用いるこ
とが可能(あるいは比較的容易)であること、に着目し
た。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the present invention will be described in more detail. The present inventors (1) firstly, it can be considered that a flame in which "oxygen" exists is a reaction field having rather large reduction activity, and (2) secondly, in an internal flame with excessive combustible gas, , The reaction of oxynitride (or nitride) by utilizing the reducing combustion flame in which the proportion of combustible gas and oxygen is reduced from the stoichiometric ratio of oxygen and supplying the reactant "effectively" to the flame. In addition to being regarded as a field, a reducing agent (carbon) required in the nitriding reaction can be simultaneously and easily generated in the reaction process, and high dispersion that is not comparable to the existing solid-phase reaction process can be expected, (3) Thirdly, even if the melting process cannot be used like silica, when a chemical reaction proceeds in the gas phase, it is less likely to be affected three-dimensionally by the surroundings, so that the spherical shape is formed. In addition to being able to utilize the advantage of aerosol synthesis that it is easy to By allowing the oxynitriding reaction to proceed, it is possible to prevent melting and solidification or agglomeration of the product at the same time as spheroidizing (especially by the direct nitriding method of the raw material metal powder, which has a simple process and is cost effective). That powder fusion and grain growth can be suppressed), and that the abundance of control factors for vapor phase synthesis means high controllability of the characteristics of particles produced, (4) Fourth, in the chemical flame method, We paid attention to the fact that it is possible (or relatively easy) to use a plurality of reactions, which are characteristic of vapor phase synthesis, and heat treatments in succession.

【0014】以上の着想を実現すべく鋭意検討した結
果、具体的には、(1)燃焼火炎あるいはプラズマ火炎
中の酸素濃度を調整し、また、安定した内炎や還元性燃
焼火炎を維持すること、(2)好適な粒子径の実現並び
に生産性の観点から、火炎による熱エネルギーを駆動力
にした直接窒化法又は還元窒化法を主反応系として適用
すること、(3)流動化媒体を併用する流動層プロセス
を利用するなど、粉体状の原料を凝集の少ない高分散状
態で、且つ効率的に反応場へ供給すること、(4)原料
と火炎の量比率の適正化により酸窒化アルミニウムを前
駆体として製造し、同時に製造過程のその場で還元剤と
なる炭素を作り、それを個々の酸窒化アルミニウム粉体
の周りに均一且つ高分散させ、後段に熱処理工程を連続
化することで、既往の固相反応プロセスでは不可能な低
温焼成でAlN結晶構造とすること、そして、以上の4
点の制御を同時且つ効果的に組み合わせることで、フィ
ラーとして必要な粒子径と球形度を達成した窒化アルミ
ニウム粉体の製造を実現化した。
As a result of earnestly studying to realize the above idea, specifically, (1) the oxygen concentration in the combustion flame or plasma flame is adjusted, and a stable inner flame or reducing combustion flame is maintained. (2) Applying a direct nitriding method or a reductive nitriding method using a thermal energy of a flame as a driving force as a main reaction system from the viewpoint of realizing a suitable particle size and productivity, (3) fluidizing medium Oxynitriding by efficiently supplying powdery raw material to the reaction field in a highly dispersed state with less aggregation, such as by using the fluidized bed process used in combination, and (4) optimizing the ratio of the raw material and flame amounts. Producing aluminum as a precursor, at the same time producing carbon as a reducing agent in-situ during the production process, disperse it evenly and highly around the individual aluminum oxynitride powder, and continue the heat treatment process at the latter stage. And history It is an AlN crystal structure in impossible low temperature sintered solid phase reaction process, and, more 4
By simultaneously and effectively combining the control of points, we have realized the production of aluminum nitride powder that achieves the required particle size and sphericity as a filler.

【0015】即ち、本発明は、(これまで想像の産物で
しかなかった)フィラーとして必要な、生成物の溶融凝
固や凝集が小さく、高分散性で、一次粒子径の範囲が
0.05〜100ミクロンに含まれ、平均粒子径が1ミ
クロン以上及び粒子の外形が角張らない球状であること
を同時に達成した新規な球形度の高い窒化アルミニウム
粉体、その製造方法及び製造装置を提供するものであ
り、火炎の熱エネルギー及び還元力を酸窒化反応の駆動
力として、予め反応活性な酸窒化アルミニウム粉体を製
造し、製造過程のその場で還元剤を同時に作り、それを
個々の酸窒化アルミニウム粉体の周りに均一且つ高分散
させ、それらを前駆体原料として用いることで、従来の
固相反応プロセスでは不可能な低温でAlONからAl
Nへの窒化反応が進行するようにしたことを特徴とする
ものである。本発明において、粒子の外形が角張らない
こととは、従来法による角張った形状異方性の大きな粉
体とは異なり、球状、楕円形、直方体などを包含する相
当に球形度の高い粒子の形状異方性が小さいものである
ことを意味する。
That is, according to the present invention, the melt coagulation and agglomeration of the product, which is necessary as a filler (which has only been an imaginary product until now), is small, the dispersibility is high, and the range of the primary particle diameter is 0.05 to. A novel aluminum nitride powder having a high sphericity, which is included in 100 microns and has an average particle size of 1 micron or more and a spherical shape in which the outer shape of the particles is not angular, a manufacturing method and a manufacturing apparatus thereof are provided. Using the thermal energy and reducing power of the flame as the driving force for the oxynitriding reaction, a reaction-active aluminum oxynitride powder is manufactured in advance, and a reducing agent is simultaneously formed on the spot during the manufacturing process, and the oxynitriding process By uniformly and highly dispersing aluminum powder around them and using them as precursor raw materials, AlON can be converted to Al at a low temperature that is impossible with the conventional solid-phase reaction process.
It is characterized in that the nitriding reaction to N proceeds. In the present invention, the fact that the outer shape of the particle is not angular means that, unlike the conventional powder having a large angular anisotropy in shape, a particle having a considerably high sphericity including a spherical shape, an elliptic shape, a rectangular parallelepiped, etc. It means that the shape anisotropy is small.

【0016】前記のように、本発明の重要な技術的要件
は、次の4点にある。(1)火炎中のガス雰囲気の調
整、及び内炎や還元性燃焼火炎の安定化、(2)火炎に
よる熱エネルギーを駆動力にした直接窒化法又は還元窒
化法の利用、(3)原料粉体の、気相中の分散状態の形
成、且つ効率的な反応場への供給、(4)原料及び火炎
量の比率制御、還元剤として利用する発生炭素量の適正
化、又は熱処理工程の連続化。
As described above, the important technical requirements of the present invention are the following four points. (1) Adjustment of gas atmosphere in flame, stabilization of internal flame and reducing combustion flame, (2) Utilization of direct nitriding method or reduction nitriding method using thermal energy of flame as driving force, (3) Raw material powder Body, formation of dispersed state in gas phase and efficient supply to reaction field, (4) ratio control of raw material and flame amount, optimization of generated carbon amount used as reducing agent, or continuous heat treatment process Conversion.

【0017】本発明において、原料粉体の流動化、気相
分散(エアロゾル)状態の形成・利用方法としては、例
えば、気流にのせて粉体を滞留化させる各種の流動層法
(原料粉体より大きく流動化し易い数100μm直径の
媒体メディアを同時に用いて、原料粉体の凝集を防止し
ながら高分散化を図る媒体流動層法、粉体層に振動を印
加して微粒子のチャネリングを防止する振動流動層法な
どを含む)が好適に用いられるが、例えば、更に、回転
円板やガスノズルを用いて粉体を気流にのせる各種噴霧
法、液体媒体中に粉体を分散させ超音波噴霧器や遠心噴
霧器などで液体ごと粉体を液滴化する液体噴霧法なども
適宜使用可能であり、特に制限されるものではなく、い
ずれの方法で調製された流動化原料粉体も使用すること
ができる。空気、窒素、アンモニア又は不活性ガスの供
給・制御装置としては、例えば、コンプレッサー等の圧
縮ガス式供給機、ガス製造設備より供給される高圧ガス
ボンベの内圧利用、浮き玉式流量計、マスフローコント
ローラー等が例示される。
In the present invention, as a method of fluidizing the raw material powder and forming / utilizing a gas phase dispersion (aerosol) state, for example, various fluidized bed methods in which the powder is retained by applying an air flow (raw material powder) A medium fluidized bed method that simultaneously uses medium media with a diameter of several hundreds of μm, which is more easily fluidized, to achieve high dispersion while preventing agglomeration of raw material powder, and to prevent channeling of fine particles by applying vibration to the powder layer (Including a vibrating fluidized bed method, etc.) is preferably used. For example, various spraying methods in which a powder is carried by a rotating disk or a gas nozzle into an air stream, and an ultrasonic sprayer in which the powder is dispersed in a liquid medium are further used. A liquid spraying method in which powder is made into droplets with a liquid using a centrifugal sprayer or the like can also be used as appropriate and is not particularly limited, and fluidized raw material powder prepared by any method can be used. it can. As a supply / control device for air, nitrogen, ammonia or an inert gas, for example, a compressed gas type supply device such as a compressor, use of internal pressure of a high pressure gas cylinder supplied from a gas production facility, a float ball type flow meter, a mass flow controller, etc. Is exemplified.

【0018】また、気相分散状態の利用による原料粉体
の反応場への供給方法においては、火炎ごと内包可能
な、石英、アルミナ、コーディエライト、耐熱鋼等の、
反応管又は壁を設け、発生熱エネルギーの封止による反
応効率の向上や、供給粉体の搬送精度を高める方法が好
適に用いられるが、例えば、更に、(但し、反応効率に
問題が無ければ)自由空間において発生させた火炎中に
原料粉体を供給する手法も適宜使用可能であり、特に制
限されるものではなく、いずれの方法で調製された供給
方法も使用できる。更に、火炎中への原料粉体及び窒化
源(窒素、アンモニア又は不活性ガス等)の導入経路に
おいては、同軸上に内径の異なる複数個の円筒管を組み
合わせた構造を有する原料供給管を設け、火炎原料であ
る可燃性ガス又はプラズマ発生用の不活性ガスを外側か
ら、酸素及び原料粉体及び窒化源を内側から供給する二
重円筒方式が好適に用いられるが、例えば、更に、(但
し、反応系の駆動原理や、原料粉体及び窒化源の混合状
態、火炎の過冷却において問題が無ければ)上記の原料
供給管とは別に、火炎原料と酸素から発生させた火炎中
に周囲から、原料粉体及び窒化源を供給する手法も適宜
使用可能であり、特に制限されるものではなく、いずれ
の方法で調製された導入経路も使用できる。
Further, in the method of supplying the raw material powder to the reaction field by utilizing the vapor phase dispersion state, quartz, alumina, cordierite, heat resistant steel, etc., which can be included together with the flame,
A method in which a reaction tube or a wall is provided and reaction efficiency is improved by sealing generated heat energy or the accuracy of feeding powder is improved is preferably used. For example, further (however, if there is no problem in reaction efficiency, ) A method of supplying the raw material powder into the flame generated in the free space can be appropriately used and is not particularly limited, and a supplying method prepared by any method can be used. Further, in the introduction route of the raw material powder and the nitriding source (nitrogen, ammonia, inert gas, etc.) into the flame, a raw material supply pipe having a structure in which a plurality of cylindrical pipes having different inner diameters are coaxially combined is provided. A double cylinder system in which a flammable gas that is a flame raw material or an inert gas for plasma generation is supplied from the outside and oxygen and raw material powder and a nitriding source are supplied from the inside is preferably used. If there is no problem with the driving principle of the reaction system, the mixing state of the raw material powder and the nitriding source, and the supercooling of the flame) In addition to the above raw material supply pipe, from the surroundings in the flame generated from the flame raw material and oxygen The method of supplying the raw material powder and the nitriding source can be appropriately used and is not particularly limited, and the introduction route prepared by any method can be used.

【0019】また、気相分散状態利用による原料粉体の
反応場への供給の際は、サイクロン分級による原料粉体
の粒子径分布調整や粗大粒子除去を行い、反応効率や制
御性向上を図ることが好適なものとして例示されるが、
例えば、更に、邪魔板によるインパクター分級や、比較
的長めの供給管を用いることで粗大粒子が必然的に除去
されるようにすること、あるいは粒子径分布幅の狭い原
料粉体の場合は特に分級操作を行わない方式も適宜使用
可能であり、特に制限されるものではなく、いずれの方
法で調製された供給方法も使用できる。
Further, when supplying the raw material powder to the reaction field by utilizing the gas phase dispersion state, the particle size distribution of the raw material powder is adjusted by cyclone classification and coarse particles are removed to improve the reaction efficiency and controllability. Is exemplified as a suitable one,
For example, further, in order to inevitably remove coarse particles by impactor classification with a baffle plate or by using a relatively long supply pipe, or particularly in the case of a raw material powder having a narrow particle size distribution width. A method in which no classification operation is performed can also be used as appropriate and is not particularly limited, and a supply method prepared by any method can be used.

【0020】本発明において、火炎の原料や発生・利用
方法としては、水素、メタン、ブタン、アセチレンなど
の液化石油ガス、アンモニアなど、各種の可燃性ガス、
及び酸素などの支燃性ガスが好適に用いられるが、更
に、アルゴンなど不活性ガスの電離によるプラズマ火
炎、又は被覆棒アーク、ザブマージアーク、イナートガ
スアークなど高電圧を印加された非接触状態下の物質間
に発生するアーク炎なども適宜使用可能であり、特に制
限されるものではなく、いずれの方法で調製された火炎
も使用できる。更に、火炎の発生装置としては、液化ガ
スあるいは都市ガス用のガスバーナー、ガス溶接ガン、
アーク溶接ガン、熱プラズマ装置などが例示されるが、
好適には、例えば、同軸上に内径の異なる複数個の円筒
管を組み合わせた構造を有する火炎の発生装置を構成要
素として含み、いずれかの円筒管へ原料粉体を供給し、
他の円筒管へ反応ガスを供給して、原料粉体の該円筒管
先端部付近で、原料粉体と反応ガスとが拡散混合され、
原料粉体の窒化反応が火炎の存在下、気相中で進行する
ようにした装置が例示される。
In the present invention, as a raw material of flame and a method of generating and utilizing it, liquefied petroleum gas such as hydrogen, methane, butane and acetylene, various combustible gases such as ammonia,
And a combustion-supporting gas such as oxygen are preferably used, and further, a plasma flame by ionization of an inert gas such as argon, or a non-contact state in which a high voltage is applied such as a coated rod arc, a Zab merge arc, and an inert gas arc. An arc flame generated between the substances can be used as appropriate, and is not particularly limited, and a flame prepared by any method can be used. Furthermore, as a flame generator, a gas burner for liquefied gas or city gas, a gas welding gun,
Examples include arc welding guns and thermal plasma devices.
Suitably, for example, including a flame generator having a structure in which a plurality of cylindrical tubes having different inner diameters are coaxially combined, as a constituent element, supplying the raw material powder to any of the cylindrical tubes,
The reaction gas is supplied to another cylindrical tube, and the raw material powder and the reaction gas are diffused and mixed in the vicinity of the tip of the cylindrical tube of the raw material powder,
An example is an apparatus in which the nitriding reaction of the raw material powder proceeds in the gas phase in the presence of a flame.

【0021】反応領域のその場で発生させた還元剤とな
る炭素などの製造・利用方法としては、メタン、ブタ
ン、アセチレンなどの液化石油ガス燃焼において、可燃
性ガスと酸素割合を完全燃焼量論比より酸素を減少さ
せ、還元性燃焼火炎として発生させた炭素が好適に用い
られるが、窒化反応において必要とされる還元力が条件
に合えば特に制限されるものではなく、例えば、相対的
に炭素含有量の多いアセチレンにおいて、非還元性の中
性炎に近い領域でも自然発生し易い炭素、上記の方法で
気相法的に別経路から導入した還元剤、プラズマ火炎に
おいて使用される非酸化性ガスなど、いずれの方法で調
製された還元剤も使用できる。
As a method of producing and utilizing carbon or the like as a reducing agent generated in situ in the reaction region, in combusting liquefied petroleum gas such as methane, butane, and acetylene, the combustible gas and the oxygen ratio are completely stoichiometric. The oxygen is reduced from the ratio, carbon generated as a reducing combustion flame is preferably used, but is not particularly limited as long as the reducing power required in the nitriding reaction meets the conditions, for example, relatively In acetylene with a high carbon content, carbon that tends to occur naturally even in a region close to a non-reducing neutral flame, a reducing agent introduced from another route by the above method by gas phase method, non-oxidizing used in plasma flame A reducing agent prepared by any method such as a characteristic gas can be used.

【0022】また、同軸上に内径の異なる複数個の円筒
管を組み合わせた構造を有する原料供給管を設け、火炎
原料であるC又はH元素から成る可燃性ガス又はプラズ
マ発生用の不活性ガスを外側から、酸素及び原料粉体及
び窒化源を内側から供給する二重円筒方式において、火
炎原料ガスと、原料粉体及び窒化源(及び酸素)を混合
し、同時に安定した内炎(及び外炎)又は還元性燃焼火
炎を発生させる火口形状としては、火炎原料ガスが数本
の噴射管に分けられて外周より噴出され、それより供給
源に近い位置で内側から噴出された酸素などを包囲し、
良好な混合状態が得られるスパッド型が好適に用いられ
る。しかしながら、これらは、特に制限されるものでは
なく、単体の火炎原料ガス供給管を用いる高圧型のガン
型、輪状の火炎原料ガス供給管円周に沿って多数の噴出
口が設けられたリング型、太口径ノズルが放射状に分割
されて火炎原料ガスと酸素などが並列して噴出されるア
ニュラー型、火口端で段差を設けて渦流制御に拠り火炎
の存在しないデッドスペースを減少させるウォールリセ
ス型、ウォールリセス型に加え火炎原料ガス供給管を主
管と袖火管に分割したステクタイト型、主管断面積を袖
火管断面積の10倍以上にして袖火噴出速度低減を図っ
たフェロックス型(又はピアン型)、火炎が並列して横
に並ぶライン型及びシェパード型、未燃ガス流中に邪魔
板を設けて高温渦流と再循環域を作り連続着火するブラ
フボディ型、混合ガスを高速で赤熱した耐火物に衝突さ
せて連続着火するラジアントカップ型、なども適宜使用
可能であり、いずれの方法で調製された火炎も使用でき
る。
A raw material supply pipe having a structure in which a plurality of cylindrical pipes having different inner diameters are coaxially combined is provided, and a flammable gas composed of C or H element which is a flame raw material or an inert gas for plasma generation is supplied. In the double cylinder system in which oxygen, raw material powder and nitriding source are supplied from the outside, flame raw material gas, raw material powder and nitriding source (and oxygen) are mixed, and at the same time stable internal flame (and external flame) ) Or as a crater shape that generates a reducing combustion flame, flame raw material gas is divided into several injection pipes and is ejected from the outer periphery, and oxygen etc. ejected from the inside is surrounded at a position closer to the supply source. ,
A spud type that can obtain a good mixed state is preferably used. However, these are not particularly limited, and a high-pressure type gun type using a single flame raw material gas supply pipe, a ring type in which a large number of ejection ports are provided along the circumference of a ring-shaped flame raw material gas supply pipe. , An annular type in which a large diameter nozzle is radially divided and flame raw material gas and oxygen, etc. are jetted in parallel, a wall recess type in which a dead space where flame does not exist due to swirl control is provided by providing a step at the crater end, In addition to the wall recess type, the flame raw material gas supply pipe is divided into a main pipe and a sleeve fire pipe, a sectite type, and a ferrox type with a main pipe cross-sectional area more than 10 times the sleeve fire pipe cross-sectional area to reduce sleeve fire ejection speed ( Or Pian type), line type and shepherd type in which flames are arranged side by side in parallel, bluff body type that creates continuous igniting by creating a high-temperature vortex flow and recirculation zone by providing baffles in the unburned gas flow, mixed gas Radiant cup successive ignition collide with refractories red hot at high speed, also can be appropriately used, for example, be a flame prepared by any method can be used.

【0023】本発明においては、酸窒化アルミニウムの
原料をAl元素から成る粉体とし、窒素、アンモニア又
は不活性ガスの存在下で、酸窒化反応を進行させるこ
と、酸窒化アルミニウムの原料をAl及びO元素から成
る粉体と、C元素から成る粉体の混合物とし、窒素、ア
ンモニア又は不活性ガスの存在下で、酸窒化反応を進行
させること、が好適なものとして例示される。「Al元
素から成る粉体」として記述した粉体状の原料の材料系
としては、任意の粒子径のアルミニウム金属粉体、水・
ガス・遠心の各アトマイズ法で製造された球形度の高い
気相合成・Al系粉体群が好適に用いられ、更に、Al
Cl3 などの塩化物、アルミニウムイソプロポキシド
(化学式Al(iso−OC353 )などのアルコ
キシド原料、アルミニウムアセチルアセトナト(化学式
Al(iso−C5723 )などのβジケトン錯
体、トリメチルアルミニウム(化学式Al(CH3
3 )などのアルキルメタルなどの低沸点の気相合成原料
群、などが例示されるが、特に制限はない。
In the present invention, aluminum oxynitride
The raw material is powder made of Al element, and nitrogen, ammonia or
Does not allow the oxynitriding reaction to proceed in the presence of an inert gas.
And the raw material of aluminum oxynitride is composed of Al and O elements.
Powder and a powder of C element, and
Oxynitriding reaction in the presence of ammonia or an inert gas
This is illustrated as a suitable example. "Al original
Material system of powdered raw material described as "powder composed of element"
As an aluminum metal powder of any particle size, water
High sphericity produced by gas and centrifugal atomization methods
Vapor phase synthesis / Al powder group is preferably used.
Cl3 Chlorides such as aluminum isopropoxide
(Chemical formula Al (iso-OC3 HFive )3 ) Arco
Raw material for xide, aluminum acetylacetonate (chemical formula
Al (iso-CFive H7 O2 )3 ) Β-diketone complex
Body, trimethylaluminum (chemical formula Al (CH3 )
3 ) Etc. low boiling point gas phase synthesis raw materials such as alkyl metal
Examples thereof include groups, but there is no particular limitation.

【0024】本発明において、「Al及びO元素から成
る粉体とC元素から成る粉体の混合物」として記述した
粉体状の原料の材料系について、まず「Al及びO元素
から成る粉体」としては、市販のバイヤー法・改良バイ
ヤー法・アルコキシド法・アンモニウムドーソナイト法
・気相法などで製造されたアルミナ粉体群を好適とする
が、更に、α・γ・θ・κの各Al23 多系(中間ア
ルミナ)、AlOOHやAl(OH)3 の化学式で表現
される水酸化物前駆体、アセチルアセトナト(化学式A
l(C5723 )や、アンモニウムドーソナイト
(化学式NH4 AlCO3 (OH)2 )などの炭酸塩前
駆体、アルミニウムイソプロポキシド(化学式Al(i
so−OC353 )などのアルコキシド原料、アル
ミニウムアセチルアセトナト(化学式Al(iso−C
5723 )などのβジケトン錯体、トリメチルア
ルミニウム(化学式Al(CH33 )などのアルキル
メタルなどの低沸点の気相合成原料群、などが例示され
るが、特に制限はない。また、「C元素から成る粉体」
としては、任意の粒子径の炭素粉体、カーボンブラック
やアセチレンブラックなど純度の高い気相合成・炭素粉
体、などが例示されるが、特に制限されるものではな
い。なお、原料粉体は、一次粒子径の範囲が0.05〜
100ミクロンに含まれること求められる。その理由
は、原料粉体の特性(主に粒子径と形状)が、合成され
る酸窒化アルミニウムの前駆体粉体特性に反映されるた
めである。また、原料粉体の供給装置としては、ニーダ
ーなどのスクリュー式、二軸ミルなどのローター式供給
装置、粉体搬送用の気流供給などが例示される。
In the present invention, "comprising elements of Al and O"
Powder and a powder composed of C element ”.
Regarding the material system of the powdery raw material, first, "Al and O elements
"Powder consisting of
Method, alkoxide method, ammonium dawsonite method
・ Alumina powder group manufactured by vapor phase method is suitable
In addition, α, γ, θ, κ each Al2 O3 Multi-system (intermediate
Lumina), AlOOH and Al (OH)3Expressed by the chemical formula
Hydroxide precursor, acetylacetonate (formula A
l (CFive H7 O2 )3 ) And ammonium dawsonite
(Chemical formula NHFour AlCO3(OH)2 ) Such as carbonate
Precursor, aluminum isopropoxide (chemical formula Al (i
so-OC3 HFive )3 ) And other alkoxide raw materials,
Minium acetylacetonate (Chemical formula Al (iso-C
Five H7 O2 )3 ), Β-diketone complexes such as
Luminium (chemical formula Al (CH3 )3 ) Alkyl such as
Examples include low boiling point gas phase synthesis raw materials such as metals.
However, there is no particular limitation. Also, "powder composed of C element"
As, carbon powder of any particle size, carbon black
-Phase gas phase synthesis and carbon powder with high purity such as acetylene black
The body, etc. are exemplified, but not particularly limited.
Yes. The raw material powder has a primary particle size range of 0.05 to
Required to be contained in 100 microns. The reason
Is the characteristics of the raw material powder (mainly particle size and shape)
Aluminum oxynitride precursor powder
It is. In addition, a kneader is used as a device for supplying raw material powder.
-Screw type, etc., rotor type supply such as twin-screw mill
Examples include a device and air supply for powder transfer.

【0025】本発明において、火炎中で合成された粉体
に連続的又は断続的に高温を付与する方法・装置として
は、熱CVD法などで採用される通常の電気炉加熱を好
適とするが、熱処理用の燃焼火炎を複数設けることによ
る火炎再加熱、プラズマ炎やアーク炎の利用、イメージ
炉式加熱なども適宜使用可能であり、特に制限されるも
のではない。更に、熱処理の条件は、火炎中で合成され
た直後の状態の酸窒化アルミニウム粉体の形態や結晶相
により決定される。一般的な条件として、窒素、アンモ
ニア又は不活性ガス雰囲気が例示される。但し、既往の
固相反応プロセスでは不可能な1650℃以下を好適と
するが、粒子径分布を比較的大きめに制御したい場合な
ど、必ずしも限定されない。熱処理により、窒化アルミ
ニウム相の割合・高制御化の格段の効果が得られる。
In the present invention, as the method / apparatus for continuously or intermittently applying high temperature to the powder synthesized in the flame, the usual electric furnace heating adopted in the thermal CVD method or the like is suitable. Also, flame reheating by providing a plurality of combustion flames for heat treatment, use of plasma flame or arc flame, image furnace type heating, etc. can be appropriately used, and are not particularly limited. Furthermore, the conditions of the heat treatment are determined by the morphology and crystal phase of the aluminum oxynitride powder immediately after being synthesized in the flame. Examples of general conditions include nitrogen, ammonia, or an inert gas atmosphere. However, although 1650 ° C. or lower, which is impossible in the existing solid-phase reaction process, is preferable, it is not necessarily limited to the case where it is desired to control the particle size distribution to be relatively large. By the heat treatment, the ratio of the aluminum nitride phase and the high controllability can be significantly improved.

【0026】本発明において、組成が無機材料から成る
粉体を、組成が有機材料から成る樹脂系原料に充填して
用いる複合材料系としては、半導体素子の保護・絶縁な
どを目的としたパッケージング材料が好適に用いられる
が、更に、絶縁材料や電極・導電材料、電気粘性流体、
化学機械研磨用スラリー、射出成形や鋳込み成形などの
セラミック成形プロセス原料などの材料系も例示され
る。充填するフィラーである無機材料から成る粒子状材
料としては、半導体パッケージング材料で多用されるシ
リカSiO2 又は窒化アルミニウムAlNが好適に用い
られるが、例えば、Al2 3 、SiC、Si34
どの他の酸化物系、Au、Ag、Pd、Pt、Cu、A
l、Au−Pdなど金属系も当然使用可能であり、特に
制限はない。また、結晶性についても制限は無く、結晶
性又は非晶質のいずれでも構わない。媒体である液状材
料としては、イオン交換水や蒸留水などの水系、エタノ
ールなどの有機非水系のほか、レゾール型やノボラック
型のフェノール樹脂、ビスフェノール型クレゾールノボ
ラック多官能型のエポキシ樹脂、ハロゲン化樹脂など、
常温で固形タイプの樹脂材料や、常温で液状タイプの次
世代半導体素子用のパッケージング材料で多用される樹
脂材料が好適に用いられるが、特に制限はない。
In the present invention, as a composite material system in which a powder made of an inorganic material is filled in a resin-based raw material made of an organic material, a packaging for the purpose of protecting and insulating semiconductor elements is used. Materials are preferably used, and further, insulating materials, electrodes / conductive materials, electrorheological fluids,
Material systems such as chemical mechanical polishing slurries and ceramic molding process raw materials such as injection molding and casting are also exemplified. Silica SiO 2 or aluminum nitride AlN, which is often used in semiconductor packaging materials, is preferably used as the particulate material made of an inorganic material that is a filler to be filled. For example, Al 2 O 3 , SiC, Si 3 N 4 is used. Other oxides such as Au, Ag, Pd, Pt, Cu, A
Of course, metallic materials such as 1 and Au-Pd can also be used, and there is no particular limitation. The crystallinity is also not limited, and either crystalline or amorphous may be used. The liquid materials that are the medium include water-based materials such as ion-exchanged water and distilled water, organic non-water-based materials such as ethanol, resol-type or novolac-type phenol resins, bisphenol-type cresol novolac polyfunctional epoxy resins, and halogenated resins. Such,
A resin material that is solid at room temperature and a resin material that is commonly used as a packaging material for a next-generation semiconductor element that is liquid at room temperature is preferably used, but there is no particular limitation.

【0027】本発明において、基板材料及びその原料粉
体としては、LSIやICが単体では無く、複数素子が
多層化・高集積化され、単体のシリコンチップ中に全シ
ステムを内包するシステムLSI、マルチチップモジュ
ール、又は三次元実装などシステムレベルの多機能高密
度化を志向するシステムインパッケージ用の基板材料、
又は電力変換用パワーデバイス(例えば、スイッチング
電源の一次整流用ブリッジダイオード、プリンターやF
AXなどのモータドライバー用IC、通信機器又はデジ
タル家電向けDC/DCコンバータIC、インバータ照
明向け高耐圧IC、TV・VTRなどのハイブリッドI
Cなど)が例示されるが、特に制限はない。
In the present invention, the substrate material and the raw material powder thereof are not a single LSI or IC, but a system LSI in which a plurality of elements are multilayered and highly integrated, and the whole system is included in a single silicon chip, Substrate material for system-in-package, which aims at multi-functional multi-chip module or multi-functional multi-density at system level,
Alternatively, a power conversion power device (for example, a bridge diode for primary rectification of a switching power supply, a printer or an F
Motor driver ICs such as AX, DC / DC converter ICs for communication equipment or digital home appliances, high voltage ICs for inverter lighting, hybrid I such as TV / VTR
C and the like) are exemplified, but there is no particular limitation.

【0028】本発明は、平均粒子径が数〜数10ミクロ
ンの粒子径と、高い球形度とを同時に達成した新規な窒
化アルミニウム粉体、その製造方法及び製造装置を提供
することを可能とし、上記粉体は、特に、組成が無機材
料から成る粉体を組成が有機材料から成る樹脂系原料に
充填して用いる複合材料系において、その原料粉体(フ
ィラー)として最適である。本発明の方法により製造し
た窒化アルミニウム粉体の特性及びその製造方法の利点
を以下に示す。即ち、上記粉体は、生成物の溶融凝固や
凝集が小さく、高分散性で、一次粒子径の範囲が0.0
5〜100ミクロンに含まれ、平均粒子径が1ミクロン
以上及び粒子の外形が角張らない球状であることを同時
に達成したものである。また、結晶相は、酸窒化アルミ
ニウムの各多系相から、AlN相、Al23 相まで任
意に制御して製造することが可能である。
The present invention makes it possible to provide a novel aluminum nitride powder having an average particle size of several to several tens of microns and a high sphericity at the same time, a manufacturing method and a manufacturing apparatus therefor, The above-mentioned powder is most suitable as a raw material powder (filler) in a composite material system in which a powder having an inorganic material composition is filled in a resin material having an organic material composition. The characteristics of the aluminum nitride powder produced by the method of the present invention and the advantages of the production method are shown below. That is, the above-mentioned powder has a small degree of melting and solidification or agglomeration of the product, has high dispersibility, and has a primary particle size range of 0.0.
It is included in the range of 5 to 100 μm and has an average particle size of 1 μm or more and an outer shape of the particles that is not angular but spherical. In addition, the crystal phase can be produced by arbitrarily controlling from the multi-system phase of aluminum oxynitride to the AlN phase and the Al 2 O 3 phase.

【0029】[0029]

【実施例】次に、実施例により本発明を具体的に説明す
るが、本発明は、以下の実施例によって何ら限定される
ものではない。 (1)方法 図1に、本発明に基づく製造装置の構成の一例を模式的
に示す。ここでは、液化石油ガスと酸素系の化学炎と、
窒素又はアンモニアの窒化源、そして、粒子状の原料粉
体とから成る、気相(エアロゾル)製造プロセスを構築
した。図1において、反応器(Diffusion B
urner Flame Reactor)は、透明石
英管(Quartz Tube)とステンレス製二重円
筒管による拡散火炎式とし、火口はスパッド型(Spu
d−type)を用いた。外管へ火炎原料ガス(Hyd
rocarbon Gases)を供給し、内管へ原料
粉体(Raw Precursor Powder)、
及び反応ガス系、ここでは、NH3 の窒化ガス(Nit
riding Gas)と、O2 とを搬送した。図1で
は、先ずAl原料粉体を流動層エアロゾル発生装置(F
luidizedBed Aerosol Gener
ator)に搬送し、原料粉体の粒子サイズを選別(C
lasification)し、火炎原料ガスと酸素比
率や窒化ガスの納入経路(Control of Ni
triding Gas Inlet Positio
n)などを調整して、内炎(Inner Lumino
usFlame)で気相合成し、生成物(Result
ant Productsin Gas Phase
“Aerosol”)をフィルター(Filter)を
通してポンプ(Pump)引きし、有害ガスなどをトラ
ップ(Trap)除去する構成が採用される。化学炎法
へ適用する基礎反応系の一例として、ここでは、Al粉
体の直接窒化法を用いたが、勿論、還元窒化法でも問題
はない。
EXAMPLES Next, the present invention will be specifically described by way of examples, but the present invention is not limited to the following examples. (1) Method FIG. 1 schematically shows an example of the configuration of a manufacturing apparatus based on the present invention. Here, with liquefied petroleum gas and oxygen-based chemical flames,
A gas phase (aerosol) manufacturing process was constructed, which consisted of a nitrogen or ammonia nitriding source and a particulate raw material powder. In FIG. 1, a reactor (Diffusion B)
The urner Flame Reactor is a diffusion flame type with a transparent quartz tube (Quartz Tube) and a stainless steel double cylinder tube, and the crater is a spud type (Spu).
d-type) was used. To the outer tube Flame source gas (Hyd
The raw powder (Raw Precursor Powder) is supplied to the inner tube,
And a reaction gas system, here, a nitriding gas of NH 3 (Nit
Riding Gas) and O 2 . In FIG. 1, first, Al raw material powder is fed to a fluidized bed aerosol generator (F
fluidized Bed Aerosol Generator
and the particle size of the raw material powder is sorted (C
and the delivery ratio of the flame source gas to the oxygen ratio and the nitriding gas (Control of Ni).
trading Gas Inlet Position
n), etc., and adjust the internal flame (Inner Lumino
gas-phase synthesis with usFrame) and the product (Result)
ant Products in Gas Phase
A configuration is adopted in which "Aerosol") is pulled through a filter and a harmful gas is trapped. As an example of the basic reaction system applied to the chemical flame method, the direct nitriding method of Al powder was used here, but of course, the reduction nitriding method does not cause any problem.

【0030】Al原料粉体としては、平均粒子径約10
ミクロンのガスアトマイズ法による球状粉体を用いた。
その流動化は、媒体流動層法とし、直径150ミクロン
のガラスビーズを媒体として使用した。原料粉体は、窒
素ガスにより1分当たり10リッターで、液化石油ガス
は1分当たり5リッターで供給した。そして、制御因子
として酸素ガス供給量を、液化石油ガスとの化学量論比
から還元性火炎側へ調節し、反応領域のその場で還元剤
となる炭素を作った。製造された前駆体粉体を、窒素ガ
ス1分当たり0.5リッターの気流中、1400℃(即
ち、1650℃以下)で、熱処理した。
The Al raw material powder has an average particle diameter of about 10
Spherical powder produced by the micron gas atomization method was used.
The fluidization was performed by a medium fluidized bed method, and glass beads having a diameter of 150 μm were used as a medium. The raw material powder was supplied with nitrogen gas at 10 liters per minute, and the liquefied petroleum gas was supplied at 5 liters per minute. Then, as a control factor, the oxygen gas supply amount was adjusted to the reducing flame side from the stoichiometric ratio with the liquefied petroleum gas, and carbon was formed as a reducing agent in the reaction region in situ. The produced precursor powder was heat-treated at 1400 ° C. (that is, 1650 ° C. or lower) in a stream of 0.5 liter of nitrogen gas per minute.

【0031】(2)結果 図2に、本発明の方法による、酸窒化アルミニウムの前
駆体粉体のエックス線分析結果を示す。酸窒化アルミニ
ウム相のピークと共に、炭素還元剤のピークが確認され
る。図3に、本発明の方法による、窒化アルミニウム粉
体の一例のSEMを示す。その結果、従来法による角張
った形状異方性の大きな粉とは異なり、真球状に相当の
球形度の高い窒化アルミニウム粉体が得られた。10ミ
クロンの出発粒子径から、微細粒子側は約0.1ミクロ
ン、粗大粒子側は約10ミクロンまで、制御可能であっ
た。即ち、原料粉体の1/30程度から、1倍程度まで
(即ち、融着などの粗大化を引き起こさずに)調整させ
ることができた。生成粒子径は、上記の合成条件の他、
原料粒子径を変えることで任意に制御可能であり、現
在、市販品で容易にサブミクロンから数10ミクロン程
度のAl粉体を入手可能なことから、合成し得る一次粒
子径の妥当な範囲として0.05〜100ミクロンが保
証される。
(2) Results FIG. 2 shows the results of X-ray analysis of the precursor powder of aluminum oxynitride by the method of the present invention. The peak of the carbon reducing agent is confirmed together with the peak of the aluminum oxynitride phase. FIG. 3 shows an SEM of an example of aluminum nitride powder according to the method of the present invention. As a result, unlike the powder obtained by the conventional method having a large angular anisotropy, an aluminum nitride powder having a spherical shape and a high sphericity was obtained. It was possible to control from a starting particle size of 10 microns to about 0.1 micron on the fine particle side and about 10 microns on the coarse particle side. That is, it was possible to adjust from about 1/30 of the raw material powder to about 1 time (that is, without causing coarsening such as fusion). The generated particle size is in addition to the above synthesis conditions,
It can be controlled arbitrarily by changing the raw material particle size, and currently Al powders of submicron to several tens of microns are easily available as commercial products. 0.05 to 100 microns is guaranteed.

【0032】従って、本発明が対象とする技術分野のフ
ィラー粉体として主に必要な、(1)生成物の溶融凝固
や凝集が小さく、高分散性であること、(2)一次粒子
径の範囲が0.05〜100ミクロンに含まれること、
(3)平均粒子径が1ミクロン以上及び粒子の外形が角
張らない球状であること、が同時に達成され、既往の固
相法的ルートでは不可能な低温焼成にも関わらず、Al
ONからAlNへの窒化反応を進行させて、これまで想
像の産物でしかなかった粒子径及び粒子径分布と高い球
形度を同時に達成した新規な窒化アルミニウム粉体を得
ることができた。本発明では、1650℃のみならず、
この実験結果のように、1500℃以下程度にまで低温
化することが可能であり、例えば、既存の還元窒化プロ
セスで構築された技術基盤、ノウハウ及び装置設備の転
用も期待することができ、その工業化が十分に見込まれ
る。
Therefore, (1) the melt coagulation and aggregation of the product are small and the dispersibility is high, and (2) the primary particle size is mainly required as a filler powder in the technical field targeted by the present invention. The range is comprised between 0.05 and 100 microns,
(3) The average particle diameter of 1 micron or more and the external shape of the particles are spherical without being angular. At the same time, despite the low temperature firing which is impossible with the conventional solid phase route, Al
By advancing the nitriding reaction from ON to AlN, it was possible to obtain a novel aluminum nitride powder that simultaneously achieved a particle size and a particle size distribution and a high sphericity, which were only imaginary products. In the present invention, not only 1650 ℃,
As shown in this experimental result, it is possible to reduce the temperature to about 1500 ° C. or lower, and for example, it is expected that the technical base, know-how, and equipment used in the existing reduction nitriding process will be diverted. Industrialization is fully expected.

【0033】[0033]

【発明の効果】以上詳述したように、本発明によれば、
(1)上記粉体は、高価な熱処理設備や粉砕工程を用い
ずに、フィラー粉体分野で構築された既往の製造設備で
直接合成可能である、(2)平均粒子径が10μmオー
ダー程度の粒子径を有する窒化アルミニウム粉体が得ら
れる、(3)サブミクロンオーダーから10数ミクロン
オーダーまでの幅広い粒子径分布を有する窒化アルミニ
ウム粉体が得られる、(4)前記の粒子径特性を満た
し、同時に従来製品に期待できない高い球形度が実現さ
れる(従来、平均粒子径が1ミクロン以上の窒化アルミ
ニウム粉体では、粉砕工程が必須であり、角張った形状
異方性の高い粉体しか存在しなかった)、(5)特に、
例えば、半導体パッケージング材料などの、組成が無機
材料から成る粉体を、組成が有機材料から成る樹脂系原
料に充填して用いる複合材料系において、生成物の溶融
凝固や凝集が小さく、高分散性で、一次粒子径の範囲が
0.05〜100ミクロンに含まれ、平均粒子径が1ミ
クロン以上及び粒子の外形が角張らないことを同時に達
成した新規なフィラー粉体として最適な粉体を得ること
ができる、という格別の効果が奏される。
As described in detail above, according to the present invention,
(1) The above-mentioned powder can be directly synthesized by the existing manufacturing equipment constructed in the field of filler powder without using expensive heat treatment equipment and crushing process. (2) Average particle size of about 10 μm order An aluminum nitride powder having a particle diameter is obtained, (3) An aluminum nitride powder having a wide particle diameter distribution from the submicron order to the order of a few tens of microns is obtained, and (4) the particle diameter characteristics described above are satisfied, At the same time, high sphericity, which cannot be expected from conventional products, is realized (conventionally, aluminum nitride powder with an average particle size of 1 micron or more requires a crushing process, and only powders with angular and high shape anisotropy exist. No), (5) Especially,
For example, in a composite material system in which a powder made of an inorganic material such as a semiconductor packaging material is filled in a resin-based raw material made of an organic material, the product is less likely to melt and coagulate or aggregate, resulting in high dispersion. The optimum powder as a novel filler powder that simultaneously achieves that the primary particle size range is 0.05 to 100 microns, the average particle size is 1 micron or more, and the outer shape of the particles is not angular. There is a special effect that it can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造装置の構成の一例の模式図であ
る。
FIG. 1 is a schematic view of an example of the configuration of a manufacturing apparatus of the present invention.

【図2】実施例で製造した、酸窒化アルミニウム、及び
炭素還元剤の、前駆体粉体のエックス線分析ピークを示
す。
FIG. 2 shows X-ray analysis peaks of precursor powders of aluminum oxynitride and a carbon reducing agent produced in Examples.

【図3】実施例で製造した、窒化アルミニウム粉体の一
例のSEMを示す。
FIG. 3 shows an SEM of an example of aluminum nitride powder produced in the example.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 酸窒化アルミニウムを原料にして、それ
を熱処理することによって製造した窒化アルミニウムで
あって、生成物の溶融凝固や凝集が小さく、高分散性で
あり、一次粒子径の範囲が0.05〜100ミクロンに
含まれ、平均粒子径が1ミクロン以上であり、粒子の外
形が角張らないことを特徴とするAl及びN元素を含む
粉体。
1. An aluminum nitride produced by heat-treating aluminum oxynitride as a raw material, which has a small melting and solidification and agglomeration of the product, has high dispersibility, and has a primary particle size range of 0. A powder containing Al and N elements, characterized in that the powder has an average particle diameter of 1 micron or more and has a non-angular outer shape.
【請求項2】 酸窒化アルミニウムを原料にして、それ
を1650℃以下で熱処理することを特徴とする、請求
項1に記載のAl及びN元素を含む粉体。
2. The powder containing Al and N elements according to claim 1, characterized by using aluminum oxynitride as a raw material and heat-treating it at 1650 ° C. or lower.
【請求項3】 酸窒化アルミニウムを大気圧下の気相中
で製造したことを特徴とする、請求項1に記載のAl及
びN元素を含む粉体。
3. The powder containing Al and N elements according to claim 1, characterized in that aluminum oxynitride is produced in a gas phase under atmospheric pressure.
【請求項4】 酸窒化アルミニウムを、可燃性ガスの火
炎、可燃性ガスと酸素の混合ガスの燃焼火炎、可燃性ガ
スと酸素の割合を完全燃焼比より酸素を少なくした還元
性燃焼火炎、不活性ガスのプラズマによる火炎、又は非
接触状態下の物質間に発生するアーク炎、の存在下で製
造したことを特徴とする、請求項3に記載のAl及びN
元素を含む粉体。
4. Aluminum oxynitride is used as a flame of a combustible gas, a combustion flame of a mixed gas of a combustible gas and oxygen, a reducing combustion flame in which the proportion of the combustible gas and oxygen is less than the complete combustion ratio, The Al and N according to claim 3, characterized in that the Al and N are produced in the presence of a flame generated by plasma of an active gas or an arc flame generated between substances in a non-contact state.
Powder containing elements.
【請求項5】 請求項4に記載の火炎で自然発生する炭
素、又は可燃性ガスと酸素割合を完全燃焼比より酸素を
少なくした還元性燃焼火炎で強制的に発生させた炭素
を、酸窒化アルミニウムの表面に高分散性の還元剤とし
て分布させたことを特徴とする、請求項4に記載のAl
及びN元素を含む粉体。
5. Oxynitriding carbon that naturally occurs in the flame of claim 4, or carbon that is compulsorily generated in a reducing combustion flame in which the proportion of combustible gas and oxygen is less than the complete combustion ratio of oxygen. The Al according to claim 4, which is distributed as a highly dispersive reducing agent on the surface of aluminum.
And a powder containing N element.
【請求項6】 請求項1〜5のいずれかに記載のAl及
びN元素を含む粉体を製造する方法であって、酸窒化ア
ルミニウムの原料粉体を、気相中で分散状態に形成する
工程、原料粉体を火炎存在下直接窒化又は還元窒化する
窒化反応に付して酸窒化アルミニウムを製造する工程、
又は上記工程の後、更に酸窒化アルミニウムを熱処理す
る工程、から成ることを特徴とするAl及びN元素を含
む粉体の製造方法。
6. A method for producing a powder containing Al and N elements according to claim 1, wherein the raw material powder of aluminum oxynitride is formed in a dispersed state in a gas phase. A step of subjecting the raw material powder to a nitriding reaction of directly nitriding or reducing nitriding the raw material powder in the presence of a flame to produce aluminum oxynitride,
Or a step of further heat treating aluminum oxynitride after the above step, the method for producing a powder containing Al and N elements.
【請求項7】 請求項1〜5のいずれかに記載のAl及
びN元素を含む粉体の製造に使用するための装置であっ
て、火炎の発生装置と、原料粉体の供給装置と、空気、
窒素、アンモニア又は不活性ガスの供給装置とを構成要
素として含み、原料粉体の酸窒化反応が、火炎の存在
下、気相中で進行するようにしたことを特徴とする製造
装置。
7. An apparatus for use in the production of powder containing Al and N elements according to any one of claims 1 to 5, comprising a flame generator and a raw material powder feeder. air,
A manufacturing apparatus comprising a supply device of nitrogen, ammonia or an inert gas as a constituent element, and allowing an oxynitriding reaction of a raw material powder to proceed in a gas phase in the presence of a flame.
【請求項8】 同軸上に内径の異なる複数個の円筒管を
組み合わせた構造を有する火炎の発生装置を構成要素と
して含み、何れかの円筒管へ原料粉体を供給し、他の円
筒管へ反応ガスを供給して、原料粉体の該円筒管先端部
付近で、原料粉体と反応ガスとが拡散混合され、原料粉
体の酸窒化反応が火炎の存在下、気相中で進行するよう
にしたことを特徴とする、請求項7に記載の製造装置。
8. A flame generating device having a structure in which a plurality of cylindrical tubes having different inner diameters are coaxially combined is included as a constituent element, and the raw material powder is supplied to any one of the cylindrical tubes and is supplied to another cylindrical tube. The reaction gas is supplied, and the raw material powder and the reaction gas are diffused and mixed near the tip of the cylindrical tube of the raw material powder, and the oxynitriding reaction of the raw material powder proceeds in the gas phase in the presence of a flame. The manufacturing apparatus according to claim 7, wherein the manufacturing apparatus is configured as described above.
JP2001246885A 2001-08-16 2001-08-16 Aluminum nitride powder having equal to or above micrometer-ordered average particle diameter and high sphericity, method and apparatus of manufacturing the same Pending JP2003054920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001246885A JP2003054920A (en) 2001-08-16 2001-08-16 Aluminum nitride powder having equal to or above micrometer-ordered average particle diameter and high sphericity, method and apparatus of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001246885A JP2003054920A (en) 2001-08-16 2001-08-16 Aluminum nitride powder having equal to or above micrometer-ordered average particle diameter and high sphericity, method and apparatus of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2003054920A true JP2003054920A (en) 2003-02-26

Family

ID=19076331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001246885A Pending JP2003054920A (en) 2001-08-16 2001-08-16 Aluminum nitride powder having equal to or above micrometer-ordered average particle diameter and high sphericity, method and apparatus of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2003054920A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005320479A (en) * 2004-05-11 2005-11-17 Kyocera Chemical Corp Liquid epoxy resin composition
JP2010180126A (en) * 2004-07-08 2010-08-19 Ngk Insulators Ltd Method for producing aluminum nitride single crystal
WO2012118315A3 (en) * 2011-02-28 2012-12-20 영남대학교 산학협력단 Method for preparing polycrystalline aluminum oxynitride having enhanced transparency
CN109925990A (en) * 2019-04-17 2019-06-25 中国空气动力研究与发展中心高速空气动力研究所 A kind of circulation solid phase reaction unit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005320479A (en) * 2004-05-11 2005-11-17 Kyocera Chemical Corp Liquid epoxy resin composition
JP2010180126A (en) * 2004-07-08 2010-08-19 Ngk Insulators Ltd Method for producing aluminum nitride single crystal
WO2012118315A3 (en) * 2011-02-28 2012-12-20 영남대학교 산학협력단 Method for preparing polycrystalline aluminum oxynitride having enhanced transparency
US9321688B2 (en) 2011-02-28 2016-04-26 Industry-Academic Cooperation Foundation, Yeungnam University Method for preparing polycrystalline aluminum oxynitride having enhanced transparency
CN109925990A (en) * 2019-04-17 2019-06-25 中国空气动力研究与发展中心高速空气动力研究所 A kind of circulation solid phase reaction unit
CN109925990B (en) * 2019-04-17 2024-05-28 中国空气动力研究与发展中心高速空气动力研究所 Circulation solid phase reaction device

Similar Documents

Publication Publication Date Title
RU2196846C2 (en) Nanostructural raw materials for thermic deposition
US6887566B1 (en) Ceria composition and process for preparing same
JP5363397B2 (en) Method for producing silicon / silicon carbide composite fine particles
KR20090012347A (en) Method for the production of suspensions of nanoparticulate solids
EP1018386B1 (en) Method for producing nickel powder
JP3991098B2 (en) Aluminum nitride filler powder synthesized by flame
JP5362614B2 (en) Method for producing silicon monoxide fine particles and silicon monoxide fine particles
TWI723114B (en) Method for producing nonstoichiometric titanium oxide fine particle
JP4425888B2 (en) Nano-spherical particles having a composite structure, powder, and manufacturing method thereof
CN104114738A (en) Reactive gas shroud or flame sheath for suspension plasma spray processes
JP3985039B2 (en) Highly dispersed and highly spherical aluminum oxynitride powder, manufacturing method and manufacturing apparatus thereof
CN1107085A (en) Finely-divided metal, alloy and metal compound powders
JP2003054920A (en) Aluminum nitride powder having equal to or above micrometer-ordered average particle diameter and high sphericity, method and apparatus of manufacturing the same
JP2013017957A (en) Apparatus and method for manufacturing fine particle
RU2353584C2 (en) Method of nano-dispersed powder of aluminium receiving
JP4294191B2 (en) Method and apparatus for producing spherical silica powder
JP7488832B2 (en) Microparticles and method for producing the same
JP4330298B2 (en) Method for producing spherical inorganic powder
TWI471266B (en) Method for manufacturing carbide fine particles
JPH1192136A (en) Production of low alpha-dose alumina powder and low alpha-dose alumina powder
KR20040049921A (en) Vapor phase synthesis of high purity nano- and submicron particles with controlled size and agglomeration
JP4315576B2 (en) Method for producing ultrafine silica
JP4639363B2 (en) Method for producing non-oxide particles
WO2023223697A1 (en) Composite particle production method and composite particle
JP4230554B2 (en) Method for producing spherical particles

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061212