JP3984088B2 - Disposal site structure - Google Patents

Disposal site structure Download PDF

Info

Publication number
JP3984088B2
JP3984088B2 JP2002095710A JP2002095710A JP3984088B2 JP 3984088 B2 JP3984088 B2 JP 3984088B2 JP 2002095710 A JP2002095710 A JP 2002095710A JP 2002095710 A JP2002095710 A JP 2002095710A JP 3984088 B2 JP3984088 B2 JP 3984088B2
Authority
JP
Japan
Prior art keywords
based material
material layer
cement
water
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002095710A
Other languages
Japanese (ja)
Other versions
JP2003290734A (en
Inventor
賢三 渡邉
康祐 横関
和弘 安田
昇 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2002095710A priority Critical patent/JP3984088B2/en
Publication of JP2003290734A publication Critical patent/JP2003290734A/en
Application granted granted Critical
Publication of JP3984088B2 publication Critical patent/JP3984088B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,ベントナイト系材料層とセメント系材料層が近接して敷設される放射性廃棄物等の処分場構造物に関する。
【0002】
【従来の技術】
原子力発電の運用にともなって排出される放射性廃棄物は,その放射線量が人体に及ぼす量以下になるまで,人間の生活圏から隔離する必要がある。現在,このような放射性廃棄物は,国際条約などによって,地下数百メートルの地中に埋設してその放射線量が一定値以下になるように処分することになっているが,通常,その放射線量と半減期から計算すると,数百年から数万年という長期にわたって地下数百メートルの地中で処分する必要がある。そのような環境に設置される処分敷設は,ベントナイト系材料(粘土系材料)とセメント系材料(水硬性セメントを硬化材としたモルタルまたはコンクリート)を用いて構成される。
【0003】
ベントナイト系材料が使用されるのは,主としてベントナイトの吸水による膨潤圧でシール性を確保しようとするものであり,セメント系材料が使用されるのは構造物の強度を担保しようとするものである。とくに,日本のように,岩盤に亀裂が多く,岩盤全体として透水係数の大きい環境においては,地下水が処分場に浸入することを防止するために,ベントナイトのような膨潤性土質材料によって防水層を形成することが不可欠となっている。また,地下数百メートルに廃棄物を処分するための大空洞を建設するには,その構造物の安定のためにセメント系材料の使用も構造材料としては不可欠となっている。
【0004】
このような構造は,放射性廃棄物に限らず,各種の産業廃棄物処分場などにおいても,セメント系材料層に近接してベントナイト等の膨潤性土質材料によって防水層を形成する例は多い。
【0005】
【発明が解決しようとする課題】
ベントナイト系材料層とセメント系材料層とが接触して数百年から数万年程度の長期間放置されると,両層内の各種成分の濃度差に起因して両層間に物質移動が生じる。その主たるものとして,セメント系材料層からベントナイト系材料層へのCa2+の移動,ベントナイト系材料層からセメント系材料層へのSO4 2-の移動がある。これらは水を媒体として行われる。またpHについてはセメント系材料層ではほぼ13,ベントナイト系材料層が7近辺であるから,アルカリ成分もセメント系材料層からベントナイト系材料層への移動する。
【0006】
ベントナイト系材料層に移動したCaイオンは,ベントナイト系材料層でのイオン交換反応によってベントナイト系材料層内にCaが吸着されると同時にNaやKを放出する。この現象を「ベントナイトのCa化」と称する。ベントナイトのCa化が起きると,ベントナイト系材料層の遮水性能が著しく低下する。
【0007】
他方,セメント系材料層に移動したSO4 2-はセメント水和物と反応して膨張性鉱物を生成し,セメント系材料層の膨張破壊をもたらす。
【0008】
【課題を解決するための手段】
本発明によれば,ベントナイト系材料層を用いて構成される遮水層と,水硬性セメントを結合材としたモルタル層またはコンクリート層のセメント系材料層で構成される構造材とを用いて敷設される処分場構造物において,該遮水層と構造材とが接する境界部にシリカ系材料からなる緩衝層を介在させ、該セメント系材料層からベントナイト系材料層への Ca イオンの侵入を、この緩衝層でカルシウムシリケートを生成させることによって阻止することを特徴とする処分場構造物を提供する。緩衝層を構成するシリカ系材料としては,シリカフューム,フライアッシュ,鉄精錬スラグ,非鉄精錬スラグから選ばれる少なくとも1種の粉末を用いる。緩衝層は,シリカフュームを主成分としたプレキャスト製品であることができる。
【0009】
したがって,本発明の課題は,処分場構造物において,前記のような原因で発生するベントナイト系材料層並びにセメント系材料層の劣化の問題を解決しようとする点にある。
【0010】
【課題を解決するための手段】
本発明によれば,ベントナイト系材料層とセメント系材料層を用いて敷設される処分場構造物において,該ベントナイト系材料層と該セメント系材料層が接する境界部にシリカ系材料からなる緩衝層を介在させたことを特徴とする処分場構造物を提供する。緩衝層を構成するシリカ系材料としては,シリカフューム,フライアッシュ,鉄精錬スラグ,非鉄精錬スラグから選ばれる少なくとも1種の粉末を用いる。
【0011】
【発明の実施の形態】
ベントナイト系材料層を遮水層として地中に放射性廃棄物処分施設を構築する場合,通常は,構造材としてのセメント系材料層の外側を囲うように該遮水層を敷設することになる。すなわち,ベントナイト系材料層の外側にセメント系材料層が接することになるが,この場合に,前述のように長い歴年の間に,水を媒介として物質移動が発生する。これを防止するために,両層の間に非多孔質の工業製品例えば金属や樹脂などの材料を介装するようなことは実際的ではない。なぜなら,両層間での施工が可能で且つ数百年から数万年もその機能を維持するような人工的な材料は実質的に見当たらないし,このような人工材料では予期せぬ劣化が発生するかも知れないからである。
【0012】
このため,両層の間にセメント系材料層の細骨材として使用されているような砂質材料を充填することも検討されたが,細骨材では流動性が悪くて両層間への充填性が確保できず,また構造物が地下水に満たされていれば,この細骨材層を移動する水の速度が大きくなり,緩衝材としての機能を果たせないことになり,前述の課題が解決できない。
【0013】
本発明によれば,主として前述のベントナイトのCa化現象や両層のpH値の相違などに基づく構造物の劣化原因を,両層間にシリカ系粉末を介在させることによって解消することができる。シリカ系粉末は高pH環境においてCaと反応し,化学的に安定なCSH(カルシウムシリケート水和物)を生成する(この反応はポゾラン反応と呼ばれる)。したがって,このようなシリカ系粉末の層を両層の間に介在させると,セメント系材料層からベントナイト系材料層にCaや高pH水が移動するのを阻止する緩衝層としての役割を果たす。
【0014】
本発明で使用するシリカ系粉末としては,シリカフューム,フライアッシュ,鉄精錬スラグ例えば高炉スラグ,非鉄精錬スラグ例えば銅スラグまたはフエロニッケルスラグ等が挙げられ,これらを単独または複合して使用する。とくに微粒子系のものは比表面積が大きいので,その層を通過する物質の移動工程が長くなり,結果として反応率が増大するので効率良くCaを高pHを遮断することができる。また,粒径が異なるシリカ粒子を混在させることによって,充填性や反応性を調節することもできる。使用にあたっては,これらのシリカ系粉末を水系媒体を用いてスラリー状(微粉末ではペースト状)として,セメント系材料層とベントナイト系材料層の層間に充填するのがよい。
【0015】
このようなシリカ系粉末のスラリー若しくはペーストを吹付け施工することも可能である。吹付けは,既設のベントナイト系材料層の表面または既設のセメント系材料層の表面に対して行えばよく,その吹付け完了後に,セメント系材料層またはベントナイト系材料層を敷設する。また,吹付け施工と充填とを組み合わせることもできる。このようにしてベントナイト系材料層とセメント系材料層との境界面にシリカ系材料層を充填若しくは吹付けによって現場施工で形成するのが実際的であるが,場合によっては,シリカ系材料層をプレキャスト製品として予め製作しておき,これを両層の間に設置する方式でシリカ系材料層を形成することもできる。
【0016】
図1は,地中の地盤1に対しベントナイト系材料層2を敷設し,その内側にセメント系材料層3を構築する場合において,ベントナイト系材料層2とセメント系材料層3との間に,前記のようにしてシリカ系材料層4を介装させた本発明例の一部断面を図解的に示したものであるが,この構造によると,長年の間にセメント系材料層3内に浸入した水分が関与して,このセメント系材料層3の側から高pH水やCaイオンが図中の矢印で示すようにベントナイト系材料層2の側に移行しようとする場合に,シリカ系材料層4内で酸性のシリカ系粉末と中和反応が進行し且つ前述のポゾラン反応が起こって,ベントナイト系材料層2の側にはこれらの侵入が阻止される。シリカ系材料層2においてこれらの反応が効率よく進行するには,シリカ系材料層2が水が浸透できるシリカ系粉末の層で形成されていることが肝要である。本発明者らが行った試験によれば,シリカ系材料層の存在による高pH水の遮断効果とCaイオンの遮断効果は明らかであった。その試験の代表例を以下に説明する。
【0017】
〔試験例〕
試験に用いた透水セルの略断面を図2に示した。この透水セルは,ステンレス鋼製の上型5と下型6とによって,試料を装填する円板状の気密な空洞を内部に形成し,この空洞内の試料に対して高圧水を通水できるようにしたもので,7は給水パイプ,8は排水パイプを示している。給水パイプ7は上型5を貫通して空洞に通じており,排水パイプ8は空洞から下型6を貫通して系外に通じている。両パイプとも弁9と弁10が介装され,実際には,空洞内の水圧を検出するための水圧計(図示せず)が上型5に取り付けられている。また,上型5と下型6の空洞に面した内面には,各パイプに連通する放射状の溝が穿ってあり,これらの溝により水が試料の全面に分散して行き渡るようにしてある。
【0018】
図2の透水セルAの空洞内に,厚みが2cmで直径φ10cmの円板状のセメント系材料11(硬化したモルタル板)と,厚みが1cmで直径φ10cmの円板状のシリカ系材料12を,セメント系材料11を通過した水がシリカ系材料12を通過するようにセメント系材料11を上流側にして,設置し,透水圧力を10kgf/cm2 に維持しながら, 0.1〜 1.0ミリリットル/分の流量で2週間通水を続け,透水した水を定期的に採取してそのpH値とカルシウム濃度を測定した。なお,水が各試料全体を透水するように,型の空洞内面と試料との間に濾紙を介在させておいた。
【0019】
試験に供したモルタル板11は,水セメント比=100 %,ポルトランドセメント= 529kg/m3,細骨材=794 kg/m3の配合のモルタルであり,材令56日 (50℃で促進養生) 後の硬化体である。また,試験に供したシリカ系材料12は,平均粒径が50μm程度のシリカフューム 100g,水 100g,細骨材 450g,水酸化カルシウム 1.5g,超微細シリカスラリー45gを練り混ぜ,これを約5kgf/cm2 の圧で前記寸法の円板に成形し,40℃,RH95%にて7日経過した後のものである。
【0020】
また,比較のために,同じ構造の透水セルBを使用し,シリカ系材料は使用せずに,前記試験(透水セルAの試験)で用いたのと同じセメント系材料11のだけを透水セルBの空洞内に設置し,前記の透水セルAと全く同じ条件で,試験を続け,同じく透水した水を定期的に採取してそのpH値とカルシウム濃度を測定した。それの結果を図4と図5に示した。
【0021】
図4の結果から,比較例の透水セルBでは,セメント系材料層を通過した水はほぼpH値が13を維持しているのに対し,透水セルAにおいてセメント系材料層を通過し且つシリカ系材料層を通過した水はpHは約10に低下していることがわかる。また,図5の結果から,比較例の透水セルBに対し,本発明例の透水セルAでは,透水中のカルシウム濃度は半減していることがわかる。
【0022】
【発明の効果】
以上説明したように,本発明によれば,構造材としてのセメント系材料層に隣接して地中にベントナイト系材料層を敷設する放射性廃棄物処分施設等において,両層の化学成分の濃度差に起因する水を媒介した物質移動によって生じる各層の経年による機能劣化を軽減することができる。また,本発明で用いるシリカ系の粉末材料は,安価で且つ施工しやすく,しかも性質変化が起きがたく且つ透水性も有するので長年にわたってその効果を維持することができる。このため,数百年から数万年もの貯蔵を必要とするような放射性廃棄物処分場の保全機能を高める材料として好適である。
【図面の簡単な説明】
【図1】本発明に従う処分場構造物の層構造を図解的に示した略断面図である。
【図2】本発明に従う層構造の透水試験に用いた透水セルの略断面図である。
【図3】比較例の層構造の透水試験に用いた透水セルの略断面図である。
【図4】セメント系材料層を通過した透水についてシリカ系材料層を有する場合のpH値の挙動をシリカ系材料層を有しない場合と対比して示した図である。
【図5】セメント系材料層を通過した透水についてシリカ系材料層を有する場合のCa濃度の変化をシリカ系材料層を有しない場合と対比して示した図である。
【符号の説明】
1 地盤
2 ベントナイト系材料層
3 セメント系材料層
4 シリカ系材料層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a disposal site structure such as radioactive waste in which a bentonite-based material layer and a cement-based material layer are laid close to each other.
[0002]
[Prior art]
The radioactive waste discharged from the operation of nuclear power generation must be isolated from the human sphere until the radiation dose falls below the amount that the human body has. At present, such radioactive waste is buried in the ground several hundred meters below ground according to international treaties, etc., and is disposed of so that the radiation dose is below a certain value. When calculated from the quantity and half-life, it is necessary to dispose of it in the ground several hundred meters underground for a long period of hundreds to tens of thousands of years. Disposal laying installed in such an environment is configured using bentonite-based materials (clay-based materials) and cement-based materials (mortar or concrete with hydraulic cement as a hardener).
[0003]
Bentonite-based materials are used mainly to ensure sealing properties by swelling pressure due to water absorption of bentonite, and cement-based materials are used to ensure the strength of the structure. . In particular, in an environment where there are many cracks in the rock mass, such as in Japan, and the hydraulic conductivity of the entire rock mass is large, a waterproof layer is formed with a swellable soil material such as bentonite to prevent groundwater from entering the disposal site. It is indispensable to form. In addition, the use of cementitious materials is indispensable as a structural material for the construction of large cavities for disposal of waste at several hundred meters below the ground.
[0004]
Such a structure is not limited to radioactive waste, and there are many examples in which a waterproof layer is formed of a swelling soil material such as bentonite in the vicinity of a cement-based material layer in various industrial waste disposal sites.
[0005]
[Problems to be solved by the invention]
When the bentonite-based material layer and the cement-based material layer come into contact with each other and are left for a long period of several hundred to tens of thousands of years, mass transfer occurs between the two layers due to the difference in concentration of various components in the two layers. . The main ones are the movement of Ca 2+ from the cementitious material layer to the bentonite material layer and the movement of SO 4 2− from the bentonite material layer to the cement material layer. These are performed using water as a medium. Further, with respect to pH, since the cement-based material layer is approximately 13 and the bentonite-based material layer is near 7, the alkali component also moves from the cement-based material layer to the bentonite-based material layer.
[0006]
The Ca ions that have moved to the bentonite-based material layer release Na and K at the same time that Ca is adsorbed in the bentonite-based material layer by an ion exchange reaction in the bentonite-based material layer. This phenomenon is referred to as “bentonite Caation”. When Ca of bentonite occurs, the water-blocking performance of the bentonite-based material layer is significantly reduced.
[0007]
On the other hand, SO 4 2− transferred to the cementitious material layer reacts with cement hydrate to produce an expansive mineral, which causes expansion and destruction of the cementitious material layer.
[0008]
[Means for Solving the Problems]
According to the present invention, a water-impervious layer composed of a bentonite-based material layer and a structural material composed of a cement-based material layer of a mortar layer or a concrete layer using hydraulic cement as a binder are laid. In the disposal site structure, a buffer layer made of a silica-based material is interposed at a boundary portion where the water-impervious layer and the structural material are in contact, and Ca ions enter the bentonite-based material layer from the cement-based material layer . Provided is a repository structure characterized in that the buffer layer prevents the formation of calcium silicate . As the silica-based material constituting the buffer layer, at least one powder selected from silica fume, fly ash, iron refining slag, and non-ferrous refining slag is used. Buffer layer, Ru can be a precast product mainly composed of silica fume.
[0009]
Accordingly, an object of the present invention is to solve the problem of deterioration of the bentonite-based material layer and the cement-based material layer that occur due to the above-described causes in the disposal site structure.
[0010]
[Means for Solving the Problems]
According to the present invention, in a disposal site structure laid using a bentonite-based material layer and a cement-based material layer, a buffer layer made of a silica-based material at a boundary portion where the bentonite-based material layer and the cement-based material layer are in contact with each other. Disposal site structure characterized by having intervened. As the silica-based material constituting the buffer layer, at least one powder selected from silica fume, fly ash, iron refining slag, and non-ferrous refining slag is used.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
When a radioactive waste disposal facility is constructed in the ground using a bentonite-based material layer as a water-impervious layer, the water-impervious layer is usually laid so as to surround the cement-based material layer as a structural material. That is, the cementitious material layer is in contact with the outside of the bentonite material layer, and in this case, mass transfer occurs through water for a long period of time as described above. In order to prevent this, it is not practical to insert a non-porous industrial product such as a metal or a resin between the two layers. This is because there is virtually no artificial material that can be constructed between the two layers and can maintain its function for hundreds to tens of thousands of years. It may be.
[0012]
For this reason, it was also considered that sandy material used as a fine aggregate in the cementitious material layer was filled between the two layers. If the structure cannot be secured and the structure is filled with groundwater, the speed of the water moving through this fine aggregate layer will increase, and the function as a cushioning material will not be achieved. Can not.
[0013]
According to the present invention, the cause of deterioration of the structure mainly based on the above-mentioned bentonite Ca conversion phenomenon or the difference in pH value between the two layers can be eliminated by interposing silica-based powder between the two layers. Silica-based powder reacts with Ca in a high pH environment to form chemically stable CSH (calcium silicate hydrate) (this reaction is called pozzolanic reaction). Therefore, when such a layer of silica-based powder is interposed between both layers, it serves as a buffer layer that prevents Ca and high pH water from moving from the cement-based material layer to the bentonite-based material layer.
[0014]
Examples of the silica-based powder used in the present invention include silica fume, fly ash, iron refining slag such as blast furnace slag, non-ferrous refining slag such as copper slag and ferronickel slag, which are used alone or in combination. In particular, the fine particles have a large specific surface area, so that the process of moving the substance passing through the layer becomes long, and as a result, the reaction rate increases, so that Ca can be efficiently blocked from high pH. In addition, the packing properties and reactivity can be adjusted by mixing silica particles having different particle sizes. In use, it is preferable that these silica-based powders are made into a slurry form (paste form in the case of fine powders) using an aqueous medium and filled between the cement-based material layer and the bentonite-based material layer.
[0015]
It is also possible to spray such silica-based powder slurry or paste. The spraying may be performed on the surface of the existing bentonite material layer or the surface of the existing cementitious material layer, and after the spraying is completed, the cement material layer or the bentonite material layer is laid. Also, spraying and filling can be combined. In this way, it is practical to fill or spray the silica-based material layer at the boundary surface between the bentonite-based material layer and the cement-based material layer by field construction. A silica-based material layer can also be formed by pre-manufacturing as a precast product and placing it between both layers.
[0016]
FIG. 1 shows that when a bentonite-based material layer 2 is laid on the ground 1 in the ground and a cement-based material layer 3 is constructed on the inside thereof, the bentonite-based material layer 2 and the cement-based material layer 3 are A partial cross-section of the present invention example in which the silica-based material layer 4 is interposed as described above is shown schematically. According to this structure, the cement-based material layer 3 has been infiltrated for many years. In the case where high water and Ca ions are about to move from the cement-based material layer 3 side to the bentonite-based material layer 2 side as indicated by the arrows in the figure, the silica-based material layer 4, neutralization reaction proceeds with the acidic silica-based powder, and the aforementioned pozzolanic reaction occurs, so that the penetration of these into the bentonite-based material layer 2 side is prevented. In order for these reactions to proceed efficiently in the silica-based material layer 2, it is important that the silica-based material layer 2 is formed of a layer of silica-based powder that can penetrate water. According to the tests conducted by the present inventors, the blocking effect of high pH water and the blocking effect of Ca ions due to the presence of the silica-based material layer were clear. A representative example of the test will be described below.
[0017]
[Test example]
A schematic cross section of the water permeable cell used in the test is shown in FIG. This water permeable cell is formed with a stainless steel upper mold 5 and lower mold 6 to form a disk-shaped airtight cavity for loading a sample, and high-pressure water can be passed through the sample in the cavity. In this case, 7 is a water supply pipe, and 8 is a drain pipe. The water supply pipe 7 passes through the upper mold 5 and communicates with the cavity, and the drainage pipe 8 penetrates the lower mold 6 from the cavity and communicates outside the system. Both pipes are provided with a valve 9 and a valve 10, and actually a water pressure gauge (not shown) for detecting the water pressure in the cavity is attached to the upper mold 5. The inner surfaces of the upper mold 5 and the lower mold 6 facing the cavities are provided with radial grooves communicating with the pipes so that water is dispersed and spread over the entire surface of the sample.
[0018]
In the cavity of the water permeable cell A in FIG. 2, a disc-shaped cement-based material 11 (hardened mortar plate) having a thickness of 2 cm and a diameter of φ10 cm and a disc-shaped silica-based material 12 having a thickness of 1 cm and a diameter of φ10 cm are placed. The cement-based material 11 is placed upstream so that the water that has passed through the cement-based material 11 passes through the silica-based material 12, and the hydraulic pressure is maintained at 10 kgf / cm 2 , while maintaining 0.1 to 1.0 ml / min. The water flow was continued for 2 weeks at a flow rate of 1, and the permeated water was collected periodically and its pH value and calcium concentration were measured. A filter paper was interposed between the inner surface of the mold cavity and the sample so that water could permeate the entire sample.
[0019]
Mortar plate 11 subjected to the test, water cement ratio = 100%, Portland cement = 529kg / m 3, a mortar formulation of fine aggregate = 794 kg / m 3, wood age 56 days (accelerated curing at 50 ° C. ) Later cured body. The silica-based material 12 used in the test was kneaded with 100 g of silica fume having an average particle size of about 50 μm, 100 g of water, 450 g of fine aggregate, 1.5 g of calcium hydroxide, and 45 g of ultrafine silica slurry. This is after forming into a disk of the above dimensions with a pressure of cm 2 and after 7 days at 40 ° C. and RH 95%.
[0020]
For the sake of comparison, the water permeable cell B having the same structure is used and the silica material is not used, and only the same cement-based material 11 used in the above test (the test of the water permeable cell A) is used. The test was continued under the same conditions as the above-mentioned water permeable cell A by installing in the cavity of B, and the same water permeable water was collected periodically and its pH value and calcium concentration were measured. The results are shown in FIG. 4 and FIG.
[0021]
From the results of FIG. 4, in the water permeable cell B of the comparative example, the water that passed through the cement-based material layer maintained a pH value of approximately 13, whereas in the water-permeable cell A, the water passed through the cement-based material layer. It can be seen that the pH of water that has passed through the system material layer has dropped to about 10. Moreover, from the result of FIG. 5, in the water permeable cell A of the present invention example, the calcium concentration in the water permeable water is halved compared to the water permeable cell B of the comparative example.
[0022]
【The invention's effect】
As described above, according to the present invention, in a radioactive waste disposal facility where a bentonite-based material layer is laid in the ground adjacent to a cement-based material layer as a structural material, the concentration difference between the chemical components of both layers is determined. It is possible to reduce functional deterioration due to aging of each layer caused by water-mediated mass transfer due to water. In addition, the silica-based powder material used in the present invention is inexpensive and easy to construct, and hardly changes in properties and has water permeability, so that the effect can be maintained for many years. For this reason, it is suitable as a material that enhances the maintenance function of radioactive waste disposal sites that require storage for hundreds to tens of thousands of years.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view schematically showing a layer structure of a disposal site structure according to the present invention.
FIG. 2 is a schematic cross-sectional view of a water permeable cell used in a layer structure water permeability test according to the present invention.
FIG. 3 is a schematic cross-sectional view of a water permeable cell used in a water permeability test of a layer structure of a comparative example.
FIG. 4 is a diagram showing the behavior of pH value when water passing through a cement-based material layer has a silica-based material layer as compared to the case without a silica-based material layer.
FIG. 5 is a diagram showing a change in Ca concentration in the case of having a silica-based material layer for water permeation that has passed through a cement-based material layer, as compared with the case of not having a silica-based material layer.
[Explanation of symbols]
1 Ground 2 Bentonite Material Layer 3 Cement Material Layer 4 Silica Material Layer

Claims (4)

ベントナイト系材料層を用いて構成される遮水層と,水硬性セメントを結合材としたモルタル層またはコンクリート層のセメント系材料層で構成される構造材とを用いて敷設される処分場構造物において,該遮水層と構造材とが接する境界部にシリカ系材料からなる緩衝層を介在させ、該セメント系材料層からベントナイト系材料層への Ca イオンの侵入を、この緩衝層でカルシウムシリケートを生成させることによって阻止することを特徴とする処分場構造物。Disposal site structure laid using a water-impervious layer composed of bentonite-based material layers and a structural material composed of mortar layers or concrete-based cement-based material layers made of hydraulic cement as a binder In this case, a buffer layer made of a silica-based material is interposed at a boundary portion where the water-impervious layer and the structural material are in contact with each other , and Ca ions penetrate into the bentonite-based material layer from the cement-based material layer. Disposal site structure characterized by preventing by generating . シリカ系材料からなる緩衝層は,シリカフューム,フライアッシュ,鉄精錬スラグ,非鉄精錬スラグから選ばれる少なくとも1種の粉末を用いて構成される請求項1に記載の処分場構造物。The disposal site structure according to claim 1, wherein the buffer layer made of the silica-based material is configured using at least one powder selected from silica fume, fly ash, iron smelting slag, and non-ferrous smelting slag. 処分場は,地中に構築される放射性廃棄物処分場である請求項1または2に記載の処分場構造物。The disposal site structure according to claim 1 or 2, wherein the disposal site is a radioactive waste disposal site constructed in the ground. 緩衝層は,シリカフュームを主成分としたプレキャスト製品である請求項1ないし3のいずれかに記載の処分場構造物。The disposal site structure according to any one of claims 1 to 3, wherein the buffer layer is a precast product mainly composed of silica fume.
JP2002095710A 2002-03-29 2002-03-29 Disposal site structure Expired - Fee Related JP3984088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002095710A JP3984088B2 (en) 2002-03-29 2002-03-29 Disposal site structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002095710A JP3984088B2 (en) 2002-03-29 2002-03-29 Disposal site structure

Publications (2)

Publication Number Publication Date
JP2003290734A JP2003290734A (en) 2003-10-14
JP3984088B2 true JP3984088B2 (en) 2007-09-26

Family

ID=29239073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002095710A Expired - Fee Related JP3984088B2 (en) 2002-03-29 2002-03-29 Disposal site structure

Country Status (1)

Country Link
JP (1) JP3984088B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9446380B2 (en) 2011-04-18 2016-09-20 Gunma University Water-blocking filler and filler for engineered multi-barriers using said water-blocking filler

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5294109B2 (en) * 2008-02-08 2013-09-18 清水建設株式会社 Radioactive waste disposal tunnel
US10807910B2 (en) 2015-07-31 2020-10-20 Katsuyoshi Kondoh Cementitious material for radioactive waste disposal facility

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9446380B2 (en) 2011-04-18 2016-09-20 Gunma University Water-blocking filler and filler for engineered multi-barriers using said water-blocking filler

Also Published As

Publication number Publication date
JP2003290734A (en) 2003-10-14

Similar Documents

Publication Publication Date Title
Koťátková et al. Concrete and cement composites used for radioactive waste deposition
US9022698B2 (en) Natural analog system for reducing permeability of ground
JP5933930B2 (en) Waterproofing filler, artificial multiple barrier filler using the waterproofing filler
EP1864299B1 (en) Waste disposal method
Wu et al. Engineering properties of vertical cutoff walls consisting of reactive magnesia-activated slag and bentonite: workability, strength, and hydraulic conductivity
JP5398710B2 (en) Artificial multiple barriers for radioactive waste disposal facilities.
Cui et al. Comparative research on the application of slag as an alternative to cement in binder-bentonite cutoff wall backfills
JP3984088B2 (en) Disposal site structure
JP3839023B2 (en) Impermeable structure and construction method thereof
Dayal et al. Cement-based engineered barriers for carbon-14 isolation
US7381014B1 (en) Natural analog system for reducing permeability of ground
JP2013160676A (en) Stabilization material for radioactive material and method for treating radioactive contaminant
JP4632730B2 (en) Seam-proofing material made of bentonite slurry and water-shielding layer forming material
Jamalimoghadam et al. Sustainable alkali-activated materials
Upadhyay et al. Characterization and utilization of fly ash
Chen Development and performance of self-healing and self-immune soil-cement systems subjected to freeze-thaw cycles
Atabek Sustainability consideration during the design and construction of geological disposal
Tallard Very low conductivity self-hardening slurry for permanent enclosures
Hatem et al. Performance of cement-poor concrete with different superplasticizers
Raucci et al. Encapsulation of flue-gas desulfurization wastewater using coal combustion by-product mixtures: Field lysimeter investigations
Pusch et al. Long-term performance of contacting concrete and smectite clay in deep disposal of highly radioactive waste
JP2016070910A (en) Radioactive cesium collecting material, manufacturing method of radioactive cesium collecting material, radioactive cesium collecting method, and solidification method of radioactive waste
JP5752307B1 (en) Radiocesium collection method
EP1535287A2 (en) Storage of hazardous materials
Allan et al. Performance of Cementitious Containment Barriers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees