JP3984109B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP3984109B2
JP3984109B2 JP2002169400A JP2002169400A JP3984109B2 JP 3984109 B2 JP3984109 B2 JP 3984109B2 JP 2002169400 A JP2002169400 A JP 2002169400A JP 2002169400 A JP2002169400 A JP 2002169400A JP 3984109 B2 JP3984109 B2 JP 3984109B2
Authority
JP
Japan
Prior art keywords
memory cells
threshold value
determined
memory cell
memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002169400A
Other languages
Japanese (ja)
Other versions
JP2003115515A (en
Inventor
明美 三浦
均 久米
敏明 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2002169400A priority Critical patent/JP3984109B2/en
Publication of JP2003115515A publication Critical patent/JP2003115515A/en
Application granted granted Critical
Publication of JP3984109B2 publication Critical patent/JP3984109B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • For Increasing The Reliability Of Semiconductor Memories (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は半導体不揮発性メモリ,特にはメモリセルが浮遊ゲート及び制御ゲートからなる二層ゲート構造を有する不揮発性半導体記憶装置の層間膜QC(Quality Control)方法、層間膜スクリーニング法及びその製造方法に関する。
【0002】
【従来の技術】
図11に断面図を示す二層ゲート構造を有する不揮発性半導体メモリでは、トンネル膜2を介して電子の注入/放出を行なう事で、浮遊ゲート電極4に蓄積されている電荷量を制御している。何らかの理由により浮遊ゲート電極4から電子が抜けて閾値電圧の分布が規定の範囲から外れると、製品としては不良と判定される。この不良をリテンション不良と呼ぶ。電子が抜ける経路はトンネル膜2、または浮遊ゲート電極4と制御ゲート電極6の間に堆積された層間膜5のいずれかである。リテンション不良は大きくは初期不良と書き換え動作後に発生する不良に分けられる。
従来より初期不良に関しては、図12に示すように製品チップを製造した同一ウエハ上の異なる場所、例えばスクライブ領域にトンネル膜と層間膜を分けて評価できる簡易キャパシタを形成して検査している。キャパシタが形成された時点若しくは全プロセス工程が終了した時点で、トンネル膜、層間膜個別に耐圧検査を行なってきた。耐圧検査により、基準となる耐圧Vgref1,Vgref2以上であれば、後工程(チップ切り出し、樹脂封止、スクリーニング)を行い、製品として出荷する。測定は1箇所以上であり、全ての場所を測定しない場合は、例えば隣合わない上下左右の複数点(図12のA,B,C,D,E)における測定を行なう。測定点数に関しては制約はない。
上記した従来のトンネル膜及び層間膜に関するQC法(Quality Control Method)のフローチャートを図13に示す。この初期不良検査をパスしたウエハについては、チップに切り出した後パッケージに封入していた。このように製造された製品チップを用いた電荷保持特性の試験結果を模式的に図14に示す。この試験では、パッケージされた製品チップに対して実動作と同等の書き換えストレスを印加し、一旦浮遊ゲート電極から電子を放出した後、ある閾値電圧になるように再度浮遊ゲート電極に基板から電子を注入し、その後浮遊ゲート電極から電子が抜けてくる現象を観測する。また、この現象を加速するために高温状態で放置する場合もある。正常なチップであれば、各メモリセルの閾値電圧Vth分布は、図14の実線にて示す書込み後、放置した後で再度閾値電圧Vth分布を測定すると、全体として平行移動した破線の位置に僅かに変化するか、または殆ど動かない。しかし、実際の製品ではメモリセルが多数配置されているため、極一部のセルでも何らかの理由で電子が大量に抜けると、閾値電圧低下が起こり製品不良を引き起こす。この不良を起こした製品の一部のメモリセルが、放置後に閾値電圧低下を起こした状態を図14の下側の破線が模式的に示している。このような製品を落ちこぼれ不良と呼んでいる。
不揮発性半導体メモリの書き換え動作後に発生する不良である落ちこぼれ不良に関する検査方法としては、従来より、書き込み/消去サイクルストレスを加えて判別する方法がある。しかし、この方法は破壊試験であり、良品にもある程度のストレスを加えることになる。また、試験時間がかかり、費用の面でも問題があった。この点を改善する方法として、特開平9―35500号公報に開示する発明では、全メモリセルの書き込みを行う工程と、全メモリセルのしきい値電圧分布が正となるような弱い消去を行う工程と、全メモリセルのしきい値電圧分布を測定して、全分布の統計処理においてある割合の値が所定の値を超えた時に不良と判定する工程により、非破壊でスクリーニングできる方法を開示している。この方法は、トンネル膜にストレスをかけて、トンネル膜質を評価したものである。また、特開平9―320299号公報に開示する発明は、書き換え試験後に、書込み又は消去動作を行い、しきい値Vthを測定し、トンネル膜に±5MV/cm以下の電界を印加し、しきい値Vthの変動量がある値を超えたものを不良と判定するスクリーニング法を開示している。いずれもトンネル膜の膜質を評価したものである。
【0003】
【発明が解決しようとする課題】
従来、キャパシタを用いた測定では耐圧低下と上記製品落ちこぼれ不良を結びつける定量的な指針はなく、製品レベルでの保証回数書換え後のリテンション試験は行なわれていなかった。又,チップに切出してパッケージ封入後の歩留まりがコストを左右する為,特に初期不良では検出不可能な劣化性の落ちこぼれ不良はコスト低減の大きな妨げとなっていた。そこで、メモリセルにストレスを与えることなく、メモリセル領域以外の例えばスクライブ領域に形成された一つのメモリセル(単体)又はメモリアレイを用いた検査により、短時間で簡便に層間膜の長期信頼性が確保された製品を選別する方法が望まれる。その検査工程により良と選別した不揮発性半導体メモリを搭載した半導体装置を製造する方法が必要となる。
特に、不揮発性半導体メモリでは書込み速度向上の視点からは,トンネル膜(図11の2)及び層間膜(図11の5)のスケーリング若しくは動作電圧の高電圧化が有効であるので,副作用として発生する信頼性上の問題点を先取りすることが重要である。そこで、発明者らは層間膜のスケーリング及び動作電圧の高電圧化が行なわれた場合について検討を行なった。基板からのトンネル注入を想定して,層間膜電界強度Eとトンネル膜厚及び層間膜厚との関係を図16に示す。メモリゲート長/ゲート幅一定,制御ゲート電極への印加電圧一定(図16A),メモリ中性閾値電圧、及びメモリ閾値電圧一定とした。例えば,トンネル膜厚が10nmの場合,層間膜厚が15.5nmであれば層間膜電界は6.3MV/cmであるが,層間膜厚を12.5nmまでスケーリングを進めると層間膜電界は7.3MV/cmまで増大する。この傾向はトンネル膜厚のスケーリングを進めた場合も層間膜厚のスケーリングに対して同様の結果である。よって、層間膜厚のスケーリングを進める際には信頼性の面から許容層間膜電界に対する指針が重要となることがわかる。制御ゲート電極に印加される電圧に関しては,例えば動作速度向上の為に+1V上げた場合についてトンネル膜8.5nmを例に検討した結果を図16Bに示す。いずれの層間膜厚でも層間膜電界は約0.25MV/cm増大することがわかる。
【0004】
浮遊ゲート電極から基板へトンネル電流によって電子を放出する場合の層間膜電界強度(絶対値)とトンネル膜厚及び層間膜厚との関係を検討した結果を図17に示す。前提条件はメモリゲート長/ゲート幅一定,制御ゲート電極への印加電圧一定(図17A),メモリ中性閾値電圧及び電子放出後のメモリ閾値電圧一定とした。制御ゲート電極に印加される電圧に関しては例えば1V下げた場合について解析を行ない,図17Bに示した。閾値電圧を中性閾値電圧より低い一定値に設定する場合でもトンネル膜及び層間膜のスケーリングは制御ゲート電極から電子を放出させる動作時の層間膜電界強度を増大させることがわかる。以上の考察から,トンネル膜/層間膜のスケーリング,動作電圧の増大は層間膜電界を増大させる傾向にあり、層間膜の品質保証は今後の重要な課題であるといえる。
【0005】
【課題を解決するための手段】
そこで、浮遊ゲート及び制御ゲートからなる二層ゲート構造のメモリセルにより構成された不揮発性半導体記憶装置を半導体ウエハ上に形成するプロセスによって、ウエハ上に複数の試験用メモリセルを形成し、前記各試験用メモリセルの制御ゲート電極へ第1の所定時間の間パルス電圧印加又はDC電圧印加による連続書込みを行い、書込み後の浮遊ゲート電極の第1のメモリ閾値電圧Vthを測定し、前記各試験用メモリセルを第2の所定時間放置した後、再度浮遊ゲート電極の第2のメモリ閾値電圧Vthを測定して前記測定値よりの変化量を求め、前記メモリ閾値電圧Vthの変化量が0又は0に近似する場合の前記第1のメモリ閾値電圧Vthが存在する電圧領域の下限値を定め、前記試験用メモリセルの前記第1のメモリ閾値電圧Vthが、前記電圧領域に到達した場合に、該当ウエハ上の不揮発性半導体記憶装置を良品と判定する半導体装置の製造方法を提案する。
また、以上の方法は書込みを基板からの注入によって行なう場合を例にとって説明したが、消去を基板からの注入によって行なう不揮発性半導体メモリの場合についても同様の手法を行なえる。すなわち、浮遊ゲート及び制御ゲートからなる二層ゲート構造のメモリセルにより構成された不揮発性半導体記憶装置を半導体ウエハ上に形成するプロセスによって、ウエハ上に複数の試験用メモリセルを形成し、前記各試験用メモリセルの制御ゲート電極へ第1の所定時間の間パルス電圧印加又はDC電圧印加による連続消去を行い、消去後の浮遊ゲート電極の第1のメモリ閾値電圧Vthを測定し、前記各試験用メモリセルを第2の所定時間放置した後、再度浮遊ゲート電極の第2のメモリ閾値電圧Vthを測定して前記測定値よりの変化量を求め、前記メモリ閾値電圧Vthの変化量が0又は0に近似する場合の前記第1のメモリ閾値電圧Vthが存在する電圧領域の上限値を定め、前記試験用メモリセルの前記第1のメモリ閾値電圧Vthが、前記電圧領域に到達した場合に、該当ウエハ上の不揮発性半導体記憶装置を良品と判定する半導体装置の製造方法である。
【0006】
【発明の実施の形態】
まず、本願発明適用の対象となる不揮発性半導体メモリについて説明する。不揮発性半導体メモリのメモリセル断面図を図11に示す。P型基板1にはN型拡散層3がN型不純物(As)イオンを打ち込むことによって形成され、第1絶縁膜(トンネル膜)2と、第2絶縁膜(層間膜)5と、浮遊ゲート電極4と、制御ゲート電極6とを有する構造を取る。第1の絶縁膜はSi02で形成された酸化膜により、第2の絶縁膜はSi3N4とSi02積層膜により構成され、浮遊ゲート電極層4と制御ゲート電極層6は多結晶ポリシリコンが用いられる。尚、図面には示されていないが、ソース・ドレイン領域の電界集中を緩和するために、N−イオンを打つLDD構造やP+イオンを打つポケット構造を取る構成もある。不揮発性メモリを搭載したウエハの製造はウエル形成工程、ゲート形成工程、ソース・ドレイン形成工程、配線工程、保護膜形成工程を順次処理することにより行われる。ゲート形成工程において半導体基板表面にトンネル膜、浮遊ゲート電極、層間膜、制御ゲート電極を順次形成する点がSRAMやDRAM等の他のメモリと異なる。ウエハ製造工程とは上記工程群を指す。
図3にAND型フラッシュメモリアレイ構成の等価回路図を示す。AND型フラッシュでは図に示すようにメモリがアレイのビット線とソース線の間に並列接続されている。従ってアレイ内の低Vthビットが製品のVth分布ばらつきを左右する構成になっている。書込み時には選択ビットのワード線に正の高電圧が印加され,基板からの電子注入を行なう。消去時はワード線単位で負電圧による電子放出を行なう。実際のメモリ動作ではこのように基板からの電子注入と浮遊ゲート電極からの電子放出の両方が行なわれる。層間膜QCを目的とした電気的ストレス試験では,メモリ閾値電圧が高い状態で更に正の高電圧を印加するか,メモリ閾値電圧が低い状態で負の高電圧を印加することで故意に層間膜での劣化加速を行なう。即ち前者では連続して基板注入を行なう事で層間膜が劣化し,(基板からの注入電流)=(層間膜リーク)なる条件に達した時にメモリセルVthはある飽和値に達する為,パルス印加を継続してもメモリセルVthは上昇しない。後者では連続して基板への電子放出を行なう事で層間膜が劣化し,(基板への放出電流)=(層間膜リーク)なる条件に達した時にメモリセルVthはある飽和値に達してパルスを印加してもメモリセルVthは低下しない。ここでは先ず例として書換え保証10万回のAND型フラッシュメモリに対して、基板からの注入を書込み動作とする劣化現象を考える。
フラッシュメモリでは例えば基板からのトンネル注入により、浮遊ゲート電極に電子を蓄積させる。この時、浮遊ゲート電極に蓄積される電荷量が増えるほど、メモリの閾値電圧は高くなる。一方、制御電極に正電圧が印加されると、浮遊ゲート電極中の電荷量増大と共に、層間膜にかかる電界が強くなる。従って、閾値電圧の上昇と共に層間膜リーク電流が無視できなくなってくる。そして、トンネル膜を介して浮遊ゲート電極へ注入されるトンネル電流(図19のIFTO)と層間膜を介して制御ゲート電極側へリークしていく成分(図19のIONON)が釣り合うと、メモリの閾値はある飽和値に達する。これを飽和Vthと呼ぶ。この飽和Vthは層間膜リークの大小を反映している為、書込み(消去)条件一定の下で飽和Vthの大小を比較することで層間膜リークの大小を論ずることが可能となる。飽和Vthの大小と層間膜リークの大小を検討する為に層間膜リーク電流と層間膜電界の解析を行なった結果を図18に示す。この解析では、飽和Vthに達したときはトンネル電流と層間膜電流が等しくなる性質を利用している。この検討から、飽和Vthが一定の時は制御ゲート電極に印加される電圧の絶対値が大きい程層間膜リーク電流が多い事を意味し、印加電圧が一定の時は飽和Vthが高い程層間膜リーク電流が少ないことを意味している事が読み取れる。従って、実際の評価では印加電圧を一定にした時のパルス印加後メモリセルVthの大小を比較すれば、層間膜リークの大小をモニターしていると考えて良い。飽和Vthがある値より高い場合は層間膜リーク起因の不良が発生しないと判断できる。
【0007】
図1は本発明の層間膜QC方法を説明するメモリの書込み特性である。基板注入を消去動作とする場合は,以下書込みを消去と置き換えても同様の議論が成り立つ。実際の製品では書込み(消去)動作は数ミリ秒以下で行なわれるが,層間膜リークがメモリセルVthに影響を与える様子を検討する為に,消去(書込み)動作を行なわずにパルスを連続的に印加している。その途中経過時のメモリセルVthをプロットしている。パルス印加当初は、経過時間と共にメモリセルVthが上昇しており、層間膜リークは無いと判断される。さらにパルス印加を続けると、あるメモリセルのメモリセルVthのプロットカーブが上昇から水平状態に変化していることを図1の書込み特性Aが示している。この水平状態(隣合うプロット点間にメモリセルVthの上昇が見られなくなった状態)になった時点で、(基板からの注入電流)=(層間膜リーク)なる条件に達したと判断する。この時のメモリセルVthを飽和Vthと呼ぶ。この時点で層間膜に生じているリークは、層間膜が破壊された結果であり、その後回復はしない。図1に示す書込み特性Aは、複数のメモリセルに対する測定結果であるが、いずれも飽和Vthに達して、その後測定を終了したもの、またはその後のメモリセルVthのプロットが飽和Vthより下がるものなどが見られる。それに対して、書込み特性Bは、100秒間のパルス連続印加の間、メモリセルVthは連続して上昇を続け、8Vを超えてから水平状態に近づいているが、未だ完全には水平にはなっておらず、飽和Vthには達していない例を示している。すなわち、層間膜のリークが測定装置の検出精度の範囲に捉えられる程には発生しておらず、層間膜が破壊されていない状態と見なせる。
図1のパルス印加時間の上限は、例えば(書込み(消去)最遅ビットでの書込み時間)×(書換え保証回数)で決定することができる。その場合には、最遅ビットの書込み時間が1msであれば (1ms)×(100000)=(100s)となる。消去動作が入らないので、実際の製品における書き換え時よりも、層間膜へストレスを大きく加えていると見なされる。ここで検討している例では、連続書込み100秒以内で飽和Vthに達する場合(書込み特性A)は、その時点で層間膜リークが生じていることを意味するので製品としては、書換え保証回数内に不良となる可能性が高いと判断できる。それに対して、連続書込み100秒後でも飽和Vthに達しない場合(書込み特性B)は、書換え保証回数使用しても層間膜リークが生じない可能性が高い製品と判断される。この所定パルス印加時間(100秒)後に測定したメモリセルVthを到達Vthと呼ぶ。書込み特性Aの到達Vth(A)は飽和Vthに達している。書込み特性Bの到達Vth(B)は飽和Vthに達していない。そして、到達Vth(B)>到達Vth(A)であることに着目される。
上記のパルス連続書込み後、到達Vthが飽和Vthに達しているか否かを確認するために、各種のサンプルに対して連続書込み後、到達Vthからの室温放置試験をおこなった。図2に検討結果を示す。この試験では、層間膜リーク起因の低Vthセルの検出を容易にする為に,製品と同一プロセスによってスクライブ領域に形成された並列接続の全選択32kbメモリアレイを用いた。パルス印加電圧は、製品の通常の書込み電圧である18Vで行なう場合と、層間膜に負荷を与える加速試験として1V上げた19Vで行なっている。一般にフラッシュメモリの書込み(消去)特性は書込み(消去)電圧が1V異なると同一メモリセルVthに達するパルス印加時間は約1桁異なる。試験におけるパルス印加時間は、18Vの場合に100秒、19Vの場合に10秒としている。サンプルは、プロセス条件の異なる複数のメモリアレイを用いた。
図2の横軸はパルス連続書込み(消去)後の到達Vth、縦軸は1日室温放置後に再度測定したメモリセルVthを上記到達Vthからの変化量として示す。図2に示す試験結果においては、到達Vthが8Vに達しない領域にプロットされた点の縦軸の変化量はいずれも負の値を示している。これは、層間膜に対して負荷を掛けたパルス連続書込み(消去)後に放置した際に、浮遊ゲート電極に蓄積された電荷が層間膜を通してリークしたと推定される。すなわち、これらのプロット点のサンプルは、上記パルス連続書込み(消去)試験中に、飽和Vthに達していたと判断される。それに対して、図2にプロットされた試験結果において、到達Vthが8V以上の領域にプロットされた点は、縦軸の変化量の値がほぼ0Vを示している。よって、これらのプロット点のサンプルは、上記パルス連続書込み(消去)試験中に、飽和Vthに達しておらず、層間膜を通してリークが発生していないと判断される。以上の結果、到達Vthがある境界値以上に達していれば、層間膜に製品の保証書換え回数に相当する以上の負荷を与えた後であっても、層間膜にリークが発生する可能性が低く、層間膜の品質を保証する判定の基準になりうることが見出された。
図2の試験結果は、製品の書込み(消去)時に実用される書込み(消去)電圧18Vを使用して、各種サンプルに対してパルス連続書込み(消去)を行なったのと同様に、加速試験のための書込み(消去)電圧19Vにおいても、同様の各種サンプルに対してほぼ同様の結果が成り立っている。よって、加速試験により同じ結果が得られると判断される。
以上の試験結果を解析して、不揮発性半導体メモリの層間膜の書き換え動作後の品質を保証する判定基準を、以下のように定めることが有効と判断される。試験対象とするメモリセルは、評価対象の不揮発性半導体メモリと同一プロセスにおいて、例えばウエハのスクライブエリアなどに作り込まれたメモリアレイ若しくは単一メモリ、又はサンプルチップを使用することが考えられる。これらの試験対象メモリセルに対して、例えば(実際の書込み(消去)時間)×(製品での書換え保証回数)で定まる一定時間、DC的に、又は連続パルス状に、制御ゲート電極に電圧を印加して、層間膜にストレスを印加する。その時の各メモリセルの到達Vthを測定するとともに、所定時間放置後、前記到達Vthの変化量を測定する。それらのデータに基づき、図2に示すような分布を得て、それらのデータの到達Vthの変化量がほぼ0と見なせる一群と、到達Vthの変化量が負の値を示す他の一群を区分けする境界の到達Vthの値を、「選別基準しきい値Vth」と定める。この選別基準しきい値Vthの意義は、ある試験対象メモリセルに上記一定時間のDC的、又は連続パルス状の電圧を印加して、層間膜にストレスを掛けた後、到達Vthを測定して、その到達Vthが上記選別基準しきい値Vthより大きければ、上記試験対象メモリセルが作り込まれたウエハ上に、同じプロセスによって製造された他のメモリセルより構成される不揮発性半導体メモリは、製品での書換え保証回数だけ書き換えた後も、層間膜リーク起因のおちこぼれ不良が発生する確率は極めて低いと判断できることである(層間膜QC方法)。
尚、上記「選別基準しきい値Vth」の決め方は、上記した到達Vthの変化量がほぼ0と見なせる一群のサンプル値の下限値とするならば、必ずしもその信頼性は高くないと考えられる。例えば、回路の動作マージン,プロセスばらつきマージン等を考慮して、適当な安全率を見込み決定する。図2に示すような分布の例では、例えば「選別基準しきい値Vth」を8.5Vとする。
また、上記制御ゲート電極への印加電圧及びパルス印加時間は実際のデバイス形状、メモリ構造定数、トンネル膜質、層間膜質、製品仕様等に依存して適宜決めるものであり,一意的なものではなく、又メモリアレイのみではなく,同じくスクライブ領域に形成された単体メモリセルを用いた試験が可能であり,層間膜QC法としてはむしろ単体メモリを用いて行なう。評価時間を短くする為には,製品の動作電圧より印加電圧を高く設定して行なうことが有効である。
【0008】
図4は本発明の層間膜QC方法を半導体装置量産ラインに適用するに当たって、予め必要となる到達すべき「選別基準しきい値Vth」を求める工程を示したフローチャートである。デバイス・回路構成、プロセスの決定工程後、上記プロセスに基づく半導体メモリをウエハ上に製造する。ウエハ製造工程で行われる工程は先に述べた通りである。その後、複数の試験対象メモリセルの各メモリセルに対して、上記のように決められた一定時間、制御ゲート電極へDC又はパルス連続書込み(消去)を行い、層間膜に負荷を掛ける。一定時間経過後、上記試験対象メモリセルの浮遊ゲート電極の到達Vthを測定する。その後、所定時間室温又は高温放置して、前記到達Vthの変化量を測定する。
上記した連続書込動作又は消去動作、およびその後の放置処理により、各メモリセルのしきい値Vthの飽和特性を測定する。パルスの連続印加により、基板からの電子注入(書込動作)によりしきい値Vthは中性しきい値電圧より大きい値を取り、基板への電子放出(消去動作)によりしきい値は中性しきい値電圧より小さい値を取る。
上記した各メモリセルの到達Vth及びその変化量の測定データに基づき、上記した方法により「選別基準しきい値Vth」を決定する。この処理は、各メモリセルの測定データと供に、回路の動作マージン,プロセスばらつきマージン等の安全率を収集した計算機処理にて行なう。
【0009】
図5は「選別基準しきい値Vth」を用いて、半導体装置製造ラインでウエハ毎に施す層間膜QC法工程を含むフローチャートを示したものである。ウエハ製造工程を経たウエハに作り込まれた試験対象メモリセルへ、上記のように決められた一定時間、制御ゲート電極へDC又はパルス連続書込みを行い、層間膜に負荷を掛ける。一定時間経過後、上記試験対象メモリセルの浮遊ゲート電極の到達Vthを測定する。この測定は、ウエハ上の複数点で求める方が広範囲にわたり品質を保証できるが、例えばウエハの中心部一点でもよい。書込動作(基板から浮遊ゲートへの電子の注入操作)により、測定された到達Vthが基準となるしきい値「選別基準しきい値Vth」(Vthmin)以下のウエハは製造ラインより抜き出し、抜き出されていない残りのウエハについてのみその後の工程を施す。消去動作(浮遊ゲートから基板への電子の放出操作)により、測定を行う場合には、測定された到達Vthが基準となるしきい値「選別基準しきい値Vth」(Vthmin)以上のウエハは製造ラインより抜き出し、抜き出されていない残りのウエハについてのみその後の工程を施し、選別する基準となるしきい値「選別基準しきい値Vth」(Vthmin)の大小関係が異なる点に留意する必要がある。尚、製造ラインで流されるウエハ全部についてしきい値の測定による層間膜の品質検査を行うことが望ましいが、選別基準しきい値を満たさず品質不良として抜き出すウエハが少ないことが確認できれば、例えば10枚に1枚測定を行うこととして、特定のウエハのみについて検査をすることも考えられる。
上記各工程(ウエハ製造工程、到達Vth測定工程とそれによる基準を満たないウエハの取り出し工程)後はプローブ検査を行なう。通常は書換えストレスを印加せずに,基板注入によって軽い書込み(消去)を行なった状態でウエハベークを行なって電荷保持特性の初期不良試験を行う。その結果,良品と判断されればチップに切出してパッケージ封入される。組み立て後にスクリーニング(選別試験)が行なわれて良品と判断されたもののみが出荷される。組み立て後に抜き取った製品チップを用いた室温での電荷保持特性の試験結果を模式的に図14に示す。パッケージされた製品チップに対して実動作と同等の書換えストレスを印加し,一旦浮遊ゲート電極から電子を放出した後,ある閾値電圧になるように再度浮遊ゲート電極に基板から電子を注入し,浮遊ゲート電極から電子が抜けてくる現象を観察している。正常なチップであれば閾値電圧分布は全体として平行移動するか,殆ど動かない。
【0010】
図6はNAND方式のフラッシュメモリの回路構成である。複数のメモリセルのソース・ドレイン経路は直列接続され、選択線BDS・BSSにゲートが接続された選択トランジスタを介してビット線BLに接続されている。本方式のフラッシュメモリでは書き込み動作に基板からの電子注入を、消去動作に基板への電子放出を用いている。AND方式と書き換え単位は異なっていても書き込み・消去の動作機構はトンネル電流を利用した同じ方式を用いているため、AND方式と同様に本発明を用いた層間膜のリーク不良を検出することが可能である。本発明の層間膜QCを基板からの電子注入または基板への電子放出で行なった後,チップに切出されて樹脂封止された不揮発性半導体装置メモリアレイ等価回路図の別の例である。メモリが多数直列接続される場合はメモリアレイのVthは最も高いVthで決まる。注入・放出どちらの動作で層間膜リークが発生しても消去動作時にメモリセルVthの高いものが存在し,消去後Vth分布の上裾ばらつきとして認定される。
図7はNOR方式のフラッシュメモリの回路構成である。選択トランジスタを介さずにソース線SL、データ線BLにメモリセルが接続されている点でAND方式と回路構成が異なる。NOR方式において書込み動作は浮遊ゲート電極へのホットエレクトロンの注入,消去動作は浮遊ゲート電極からの基板への電子放出を用いている。NOR方式において消去動作はAND・NAND方式と同様、トンネル電流を利用したものであるため、前記に述べた工程を用いて層間膜のリーク不良を検査した上で半導体記憶装置を製造することが出来る。つまり、一プロセス・デバイス構造毎に図1に示す書込み特性を測定し、図2に示す所定時間放置前後のメモリセルVthの変化量を測定することにより、良品として扱うべき製品において到達すべきVthを決定するとともに、そのVthに到達するウエハ上のメモリを良品として出荷することが出来る。一方、NOR方式の書き込み動作はトンネル電流を利用せず、ホットエレクトロン注入によるため、印加される電圧も低く、層間膜に形成される電界が弱い。従って書込動作を用いては前記検査工程を用いて良品を選別することが出来ないが、消去動作をもちいて本発明の層間膜QCを行なうことができる。消去動作で層間膜リークが発生すると,消去メモリセルVthが通常より著しく上昇する現象として捉えることができるためである。
【0011】
図8は従来のキャパシタ耐圧と本発明の基板からの電子注入による層間膜QC(層間膜QC1)を組み合わせた場合のフローチャートである。基板への電子放出による層間膜QC(層間膜QC2)を組み合わせた場合についても同様の手順になる。製造工程を終了したウエハに対して,スクライブ領域に形成されたキャパシタを用いて電流-電圧特性によるトンネル膜,層間膜耐圧測定を行う(step1)。簡易キャパシタはトンネル膜と層間膜を分けて評価できるようにウエハ製造工程においてスクライブ領域に予め設けておく。測定は1箇所以上であり,すべての場所を測定しない場合は例えば隣合わない上下左右の複数点,例えば図12A〜Eに於ける測定を行うとウエハ上の広範囲にわたり耐圧を保証できるため望ましい。トンネル膜に関しては基板と浮遊ゲート電極間の電流―電圧特性を測定し,破壊耐圧を調べる。層間膜に関しても同様に浮遊ゲート電極と制御ゲート電極間の電流―電圧特性を測定し,破壊耐圧を調べる。破壊耐圧はばらつきを考慮した上で実際のメモリ動作で使用する最大印加電圧以上で測定を行う。測定値が必要とされる耐圧(Vgref1, Vgref2)以下であればそのウエハは不良と認定される(step2)。キャパシタの耐圧がパスしてもスクライブ領域に形成された単体メモリを使用した書込み(消去)Vth測定で測定値が必要とされる閾値電圧(Vthmin)以下(層間膜QC2の場合は閾値電圧以上)であった場合はそのウエハは不良となる確率が高いと認定され、生産ラインから取り除かれる。耐圧測定工程と既に述べた層間膜質を検査する工程は実際の製品とは異なる領域で、かつ、異なるTEGを用いて実施すれば、同じ測定装置内で同時に行うことができる。一方、耐圧検査はウエハ製造工程内でもトンネル膜、層間膜を形成する工程の後であれば行うことができるため、トンネル膜、層間膜形成工程後、メタル第1層形成後、又はメタル第3層形成後のいずれかまたはそれぞれに行い早期に不良ウエハを発見し、生産ラインから取り除いて経費の無駄となる工程を省略することもできる。また、チップ上のメモリセルに電気的ストレスを印加せずにすむ。耐圧測定工程及び層間膜質検査工程後、生産ラインより取り除かれていない残りのウエハはプローブ検査を経てチップに切出されて,樹脂封止される。
また、コスト低減実現の為には多値記憶技術が現在重要となってきている。不揮発性メモリの電荷保持特性はそれぞれの閾値電圧がある分布内に収まった上で,長時間放置しても分布と分布が重ならないことが要求される。複数の閾値電圧を設定する多値記憶では,2値記憶(1bit/cell)に比べてウインドウを広げざるを得ず、本発明にかかる層間膜の膜質検査は特に重要となる。メモリ閾値電圧は浮遊ゲート電極中の電荷量に依存する為,閾値電圧に依存してトンネル膜及び層間膜にかかる電界強度は大きく異なる。電荷注入時にトンネル膜にかかる電界強度は浮遊ゲート電極中に保持される電荷量の増加と共に低減されるが,層間膜にかかる電界は逆に増大する。多値記憶では層間膜にかかる高電界での現象に注意が必要となる。図15にトンネル膜厚9nm,層間膜厚14nmの場合を例にトンネル膜電界変化と層間膜電界変化をパルス印加時間に対して示す。例えば,メモリの閾値電圧が6Vの時の層間膜電界は6MV/cmであるが,ウインドウを広げることを想定して閾値電圧を8Vに設定すると層間膜にかかる電界は7MV/cmになる。実際のメモリでは書換え動作により膜の劣化が進む為,劣化性の不良現象が問題となる。多値記憶では特に中性閾値電圧より正方向に最も高く閾値電圧を設定する際に層間膜に高電界ストレスがかかる為,劣化性の層間膜長期信頼性が保証された層間膜が必要となる。本発明は層間膜の膜質に対する評価をすることができるため、2値のものだけでなく膜質の品質管理が厳しい多値においても有効である。
【0012】
本発明はスクライブ領域に形成されたメモリアレイ若しくは単体メモリを用いて同じウエハ内の層間膜の膜質を保証することができるため,実際製品として顧客に出荷されるチップ上の製品メモリセルに電気的なストレスを印加せずに済み、製品の書き換え耐性を下げることなく、良品を選別することが出来る。
【0013】
以上ウエハ状態での検査について述べたが、ウエハの一部の領域における測定結果が不良品として認定され、ウエハが製造ラインからはずされたとしても、良品として認定された製品出荷できるチップ数が顧客の要求数に満たなければ、製造ラインからはずされたウエハの中で有効な領域におけるチップだけを判別して取り出すことも必要となる。以下示すスクリーニング方法は先に述べた飽和しきい値測定又はキャパシタ耐圧測定で基準値を満たさなかったウエハに対してウエハ製造工程を最終段階まで施し、チップ切出しをしたものだけでなく、プローブ検査において不良品として取りはずされたものに適用してもよい。
【0014】
図9はチップ切出し後に行なう層間膜スクリーニング方法1を説明するフローチャートである。チップ上でアレイ状に配列されているメモリのある領域に対して書換え保証回数分書込み(消去)電圧を印加したと考えて,DC的に電圧印加を行なう。例えば,一回の書込み(消去)時間が1ms,書換え保証回数が10万回であれば100秒間ストレスを印加する。その後,一回消去して浮遊ゲート電極に蓄積された電子を追出し,ある閾値電圧に書込み(消去)を行なう。ある一定時間室温放置した時の閾値電圧分布の最小値が製品仕様から決められた基準値以下である場合に不良と判断する。この時,電子注入が消去動作である場合も書込みと消去を逆の組み合わせにして同様の方法でチップ単位での層間膜スクリーニングを行なえる。
【0015】
図10はチップ切出し後に行なう層間膜スクリーニング方法2を説明するフローチャートである。チップ上でアレイ状に配列されているメモリのある領域に対して書換え保証回数分消去(書込み)電圧を印加したと考えて,DC的に電圧印加を行なう。例えば,一回の消去(書込み)時間が1ms,書換え保証回数が10万回であれば100秒間ストレスを印加する。その後,一回書込んでから消去(消去してから書込み)を行なう。この時、電子放出が書き込み動作である場合も書込みと消去を逆の組み合わせにして同様の方法でチップ単位での層間膜スクリーニングを行なえる。ある一定時間室温放置した時の閾値電圧分布の最大値が製品仕様から決められた基準値以上である場合に不良と判断する。
【0016】
以上、フラッシュメモリを実施例として説明したが、本試験工程を取り入れた半導体装置の製造方法は2層ゲート構造を有するEPROM、EEPROM等の不揮発性半導体メモリにおいても有効である。
【0017】
【発明の効果】
以上説明したように,この発明によれば,良品のメモリセルにストレスを与えることなく,製品チップと同一プロセスでかつ,同一のプロセスダメージが与えられたスクライブ領域に形成されたメモリアレイ若しくは単体メモリを用いて,短時間かつ簡便な測定によるメモリセル層間膜QC方法を含んだ不揮発性半導体装置の製造方法を提供できる。又,チップに切出した後,チップ単位での層間膜スクリーニングが行なえる。
【図面の簡単な説明】
【図1】不揮発性半導体メモリアレイの書込み(消去)特性。
【図2】不揮発性半導体メモリアレイの放置特性。
【図3】AND型フラッシュメモリアレイの等価回路図。
【図4】本発明による層間膜QC方法を施した不揮発性半導体製造装置の製造方法を示すフローチャート。
【図5】製造ラインにおける本発明による層間膜QC方法を施した不揮発性半導体製造装置の製造方法を示すフローチャート。
【図6】NAND型フラッシュメモリアレイの等価回路図。
【図7】NOR型フラッシュメモリアレイの等価回路図。
【図8】キャパシタ耐圧と本発明による層間膜QC方法を施した不揮発性半導体製造装置の製造方法を示すフローチャート。
【図9】本発明によるチップ単位での層間膜スクリーニング方法1を示すフローチャート。
【図10】本発明によるチップ単位での層間膜スクリーニング方法2を示すフローチャート。
【図11】不揮発性半導体メモリ断面の模式図。
【図12】ウエハ上のチップ及びスクライブ領域に形成された試験用パターンの配置図。
【図13】従来トンネル膜及び層間膜QC法を施した不揮発性半導体製造装置の製造方法を示すフローチャート。
【図14】不揮発性半導体装置の書込み(消去)後高温放置試験を行った前後の閾値電圧分布を示す図。
【図15】基板からのトンネル注入によるメモリ書込み(消去)特性とトンネル膜電界及び層間膜電界の解析結果。
【図16】基板からの電子注入が行なわれた時の層間膜電界と層間膜厚の関係に関する解析結果。
【図17】基板への電子放出が行なわれた時の層間膜電界と層間膜厚の関係に関する解析結果。
【図18】層間膜リーク電流と層間膜電界の関係に関する解析結果。
【図19】基板からの電子の流れの模式図。
【符号の説明】
1 半導体基板,
2 トンネル膜,
3 ソース/ドレイン領域,
4 浮遊ゲート電極,
5 層間膜,
6 制御ゲート電極,
7 チップ,
8 検査用パターン。
[0001]
BACKGROUND OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an interlayer film QC (Quality Control) method, an interlayer film screening method, and a manufacturing method thereof for a semiconductor nonvolatile memory, in particular, a nonvolatile semiconductor memory device in which a memory cell has a two-layer gate structure including a floating gate and a control gate. .
[0002]
[Prior art]
In the nonvolatile semiconductor memory having the two-layer gate structure shown in the cross-sectional view of FIG. 11, the amount of charge accumulated in the floating gate electrode 4 is controlled by injecting / emitting electrons through the tunnel film 2. Yes. If for some reason electrons escape from the floating gate electrode 4 and the threshold voltage distribution deviates from the specified range, the product is determined to be defective. This failure is called retention failure. The path through which electrons escape is either the tunnel film 2 or the interlayer film 5 deposited between the floating gate electrode 4 and the control gate electrode 6. The retention failure is roughly classified into an initial failure and a failure that occurs after the rewrite operation.
Conventionally, the initial failure is inspected by forming a simple capacitor capable of evaluating the tunnel film and the interlayer film separately at different locations on the same wafer on which the product chip is manufactured, for example, a scribe region, as shown in FIG. At the time when the capacitor is formed or when all the process steps are completed, the withstand voltage test has been performed on the tunnel film and the interlayer film individually. If the breakdown voltage test shows that the breakdown voltages Vgref1 and Vgref2 are higher than the reference, the subsequent process (chip cutting, resin sealing, screening) is performed and the product is shipped. The measurement is performed at one or more locations, and when not measuring all locations, for example, measurement is performed at a plurality of points (A, B, C, D, and E in FIG. 12) that are not adjacent to each other. There are no restrictions on the number of measurement points.
FIG. 13 shows a flowchart of the QC method (Quality Control Method) relating to the above-described conventional tunnel film and interlayer film. A wafer that passed this initial defect inspection was cut into chips and enclosed in a package. FIG. 14 schematically shows a test result of charge retention characteristics using the product chip manufactured in this way. In this test, a rewrite stress equivalent to the actual operation is applied to the packaged product chip, electrons are once emitted from the floating gate electrode, and then electrons from the substrate are again applied to the floating gate electrode so as to reach a certain threshold voltage. After the injection, the phenomenon in which electrons escape from the floating gate electrode is observed. Moreover, in order to accelerate this phenomenon, it may be left in a high temperature state. In the case of a normal chip, the threshold voltage Vth distribution of each memory cell is measured at the position indicated by the broken line as a whole when the threshold voltage Vth distribution is again measured after writing as shown by the solid line in FIG. Or change very little. However, since a large number of memory cells are arranged in an actual product, if a large amount of electrons escapes for some reason even in a very small part of the cell, the threshold voltage is lowered and a product failure is caused. A broken line on the lower side of FIG. 14 schematically shows a state in which a threshold voltage drop has occurred in some memory cells of the defective product after being left unattended. Such products are called spilled defects.
As a method for inspecting a drop defect, which is a defect that occurs after a rewrite operation of a nonvolatile semiconductor memory, there is a conventional method of determining by applying a write / erase cycle stress. However, this method is a destructive test, and a certain amount of stress is applied to non-defective products. In addition, it took time for the test, and there was a problem in terms of cost. As a method for improving this point, in the invention disclosed in Japanese Patent Application Laid-Open No. 9-35500, a write process for all the memory cells and a weak erase that makes the threshold voltage distribution of all the memory cells positive are performed. Disclosed is a method capable of non-destructive screening by measuring a threshold voltage distribution of all memory cells and determining a defect when a certain value exceeds a predetermined value in statistical processing of all distributions. is doing. In this method, stress is applied to the tunnel film to evaluate the quality of the tunnel film. In the invention disclosed in Japanese Patent Laid-Open No. 9-320299, after a rewrite test, a write or erase operation is performed, a threshold value Vth is measured, an electric field of ± 5 MV / cm or less is applied to the tunnel film, A screening method is disclosed in which a fluctuation amount of the value Vth exceeds a certain value is judged as defective. In both cases, the film quality of the tunnel film was evaluated.
[0003]
[Problems to be solved by the invention]
Conventionally, in the measurement using a capacitor, there is no quantitative guideline for connecting a decrease in breakdown voltage and the above-mentioned defective product spillage, and a retention test after rewriting the guaranteed number of times at the product level has not been performed. In addition, since the yield after cutting into a chip and enclosing the package affects the cost, the deterioration of the deterioration that cannot be detected by the initial failure has been a major obstacle to cost reduction. Therefore, the long-term reliability of the interlayer film can be easily and quickly achieved by inspecting one memory cell (single unit) or memory array formed in, for example, a scribe region other than the memory cell region without applying stress to the memory cell. Therefore, a method for selecting a product that has been secured is desired. A method of manufacturing a semiconductor device having a non-volatile semiconductor memory selected as good by the inspection process is required.
In particular, from the viewpoint of improving the writing speed in the nonvolatile semiconductor memory, scaling of the tunnel film (2 in Fig. 11) and interlayer film (5 in Fig. 11) or increasing the operating voltage is effective. It is important to anticipate the reliability problems that occur. Therefore, the inventors examined the case where the interlayer film was scaled and the operating voltage was increased. Assuming tunnel injection from the substrate, the relationship between the interlayer electric field strength E, the tunnel thickness and the interlayer thickness is shown in FIG. The memory gate length / gate width were constant, the voltage applied to the control gate electrode was constant (FIG. 16A), the memory neutral threshold voltage, and the memory threshold voltage were constant. For example, when the tunnel film thickness is 10 nm, if the interlayer film thickness is 15.5 nm, the interlayer film electric field is 6.3 MV / cm. However, if the interlayer film thickness is increased to 12.5 nm, the interlayer film electric field is 7.3 MV / cm. Increase to. This tendency is similar to the scaling of the interlayer film thickness even when the tunnel film thickness scaling is advanced. Therefore, it is understood that a guideline for the allowable interlayer film electric field is important from the viewpoint of reliability when the interlayer film thickness scaling is advanced. As for the voltage applied to the control gate electrode, FIG. 16B shows the result of examining the tunnel film of 8.5 nm as an example when the voltage is increased by +1 V in order to improve the operation speed, for example. It can be seen that the interlayer electric field increases by about 0.25 MV / cm at any interlayer thickness.
[0004]
FIG. 17 shows the results of examining the relationship between the interlayer electric field strength (absolute value), tunnel thickness, and interlayer thickness when electrons are emitted from the floating gate electrode to the substrate by a tunnel current. Preconditions were constant memory gate length / width, constant voltage applied to the control gate electrode (FIG. 17A), memory neutral threshold voltage, and memory threshold voltage after electron emission. The voltage applied to the control gate electrode was analyzed, for example, when it was lowered by 1 V and is shown in FIG. 17B. It can be seen that even when the threshold voltage is set to a constant value lower than the neutral threshold voltage, the scaling of the tunnel film and the interlayer film increases the interlayer film electric field strength during the operation of emitting electrons from the control gate electrode. From the above considerations, scaling of the tunnel film / interlayer film and increase in operating voltage tend to increase the electric field of the interlayer film, and it can be said that quality assurance of the interlayer film is an important issue in the future.
[0005]
[Means for Solving the Problems]
Therefore, a plurality of test memory cells are formed on the wafer by a process of forming a nonvolatile semiconductor memory device including a memory cell having a two-layer gate structure including a floating gate and a control gate on the semiconductor wafer, Continuous writing is performed by applying a pulse voltage or a DC voltage to the control gate electrode of the test memory cell for a first predetermined time, and the first memory threshold voltage Vth of the floating gate electrode after writing is measured. After the memory cell is left for a second predetermined time, the second memory threshold voltage Vth of the floating gate electrode is measured again to obtain a change amount from the measured value, and the change amount of the memory threshold voltage Vth is 0 or A lower limit value of a voltage region where the first memory threshold voltage Vth exists when approximating 0 is set, and the first memory threshold voltage Vth of the test memory cell is the voltage When reaching the band, a non-volatile semiconductor memory device on the appropriate wafer proposes a method for producing a non-defective determining semiconductor device.
In the above method, the case where writing is performed by injection from the substrate has been described as an example, but the same method can be applied to the case of a nonvolatile semiconductor memory in which erasing is performed by injection from the substrate. That is, a plurality of test memory cells are formed on a wafer by a process of forming a nonvolatile semiconductor memory device including a memory cell having a double-layer gate structure including a floating gate and a control gate on a semiconductor wafer, Continuous erasure is performed by applying pulse voltage or DC voltage to the control gate electrode of the test memory cell for a first predetermined time, and the first memory threshold voltage Vth of the floating gate electrode after erasure is measured. After the memory cell is left for a second predetermined time, the second memory threshold voltage Vth of the floating gate electrode is measured again to obtain a change amount from the measured value, and the change amount of the memory threshold voltage Vth is 0 or An upper limit value of a voltage region in which the first memory threshold voltage Vth exists when approximating 0 is determined, and the first memory threshold voltage Vth of the test memory cell is the voltage region. When it reaches the a method for producing a non-defective determining semiconductor device nonvolatile semiconductor memory device on that wafer.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
First, a nonvolatile semiconductor memory to which the present invention is applied will be described. A cross-sectional view of a memory cell of the nonvolatile semiconductor memory is shown in FIG. An N-type diffusion layer 3 is formed on the P-type substrate 1 by implanting N-type impurities (As) ions, and a first insulating film (tunnel film) 2, a second insulating film (interlayer film) 5, and a floating gate A structure having an electrode 4 and a control gate electrode 6 is taken. The first insulating film is Si0 2 The second insulating film is made of Si by the oxide film formed by Three N Four And Si0 2 Polycrystalline polysilicon is used for the floating gate electrode layer 4 and the control gate electrode layer 6 which are composed of laminated films. Although not shown in the drawings, in order to alleviate the electric field concentration in the source / drain regions, there is a configuration having an LDD structure in which N− ions are implanted and a pocket structure in which P + ions are implanted. Manufacture of a wafer equipped with a nonvolatile memory is performed by sequentially performing a well formation process, a gate formation process, a source / drain formation process, a wiring process, and a protective film formation process. It differs from other memories such as SRAM and DRAM in that a tunnel film, a floating gate electrode, an interlayer film, and a control gate electrode are sequentially formed on the semiconductor substrate surface in the gate formation step. The wafer manufacturing process refers to the above process group.
FIG. 3 shows an equivalent circuit diagram of an AND type flash memory array configuration. In the AND type flash, as shown in the figure, the memory is connected in parallel between the bit line and the source line of the array. Accordingly, the low Vth bit in the array has a configuration that affects the Vth distribution variation of the product. At the time of writing, a positive high voltage is applied to the word line of the selected bit, and electrons are injected from the substrate. At the time of erasing, electrons are emitted by a negative voltage in units of word lines. In actual memory operation, both electron injection from the substrate and electron emission from the floating gate electrode are thus performed. In the electrical stress test for the purpose of the interlayer film QC, a positive high voltage is applied while the memory threshold voltage is high, or a negative high voltage is intentionally applied while the memory threshold voltage is low. Accelerate deterioration at. That is, in the former, the interlayer film is deteriorated by continuously injecting the substrate, and the memory cell Vth reaches a certain saturation value when the condition of (injection current from the substrate) = (interlayer film leakage) is reached. Even if the operation is continued, the memory cell Vth does not rise. In the latter case, the interlayer film deteriorates by continuously emitting electrons to the substrate, and when the condition of (emission current to the substrate) = (interlayer film leak) is reached, the memory cell Vth reaches a certain saturation value and pulses. Even if is applied, the memory cell Vth does not decrease. Here, as an example, let us consider a deterioration phenomenon in which injection from a substrate is a write operation for an AND type flash memory with 100,000 rewrite guarantees.
In a flash memory, for example, electrons are accumulated in a floating gate electrode by tunnel injection from a substrate. At this time, the threshold voltage of the memory increases as the amount of charge accumulated in the floating gate electrode increases. On the other hand, when a positive voltage is applied to the control electrode, the electric field applied to the interlayer film becomes stronger as the amount of charge in the floating gate electrode increases. Therefore, the interlayer leakage current cannot be ignored as the threshold voltage increases. When the tunnel current injected into the floating gate electrode through the tunnel film (IFTO in FIG. 19) and the component leaking to the control gate electrode through the interlayer film (IONON in FIG. 19) are balanced, The threshold reaches a certain saturation value. This is called saturation Vth. Since this saturation Vth reflects the magnitude of the interlayer film leak, it is possible to discuss the magnitude of the interlayer film leak by comparing the magnitude of the saturation Vth under a constant write (erase) condition. FIG. 18 shows the results of analyzing the interlayer film leakage current and the interlayer film electric field in order to examine the magnitude of the saturation Vth and the interlayer film leakage. This analysis utilizes the property that the tunnel current and the interlayer current become equal when saturation Vth is reached. From this study, when the saturation Vth is constant, it means that the larger the absolute value of the voltage applied to the control gate electrode is, the larger the interlayer leakage current is. When the applied voltage is constant, the higher the saturation Vth is, the higher the interlayer film is. It can be seen that this means less leakage current. Therefore, in actual evaluation, if the magnitude of the memory cell Vth after pulse application when the applied voltage is constant is compared, it can be considered that the magnitude of the interlayer film leakage is monitored. When the saturation Vth is higher than a certain value, it can be determined that no defect due to interlayer film leakage occurs.
[0007]
FIG. 1 shows memory write characteristics for explaining the interlayer film QC method of the present invention. When the substrate injection is an erasing operation, the same argument holds even if the writing is replaced with erasing. In an actual product, the write (erase) operation is performed in a few milliseconds or less. However, in order to examine how the interlayer leak affects the memory cell Vth, the pulse is continuously applied without performing the erase (write) operation. Is applied. The memory cell Vth at the midway point is plotted. At the beginning of the pulse application, the memory cell Vth rises with the elapsed time, and it is determined that there is no interlayer film leakage. Further, when the pulse application is continued, the plot characteristic A of FIG. 1 shows that the plot curve of the memory cell Vth of a certain memory cell changes from the rise to the horizontal state. When this horizontal state (state in which the rise of the memory cell Vth is no longer seen between adjacent plot points) is reached, it is determined that the condition of (injection current from the substrate) = (interlayer film leakage) has been reached. The memory cell Vth at this time is called saturation Vth. The leak generated in the interlayer film at this point is a result of the breakdown of the interlayer film, and does not recover thereafter. The write characteristics A shown in FIG. 1 are measurement results for a plurality of memory cells, all of which reach the saturation Vth and then finish the measurement, or the subsequent plot of the memory cell Vth falls below the saturation Vth, etc. Is seen. On the other hand, in the write characteristic B, the memory cell Vth continues to rise continuously during the pulse application for 100 seconds and approaches the horizontal state after exceeding 8 V, but is still completely horizontal. In this example, the saturation Vth is not reached. That is, the leak of the interlayer film does not occur to the extent that the detection accuracy of the measuring apparatus can be detected, and it can be considered that the interlayer film is not broken.
The upper limit of the pulse application time in FIG. 1 can be determined, for example, by (write time with write (erase) latest bit) × (rewrite guarantee count). In this case, if the write time of the latest bit is 1 ms, (1 ms) × (100000) = (100 s). Since no erase operation is performed, it is considered that stress is applied to the interlayer film more than when rewriting in an actual product. In the example considered here, if the saturation Vth is reached within 100 seconds of continuous writing (write characteristic A), it means that an interlayer film leak has occurred at that time, so the product is within the guaranteed number of rewrites. It can be determined that there is a high possibility of being defective. On the other hand, if the saturation Vth is not reached even after 100 seconds of continuous writing (writing characteristics B), it is determined that the product is highly likely not to cause an interlayer film leak even if the guaranteed number of rewritings is used. The memory cell Vth measured after this predetermined pulse application time (100 seconds) is referred to as arrival Vth. The reaching Vth (A) of the write characteristic A reaches the saturation Vth. The reaching Vth (B) of the write characteristic B does not reach the saturation Vth. It is noted that reaching Vth (B)> arriving Vth (A).
In order to confirm whether or not the reached Vth has reached the saturation Vth after the above-mentioned pulse continuous writing, a room temperature standing test from the reaching Vth was performed on various samples after continuous writing. The examination results are shown in FIG. In this test, in order to facilitate the detection of low Vth cells due to interlayer film leakage, a parallel-connected all-select 32 kb memory array formed in the scribe region by the same process as the product was used. The pulse application voltage is 18V, which is the normal write voltage of the product, and 19V, which is 1V higher as an accelerated test that applies a load to the interlayer film. In general, the write (erase) characteristics of a flash memory differ by about one digit in pulse application time to reach the same memory cell Vth when the write (erase) voltage is different by 1V. The pulse application time in the test is 100 seconds for 18V and 10 seconds for 19V. As a sample, a plurality of memory arrays having different process conditions were used.
The horizontal axis of FIG. 2 shows the reached Vth after continuous pulse writing (erasing), and the vertical axis shows the memory cell Vth measured again after standing at room temperature for one day as the amount of change from the above reached Vth. In the test results shown in FIG. 2, the amount of change on the vertical axis of the points plotted in the region where the reached Vth does not reach 8 V is a negative value. This is presumed that the charge accumulated in the floating gate electrode leaked through the interlayer film when it was left after the continuous writing (erasing) of the pulse with a load applied to the interlayer film. That is, it is determined that the samples at these plot points have reached saturation Vth during the pulse continuous write (erase) test. On the other hand, in the test results plotted in FIG. 2, the points plotted in the region where the reached Vth is 8V or more indicate that the value of the change amount on the vertical axis is almost 0V. Therefore, it is determined that the samples at these plot points do not reach the saturation Vth during the pulse continuous write (erase) test, and no leak occurs through the interlayer film. As a result, if the reached Vth reaches a certain boundary value or more, the interlayer film may leak even after the interlayer film is subjected to a load that is more than the number of product rewrites. It was found to be low and could be a criterion for guaranteeing the quality of the interlayer film.
The test results shown in FIG. 2 show that the acceleration test was performed in the same way as pulsed continuous writing (erasing) was performed on various samples using a writing (erasing) voltage of 18 V that was practically used when writing (erasing) the product. Even at a write (erase) voltage of 19V, substantially the same results are obtained for similar samples. Therefore, it is determined that the same result can be obtained by the accelerated test.
By analyzing the above test results, it is judged to be effective to determine the following criteria for assuring the quality after the rewriting operation of the interlayer film of the nonvolatile semiconductor memory. For the memory cell to be tested, it is conceivable to use a memory array or a single memory or a sample chip built in a scribe area of a wafer, for example, in the same process as the nonvolatile semiconductor memory to be evaluated. For these memory cells to be tested, a voltage is applied to the control gate electrode for a certain period of time, such as (actual write (erase) time) x (guaranteed number of rewrites in the product), in a DC or continuous pulse form. To apply stress to the interlayer film. The arrival Vth of each memory cell at that time is measured, and the amount of change in the arrival Vth is measured after being left for a predetermined time. Based on these data, the distribution shown in Fig. 2 is obtained, and a group in which the amount of change in the arrival Vth of those data can be regarded as almost zero is separated from another group in which the amount of change in the arrival Vth shows a negative value. The value of the reaching Vth of the boundary to be determined is defined as the “selection reference threshold Vth”. The significance of this selection reference threshold Vth is to apply a DC or continuous pulse voltage for a certain time to a certain memory cell to be tested, apply stress to the interlayer film, and then measure the arrival Vth. If the arrival Vth is larger than the sorting reference threshold value Vth, the nonvolatile semiconductor memory composed of other memory cells manufactured by the same process on the wafer on which the memory cell to be tested is formed is Even after the number of rewrite guarantees in the product has been rewritten, it is possible to determine that the probability of occurrence of spilling defects due to interlayer film leakage is extremely low (interlayer film QC method).
It should be noted that the method of determining the “selection reference threshold value Vth” is not necessarily highly reliable if the lower limit value of a group of sample values in which the amount of change in the reached Vth can be regarded as almost zero. For example, an appropriate safety factor is estimated and determined in consideration of a circuit operation margin, a process variation margin, and the like. In the example of the distribution as shown in FIG. 2, for example, the “selection reference threshold Vth” is set to 8.5V.
The voltage applied to the control gate electrode and the pulse application time are appropriately determined depending on the actual device shape, memory structure constant, tunnel film quality, interlayer film quality, product specifications, etc., and are not unique. In addition, a test using not only a memory array but also a single memory cell formed in the scribe region is possible, and the interlayer QC method is rather performed using a single memory. In order to shorten the evaluation time, it is effective to set the applied voltage higher than the operating voltage of the product.
[0008]
FIG. 4 is a flowchart showing a process for obtaining a “selection reference threshold value Vth” that must be reached in advance when the interlayer film QC method of the present invention is applied to a semiconductor device mass production line. After determining the device / circuit configuration and process, a semiconductor memory based on the above process is manufactured on the wafer. The steps performed in the wafer manufacturing process are as described above. Thereafter, DC or pulse continuous writing (erasing) is performed on the control gate electrode for a certain period of time as described above for each memory cell of the plurality of test target memory cells, and a load is applied to the interlayer film. After a certain time has elapsed, the arrival Vth of the floating gate electrode of the memory cell to be tested is measured. Then, the amount of change in the reached Vth is measured by leaving it at room temperature or high temperature for a predetermined time.
The saturation characteristic of the threshold value Vth of each memory cell is measured by the above-described continuous writing operation or erasing operation and the subsequent leaving process. The threshold voltage Vth is greater than the neutral threshold voltage due to electron injection (write operation) from the substrate due to continuous application of pulses, and the threshold value is neutral due to electron emission (erase operation) toward the substrate. Take a value smaller than the threshold voltage.
The “selection reference threshold value Vth” is determined by the above-described method based on the measurement data of the arrival Vth of each memory cell and the change amount thereof. This processing is performed by computer processing that collects safety factors such as circuit operation margins and process variation margins together with the measurement data of each memory cell.
[0009]
FIG. 5 shows a flowchart including an interlayer film QC method process performed for each wafer in the semiconductor device manufacturing line using the “selection reference threshold value Vth”. A DC or pulse is continuously written to the control gate electrode for a predetermined time as described above to the memory cell to be tested built in the wafer that has undergone the wafer manufacturing process, and a load is applied to the interlayer film. After a certain time has elapsed, the arrival Vth of the floating gate electrode of the memory cell to be tested is measured. In this measurement, quality can be ensured over a wide range by obtaining data at a plurality of points on the wafer. By writing operation (electron injection operation from the substrate to the floating gate), wafers whose measured Vth is below the threshold “selection reference threshold Vth” (Vthmin) are extracted from the production line and extracted. Subsequent steps are performed only for the remaining wafers that have not been removed. When performing measurement by erasing operation (electron emission operation from the floating gate to the substrate), wafers whose measured arrival Vth is equal to or higher than the threshold “selection reference threshold Vth” (Vthmin) are used. It is necessary to pay attention to the fact that the threshold value “selection reference threshold value Vth” (Vthmin) serving as a reference for selection is different for the remaining wafers that have been extracted from the production line and not extracted. There is. Although it is desirable to inspect the quality of the interlayer film by measuring a threshold value for all wafers flowing on the production line, if it can be confirmed that there are few wafers to be extracted as poor quality without satisfying the selection reference threshold value, for example, 10 It is also conceivable to inspect only a specific wafer as one piece of measurement.
After each of the above steps (wafer manufacturing step, arrival Vth measurement step, and step of taking out a wafer that does not satisfy the standard), probe inspection is performed. Normally, the wafer is baked in a state where light writing (erasing) is performed by substrate injection without applying rewriting stress, and an initial failure test of charge retention characteristics is performed. As a result, if it is judged as a non-defective product, it is cut out into a chip and packaged. Only products that are judged as non-defective products after screening (screening test) after assembly are shipped. FIG. 14 schematically shows the test results of the charge retention characteristics at room temperature using the product chips extracted after assembly. A rewrite stress equivalent to actual operation is applied to the packaged product chip, electrons are once emitted from the floating gate electrode, and then injected again from the substrate to the floating gate electrode so as to reach a certain threshold voltage. We observe the phenomenon of electrons coming out of the gate electrode. If it is a normal chip, the threshold voltage distribution as a whole moves in parallel or hardly moves.
[0010]
FIG. 6 shows a circuit configuration of a NAND flash memory. The source / drain paths of the plurality of memory cells are connected in series, and are connected to the bit line BL via a selection transistor whose gate is connected to the selection lines BDS / BSS. In the flash memory of this system, electron injection from the substrate is used for the write operation, and electron emission to the substrate is used for the erase operation. Even if the AND method and the rewrite unit are different, the write / erase operation mechanism uses the same method using the tunnel current, so that the leak failure of the interlayer film using the present invention can be detected as in the AND method. Is possible. FIG. 5 is another example of an equivalent circuit diagram of a nonvolatile semiconductor device memory array in which an interlayer film QC according to the present invention is cut by a chip after resin injection and electron injection from a substrate or electron emission to a substrate. When a large number of memories are connected in series, the Vth of the memory array is determined by the highest Vth. Even if an interlayer film leak occurs in either the injection or emission operation, a memory cell having a high memory cell Vth exists during the erase operation, and is recognized as a variation in the upper skirt of the Vth distribution after erasure.
FIG. 7 shows a circuit configuration of a NOR flash memory. The AND system is different from the circuit configuration in that the memory cells are connected to the source line SL and the data line BL without going through the selection transistor. In the NOR method, the write operation uses hot electron injection to the floating gate electrode, and the erase operation uses electron emission from the floating gate electrode to the substrate. Since the erase operation in the NOR method uses a tunnel current as in the AND / NAND method, the semiconductor memory device can be manufactured after inspecting for a leak defect of the interlayer film using the above-described steps. . That is, by measuring the write characteristics shown in FIG. 1 for each process / device structure and measuring the change amount of the memory cell Vth before and after leaving for a predetermined time shown in FIG. The memory on the wafer that reaches the Vth can be shipped as a good product. On the other hand, the NOR type write operation does not use a tunnel current and uses hot electron injection, so that the applied voltage is low and the electric field formed in the interlayer film is weak. Therefore, the non-defective product cannot be selected using the inspection process by using the write operation, but the interlayer film QC of the present invention can be performed by using the erase operation. This is because if an interlayer film leak occurs during the erase operation, it can be regarded as a phenomenon in which the erase memory cell Vth rises markedly.
[0011]
FIG. 8 is a flowchart in the case of combining a conventional capacitor breakdown voltage and an interlayer film QC (interlayer film QC1) by electron injection from the substrate of the present invention. The same procedure is performed when the interlayer film QC (interlayer film QC2) by electron emission to the substrate is combined. With respect to the wafer that has completed the manufacturing process, the withstand voltage of the tunnel film and the interlayer film is measured based on the current-voltage characteristics using a capacitor formed in the scribe region (step 1). The simple capacitor is provided in advance in the scribe region in the wafer manufacturing process so that the tunnel film and the interlayer film can be evaluated separately. The measurement is performed at one or more locations, and when not measuring all locations, for example, measurement at a plurality of points on the upper, lower, left, and right sides, for example, in FIGS. For the tunnel film, measure the current-voltage characteristics between the substrate and the floating gate electrode and examine the breakdown voltage. For the interlayer film, measure the current-voltage characteristics between the floating gate electrode and the control gate electrode, and investigate the breakdown voltage. The breakdown voltage is measured at the maximum applied voltage or higher used in actual memory operation in consideration of variation. If the measured value is less than the required breakdown voltage (Vgref1, Vgref2), the wafer is recognized as defective (step 2). Less than the threshold voltage (Vthmin) required for the measured value in the write (erase) Vth measurement using a single memory formed in the scribe area even if the withstand voltage of the capacitor passes (in the case of the interlayer film QC2, the threshold voltage or more) If it is, the wafer is recognized as having a high probability of failure and is removed from the production line. If the withstand voltage measuring step and the already described step of inspecting the interlayer film quality are performed in different regions and using different TEGs, they can be performed simultaneously in the same measuring apparatus. On the other hand, since the withstand voltage inspection can be performed even after the step of forming the tunnel film and the interlayer film even in the wafer manufacturing process, after the tunnel film and interlayer film formation process, after the formation of the first metal layer, or after the formation of the third metal layer. It is also possible to omit a process that wastes costs by detecting a defective wafer at an early stage and removing it from the production line either or after each layer formation. Also, it is not necessary to apply electrical stress to the memory cells on the chip. After the pressure resistance measurement process and the interlayer film quality inspection process, the remaining wafers that have not been removed from the production line are cut out into chips through probe inspection and sealed with resin.
In order to realize cost reduction, multilevel storage technology is now important. The charge retention characteristics of the nonvolatile memory are required to be within a certain distribution of the respective threshold voltages, and the distribution and the distribution do not overlap even if left for a long time. In multi-value storage in which a plurality of threshold voltages are set, the window must be expanded compared to binary storage (1 bit / cell), and the film quality inspection of the interlayer film according to the present invention is particularly important. Since the memory threshold voltage depends on the amount of charge in the floating gate electrode, the electric field strength applied to the tunnel film and the interlayer film varies greatly depending on the threshold voltage. The electric field strength applied to the tunnel film during charge injection is reduced with an increase in the amount of charge held in the floating gate electrode, but the electric field applied to the interlayer film increases conversely. In multi-value storage, attention must be paid to the phenomenon at a high electric field applied to the interlayer film. FIG. 15 shows the tunnel film electric field change and the interlayer film electric field change with respect to the pulse application time in the case where the tunnel film thickness is 9 nm and the interlayer film thickness is 14 nm. For example, when the threshold voltage of the memory is 6V, the interlayer electric field is 6 MV / cm, but when the threshold voltage is set to 8V assuming that the window is widened, the electric field applied to the interlayer film becomes 7 MV / cm. In an actual memory, the deterioration of the film progresses due to the rewriting operation, and therefore, a degradable defect phenomenon becomes a problem. In multi-level memory, when the threshold voltage is set higher than the neutral threshold voltage in the positive direction, a high electric field stress is applied to the interlayer film, so an interlayer film that guarantees long-term reliability of the degrading interlayer film is required. . Since the present invention can evaluate the film quality of the interlayer film, it is effective not only in binary values but also in multivalued conditions where quality control of film quality is severe.
[0012]
Since the present invention can guarantee the film quality of the interlayer film in the same wafer by using a memory array or a single memory formed in the scribe region, the product memory cell on the chip shipped to the customer as an actual product is electrically connected. It is possible to select non-defective products without applying a significant stress and without reducing the rewrite resistance of the product.
[0013]
Although the inspection in the wafer state has been described above, even if the measurement results in some areas of the wafer are certified as defective products and the wafer is removed from the production line, the number of chips that can be shipped as good products is the customer If the required number is not satisfied, it is necessary to discriminate and take out only the chips in the effective area of the wafer removed from the production line. The screening method shown below applies not only to wafers that did not satisfy the reference values in the saturation threshold measurement or capacitor breakdown voltage measurement described above until the final stage, and not only to chip cutting but also in probe inspection. You may apply to what was removed as inferior goods.
[0014]
FIG. 9 is a flowchart for explaining an interlayer film screening method 1 performed after chip cutting. Considering that a write (erase) voltage has been applied to a certain area of the memory arranged in an array on the chip, the voltage is applied in a DC manner. For example, if the time for one write (erase) is 1 ms and the guaranteed number of rewrites is 100,000, stress is applied for 100 seconds. Thereafter, the electrons erased once and the electrons accumulated in the floating gate electrode are expelled and written (erased) at a certain threshold voltage. When the minimum value of the threshold voltage distribution when left at room temperature for a certain period of time is less than or equal to the reference value determined from the product specifications, it is determined as defective. At this time, even when the electron injection is an erasing operation, the interlayer film screening can be performed on a chip basis by a similar method with the combination of writing and erasing reversed.
[0015]
FIG. 10 is a flowchart for explaining the interlayer film screening method 2 performed after chip cutting. Assuming that the erase (write) voltage is applied to a certain area of the memory arranged in an array on the chip, the voltage is applied in a DC manner. For example, if the erase (write) time is 1 ms and the guaranteed number of rewrites is 100,000 times, stress is applied for 100 seconds. After that, erase once (write after erase) after writing once. At this time, even when the electron emission is a write operation, interlayer film screening can be performed on a chip basis by the same method with the reverse combination of write and erase. When the maximum value of the threshold voltage distribution when left at room temperature for a certain period of time is equal to or greater than a reference value determined from product specifications, it is determined as defective.
[0016]
As described above, the flash memory has been described as an example. However, the method of manufacturing a semiconductor device incorporating this test process is also effective in a nonvolatile semiconductor memory such as EPROM and EEPROM having a two-layer gate structure.
[0017]
【The invention's effect】
As described above, according to the present invention, a memory array or a single memory formed in a scribe region in the same process as the product chip and subjected to the same process damage without giving stress to a good memory cell. Can be used to provide a method of manufacturing a nonvolatile semiconductor device including a memory cell interlayer QC method by simple measurement in a short time. In addition, after cutting into chips, interlayer film screening can be performed in chip units.
[Brief description of the drawings]
FIG. 1 shows a write (erase) characteristic of a nonvolatile semiconductor memory array.
FIG. 2 shows neglect characteristics of a nonvolatile semiconductor memory array.
FIG. 3 is an equivalent circuit diagram of an AND type flash memory array.
FIG. 4 is a flowchart showing a manufacturing method of a nonvolatile semiconductor manufacturing apparatus subjected to an interlayer film QC method according to the present invention.
FIG. 5 is a flowchart showing a manufacturing method of a nonvolatile semiconductor manufacturing apparatus to which an interlayer film QC method according to the present invention is applied in a manufacturing line.
FIG. 6 is an equivalent circuit diagram of a NAND flash memory array.
FIG. 7 is an equivalent circuit diagram of a NOR type flash memory array.
FIG. 8 is a flowchart showing a manufacturing method of a nonvolatile semiconductor manufacturing apparatus to which a capacitor breakdown voltage and an interlayer film QC method according to the present invention are applied.
FIG. 9 is a flowchart showing an interlayer film screening method 1 in units of chips according to the present invention.
FIG. 10 is a flowchart showing an interlayer film screening method 2 in units of chips according to the present invention.
FIG. 11 is a schematic cross-sectional view of a nonvolatile semiconductor memory.
FIG. 12 is a layout view of test patterns formed on a chip and a scribe region on a wafer.
FIG. 13 is a flowchart showing a conventional method for manufacturing a nonvolatile semiconductor manufacturing apparatus subjected to a tunnel film and interlayer film QC method.
FIG. 14 is a graph showing threshold voltage distributions before and after a high temperature storage test is performed after writing (erasing) of a nonvolatile semiconductor device.
FIG. 15 shows memory write (erase) characteristics by tunnel injection from a substrate, and analysis results of tunnel film electric field and interlayer film electric field.
FIG. 16 shows an analysis result regarding a relationship between an interlayer film electric field and an interlayer film thickness when electrons are injected from a substrate.
FIG. 17 is an analysis result regarding a relationship between an interlayer film electric field and an interlayer film thickness when electrons are emitted to the substrate.
FIG. 18 shows an analysis result regarding a relationship between an interlayer film leakage current and an interlayer film electric field.
FIG. 19 is a schematic diagram of the flow of electrons from the substrate.
[Explanation of symbols]
1 semiconductor substrate,
2 tunnel film,
3 source / drain regions,
4 Floating gate electrode,
5 interlayer film,
6 Control gate electrode,
7 chips,
8 Inspection pattern.

Claims (12)

浮遊ゲート電極及び制御ゲート電極からなる二層ゲート構造のメモリセルにより構成された不揮発性メモリを有する半導体装置の製造方法であって、
選別基準しきい値を決定する第1工程と、前記第1工程の後に良品を判定する第2工程とを有し、
前記第1工程において、
複数のメモリセルの各々の制御ゲート電極への第1の所定時間の間パルス電圧印加又はDC電圧印加による連続書込みを行い、連続書込み後の前記複数のメモリセルの各々の到達しきい値を測定し、前記複数のメモリセルを第2の所定時間放置した後に前記複数のメモリセルの各々のしきい値を測定して前記到達しきい値よりの変化量を前記複数のメモリセルそれぞれについて求め、前記複数のメモリセルのうち前記変化量がほぼ0と見なせるメモリセル群を特定し、前記メモリセル群の各々の前記到達しきい値の分布範囲に基づいて選別基準しきい値を決定し、
前記第2工程において、
前記第1工程において用いた複数のメモリセルと同一のプロセスによって製造された判定対象のメモリセルの制御ゲート電極へ前記第1工程と同一条件での連続書込みを行い、連続書込み後の判定対象のメモリセルの到達しきい値を測定して前記第1工程で決定した選別基準しきい値との大小関係に基づいて、判定対象のメモリセルの良否を判定することを特徴とする半導体装置の製造方法。
A method of manufacturing a semiconductor device having a nonvolatile memory composed of a memory cell having a two-layer gate structure including a floating gate electrode and a control gate electrode,
A first step of determining a sorting reference threshold; and a second step of determining a non-defective product after the first step,
In the first step,
Continuous writing is performed by applying a pulse voltage or a DC voltage to the control gate electrode of each of the plurality of memory cells for a first predetermined time, and the arrival threshold value of each of the plurality of memory cells after the continuous writing is measured. And after each of the plurality of memory cells is left for a second predetermined time, a threshold value of each of the plurality of memory cells is measured to determine a change amount from the arrival threshold value for each of the plurality of memory cells. Identifying a memory cell group in which the amount of change can be regarded as substantially zero among the plurality of memory cells, and determining a selection reference threshold based on a distribution range of the arrival threshold value of each of the memory cell group,
In the second step,
Continuous writing under the same conditions as in the first step is performed to the control gate electrode of the determination target memory cell manufactured by the same process as the plurality of memory cells used in the first step, and the determination target after the continuous writing is determined. Manufacturing a semiconductor device characterized by measuring the arrival threshold value of a memory cell and determining pass / fail of a memory cell to be determined based on a magnitude relationship with a selection reference threshold value determined in the first step Method.
前記第1工程において、前記分布範囲の下限値を前記選別基準しきい値として決定し、
前記第2工程において、判定対象のメモリセルの到達しきい値が前記選別基準しきい値より大きい場合に良品と判定することを特徴とする請求項1に記載の半導体装置の製造方法。
In the first step, a lower limit value of the distribution range is determined as the selection reference threshold value,
2. The method of manufacturing a semiconductor device according to claim 1, wherein, in the second step, when the reaching threshold value of the memory cell to be determined is larger than the selection reference threshold value, the semiconductor device is determined as non-defective.
前記第1の所定時間は、(書込み最遅ビットでの書込み時間)×(書換え保証回数)で決定することを特徴とする請求項1又は2に記載の半導体装置の製造方法。  3. The method of manufacturing a semiconductor device according to claim 1, wherein the first predetermined time is determined by (writing time at the latest writing bit) × (number of times of guaranteed rewriting). 前記第1の所定時間は、少なくともデバイス形状、メモリ構造定数、または製品仕様に基づいて決定することを特徴とする請求項1又は2に記載の半導体装置の製造方法。  3. The method of manufacturing a semiconductor device according to claim 1, wherein the first predetermined time is determined based on at least a device shape, a memory structure constant, or a product specification. 浮遊ゲート電極及び制御ゲート電極からなる二層ゲート構造のメモリセルにより構成された不揮発性メモリを有する半導体装置の製造方法であって、
選別基準しきい値を決定する第1工程と、前記第1工程の後に良品を判定する第2工程とを有し、
前記第1工程において、
複数のメモリセルの各々の制御ゲート電極への第1の所定時間の間パルス電圧印加又はDC電圧印加による連続消去を行い、連続消去後の前記複数のメモリセルの各々の到達しきい値を測定し、前記複数のメモリセルを第2の所定時間放置した後に前記複数のメモリセルの各々のしきい値を測定して前記到達しきい値よりの変化量を前記複数のメモリセルそれぞれについて求め、前記複数のメモリセルのうち前記変化量がほぼ0と見なせるメモリセル群を特定し、前記メモリセル群の各々の前記到達しきい値の分布範囲に基づいて選別基準しきい値を決定し、
前記第2工程において、
前記第1工程において用いた複数のメモリセルと同一のプロセスによって製造された判定対象のメモリセルの制御ゲート電極へ前記第1工程と同一条件での連続消去を行い、連続消去後の判定対象のメモリセルの到達しきい値を測定して前記第1工程で決定した選別基準しきい値との大小関係に基づいて、判定対象のメモリセルの良否を判定することを特徴とする半導体装置の製造方法。
A method of manufacturing a semiconductor device having a nonvolatile memory composed of a memory cell having a two-layer gate structure including a floating gate electrode and a control gate electrode,
A first step of determining a sorting reference threshold; and a second step of determining a non-defective product after the first step,
In the first step,
Continuous erasure is performed by applying a pulse voltage or a DC voltage to the control gate electrode of each of the plurality of memory cells for a first predetermined time, and the arrival threshold value of each of the plurality of memory cells after the continuous erasure is measured. And after each of the plurality of memory cells is left for a second predetermined time, a threshold value of each of the plurality of memory cells is measured to determine a change amount from the arrival threshold value for each of the plurality of memory cells. Identifying a memory cell group in which the amount of change can be regarded as substantially zero among the plurality of memory cells, and determining a selection reference threshold based on a distribution range of the arrival threshold value of each of the memory cell group,
In the second step,
Continuous erasure is performed on the control gate electrode of the determination target memory cell manufactured by the same process as the plurality of memory cells used in the first step under the same conditions as in the first step, and the determination target after the continuous erasure is determined. Manufacturing a semiconductor device characterized by measuring the arrival threshold value of a memory cell and determining pass / fail of a memory cell to be determined based on a magnitude relationship with a selection reference threshold value determined in the first step Method.
前記第1工程において、前記分布範囲の上限値を前記選別基準しきい値として決定し、
前記第2工程において、判定対象のメモリセルの到達しきい値が前記選別基準しきい値より小さい場合に良品と判定することを特徴とする請求項5に記載の半導体装置の製造方法。
In the first step, an upper limit value of the distribution range is determined as the selection reference threshold value,
6. The method of manufacturing a semiconductor device according to claim 5, wherein, in the second step, when the reaching threshold value of the determination target memory cell is smaller than the selection reference threshold value, the semiconductor device is determined as non-defective.
前記第1の所定時間は、(消去最遅ビットでの消去時間)×(書換え保証回数)で決定することを特徴とする請求項5又は6に記載の半導体装置の製造方法。  7. The method of manufacturing a semiconductor device according to claim 5, wherein the first predetermined time is determined by (erase time at the latest erase bit) × (rewrite guarantee count). 前記第1の所定時間は、少なくともデバイス形状、メモリ構造定数、または製品仕様に基づいて決定することを特徴とする請求項5又は6に記載の半導体装置の製造方法。  The method of manufacturing a semiconductor device according to claim 5, wherein the first predetermined time is determined based on at least a device shape, a memory structure constant, or a product specification. 浮遊ゲート電極及び制御ゲート電極からなる二層ゲート構造のメモリセルにより構成された不揮発性メモリを有する半導体装置の製造方法であって、
選別基準しきい値を決定する第1工程と、前記第1工程の後に良品を判定する第2工程と、前記第2工程の後に半導体チップを切り出し、樹脂封止する第3工程とを有し、
前記第1工程において、
複数のメモリセルの各々の制御ゲート電極への第1の所定時間のパルス電圧印加又はDC電圧印加により、前記複数のメモリセルの各々の浮遊ゲート電極への電子注入を行い、電子注入後の前記複数のメモリセルの各々の到達しきい値を測定し、前記複数のメモリセルを第2の所定時間放置した後に前記複数のメモリセルの各々のしきい値を測定して前記到達しきい値よりの変化量を前記複数のメモリセルそれぞれについて求め、前記複数のメモリセルのうち前記変化量が小さいメモリセル群を特定し、前記メモリセル群の各々の前記到達しきい値の分布範囲に基づいて選別基準しきい値を決定し、
前記第2工程において、
前記第1工程において用いた複数のメモリセルと同一のプロセスによって1つの半導体ウェハに形成された複数の判定対象のメモリセルの各々の浮遊ゲート電極へ前記第1工程と同一条件での電子注入を行い、電子注入後の判定対象のメモリセルの各々の到達しきい値を測定して前記第1工程で決定した選別基準しきい値との大小関係に基づいて、判定対象のメモリセルのそれぞれの良否を判定し、
前記第3工程において、
前記第2工程で判定対象のメモリセルの1つでも不良と判定された半導体ウェハを取り除き、その他の半導体ウェハから半導体チップを切り出し、樹脂封止することを特徴とする半導体装置の製造方法。
A method of manufacturing a semiconductor device having a nonvolatile memory composed of a memory cell having a two-layer gate structure including a floating gate electrode and a control gate electrode,
A first step of determining a sorting reference threshold; a second step of determining a non-defective product after the first step; and a third step of cutting out a semiconductor chip and sealing the resin after the second step. ,
In the first step,
Electrons are injected into the floating gate electrodes of each of the plurality of memory cells by applying a pulse voltage or DC voltage for a first predetermined time to the control gate electrodes of the plurality of memory cells, and after the electron injection, The arrival threshold value of each of the plurality of memory cells is measured. After the plurality of memory cells are left for a second predetermined time, the threshold value of each of the plurality of memory cells is measured and For each of the plurality of memory cells, identifying a memory cell group having a small amount of change among the plurality of memory cells, and based on a distribution range of the arrival threshold value of each of the memory cell groups Determine the screening criteria threshold,
In the second step,
Electron injection under the same conditions as in the first step is performed on each floating gate electrode of a plurality of memory cells to be determined formed on one semiconductor wafer by the same process as the plurality of memory cells used in the first step. Each of the memory cells to be determined is measured based on the magnitude relation with the selection threshold value determined in the first step by measuring the arrival threshold value of each of the memory cells to be determined after the electron injection. Judge good or bad,
In the third step,
A method of manufacturing a semiconductor device, comprising: removing a semiconductor wafer determined to be defective in one of the determination target memory cells in the second step, cutting out a semiconductor chip from another semiconductor wafer, and sealing with a resin.
前記第1工程において、前記分布範囲の下限値を前記選別基準しきい値として決定し、
前記第2工程において、判定対象のメモリセルの到達しきい値が前記選別基準しきい値より小さい場合に不良と判定することを特徴とする請求項9に記載の半導体装置の製造方法。
In the first step, a lower limit value of the distribution range is determined as the selection reference threshold value,
10. The method of manufacturing a semiconductor device according to claim 9, wherein, in the second step, the semiconductor device is determined to be defective when an arrival threshold value of a determination target memory cell is smaller than the selection reference threshold value.
浮遊ゲート電極及び制御ゲート電極からなる二層ゲート構造のメモリセルにより構成された不揮発性メモリを有する半導体装置の製造方法であって、
選別基準しきい値を決定する第1工程と、前記第1工程の後に良品を判定する第2工程と、前記第2工程の後に半導体チップを切り出し、樹脂封止する第3工程とを有し、
前記第1工程において、
複数のメモリセルの各々の制御ゲート電極への第1の所定時間のパルス電圧印加又はDC電圧印加により、前記複数のメモリセルの各々の浮遊ゲート電極からの電子放出を行い、電子放出後の前記複数のメモリセルの各々の到達しきい値を測定し、前記複数のメモリセルを第2の所定時間放置した後に前記複数のメモリセルの各々のしきい値を測定して前記到達しきい値よりの変化量を前記複数のメモリセルそれぞれについて求め、前記複数のメモリセルのうち前記変化量が小さいメモリセル群を特定し、前記メモリセル群の各々の前記到達しきい値の分布範囲に基づいて選別基準しきい値を決定し、
前記第2工程において、
前記第1工程において用いた複数のメモリセルと同一のプロセスによって1つの半導体ウェハに形成された複数の判定対象のメモリセルの各々の浮遊ゲート電極から前記第1工程と同一条件での電子放出を行い、電子放出後の判定対象のメモリセルの各々の到達しきい値を測定して前記第1工程で決定した選別基準しきい値との大小関係に基づいて、判定対象のメモリセルのそれぞれの良否を判定し、
前記第3工程において、
前記第2工程で判定対象のメモリセルの1つでも不良と判定された半導体ウェハを取り除き、その他の半導体ウェハから半導体チップを切り出し、樹脂封止することを特徴とする半導体装置の製造方法。
A method of manufacturing a semiconductor device having a nonvolatile memory composed of a memory cell having a two-layer gate structure including a floating gate electrode and a control gate electrode,
A first step of determining a sorting reference threshold; a second step of determining a non-defective product after the first step; and a third step of cutting out a semiconductor chip and sealing the resin after the second step. ,
In the first step,
Electrons are emitted from the floating gate electrodes of each of the plurality of memory cells by applying a pulse voltage or a DC voltage for a first predetermined time to the control gate electrodes of each of the plurality of memory cells. The arrival threshold value of each of the plurality of memory cells is measured. After the plurality of memory cells are left for a second predetermined time, the threshold value of each of the plurality of memory cells is measured and For each of the plurality of memory cells, identifying a memory cell group having a small amount of change among the plurality of memory cells, and based on a distribution range of the arrival threshold value of each of the memory cell groups Determine the screening criteria threshold,
In the second step,
Electron emission under the same conditions as in the first step is performed from each floating gate electrode of a plurality of memory cells to be determined formed on one semiconductor wafer by the same process as the plurality of memory cells used in the first step. Each of the memory cells to be determined is measured based on the magnitude relationship with the selection reference threshold value determined in the first step by measuring the arrival threshold value of each memory cell to be determined after electron emission. Judge good or bad,
In the third step,
A method of manufacturing a semiconductor device, comprising: removing a semiconductor wafer determined to be defective in one of the determination target memory cells in the second step, cutting out a semiconductor chip from another semiconductor wafer, and sealing with a resin.
前記第1工程において、前記分布範囲の上限値を前記選別基準しきい値として決定し、
前記第2工程において、判定対象のメモリセルの到達しきい値が前記選別基準しきい値より大きい場合に不良と判定することを特徴とする請求項11に記載の半導体装置の製造方法。
In the first step, an upper limit value of the distribution range is determined as the selection reference threshold value,
12. The method of manufacturing a semiconductor device according to claim 11, wherein, in the second step, the semiconductor device is determined to be defective when an arrival threshold value of a determination target memory cell is larger than the selection reference threshold value.
JP2002169400A 2001-06-11 2002-06-11 Manufacturing method of semiconductor device Expired - Fee Related JP3984109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002169400A JP3984109B2 (en) 2001-06-11 2002-06-11 Manufacturing method of semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-174976 2001-06-11
JP2001174976 2001-06-11
JP2002169400A JP3984109B2 (en) 2001-06-11 2002-06-11 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2003115515A JP2003115515A (en) 2003-04-18
JP3984109B2 true JP3984109B2 (en) 2007-10-03

Family

ID=26616661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002169400A Expired - Fee Related JP3984109B2 (en) 2001-06-11 2002-06-11 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP3984109B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4967476B2 (en) * 2005-07-04 2012-07-04 株式会社デンソー Inspection method of semiconductor device
JP4908843B2 (en) * 2005-12-22 2012-04-04 ラピスセミコンダクタ株式会社 Data erasing method and method for manufacturing nonvolatile semiconductor memory device
JP2013125870A (en) * 2011-12-15 2013-06-24 Consortium For Advanced Semiconductor Materials & Related Technologies Insulation film evaluation method and test element

Also Published As

Publication number Publication date
JP2003115515A (en) 2003-04-18

Similar Documents

Publication Publication Date Title
US6684173B2 (en) System and method of testing non-volatile memory cells
US7050344B1 (en) Failure test method for split gate flash memory
US5604699A (en) Method of evaluating the dielectric layer of nonvolatile EPROM, EEPROM and flash-EEPROM memories
US5515318A (en) Method of evaluating the gate oxide of non-volatile EPROM, EEPROM and flash-EEPROM memories
US6606273B1 (en) Methods and systems for flash memory tunnel oxide reliability testing
US4963825A (en) Method of screening EPROM-related devices for endurance failure
JP3984109B2 (en) Manufacturing method of semiconductor device
US6815231B2 (en) Method of testing and manufacturing nonvolatile semiconductor memory
US5754558A (en) Method and apparatus for screening a nonvolatile semiconductor memory device
JP4051055B2 (en) Erase pulse setting method and erase failure screening method for nonvolatile memory
US8225149B2 (en) Semiconductor testing apparatus and method
US20020018365A1 (en) Test methodes for semiconductor non-volatile memories
US6989551B2 (en) Test structure for determining a minimum tunnel opening size in a non-volatile memory
US5700698A (en) Method for screening non-volatile memory and programmable logic devices
JPH11354601A (en) Test and manufacture of semiconductor device
Kempf et al. Threshold voltage bitmap analysis methodology: Application to a 512kB 40nm Flash memory test chip
US6808945B1 (en) Method and system for testing tunnel oxide on a memory-related structure
CN110033818B (en) SONOS flash memory chip programming voltage screening method
JPH1084025A (en) Method of evaluating tunnel insulating film quality and method of screening semiconductor device
Verma Flash memory quality and reliability issues
Hu et al. Gate stress effect on low temperature data retention characteristics of split-gate flash memories
JPS59227095A (en) Screening method of semiconductor storage element
US6822259B1 (en) Method of detecting and distinguishing stack gate edge defects at the source or drain junction
KR100695991B1 (en) Method for detecting defects of semiconductor device
KR20030001607A (en) Method of testing a flash memory device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050606

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3984109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees