JP2003290734A - Disposal site structure - Google Patents

Disposal site structure

Info

Publication number
JP2003290734A
JP2003290734A JP2002095710A JP2002095710A JP2003290734A JP 2003290734 A JP2003290734 A JP 2003290734A JP 2002095710 A JP2002095710 A JP 2002095710A JP 2002095710 A JP2002095710 A JP 2002095710A JP 2003290734 A JP2003290734 A JP 2003290734A
Authority
JP
Japan
Prior art keywords
material layer
based material
cement
bentonite
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002095710A
Other languages
Japanese (ja)
Other versions
JP3984088B2 (en
Inventor
Kenzo Watanabe
賢三 渡邉
Kosuke Yokozeki
康祐 横関
Kazuhiro Yasuda
和弘 安田
Noboru Sakata
昇 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2002095710A priority Critical patent/JP3984088B2/en
Publication of JP2003290734A publication Critical patent/JP2003290734A/en
Application granted granted Critical
Publication of JP3984088B2 publication Critical patent/JP3984088B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the deterioration of the function of both layers of a bentonite based material layer and a cement based material layer due to the material transfer caused by the difference of the concentration of chemical components of both layers through a long period in a radioactive waste disposal facility or the like where the bentonite based material layer is placed in the ground to be in adjacent to the cement based material layer. <P>SOLUTION: In the disposal site structure installed by using the bentonite based material layer and the cement based material layer, a buffer layer composed of a silica based material is interposed on the boundary part where the bentonite based material layer and the cement based material layer are in contact with each other. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は,ベントナイト系材
料層とセメント系材料層が近接して敷設される放射性廃
棄物等の処分場構造物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a repository structure for radioactive waste or the like in which a bentonite material layer and a cement material layer are laid in close proximity.

【0002】[0002]

【従来の技術】原子力発電の運用にともなって排出され
る放射性廃棄物は,その放射線量が人体に及ぼす量以下
になるまで,人間の生活圏から隔離する必要がある。現
在,このような放射性廃棄物は,国際条約などによっ
て,地下数百メートルの地中に埋設してその放射線量が
一定値以下になるように処分することになっているが,
通常,その放射線量と半減期から計算すると,数百年か
ら数万年という長期にわたって地下数百メートルの地中
で処分する必要がある。そのような環境に設置される処
分敷設は,ベントナイト系材料(粘土系材料)とセメン
ト系材料(水硬性セメントを硬化材としたモルタルまた
はコンクリート)を用いて構成される。
2. Description of the Related Art Radioactive waste discharged during the operation of nuclear power generation must be isolated from the human living area until the amount of radiation falls below the amount exerted on the human body. At present, such radioactive waste is to be buried under the ground several hundred meters underground and disposed of so that the radiation dose is below a certain level by international treaties.
Usually, when calculated from the radiation dose and half-life, it is necessary to dispose in the ground several hundred meters underground for a long period of several hundred years to tens of thousands of years. The disposal laying installed in such an environment is constructed by using bentonite-based materials (clay-based materials) and cement-based materials (mortar or concrete with hydraulic cement as a hardening material).

【0003】ベントナイト系材料が使用されるのは,主
としてベントナイトの吸水による膨潤圧でシール性を確
保しようとするものであり,セメント系材料が使用され
るのは構造物の強度を担保しようとするものである。と
くに,日本のように,岩盤に亀裂が多く,岩盤全体とし
て透水係数の大きい環境においては,地下水が処分場に
浸入することを防止するために,ベントナイトのような
膨潤性土質材料によって防水層を形成することが不可欠
となっている。また,地下数百メートルに廃棄物を処分
するための大空洞を建設するには,その構造物の安定の
ためにセメント系材料の使用も構造材料としては不可欠
となっている。
Bentonite-based materials are mainly used to secure the sealing property by the swelling pressure of bentonite due to water absorption, and cement-based materials are used to secure the strength of the structure. It is a thing. In particular, in an environment where the rock mass has many cracks and the hydraulic conductivity of the rock mass as a whole is large, as in Japan, in order to prevent groundwater from entering the disposal site, a waterproof layer is formed with a swelling soil material such as bentonite. It has become essential to form. In addition, in order to construct a large cavity for disposal of waste several hundred meters underground, the use of cement-based materials is essential as a structural material for the stability of the structure.

【0004】このような構造は,放射性廃棄物に限ら
ず,各種の産業廃棄物処分場などにおいても,セメント
系材料層に近接してベントナイト等の膨潤性土質材料に
よって防水層を形成する例は多い。
Such a structure is not limited to radioactive waste, but also in various industrial waste disposal sites, there is an example in which a waterproof layer is formed by a swelling earth material such as bentonite close to the cement material layer. Many.

【0005】[0005]

【発明が解決しようとする課題】ベントナイト系材料層
とセメント系材料層とが接触して数百年から数万年程度
の長期間放置されると,両層内の各種成分の濃度差に起
因して両層間に物質移動が生じる。その主たるものとし
て,セメント系材料層からベントナイト系材料層へのC
2+の移動,ベントナイト系材料層からセメント系材料
層へのSO4 2-の移動がある。これらは水を媒体として
行われる。またpHについてはセメント系材料層ではほ
ぼ13,ベントナイト系材料層が7近辺であるから,ア
ルカリ成分もセメント系材料層からベントナイト系材料
層への移動する。
When the bentonite-based material layer and the cement-based material layer are in contact with each other and left for a long period of several hundred years to tens of thousands of years, the concentration difference of various components in both layers causes Then, mass transfer occurs between the two layers. The main one is C from the cement-based material layer to the bentonite-based material layer.
There is movement of a 2+ and movement of SO 4 2− from the bentonite type material layer to the cement type material layer. These are carried out using water as a medium. Regarding the pH, the cement-based material layer has a pH of about 13, and the bentonite-based material layer has a pH of around 7. Therefore, the alkaline component also moves from the cement-based material layer to the bentonite-based material layer.

【0006】ベントナイト系材料層に移動したCaイオ
ンは,ベントナイト系材料層でのイオン交換反応によっ
てベントナイト系材料層内にCaが吸着されると同時に
NaやKを放出する。この現象を「ベントナイトのCa
化」と称する。ベントナイトのCa化が起きると,ベン
トナイト系材料層の遮水性能が著しく低下する。
The Ca ions that have moved to the bentonite-based material layer release Na and K at the same time that Ca is adsorbed in the bentonite-based material layer by the ion exchange reaction in the bentonite-based material layer. This phenomenon is called "bentonite Ca
”. When the bentonite is turned into Ca, the water impermeability of the bentonite-based material layer is significantly reduced.

【0007】他方,セメント系材料層に移動したSO4
2-はセメント水和物と反応して膨張性鉱物を生成し,セ
メント系材料層の膨張破壊をもたらす。
On the other hand, SO 4 transferred to the cement-based material layer
2- reacts with cement hydrate to form expansive minerals, which causes expansive failure of the cement-based material layer.

【0008】また,ベントナイト系材料層のpHが上昇
すると,ベントナイト中の成分であるスメクタイトやカ
ルセドニーが溶解し,ベントナイトの消失が生じる。
When the pH of the bentonite material layer rises, smectite and chalcedony, which are the components in the bentonite, are dissolved and the bentonite disappears.

【0009】したがって,本発明の課題は,処分場構造
物において,前記のような原因で発生するベントナイト
系材料層並びにセメント系材料層の劣化の問題を解決し
ようとする点にある。
Therefore, an object of the present invention is to solve the problem of deterioration of the bentonite-based material layer and the cement-based material layer caused by the above-mentioned causes in the repository structure.

【0010】[0010]

【課題を解決するための手段】本発明によれば,ベント
ナイト系材料層とセメント系材料層を用いて敷設される
処分場構造物において,該ベントナイト系材料層と該セ
メント系材料層が接する境界部にシリカ系材料からなる
緩衝層を介在させたことを特徴とする処分場構造物を提
供する。緩衝層を構成するシリカ系材料としては,シリ
カフューム,フライアッシュ,鉄精錬スラグ,非鉄精錬
スラグから選ばれる少なくとも1種の粉末を用いる。
According to the present invention, in a repository structure laid using a bentonite material layer and a cement material layer, a boundary where the bentonite material layer and the cement material layer are in contact with each other. Disclosed is a repository structure, wherein a buffer layer made of a silica-based material is interposed in the part. As the silica-based material forming the buffer layer, at least one powder selected from silica fume, fly ash, iron refining slag, and non-ferrous refining slag is used.

【0011】[0011]

【発明の実施の形態】ベントナイト系材料層を遮水層と
して地中に放射性廃棄物処分施設を構築する場合,通常
は,構造材としてのセメント系材料層の外側を囲うよう
に該遮水層を敷設することになる。すなわち,ベントナ
イト系材料層の外側にセメント系材料層が接することに
なるが,この場合に,前述のように長い歴年の間に,水
を媒介として物質移動が発生する。これを防止するため
に,両層の間に非多孔質の工業製品例えば金属や樹脂な
どの材料を介装するようなことは実際的ではない。なぜ
なら,両層間での施工が可能で且つ数百年から数万年も
その機能を維持するような人工的な材料は実質的に見当
たらないし,このような人工材料では予期せぬ劣化が発
生するかも知れないからである。
BEST MODE FOR CARRYING OUT THE INVENTION When constructing a radioactive waste disposal facility in the ground using a bentonite-based material layer as a water-impervious layer, the water-impervious layer is usually provided so as to surround the outside of the cement-based material layer as a structural material. Will be laid. That is, the cement-based material layer comes into contact with the outside of the bentonite-based material layer, but in this case, as described above, mass transfer occurs through water for a long period of time. In order to prevent this, it is not practical to interpose a non-porous industrial product such as metal or resin between the layers. This is because there is virtually no artificial material that can be constructed between both layers and that maintains its function for hundreds to tens of thousands of years, and such artificial materials cause unexpected deterioration. Because it may be.

【0012】このため,両層の間にセメント系材料層の
細骨材として使用されているような砂質材料を充填する
ことも検討されたが,細骨材では流動性が悪くて両層間
への充填性が確保できず,また構造物が地下水に満たさ
れていれば,この細骨材層を移動する水の速度が大きく
なり,緩衝材としての機能を果たせないことになり,前
述の課題が解決できない。
Therefore, it has been considered to fill the sandy material used as the fine aggregate of the cement-based material layer between both layers. If it is not possible to secure the filling property into the ground and if the structure is filled with groundwater, the speed of water moving through this fine aggregate layer will be high and it will not be able to function as a cushioning material. I cannot solve the problem.

【0013】本発明によれば,主として前述のベントナ
イトのCa化現象や両層のpH値の相違などに基づく構
造物の劣化原因を,両層間にシリカ系粉末を介在させる
ことによって解消することができる。シリカ系粉末は高
pH環境においてCaと反応し,化学的に安定なCSH
(カルシウムシリケート水和物)を生成する(この反応
はポゾラン反応と呼ばれる)。したがって,このような
シリカ系粉末の層を両層の間に介在させると,セメント
系材料層からベントナイト系材料層にCaや高pH水が
移動するのを阻止する緩衝層としての役割を果たす。
According to the present invention, the cause of deterioration of the structure mainly due to the phenomenon of Ca formation in bentonite and the difference in pH value between both layers can be eliminated by interposing silica powder between both layers. it can. Silica powder reacts with Ca in high pH environment and is chemically stable CSH
(Calcium silicate hydrate) is produced (this reaction is called the pozzolan reaction). Therefore, when such a layer of silica-based powder is interposed between both layers, it plays a role as a buffer layer for preventing the transfer of Ca and high pH water from the cement-based material layer to the bentonite-based material layer.

【0014】本発明で使用するシリカ系粉末としては,
シリカフューム,フライアッシュ,鉄精錬スラグ例えば
高炉スラグ,非鉄精錬スラグ例えば銅スラグまたはフエ
ロニッケルスラグ等が挙げられ,これらを単独または複
合して使用する。とくに微粒子系のものは比表面積が大
きいので,その層を通過する物質の移動工程が長くな
り,結果として反応率が増大するので効率良くCaを高
pHを遮断することができる。また,粒径が異なるシリ
カ粒子を混在させることによって,充填性や反応性を調
節することもできる。使用にあたっては,これらのシリ
カ系粉末を水系媒体を用いてスラリー状(微粉末ではペ
ースト状)として,セメント系材料層とベントナイト系
材料層の層間に充填するのがよい。
The silica-based powder used in the present invention includes:
Silica fume, fly ash, iron refining slag such as blast furnace slag, non-ferrous refining slag such as copper slag or ferro-nickel slag, etc., may be used alone or in combination. In particular, the fine particles have a large specific surface area, so that the process of transferring the substance passing through the layer becomes long, and as a result, the reaction rate increases, so that the high pH of Ca can be efficiently blocked. Further, by mixing silica particles having different particle diameters, it is possible to adjust the filling property and reactivity. At the time of use, it is preferable to fill these layers between the cement-based material layer and the bentonite-based material layer in the form of slurry (paste in the case of fine powder) using an aqueous medium.

【0015】このようなシリカ系粉末のスラリー若しく
はペーストを吹付け施工することも可能である。吹付け
は,既設のベントナイト系材料層の表面または既設のセ
メント系材料層の表面に対して行えばよく,その吹付け
完了後に,セメント系材料層またはベントナイト系材料
層を敷設する。また,吹付け施工と充填とを組み合わせ
ることもできる。このようにしてベントナイト系材料層
とセメント系材料層との境界面にシリカ系材料層を充填
若しくは吹付けによって現場施工で形成するのが実際的
であるが,場合によっては,シリカ系材料層をプレキャ
スト製品として予め製作しておき,これを両層の間に設
置する方式でシリカ系材料層を形成することもできる。
It is also possible to spray such a slurry or paste of silica-based powder. The spraying may be performed on the surface of the existing bentonite-based material layer or the surface of the existing cement-based material layer. After the spraying is completed, the cement-based material layer or the bentonite-based material layer is laid. It is also possible to combine spraying and filling. In this way, it is practical to form the silica-based material layer on site by filling or spraying the boundary surface between the bentonite-based material layer and the cement-based material layer, but in some cases, the silica-based material layer is formed. It is also possible to form a silica-based material layer by preliminarily producing it as a precast product and installing it between both layers.

【0016】図1は,地中の地盤1に対しベントナイト
系材料層2を敷設し,その内側にセメント系材料層3を
構築する場合において,ベントナイト系材料層2とセメ
ント系材料層3との間に,前記のようにしてシリカ系材
料層4を介装させた本発明例の一部断面を図解的に示し
たものであるが,この構造によると,長年の間にセメン
ト系材料層3内に浸入した水分が関与して,このセメン
ト系材料層3の側から高pH水やCaイオンが図中の矢
印で示すようにベントナイト系材料層2の側に移行しよ
うとする場合に,シリカ系材料層4内で酸性のシリカ系
粉末と中和反応が進行し且つ前述のポゾラン反応が起こ
って,ベントナイト系材料層2の側にはこれらの侵入が
阻止される。シリカ系材料層2においてこれらの反応が
効率よく進行するには,シリカ系材料層2が水が浸透で
きるシリカ系粉末の層で形成されていることが肝要であ
る。本発明者らが行った試験によれば,シリカ系材料層
の存在による高pH水の遮断効果とCaイオンの遮断効
果は明らかであった。その試験の代表例を以下に説明す
る。
FIG. 1 shows a case where the bentonite material layer 2 is laid on the ground 1 and the cement material layer 3 is built inside the bentonite material layer 2 and the cement material layer 3. In between, there is schematically shown a partial cross-section of an example of the present invention in which the silica-based material layer 4 is interposed as described above. According to this structure, the cement-based material layer 3 is provided for many years. When water that has penetrated into the inside is involved and high-pH water or Ca ions migrate from the side of the cement-based material layer 3 to the side of the bentonite-based material layer 2 as indicated by the arrow in the figure, silica The neutralization reaction with the acidic silica-based powder proceeds in the system material layer 4 and the above-mentioned pozzolanic reaction occurs, and the invasion of these into the bentonite system material layer 2 side is prevented. In order for these reactions to proceed efficiently in the silica-based material layer 2, it is essential that the silica-based material layer 2 is formed of a layer of silica-based powder that allows water to penetrate. According to the tests conducted by the present inventors, the blocking effect of high pH water and the blocking effect of Ca ions due to the presence of the silica-based material layer were clear. A typical example of the test will be described below.

【0017】〔試験例〕試験に用いた透水セルの略断面
を図2に示した。この透水セルは,ステンレス鋼製の上
型5と下型6とによって,試料を装填する円板状の気密
な空洞を内部に形成し,この空洞内の試料に対して高圧
水を通水できるようにしたもので,7は給水パイプ,8
は排水パイプを示している。給水パイプ7は上型5を貫
通して空洞に通じており,排水パイプ8は空洞から下型
6を貫通して系外に通じている。両パイプとも弁9と弁
10が介装され,実際には,空洞内の水圧を検出するため
の水圧計(図示せず)が上型5に取り付けられている。
また,上型5と下型6の空洞に面した内面には,各パイ
プに連通する放射状の溝が穿ってあり,これらの溝によ
り水が試料の全面に分散して行き渡るようにしてある。
[Test Example] FIG. 2 shows a schematic cross section of a water permeable cell used in the test. In this water permeable cell, a disc-shaped airtight cavity for loading a sample is formed inside by an upper die 5 and a lower die 6 made of stainless steel, and high-pressure water can be passed to the sample in this cavity. 7 is a water supply pipe, 8
Indicates a drainage pipe. The water supply pipe 7 penetrates the upper mold 5 and communicates with the cavity, and the drainage pipe 8 penetrates the lower mold 6 through the cavity and communicates with the outside of the system. Valve 9 and valve for both pipes
10 is interposed, and in fact, a water pressure gauge (not shown) for detecting the water pressure in the cavity is attached to the upper mold 5.
Further, radial grooves communicating with each pipe are bored on the inner surfaces of the upper mold 5 and the lower mold 6 facing the cavities, and water is dispersed and spread over the entire surface of the sample by these grooves.

【0018】図2の透水セルAの空洞内に,厚みが2cm
で直径φ10cmの円板状のセメント系材料11(硬化したモ
ルタル板)と,厚みが1cmで直径φ10cmの円板状のシリ
カ系材料12を,セメント系材料11を通過した水がシリカ
系材料12を通過するようにセメント系材料11を上流側に
して,設置し,透水圧力を10kgf/cm2 に維持しなが
ら, 0.1〜 1.0ミリリットル/分の流量で2週間通水を
続け,透水した水を定期的に採取してそのpH値とカル
シウム濃度を測定した。なお,水が各試料全体を透水す
るように,型の空洞内面と試料との間に濾紙を介在させ
ておいた。
In the cavity of the water permeable cell A shown in FIG. 2, the thickness is 2 cm.
, A disk-shaped cementitious material 11 (hardened mortar board) with a diameter of φ10 cm, a disk-shaped silica-based material 12 with a thickness of 1 cm and a diameter of φ10 cm, and water that passed through the cement-based material 11 is a silica-based material 12 Cementitious material 11 is installed on the upstream side so as to pass through, and while maintaining the water permeation pressure at 10 kgf / cm 2 , water is continuously passed for 2 weeks at a flow rate of 0.1 to 1.0 ml / min. The pH value and the calcium concentration were measured by sampling periodically. A filter paper was placed between the inner surface of the mold cavity and the sample so that water could permeate the entire sample.

【0019】試験に供したモルタル板11は,水セメント
比=100 %,ポルトランドセメント= 529kg/m3,細骨
材=794 kg/m3の配合のモルタルであり,材令56日 (50
℃で促進養生) 後の硬化体である。また,試験に供した
シリカ系材料12は,平均粒径が50μm程度のシリカフュ
ーム 100g,水 100g,細骨材 450g,水酸化カルシウ
ム 1.5g,超微細シリカスラリー45gを練り混ぜ,これ
を約5kgf/cm2 の圧で前記寸法の円板に成形し,40℃,
RH95%にて7日経過した後のものである。
The mortar plate 11 subjected to the test, water cement ratio = 100%, Portland cement = 529kg / m 3, a mortar formulation of fine aggregate = 794 kg / m 3, wood age 56 days (50
It is a cured product after accelerated curing at ℃). The silica-based material 12 used in the test was kneaded with 100 g of silica fume with an average particle size of about 50 μm, 100 g of water, 450 g of fine aggregate, 1.5 g of calcium hydroxide, and 45 g of ultrafine silica slurry. Molded into a disk of the above dimensions with a pressure of cm 2 , 40 ℃,
After 7 days at RH 95%.

【0020】また,比較のために,同じ構造の透水セル
Bを使用し,シリカ系材料は使用せずに,前記試験(透
水セルAの試験)で用いたのと同じセメント系材料11の
だけを透水セルBの空洞内に設置し,前記の透水セルA
と全く同じ条件で,試験を続け,同じく透水した水を定
期的に採取してそのpH値とカルシウム濃度を測定し
た。それの結果を図4と図5に示した。
For comparison, a water-permeable cell B having the same structure was used, no silica-based material was used, and only the same cement-based material 11 used in the above test (test of water-permeable cell A) was used. Is installed in the cavity of the water permeable cell B, and the water permeable cell A
The test was continued under exactly the same conditions as above, and water that had permeated water was periodically sampled to measure its pH value and calcium concentration. The results are shown in FIGS. 4 and 5.

【0021】図4の結果から,比較例の透水セルBで
は,セメント系材料層を通過した水はほぼpH値が13
を維持しているのに対し,透水セルAにおいてセメント
系材料層を通過し且つシリカ系材料層を通過した水はp
Hは約10に低下していることがわかる。また,図5の
結果から,比較例の透水セルBに対し,本発明例の透水
セルAでは,透水中のカルシウム濃度は半減しているこ
とがわかる。
From the results of FIG. 4, in the water permeable cell B of the comparative example, the water having passed through the cement-based material layer had a pH value of about 13
In contrast, the water that has passed through the cement-based material layer and the silica-based material layer in the water permeable cell A is p
It can be seen that H has dropped to about 10. Further, from the results shown in FIG. 5, it can be seen that in the water permeable cell A of the present invention example, the calcium concentration in the water permeable is halved compared to the water permeable cell B of the comparative example.

【0022】[0022]

【発明の効果】以上説明したように,本発明によれば,
構造材としてのセメント系材料層に隣接して地中にベン
トナイト系材料層を敷設する放射性廃棄物処分施設等に
おいて,両層の化学成分の濃度差に起因する水を媒介し
た物質移動によって生じる各層の経年による機能劣化を
軽減することができる。また,本発明で用いるシリカ系
の粉末材料は,安価で且つ施工しやすく,しかも性質変
化が起きがたく且つ透水性も有するので長年にわたって
その効果を維持することができる。このため,数百年か
ら数万年もの貯蔵を必要とするような放射性廃棄物処分
場の保全機能を高める材料として好適である。
As described above, according to the present invention,
In radioactive waste disposal facilities where a bentonite material layer is laid in the ground adjacent to a cement material layer as a structural material, each layer caused by water-mediated mass transfer due to the difference in concentration of chemical components in both layers It is possible to reduce functional deterioration due to aging. In addition, the silica-based powder material used in the present invention is inexpensive and easy to apply, has little property change, and has water permeability, so that the effect can be maintained for many years. Therefore, it is suitable as a material that enhances the conservation function of radioactive waste disposal sites that require storage for hundreds to tens of thousands of years.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に従う処分場構造物の層構造を図解的に
示した略断面図である。
FIG. 1 is a schematic cross-sectional view schematically showing a layered structure of a repository structure according to the present invention.

【図2】本発明に従う層構造の透水試験に用いた透水セ
ルの略断面図である。
FIG. 2 is a schematic cross-sectional view of a water permeation cell used in a water permeation test of a layered structure according to the present invention.

【図3】比較例の層構造の透水試験に用いた透水セルの
略断面図である。
FIG. 3 is a schematic cross-sectional view of a water permeation cell used for a water permeation test of a layered structure of a comparative example.

【図4】セメント系材料層を通過した透水についてシリ
カ系材料層を有する場合のpH値の挙動をシリカ系材料
層を有しない場合と対比して示した図である。
FIG. 4 is a diagram showing the behavior of the pH value in the case where the silica-based material layer is provided for water permeation that has passed through the cement-based material layer, in comparison with the case where the silica-based material layer is not provided.

【図5】セメント系材料層を通過した透水についてシリ
カ系材料層を有する場合のCa濃度の変化をシリカ系材
料層を有しない場合と対比して示した図である。
FIG. 5 is a diagram showing a change in Ca concentration in the case of having a silica-based material layer with respect to water permeation that has passed through a cement-based material layer, as compared with the case of not having a silica-based material layer.

【符号の説明】[Explanation of symbols]

1 地盤 2 ベントナイト系材料層 3 セメント系材料層 4 シリカ系材料層 1 ground 2 Bentonite material layer 3 Cement-based material layer 4 Silica-based material layer

フロントページの続き (72)発明者 安田 和弘 東京都港区元赤坂一丁目2番7号 鹿島建 設株式会社内 (72)発明者 坂田 昇 東京都港区元赤坂一丁目2番7号 鹿島建 設株式会社内 Fターム(参考) 4D004 AA50 AB09 BB04 CC11 CC13Continued front page    (72) Inventor Kazuhiro Yasuda             Kashima-ken, 1-2-7 Moto-Akasaka, Minato-ku, Tokyo             Inside the corporation (72) Inventor Noboru Sakata             Kashima-ken, 1-2-7 Moto-Akasaka, Minato-ku, Tokyo             Inside the corporation F-term (reference) 4D004 AA50 AB09 BB04 CC11 CC13

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ベントナイト系材料層とセメント系材料
層を用いて敷設される処分場構造物において,該ベント
ナイト系材料層と該セメント系材料層が接する境界部に
シリカ系材料からなる緩衝層を介在させたことを特徴と
する処分場構造物。
1. In a disposal site structure laid using a bentonite material layer and a cement material layer, a buffer layer made of a silica material is provided at a boundary portion where the bentonite material layer and the cement material layer are in contact with each other. A repository structure characterized by being interposed.
【請求項2】 シリカ系材料からなる緩衝層は,シリカ
フューム,フライアッシュ,鉄精錬スラグ,非鉄精錬ス
ラグから選ばれる少なくとも1種の粉末を用いて構成さ
れる請求項1に記載の処分場構造物。
2. The repository structure according to claim 1, wherein the buffer layer made of a silica-based material is composed of at least one powder selected from silica fume, fly ash, iron-refining slag, and non-ferrous-refining slag. .
【請求項3】 処分場は,地中に構築される放射性廃棄
物処分場である請求項1または2に記載の処分場構造
物。
3. The repository structure according to claim 1, wherein the repository is a radioactive waste repository constructed underground.
【請求項4】 セメント系材料層は,水硬性セメントを
結合材としたモルタル層またはコンクリート層である請
求項1ないし3のいずれかに記載の処分場構造物。
4. The repository structure according to claim 1, wherein the cement material layer is a mortar layer or a concrete layer using hydraulic cement as a binder.
JP2002095710A 2002-03-29 2002-03-29 Disposal site structure Expired - Fee Related JP3984088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002095710A JP3984088B2 (en) 2002-03-29 2002-03-29 Disposal site structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002095710A JP3984088B2 (en) 2002-03-29 2002-03-29 Disposal site structure

Publications (2)

Publication Number Publication Date
JP2003290734A true JP2003290734A (en) 2003-10-14
JP3984088B2 JP3984088B2 (en) 2007-09-26

Family

ID=29239073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002095710A Expired - Fee Related JP3984088B2 (en) 2002-03-29 2002-03-29 Disposal site structure

Country Status (1)

Country Link
JP (1) JP3984088B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009276335A (en) * 2008-02-08 2009-11-26 Shimizu Corp Tunnel for radioactive waste disposal
US9446380B2 (en) 2011-04-18 2016-09-20 Gunma University Water-blocking filler and filler for engineered multi-barriers using said water-blocking filler
KR20180002793A (en) 2015-07-31 2018-01-08 카츠요시 콘도 Cementitious materials for disposal of radioactive waste

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009276335A (en) * 2008-02-08 2009-11-26 Shimizu Corp Tunnel for radioactive waste disposal
US9446380B2 (en) 2011-04-18 2016-09-20 Gunma University Water-blocking filler and filler for engineered multi-barriers using said water-blocking filler
KR20180002793A (en) 2015-07-31 2018-01-08 카츠요시 콘도 Cementitious materials for disposal of radioactive waste
US10807910B2 (en) 2015-07-31 2020-10-20 Katsuyoshi Kondoh Cementitious material for radioactive waste disposal facility

Also Published As

Publication number Publication date
JP3984088B2 (en) 2007-09-26

Similar Documents

Publication Publication Date Title
EP1864299B1 (en) Waste disposal method
Wu et al. Engineering properties of vertical cutoff walls consisting of reactive magnesia-activated slag and bentonite: workability, strength, and hydraulic conductivity
WO2012144099A1 (en) Water-blocking filler and filler for manmade multi-barriers using said water-blocking filler
CN111305855A (en) Method for manufacturing fluidized backfill by using earth pressure balance shield muck
CN105781575B (en) Water-rich stratum pipe piece combined structure and construction method thereof
JP5398710B2 (en) Artificial multiple barriers for radioactive waste disposal facilities.
Cui et al. Laboratory test of waste mud treated by the flocculation-vacuum-curing integrated method
Cui et al. Comparative research on the application of slag as an alternative to cement in binder-bentonite cutoff wall backfills
CN103951349A (en) Inorganic waterproof material with high impervious performance
JP3984088B2 (en) Disposal site structure
CN115504747B (en) Anti-dispersion high-permeability-resistance grouting material under flowing water condition, preparation method and application
CN110922128A (en) Composite curing agent for peat soil, using method thereof and reinforcing method based on composite curing agent
KR100869719B1 (en) Method for constructing impervious wall of waste landfill pond using soil stabilizing agent
JP2011059044A (en) Grout injection method
JP2781566B2 (en) Cement solidification method and solidified body of radioactive waste
JP4632730B2 (en) Seam-proofing material made of bentonite slurry and water-shielding layer forming material
Holt Durability of low-pH injection grout. A literature survey
KR102249216B1 (en) Ground improvement deep mix processing method using soil stabilizer composition without cement
JP5390442B2 (en) How to repair cracks in mortar or concrete at a radioactive waste disposal site
Jefferis Long term performance of grouts and the effects of grout by-products
KR101541877B1 (en) Eco mixtured &amp; airmated liquid soil for ground filling
JP3608032B2 (en) Hydration reaction delayed cement composition and multilayer structure type shield using the composition
JP2002121064A (en) Hydration reaction retardation type cement composition
Hatem et al. Performance of cement-poor concrete with different superplasticizers
Muthu et al. Evaluation of the Performance of Pervious Concrete Inspired by CO2-Curing Technology

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees