JP3984008B2 - Method for manufacturing electrochemical device - Google Patents

Method for manufacturing electrochemical device Download PDF

Info

Publication number
JP3984008B2
JP3984008B2 JP2001234973A JP2001234973A JP3984008B2 JP 3984008 B2 JP3984008 B2 JP 3984008B2 JP 2001234973 A JP2001234973 A JP 2001234973A JP 2001234973 A JP2001234973 A JP 2001234973A JP 3984008 B2 JP3984008 B2 JP 3984008B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
layer
separator
electrochemical device
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001234973A
Other languages
Japanese (ja)
Other versions
JP2003045493A (en
Inventor
和也 小川
剛 飯島
哲 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2001234973A priority Critical patent/JP3984008B2/en
Publication of JP2003045493A publication Critical patent/JP2003045493A/en
Application granted granted Critical
Publication of JP3984008B2 publication Critical patent/JP3984008B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はリチウムイオン二次電池、電気二重層キャパシタなどの電気化学デバイスの安全機構およびその製造方法に関する。
【0002】
【従来の技術】
近年の携帯機器の発展には目覚しいものがあり、その原動力の一つとして、リチウムイオン二次電池を初めとする高エネルギー電池が寄与するところも大きなものである。現在リチウム二次イオン電池の市場は年間3000億を越え、今後とも様々な携帯機器の発展が予測でき、それに伴う電池製造技術の進歩も要請されている。
【0003】
このようなリチウムイオン二次電池は、通常、正極、液体あるいは固体状電解質層、負極から構成される。この正負極電極材料は、正極活物質、負極活物質を導電助剤、結着剤と混合し、集電体上に塗布したものである。このようなリチウムイオン二次電池において、開発動向として電池の高エネルギー密度化が要請されており、その方策として薄型の電池の開発が進んでいる。
【0004】
このような薄型軽量の電池を得る手法として、溶液であった電解質部分を固体状にし、薄型化を図ったポリマー電池がある。この技術については、例えばUSP5418091号等、既に公知の技術であるが、近年特性の改善が進み、技術が開示された当初とは比較できないほど電池特性は向上している。
【0005】
このような固体状電解質を用いた電池については種々の形態があるが、大別すると以下の3種類に分けられる。
【0006】
(1) 電解質としてポリマー高分子中のリチウムイオン伝導を用いるタイプ
(2) 電解質として可塑化したポリマー高分子中のリチウムイオン伝導を用いるタイプ
(3) 電解質として有機溶媒、可塑剤で可塑化したポリマー高分子中のリチウムイオン伝導を用いるタイプ
この中で(3)に属する溶媒成分と、有機高分子成分、電解質塩を混合しゲル化(固体化)した電池が溶液系電池に劣らない特性を示すため実用化が進んでいる。
【0007】
(3)のタイプのゲル化した固体状の電池を作製する方法の代表的な例として、例えばUSP5296318,USP5418091に記載されている電池の製造方法がある。これは固体状のポリフツ化ビニリデン系の固体電解質媒体を作製し、これを正極負極と接合し、電池素体全体から可塑剤を抽出し、さらに電解液溶液を注液して全体をゲル化するものである。
【0008】
このように電池素体全体をゲル化することにより、電池内部には遊離した電解液が存在しなくなる。したがって、従来の溶液系電池とは全く異なった形態となっているといってもよい。さらに、この特許USP5296318号、USP5418091号が開示する内容によれば、電池特性においても優れている。
【0009】
しかしながら、上記固体状のゲル化電解質を用いた場合、通常使用時には問題が生じないが、異常時、例えば過充電時および加熱試験時において、樹脂の溶解による電流速断が十分に機能しない。このため熱暴走に至り、その結果、破裂・発火に至ることがあった。
【0010】
このような問題を解決するために、例えば特開2001−43897号公報において、固体電解質とシャットダウンセパレータとを併用する手法が検討されている。しかし、この公報に記載されている電池を製造するためには、予め正極および負極上にゲル電解質を形成し、その後セパレータを挟んで正負極を対向させてゲル電解質電池を作製しなければならない。ところが、ゲル電解質はドライ雰囲気で取り扱わなければならないため、その後の製造工程をドライ雰囲気とする必要が生じ、製造工程を非常に困難なものとしていた。
【0011】
また、固体電解質を形成するためには、マトリクスポリマーを塗布し、乾燥し、これに電解液を注液して固体電解質とするが、このときマトリクスポリマー、セパレータ、電極内に十分電解液を含浸させる必要がある。このため、マトリクスポリマーは、電解質を保持するための微細孔が十分に開口していなければならないが、従来の製造方法では十分な開口が得られず、結果として電解質の含浸、保持が不十分な固体電解質しか得られていなかった。
【0012】
【発明が解決しようとする課題】
本発明の目的は、製造が容易な電気化学デバイスの製造方法を提供することである。
【0014】
【課題を解決するための手段】
すなわち上記目的は、以下の本発明の構成により達成される。
(1) 2つの電極が対向して形成され、前記2つの電極間に固体状電解質層及びセパレータ層を有し、少なくとも前記2つの電極のうちいずれか一方の電極と、前記セパレータ層との間に前記固体状電解質層を有する電気化学デバイスの製造方法であって、
前記固体状電解質を形成するマトリクス樹脂を、セパレータ層の一方の面のみ、又は2つの電極のうちの少なくとも片方の少なくとも一方の面に塗布し、これを乾燥した後積層体とし、その後前記マトリクス樹脂に注液して固体状電解質とする電気化学デバイスの製造方法。
(2) 2つの電極が対向して形成され、前記2つの電極間に固体状電解質層及びセパレータ層を有し、少なくとも前記2つの電極のうちいずれか一方の電極と、前記セパレータ層との間に前記固体状電解質層を有する電気化学デバイスの製造方法であって、
前記固体状電解質を形成するマトリクス樹脂を、少なくとも、2つの電極、セパレータ層のいずれか一方の面に塗布し、これを乾燥した後積層体とし、その後前記マトリクス樹脂に注液して固体状電解質とし、
前記マトリクス樹脂は、少なくとも2種以上の混合溶媒に溶解され、少なくとも2種以上の異なった条件で乾燥される電気化学デバイスの製造方法。
(3) 前記2種以上の混合溶媒のうち、少なくとも1種の溶媒はマトリクス樹脂に対して不溶性である上記(2)の電気化学デバイスの製造方法。
(4) 前記セパレータは、所定の温度以上で電極と固体状電解質層とのイオン伝導を遮断するシャットダウンセパレータである上記(1)〜(3)のいずれかの電気化学デバイスの製造方法。
(5) 前記マトリックス樹脂は、PVDFホモポリマーである上記(1)〜(4)のいずれかの電気化学デバイスの製造方法。
(6) 前記電気化学デバイスがリチウム二次電池である上記(1)〜(5)のいずれかの電気化学デバイスの製造方法。
【0015】
【発明の実施の形態】
本発明の電気化学デバイスの製造方法の一つの実施形態は、2つの電極が対向して形成され、前記2つの電極間に固体状電解質層及びセパレータ層を有し、少なくとも前記2つの電極のうちいずれか一方の電極と、前記セパレータ層との間に前記固体状電解質層を有する電気化学デバイスの製造方法であって、前記固体状電解質を形成するマトリクス樹脂を、セパレータ層の一方の面のみ、又は2つの電極のうちの少なくとも片方の少なくとも一方の面に塗布し、これを乾燥した後積層体とし、その後前記マトリクス樹脂に注液して固体状電解質とするものである。
【0016】
このように、セパレータ層の一方の面のみ、又は2つの電極のうちの少なくとも片方の少なくとも一方の面マトリクス樹脂を塗布し、乾燥した後積層し、最後に注液してゲル電解質とすることにより、注液工程と封止工程のみドライ雰囲気とすればよく、製造が極めて容易になる。
本発明の電気化学デバイスの製造方法のもう一つの実施形態は、2つの電極が対向して形成され、前記2つの電極間に固体状電解質層及びセパレータ層を有し、少なくとも前記2つの電極のうちいずれか一方の電極と、前記セパレータ層との間に前記固体状電解質層を有する電気化学デバイスの製造方法であって、前記固体状電解質を形成するマトリクス樹脂を、少なくとも、2つの電極、セパレータ層のいずれか一方の面に塗布し、これを乾燥した後積層体とし、その後前記マトリクス樹脂に注液して固体状電解質とし、前記マトリクス樹脂は、少なくとも2種以上の混合溶媒に溶解され、少なくとも2種以上の異なった条件で乾燥されるものである。
【0017】
次に、本発明方法についてより詳細に説明する。
【0018】
固体電解質を構成するマトリクス樹脂としては、
(1)ポリエチレンオキサイド、ポリプロピレンオキサイド等のポリアルキレンオキサイド、
(2)エチレンオキサイドとアクリレートの共重合体、
(3)エチレンオキサイドとグリシルエーテルの共重合体、
(4)エチレンオキサイドとグリシルエーテルとアリルグリシルエーテルとの共重合体、
(5)ポリアクリレート
(6)ポリアクリロニトリル
(7)ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−塩化3フッ化エチレン共重合体、フッ化ビニリデン−ヘキサフルオロプロビレンフッ素ゴム、フッ化ビニリデン“テトラフルオロエチレン−ヘキサフルオロプロピレンフッ素ゴム等のフッ素系高分子等が挙げられる。
【0019】
これらの樹脂のなかでもポリフッ化ビニリデン(PVDF)、ポリエチレンオキサイド、ポリアクリロニトリル等が好ましく、特にポリフッ化ビニリデンホモポリマーが好ましい。PVDFホモポリマーは、酸化還元窓が広く、電気化学的に安定であり、優れた長期安定性を有している。
【0020】
このマトリクス樹脂は、所定の溶媒、好ましくは2種以上の混合溶媒に溶解される。マトリクス樹脂を溶解する溶媒としては、マトリクス樹脂を溶解可能であり、かつ下地となる材料に悪影響を与えないものであることが必要だが、特に2種以上の混合溶媒を用いるときには、以下の条件を満たすことが必要である。すなわち、一方の溶媒はマトリックス樹脂を溶解しうる溶媒であり、他方の溶媒はマトリックス樹脂を溶解せず、かつ前記一方の溶媒よりも沸点が高い溶媒であり、さらに双方の溶媒が分離せずに混合しうるものであることが必要である。
【0021】
このように、マトリックス樹脂を溶解する溶媒と、溶解しない溶媒とを用い、マトリックス樹脂を溶解する溶媒を先に除去し、次いでマトリックス樹脂を溶解しない溶媒を除去することにより、十分な開口を有する微多孔を膜中に形成することができる。
【0022】
マトリックス樹脂を溶解する溶媒としては、ジメチルアセトアミド(DMAC)、アセトン、テトラヒドロフラン、メチルエチルケトン、ジメチルホルムアミド(DMF)、テトラメチル尿素、ジメチルスルホキサイド、トリメチルホスフェイト、N−メチル−2−ピロリドン等が挙げられ、なかでもジメチルアセトアミド(DMAC)、ジメチルホルムアミド(DMF)等が好ましい。
【0023】
マトリックス樹脂を溶解しない樹脂としては、1−オクタノール、ブチルセルソルゴ、プロピレンカーボネート、メチルイソブチルケトン、N−ブチルアセテート、ジメチルアジペイト、メチルグリコレイト、シクロヘキサノン、ジアセトンアルコール、ジイソブチルケトン、エチルアセトアセテート、ジメチルマロネート、トリエチルホスフェート、カダフレックストリアセチン、ジメチルフタレート、ペンタン、メチルアルコール、ヘキサン、カーボンテトラクロライド、ベンゼン、トリクロロエチレン、イソプロピルアセテート、エチルアルコール、トルエン、テトラクロロエチレン、キシレン、o−クロロベンゼン、デカン等が挙げられ、これらのなかでも1−オクタノール、ブチルセルソルゴ等が好ましい。
【0024】
2種以上の溶媒を用いる場合、好ましくは2つの溶媒間の沸点が15℃以上、特に20℃以上異なっているとよい。このように沸点の異なる2種以上の溶媒を用いることにより、脱媒工程(乾燥工程)において、複数条件での処理を行い、複数種の溶媒をそれぞれ別個に除去することができる。そして、このような処理を行うことにより、マトリクス樹脂の微細孔が十分開口し、電解液を十分に含浸させることができるようになる。
【0025】
このように沸点の異なっている溶媒の組み合わせとしてはジメチルアセトアミド(DMAC)と1−オクタノール、ジメチルホルムアミド(DMF)とブチルセルソルゴ等が挙げられる。
【0026】
溶媒中に溶解されたマトリクス樹脂は、少なくともセパレータ、電極のいずれかの少なくとも一面に塗布される。また、好ましくは負極のセパレータ側、より好ましくはセパレータの負極面、特にセパレータの両面に塗布するとよい。
【0027】
セパレータを形成するセパレータシートは、その構成材料がポリエチレン、ポリプロピレンなどのポリオレフイン類の一種又は二種以上(二種以上の場合、二層以上のフィルムの張り合わせ物などがある)、ポリエチレンテレフターレートのようなポリエステル類、エチレン−テトラフルオロエチレン共重合体のような熱可塑性フッ素樹脂類、セルロース類などである。シートの形態はJIS−P8117に規定する方法で測定した通気度が5〜2000秒/100cc程度、厚さが5〜100μm 程度の微多孔膜フィルム、織布、不織布などがある。
【0028】
本発明では、特にセパレータとして所謂シャットダウンセパレータを用いることが望ましい。シャットダウンセパレータを用いることにより、電気化学デバイス内部の温度上昇につれて、セパレータの微細孔が閉じ、イオンの導通を抑制して電流を抑制し、熱暴走を防止することができる。このようなシャットダウンセパレータとしては、例えば特許第2642206号公報に記載されている低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、高密度ポリエチレン(HDPE)の中少なくとも一種を含む微細孔を有する合成樹脂フィルムよりなるセパレータ、同2520316号公報に記載されている重量平均分子量が7×105以上の超高分子量ポリエチレンを1重量%以上含有し、重量平均分子量/数平均分子量が10〜300のポリエチレン組成物からなる微多孔膜製で、厚さが0.1〜25μm、空孔率が40〜95%、平均貫通孔径が0.001〜0.1μm、及び10mm幅の破断強度が0.5kg以上であるリチウム電池用セパレータの製造方法であって、前記ポリエチレン組成物を脂肪族炭化水素、環式炭化水素又は鉱油留分からなる不揮発性の溶媒に加熱溶解して均一な溶液とし、前記溶液をダイスより押し出してゲル状シートとし、前記不揮発性溶媒を除去した後、少なくとも1軸方向に2倍以上延伸することを特徴とするリチウム電池用セパレータ等が挙げられる。
【0029】
このようなセパレータに固体電解質を用いることで、セパレータの有する特徴と、固体電解質の有する特徴を併せ持った高機能の電気化学デバイスを得ることができる。すなわち、電極との密着性が良好になると共に、膜強度も維持することができ、環境変化や機械的強度に優れた電気化学デバイスが得られる。特に、製造工程において、セパレータにマトリックス樹脂を塗布することで、ハンドリングが容易となり、後述する注液工程までの製造が容易になる。このようなセパレータの空孔率は30〜50%の範囲にあることが望ましい。
【0030】
この他の形態として、有機溶媒系の材料に対しては膨潤せず、ある一定の温度で溶融する粒子層を固体状電解質層内あるいは層表面に介在させてもよい。
【0031】
マトリックス樹脂の塗布方法としては、特に限定されるものではなく、公知の塗布方法を用いることができる。具体的には、メタルマスク印刷法、静電塗装法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法等が使用されている。その後、必要に応じて、平板プレス、カレンダーロール等により圧延処理を行ってもよい。
【0032】
塗布された、マトリクス樹脂の膜厚は、乾燥時の膜厚で0.5〜10μm 、特に1〜5μm となるように塗布すればよい。
【0033】
マトリックス樹脂を塗布した後乾燥し、溶媒を除去する。脱媒のための乾燥工程は、用いた溶媒により、最適な温度で加熱すればよい。
【0034】
乾燥工程の後、加熱処理によりマトリクス樹脂をセパレータシートに熱接着してもよい。このときの加熱温度としては、用いるマトリクス樹脂により異なるが、具体的には100〜120℃程度である。
【0035】
得られたゲル電解質シート前駆体を、正極と負極の間に挟み、積層し、積層体とする。この積層体をアルミラミネートフィルム等の外装体に入れた後に電解液を注液し、マトリクス樹脂に含浸させる。このような後工程でのゲル化処理においては、上記のように十分な開口をマトリクス樹脂に持たせることが必要である。
【0036】
最後に、外装体を密閉し、熱プレスをかけ、固体電解質状電気化学デバイスが得られる。
【0037】
本発明の電気化学デバイスの構造としては、巻き型構造、積層型構造どちらに対しても適用可能であるが、積層型構造の場合、正極、負極、固体状電解質層およびセパレータ層を順次積層する構造となるため、巻き型で必要とされるような膜強度が不要であり、セパレータに対する材料の機械的な制約は少なくなる。
【0038】
本発明の電気化学デバイスに用いられる電気化学素体は、リチウム二次電池等の電池に限定されるものではなく、これと同様な構造を有するキャパシタなどを用いることができる。
【0039】
<リチウム二次電池>
リチウム二次電池の構造は特に限定されないが、通常、正極、負極及び固体電解質・セパレータから構成され、積層型電池や巻回型電池等に適用される。
【0040】
また、高分子固体電解質と組み合わせる電極は、リチウム二次電池の電極として公知のものの中から適宜選択して使用すればよく、好ましくは電極活物質とゲル電解質、必要により導電助剤との組成物を用いる。
【0041】
負極には、炭素材料、リチウム金属、リチウム合金あるいは酸化物材料のような負極活物質を用い、正極には、リチウムイオンがインターカレート・デインターカレート可能な酸化物または炭素材料のような正極活物質を用いることが好ましい。このような電極を用いることにより、良好な特性のリチウム二次電池を得ることができる。
【0042】
電極活物質として用いる炭素材料は、例えば、メソカーボンマイクロビーズ(MCMB)、天然あるいは人造の黒鉛、樹脂焼成炭素材料、カーボンブラック、炭素繊維などから適宜選択すればよい。これらは粉末として用いられる。中でも黒鉛が好ましく、その平均粒子径は1〜30μm 、特に5〜25μm であることが好ましい。平均粒子径が小さすぎると、充放電サイクル寿命が短くなり、また、容量のばらつき(個体差)が大きくなる傾向にある。平均粒子径が大きすぎると、容量のばらつきが著しく大きくなり、平均容量が小さくなってしまう。平均粒子径が大きい場合に容量のばらつきが生じるのは、黒鉛と集電体との接触や黒鉛同士の接触にばらつきが生じるためと考えられる。
【0043】
リチウムイオンがインターカレート・デインターカレート可能な酸化物としては、リチウムを含む複合酸化物が好ましく、例えば、LiCoO2、LiMn24、LiNiO2、LiV24などが挙げられる。これらの酸化物の粉末の平均粒子径は1〜40μm 程度であることが好ましい。
【0044】
電極には、必要により導電助剤が添加される。導電助剤としては、好ましくは黒鉛、カーボンブラック、炭素繊維、ニッケル、アルミニウム、銅、銀等の金属が挙げられ、特に黒鉛、カーボンブラックが好ましい。
【0045】
電極組成は正極では、重量比で活物質:導電助剤:結着剤=80〜94:2〜8:2〜18の範囲が好ましく、負極では、重量比で活物質:導電助剤:結着剤=70〜97:0〜25:3〜10の範囲が好ましい。
【0046】
結着剤としては、フッ素系樹脂、ポリオレフイン樹脂、スチレン系樹脂、アクリル系樹脂のような熱可塑性エラストマー系樹脂、またはフッ素ゴムのようなゴム系樹脂を用いることができる。具体的には、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリエチレン、ポリアクリロニトリル、ニトリルゴム、ポリブタジエン、ブチレンゴム、ポリスチレン、スチレンーブタジエンゴム、多硫化ゴム、ニトロセルロース、シアノエチルセルロース、カルボキシメチルセルロース等が挙げられる。
【0047】
電極の製造は、まず、活物質と必要に応じて導電助剤を、結着剤溶液に分散し、塗布液を調製する。
【0048】
そして、この電極塗布液を集電体に塗布する。塗布する手段は特に限定されず、集電体の材質や形状などに応じて適宜決定すればよい。一般に、メタルマスク印刷法、静電塗装法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法等が使用されている。その後、必要に応じて、平板プレス、カレンダーロール等により圧延処理を行う。
【0049】
集電体は、電池の使用するデバイスの形状やケース内への集電体の配置方法などに応じて、適宜通常の集電体から選択すればよい。一般に、正極にはアルミニウム等が、負極には銅、ニッケル等が使用される。なお、集電体は、通常、金属箔、金属メッシュなどが使用される。金属箔よりも金属メッシュの方が電極との接触抵抗が小さくなるが、金属箔でも十分小さな接触抵抗が得られる。
【0050】
そして、溶媒を蒸発させ、電極を作製する。塗布厚は、50〜400μm 程度とすることが好ましい。
【0051】
このような正極、固体電解質・セパレータ、負極をこの順に積層し、圧着して電池素体とする。
【0052】
固体電解質・セパレータに含浸させる電解液は一般に電解質塩と溶媒よりなる。電解質塩としては、例えば、LiBF4 、LiPF6 、LiAsF6 、LiSO3 CF3 、LiClO4 、LiN(SO2 CF32 等のリチウム塩が適用できる。
【0053】
電解液の溶媒としては、前述の高分子固体電解質、電解質塩との相溶性が良好なものであれば特に制限はされないが、リチウム電池等では高い動作電圧でも分解の起こらない極性有機溶媒、例えば、エチレンカーボネート(略称EC)、プロピレンカーボネート(略称PC)、ブチレンカーボネート、ジメチルカーボネート(略称DMC)、ジエチルカーボネート、エチルメチルカーボネート等のカーボネート類、テトラヒドロフラン(THF)、2−メチルテトラヒドロフラン等の環式エーテル、1,3−ジオキソラン、4−メチルジオキソラン等の環式エーテル、γ−ブチロラクトン等のラクトン、スルホラン等が好適に用いられる。3−メチルスルホラン、ジメトキシエタン、ジエトキシエタン、エトキシメトキシエタン、エチルジグライム等を用いてもよい。
【0054】
溶媒と電解質塩とで電解液を構成すると考えた場合の電解質塩の濃度は、好ましくは0.3〜5mol/lである。通常、0.8〜1.5mol/l辺りで最も高いイオン伝導性を示す。
【0055】
<電気二重層キャパシタ>
本発明に用いる電気二重層キャパシタの構造は特に限定されないが、通常、一対の分極性電極が固体電解質・セパレータを介して配置されており、分極性電極および固体電解質・セパレータの周辺部には、好ましくは絶縁性ガスケットが配置されている。このような電気二重層キャパシタはペーパー型、積層型等と称されるいずれのものであってもよい。
【0056】
分極性電極としては、活性炭、活性炭素繊維等を導電性活物質とし、これにバインダとしてフッ素樹脂、フッ素ゴム等を加える。そして、この混合物をシート状電極に形成したものを用いることが好ましい。バインダの量は5〜15質量%程度とする。また、バインダとしてゲル電解質を用いてもよい。
【0057】
分極性電極に用いられる集電体は、白金、導電性ブチルゴム等の導電性ゴムなどであってよく、またアルミニウム、ニッケル等の金属の溶射によって形成してもよく、上記電極層の片面に金属メッシュを付設してもよい。
【0058】
電気二重層キャパシタには、上記のような分極性電極と固体電解質・セパレータとを組み合わせる。
【0059】
電解質塩としては、(C254 NBF4 、(C253 CH3 NBF4 、(C254 PBF4 等が挙げられる。
【0060】
電解液に用いる非水溶媒は、公知の種々のものであってよく、電気化学的に安定な非水溶媒であるプロピレンカーボネート、エチレンカーボネート、γ−ブチロラクトン、アセトニトリル、ジメチルホルムアミド、1,2−ジメトキシエタン、スルホラン単独または混合溶媒が好ましい。
【0061】
このような非水溶媒系の電解質溶液における電解質の濃度は、0.1〜3mol/lとすればよい。
【0062】
高分子固体電解質の組成を樹脂/電解液で示した場合、膜の強度、イオン伝導度の点から、電解液の比率は40〜90質量%が好ましい。
【0063】
絶縁性ガスケットとしては、ポリプロピレン、ブチルゴム等の絶縁体を用いればよい。
【0064】
外装袋は、例えばアルミニウム等の金属層の両面に、熱接着性樹脂層としてのポリプロピレン、ポリエチレン等のポリオレフィン樹脂層や耐熱性のポリエステル樹脂層が積層されたラミネートフィルムから構成されている。外装袋は、予め2枚のラミネートフィルムをそれらの3辺の端面の熱接着性樹脂層相互を熱接着して第1のシール部を形成し、1辺が開口した袋状に形成される。あるいは、一枚のラミネートフィルムを折り返して両辺の端面を熱接着してシール部を形成して袋状としてもよい。
【0065】
ラミネートフィルムとしては、ラミネートフィルムを構成する金属箔と導出端子間の絶縁を確保するため、内装側から熱接着性樹脂層/ポリエステル樹脂層/金属箔/ポリエステル樹脂層の積層構造を有するラミネートフィルムを用いることが好ましい。このようなラミネートフィルムを用いることにより、熱接着時に高融点のポリエステル樹脂層が溶けずに残るため、導出端子と外装袋の金属箔との離間距離を確保し、絶縁を確保することができる。そのため、ラミネートフィルムのポリエステル樹脂層の厚さは、5〜100μm 程度とすることが好ましい。
【0066】
【実施例】
以下本発明について実施例を用いて説明する。
【0067】
<実施例1>
正極活物質としてLiCoO2 (90重量部)と、導電助剤としてカーボンブラック(6重量部)および結着剤としてPVDF Kynar 761A(4重量部)を混合して正極合剤とし、N−メチル−2−ピロリドンを溶剤として分散させ、スラリー状にした。集電体であるAl箔上に得られたスラリーを塗布して乾燥し、正極とした。
【0068】
負極活物質として人造黒鉛粉末(90重量部)と、結着剤としてPVDF Kynar 761A(10重量部)とをN−メチル−2−ピロリドンで分散させ、スラリー状とした。このスラリーを負極集電体であるCu箔上に塗布して乾燥し、負極とした。
【0069】
電解液にはエチレンカーボネート(30体積部)とジエチルカーボネート(70体積部)とを混合溶媒とし、LiPF6 を1 mol dm-3 の割合で溶質とした非水電解液を調整した。
【0070】
固体電解質成分として下記のものを用いた。
【0071】
ポリマー:エルフアトケム社製 Kyner 301F
ポリオレフインシート:旭化成社製 ポリエチレン(PE)H6022シート厚さ27μm
上記ポリマーに対してジメチルアセトアミド(DMAC)溶液を3重量と1−オクタノール 1重量とを混合した混合溶液を、上記ポリオレフインシート両面にドクターブレード法により各2μm 塗布した。その後、はじめの乾燥工程を65℃としてDMACを蒸発させ、次いで100℃で乾燥させて1−オクタノールを蒸発させた。
【0072】
最後に、110℃に加熱して、ポリオレフインシートとポリマーをラミネートさせ、ゲル電解質シートを得た。
【0073】
得られたゲル電解質シートを、正極と負極の間に挟み、積層し、積層体をアルミラミネートフィルムに入れ、電解液を注液して含浸させた後、密閉して80℃の熱プレスをかけ、積層型固体電解質状リチウム電池を10サンプル得た。
【0074】
<実施例2>
実施例1において、ポリオレフインシートの片面のみにポリマーを塗布・接着させたゲル電解質シートを作製し、電池積層にあたり、ポリマー塗布面を負極面側になるように積層した以外は実施例1と同様に積層型固体電解質状リチウム電池を得た。
【0075】
<実施例3>
実施例2において、ゲル電解質シートのポリマ一塗布面を正極面側になるように積層した以外は実施例2と同様にして積層型固体電解質状リチウム電池を得た。
【0076】
<実施例4>
実施例1において、正負両極にポリマーをドクターブレード法により2μm の膜厚に塗布し、110℃に加熱することにより電極とポリマーとを接着させた。その後、両極間にポリオレフインシートを挟み積層体を得た以外は実施例1と同様にして積層型固体電解質状リチウム電池を得た。
【0077】
<実施例5>
実施例4において、負極のみにポリマーを塗布した以外は実施例4と同様にして積層型固体電解質状リチウム電池を得た。
【0078】
<実施例6>
実施例4において、正極のみにポリマーを塗布した以外は実施例4と同様にして積層型固体電解質状リチウム電池を得た。
【0079】
<比較例1>
固体電解質成分として下記のものを用いた。
【0080】
ポリマー:エルフ・アトケム社製 PVDF Kynar 2801(VDF:HFP=90:10wt%)
可塑剤:ジブチルフタレート(DBP)
フイラー:フュームドシリカ (平均粒径16nm)
上記各成分を重量比でPVDF:DBP:SiO =30:50:20となるように秤量し、この混合物に対してアセトンを3重量加え、これらを室温で混合溶解し、スラリー状のゲル電解質溶液を得た。
【0081】
そして、このゲル状電解質溶液をドクターブレード法により、ポリエチレンテレフタレート(PET)フィルムに塗布し、約50℃でアセトンを蒸発させてゲル電解シートを得た。
【0082】
ついで、このゲル電解質シートをヘキサンに浸漬させて可塑剤のDBPを抽出した。このゲル電解質シートの膜厚(乾燥膜厚)は30μm とした。
【0083】
得られたゲル電解質シートを実施例1のゲル電解質シートの代わりに用いた以外は、実施例1と同様に固体状電解質リチウム電池を10サンプル作成した。
【0084】
<比較例2>
実施例1において、ポリマーを塗布する過程を除いた以外は比較例1と同様にして固体状電解質リチウム電池を10サンプル作成した。
【0085】
<比較例3>
実施例1において、1−オクタノールを混合せず、1−オクタノールの乾燥工程を除いた以外は、実施例1と同様に固体状電解質リチウム電池を10サンプル作成した。
【0086】
上記実施例1−6と比較例1−3で作成した電池を23℃において0.5Aの定電流で充電終止電圧4.2V、放電終止電圧3.0Vの充放電サイクル試験を行った。サイクル試験結果を図1に、0.5A電流での過充電結果、および155℃−30分加熱試験結果を表1に示す。なお、表1において
○:破裂、発火、発煙のいずれもなし
×:破裂、発火、発煙のいずれかあり
である。
【0087】
【表1】

Figure 0003984008
【0088】
図1から明らかなように、実施例3、6以外は比較例1と同程度に良好な充放電特性を示した。実施例3、6は負極とポリオレフイン多孔膜との間に初期にポリマーを介在させていない電池である。このような電池の充放電特性が優れない原因としては、初期充電時のSEI(Solid Electrlyte Interphase )形成前に電解液分解に起因する負極からのガス発生により電解質層と電極との密着が取れなくなり、その結果、電流分布が生じ充放電特性が落ちていると考えられる。これに対して負極とポリオレフイン多孔膜との間にポリマーを介在させた電池においては、上記ガス発生によっても、電解質層と電極との密着が保たれているため、優れた電池特性を維持していると考えられる。
【0089】
また、表1から固体電解質層に電極とイオン伝導を所定湿度で遮断するセパレータを介在させることによって、高温加熱時や、過充電時の温度上昇に電極間のイオン伝導を無くし、また、このため過充電および内部ショートによる熱暴走を防ぐことが可能となり安全性の高い電池を提供できることがわかる。
【0090】
以上より、固体状電解質の正極もしくは負極側にある温度以上で,電極と固体状電解質層とのイオン伝導を遮断する第二の層を介在させることにより、安全性の高い電池が供給できるが、特に負極とイオン伝導を遮断する第二の層との間にポリマーを存在させることによって電池特性の優れた電池を供給する事が可能である。
【0091】
【発明の効果】
以上のように本発明によれば、十分な電解質の保持能力を有し、性能が優れた固体電解質を備え、製造が容易な電気化学デバイスの製造方法を提供することができる。
【0092】
また、異常時においても自己安全性の機能に優れた電気化学デバイスの製造方法を提供することができる。
【図面の簡単な説明】
【図1】実施例、比較例の固体状電解質電池の充放電特性を示したグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a safety mechanism of an electrochemical device such as a lithium ion secondary battery and an electric double layer capacitor, and a manufacturing method thereof.
[0002]
[Prior art]
The development of portable devices in recent years has been remarkable, and as one of the driving forces, high energy batteries such as lithium ion secondary batteries contribute greatly. Currently, the market for lithium secondary ion batteries exceeds 300 billion a year, and the development of various portable devices can be predicted in the future.
[0003]
Such a lithium ion secondary battery is usually composed of a positive electrode, a liquid or solid electrolyte layer, and a negative electrode. This positive and negative electrode material is obtained by mixing a positive electrode active material and a negative electrode active material with a conductive additive and a binder and applying the mixture on a current collector. In such a lithium ion secondary battery, a high energy density of the battery is required as a development trend, and a thin battery is being developed as a countermeasure.
[0004]
As a technique for obtaining such a thin and light battery, there is a polymer battery in which the electrolyte portion that is a solution is made solid to reduce the thickness. This technique is already known, for example, USP 5418091. However, in recent years, the characteristics have been improved, and the battery characteristics have been improved to the extent that they cannot be compared with the original disclosure of the technique.
[0005]
There are various types of batteries using such a solid electrolyte, but they are roughly classified into the following three types.
[0006]
(1) Type using lithium ion conduction in polymer polymer as electrolyte
(2) Type using lithium ion conduction in plasticized polymer polymer as electrolyte
(3) Type using lithium ion conduction in polymer polymer plasticized with organic solvent and plasticizer as electrolyte
Among them, the battery component (3), the organic polymer component, and the electrolyte salt are mixed and gelled (solidified), and the battery is in practical use because it exhibits characteristics not inferior to those of the solution battery.
[0007]
As a typical example of a method for producing a gelled solid battery of the type (3), there is a battery manufacturing method described in, for example, USP5296318 and USP5418091. This produces a solid polyvinylidene fluoride-based solid electrolyte medium, which is joined to a positive electrode and a negative electrode, extracts a plasticizer from the entire battery body, and further injects an electrolyte solution to gel the whole. Is.
[0008]
By gelling the entire battery body in this way, there is no free electrolyte in the battery. Therefore, it may be said that it has a completely different form from the conventional solution battery. Furthermore, according to the contents disclosed in the patents USP5296318 and USP5418091, the battery characteristics are also excellent.
[0009]
However, when the solid gelled electrolyte is used, no problem occurs during normal use, but current breakage due to resin dissolution does not function sufficiently in an abnormal state, for example, overcharge and a heating test. This led to thermal runaway, which could lead to rupture and fire.
[0010]
In order to solve such a problem, for example, Japanese Patent Laid-Open No. 2001-43897 discusses a method of using a solid electrolyte and a shutdown separator in combination. However, in order to manufacture the battery described in this publication, a gel electrolyte must be formed by previously forming a gel electrolyte on the positive electrode and the negative electrode, and then facing the positive and negative electrodes across the separator. However, since the gel electrolyte must be handled in a dry atmosphere, the subsequent manufacturing process needs to be a dry atmosphere, which makes the manufacturing process very difficult.
[0011]
  In addition, in order to form a solid electrolyte, a matrix polymer is applied, dried, and an electrolyte is poured into this to form a solid electrolyte. At this time, the matrix polymer, separator, and electrode are sufficiently impregnated with the electrolyte. It is necessary to let For this reason, the matrix polymer must have sufficiently fine pores for holding the electrolyte, but the conventional manufacturing method does not provide sufficient openings, resulting in impregnation and holding of the electrolyte.Not enoughOnly a solid electrolyte was obtained.
[0012]
[Problems to be solved by the invention]
  Of the present inventionThe purpose is easy to manufactureIt is to provide a method for manufacturing an electrochemical device.
[0014]
[Means for Solving the Problems]
  That is, the above object is achieved by the following configuration of the present invention.
(1) Two electrodes are formed to face each other, and have a solid electrolyte layer and a separator layer between the two electrodes, and between at least one of the two electrodes and the separator layer A method for producing an electrochemical device having the solid electrolyte layer,
  A matrix resin for forming the solid electrolyte,Only one side of the separator layer or at least one side of at least one of the two electrodesA method for producing an electrochemical device, which is applied to the substrate and dried to form a laminate, which is then poured into the matrix resin to form a solid electrolyte.
(2)Two electrodes are formed to face each other, and have a solid electrolyte layer and a separator layer between the two electrodes, and at least one of the two electrodes and the solid layer between the separator layer A method for producing an electrochemical device having a state electrolyte layer,
The matrix resin that forms the solid electrolyte is applied to at least one of the two electrodes and the separator layer, dried to form a laminate, and then poured into the matrix resin to form a solid electrolyte. age,
The method for producing an electrochemical device, wherein the matrix resin is dissolved in at least two kinds of mixed solvents and dried under at least two kinds of different conditions.
(3)The method for producing an electrochemical device according to (2), wherein at least one of the two or more mixed solvents is insoluble in the matrix resin.
(4)The method for producing an electrochemical device according to any one of (1) to (3), wherein the separator is a shutdown separator that blocks ion conduction between the electrode and the solid electrolyte layer at a predetermined temperature or higher.
(5) The method for producing an electrochemical device according to any one of (1) to (4), wherein the matrix resin is a PVDF homopolymer.
(6) The method for producing an electrochemical device according to any one of (1) to (5), wherein the electrochemical device is a lithium secondary battery.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
  In one embodiment of the method for producing an electrochemical device of the present invention, two electrodes are formed to face each other, and have a solid electrolyte layer and a separator layer between the two electrodes, and at least of the two electrodes. A method for producing an electrochemical device having the solid electrolyte layer between any one of the electrodes and the separator layer, wherein the matrix resin for forming the solid electrolyte comprises:Only one side of the separator layer or at least one side of at least one of the two electrodesThis is applied to the substrate and dried to obtain a laminate, and then poured into the matrix resin to obtain a solid electrolyte.
[0016]
  in this way,Only one side of the separator layer or at least one side of at least one of the two electrodesBy applying the matrix resin, drying and laminating, and finally injecting the solution into a gel electrolyte, only the injecting step and the sealing step may be in a dry atmosphere, and the manufacturing becomes extremely easy.
  In another embodiment of the method for producing an electrochemical device of the present invention, two electrodes are formed to face each other, and have a solid electrolyte layer and a separator layer between the two electrodes. A method of manufacturing an electrochemical device having the solid electrolyte layer between any one of the electrodes and the separator layer, wherein the matrix resin forming the solid electrolyte includes at least two electrodes and a separator It is applied to any one surface of the layer, dried to form a laminate, and then poured into the matrix resin to form a solid electrolyte, and the matrix resin is dissolved in at least two kinds of mixed solvents, It is dried under at least two different conditions.
[0017]
Next, the method of the present invention will be described in detail.
[0018]
As a matrix resin constituting the solid electrolyte,
(1) Polyalkylene oxides such as polyethylene oxide and polypropylene oxide,
(2) a copolymer of ethylene oxide and acrylate,
(3) a copolymer of ethylene oxide and glycyl ether,
(4) a copolymer of ethylene oxide, glycyl ether and allyl glycyl ether,
(5) Polyacrylate
(6) Polyacrylonitrile
(7) Polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-trichloroethylene copolymer, vinylidene fluoride-hexafluoropropylene fluororubber, vinylidene fluoride “tetrafluoroethylene- Fluoropolymers such as hexafluoropropylene fluororubber can be used.
[0019]
Among these resins, polyvinylidene fluoride (PVDF), polyethylene oxide, polyacrylonitrile, and the like are preferable, and polyvinylidene fluoride homopolymer is particularly preferable. PVDF homopolymer has a wide redox window, is electrochemically stable, and has excellent long-term stability.
[0020]
This matrix resin is dissolved in a predetermined solvent, preferably a mixed solvent of two or more. As a solvent for dissolving the matrix resin, it is necessary that the matrix resin can be dissolved and does not adversely affect the underlying material. It is necessary to satisfy. That is, one solvent is a solvent capable of dissolving the matrix resin, the other solvent is a solvent that does not dissolve the matrix resin and has a boiling point higher than that of the one solvent, and further, both solvents are not separated. It is necessary to be able to mix.
[0021]
Thus, by using a solvent that dissolves the matrix resin and a solvent that does not dissolve the matrix resin, the solvent that dissolves the matrix resin is removed first, and then the solvent that does not dissolve the matrix resin is removed. Pores can be formed in the membrane.
[0022]
Examples of the solvent for dissolving the matrix resin include dimethylacetamide (DMAC), acetone, tetrahydrofuran, methyl ethyl ketone, dimethylformamide (DMF), tetramethylurea, dimethyl sulfoxide, trimethyl phosphate, N-methyl-2-pyrrolidone and the like. Of these, dimethylacetamide (DMAC), dimethylformamide (DMF) and the like are preferable.
[0023]
Examples of resins that do not dissolve the matrix resin include 1-octanol, butylcellsorgo, propylene carbonate, methyl isobutyl ketone, N-butyl acetate, dimethyl adipate, methyl glycolate, cyclohexanone, diacetone alcohol, diisobutyl ketone, ethyl acetoacetate, Examples include dimethyl malonate, triethyl phosphate, cadaflex triacetin, dimethyl phthalate, pentane, methyl alcohol, hexane, carbon tetrachloride, benzene, trichloroethylene, isopropyl acetate, ethyl alcohol, toluene, tetrachloroethylene, xylene, o-chlorobenzene, decane, etc. Of these, 1-octanol, butylcellsorgo and the like are preferable.
[0024]
When two or more solvents are used, the boiling point between the two solvents is preferably 15 ° C. or higher, particularly 20 ° C. or higher. By using two or more kinds of solvents having different boiling points in this way, it is possible to perform the treatment under a plurality of conditions and remove each of the plurality of kinds of solvents separately in the desolvation step (drying step). And by performing such a process, the micropores of the matrix resin are sufficiently opened, and the electrolyte can be sufficiently impregnated.
[0025]
Examples of combinations of solvents having different boiling points include dimethylacetamide (DMAC) and 1-octanol, dimethylformamide (DMF) and butylcellsorgo.
[0026]
The matrix resin dissolved in the solvent is applied to at least one surface of at least one of the separator and the electrode. Further, it is preferably applied on the separator side of the negative electrode, more preferably on the negative electrode surface of the separator, particularly on both surfaces of the separator.
[0027]
The separator sheet forming the separator is composed of one or more of polyolefins such as polyethylene and polypropylene (in the case of two or more, there is a laminate of two or more films), polyethylene terephthalate Polyesters such as these, thermoplastic fluororesins such as ethylene-tetrafluoroethylene copolymer, and celluloses. The form of the sheet includes a microporous membrane film, a woven fabric, a non-woven fabric, etc. having an air permeability measured by the method specified in JIS-P8117 of about 5 to 2000 seconds / 100 cc and a thickness of about 5 to 100 μm.
[0028]
  In the present invention, it is particularly desirable to use a so-called shutdown separator as the separator. By using the shutdown separator, as the temperature inside the electrochemical device rises, the micropores of the separator close, suppressing the conduction of ions and suppressing the current,Thermal runawayCan be prevented. As such a shutdown separator, for example, fine pores containing at least one of low density polyethylene (LDPE), linear low density polyethylene (LLDPE), and high density polyethylene (HDPE) described in Japanese Patent No. 2642206 are disclosed. A separator made of a synthetic resin film having a weight average molecular weight of 7 × 10 5 or more described in Japanese Patent No. 2520316 and containing 1% by weight or more, and a weight average molecular weight / number average molecular weight of 10 to 300 Lithium having a thickness of 0.1 to 25 μm, a porosity of 40 to 95%, an average through hole diameter of 0.001 to 0.1 μm, and a 10 mm width breaking strength of 0.5 kg or more. A method for producing a battery separator, wherein the polyethylene composition is added to a nonvolatile solvent comprising an aliphatic hydrocarbon, a cyclic hydrocarbon, or a mineral oil fraction. A lithium battery separator or the like characterized by being dissolved into a uniform solution, extruding the solution from a die to form a gel-like sheet, removing the non-volatile solvent, and stretching at least twice in one axial direction Can be mentioned.
[0029]
By using a solid electrolyte for such a separator, a highly functional electrochemical device having both the characteristics of the separator and the characteristics of the solid electrolyte can be obtained. That is, the adhesiveness with the electrode is improved, the film strength can be maintained, and an electrochemical device excellent in environmental change and mechanical strength can be obtained. In particular, by applying a matrix resin to the separator in the manufacturing process, handling becomes easy, and manufacturing up to a liquid injection process described later becomes easy. It is desirable that the porosity of such a separator is in the range of 30 to 50%.
[0030]
As another form, a particle layer that does not swell with an organic solvent-based material and melts at a certain temperature may be interposed in the solid electrolyte layer or on the surface of the layer.
[0031]
  The method for applying the matrix resin is not particularly limited and is a known method.Application methodCan be used. Specifically, a metal mask printing method, an electrostatic coating method, a dip coating method, a spray coating method, a roll coating method, a doctor blade method, a gravure coating method, a screen printing method and the like are used. Thereafter, rolling may be performed by a flat plate press, a calender roll, or the like, if necessary.
[0032]
What is necessary is just to apply | coat so that the film thickness of the apply | coated matrix resin may be set to 0.5-10 micrometers by the film thickness at the time of drying, especially 1-5 micrometers.
[0033]
The matrix resin is applied and then dried to remove the solvent. What is necessary is just to heat the drying process for removal of a solvent at the optimal temperature with the solvent used.
[0034]
After the drying step, the matrix resin may be thermally bonded to the separator sheet by heat treatment. The heating temperature at this time varies depending on the matrix resin used, but is specifically about 100 to 120 ° C.
[0035]
The obtained gel electrolyte sheet precursor is sandwiched between a positive electrode and a negative electrode and laminated to obtain a laminate. After this laminated body is put in an exterior body such as an aluminum laminated film, an electrolytic solution is injected and impregnated in a matrix resin. In the gelation process in such a post process, it is necessary to provide the matrix resin with sufficient openings as described above.
[0036]
Finally, the outer package is sealed and subjected to hot pressing to obtain a solid electrolyte electrochemical device.
[0037]
The structure of the electrochemical device of the present invention can be applied to both a wound structure and a stacked structure, but in the case of a stacked structure, a positive electrode, a negative electrode, a solid electrolyte layer, and a separator layer are sequentially stacked. Because of the structure, the film strength required for the winding mold is not required, and the mechanical restrictions on the material for the separator are reduced.
[0038]
The electrochemical element used in the electrochemical device of the present invention is not limited to a battery such as a lithium secondary battery, and a capacitor having a similar structure can be used.
[0039]
<Lithium secondary battery>
The structure of the lithium secondary battery is not particularly limited, but is usually composed of a positive electrode, a negative electrode, and a solid electrolyte / separator, and is applied to a stacked battery, a wound battery, or the like.
[0040]
In addition, the electrode combined with the polymer solid electrolyte may be appropriately selected from those known as electrodes for lithium secondary batteries, and is preferably a composition of an electrode active material and a gel electrolyte, and if necessary, a conductive aid. Is used.
[0041]
The negative electrode uses a negative electrode active material such as a carbon material, lithium metal, lithium alloy or oxide material, and the positive electrode such as an oxide or carbon material capable of intercalating / deintercalating lithium ions. It is preferable to use a positive electrode active material. By using such an electrode, a lithium secondary battery having good characteristics can be obtained.
[0042]
The carbon material used as the electrode active material may be appropriately selected from, for example, mesocarbon microbeads (MCMB), natural or artificial graphite, resin-fired carbon material, carbon black, carbon fiber, and the like. These are used as powders. Of these, graphite is preferable, and the average particle size is preferably 1 to 30 μm, particularly preferably 5 to 25 μm. When the average particle size is too small, the charge / discharge cycle life is shortened and the capacity variation (individual difference) tends to increase. When the average particle diameter is too large, the variation in capacity becomes remarkably large and the average capacity becomes small. The reason why the variation in capacity occurs when the average particle size is large is thought to be because the contact between graphite and the current collector or the contact between graphites varies.
[0043]
As an oxide capable of intercalating and deintercalating lithium ions, a composite oxide containing lithium is preferable. For example, LiCoO2, LiMn2OFour, LiNiO2, LiV2OFourEtc. The average particle diameter of these oxide powders is preferably about 1 to 40 μm.
[0044]
If necessary, a conductive additive is added to the electrode. Preferred examples of the conductive aid include metals such as graphite, carbon black, carbon fiber, nickel, aluminum, copper, and silver, and graphite and carbon black are particularly preferable.
[0045]
The electrode composition is preferably in the range of active material: conducting aid: binder = 80 to 94: 2 to 8: 2 to 18 by weight ratio for the positive electrode, and active material: conducting aid: binding by weight ratio for the negative electrode. Adhesive = 70 to 97: 0 to 25: 3 to 10 is preferable.
[0046]
As the binder, a thermoplastic resin such as a fluorine resin, a polyolefin resin, a styrene resin, or an acrylic resin, or a rubber resin such as fluorine rubber can be used. Specific examples include polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polyacrylonitrile, nitrile rubber, polybutadiene, butylene rubber, polystyrene, styrene-butadiene rubber, polysulfide rubber, nitrocellulose, cyanoethyl cellulose, carboxymethyl cellulose, and the like.
[0047]
In producing the electrode, first, an active material and, if necessary, a conductive additive are dispersed in a binder solution to prepare a coating solution.
[0048]
And this electrode coating liquid is apply | coated to a collector. The means for applying is not particularly limited, and may be appropriately determined according to the material and shape of the current collector. In general, a metal mask printing method, an electrostatic coating method, a dip coating method, a spray coating method, a roll coating method, a doctor blade method, a gravure coating method, a screen printing method and the like are used. Then, if necessary, a rolling process is performed using a flat plate press, a calendar roll, or the like.
[0049]
The current collector may be appropriately selected from ordinary current collectors according to the shape of the device used by the battery, the method of arranging the current collector in the case, and the like. Generally, aluminum or the like is used for the positive electrode, and copper, nickel, or the like is used for the negative electrode. In addition, a metal foil, a metal mesh, etc. are normally used for a collector. The metal mesh has a smaller contact resistance with the electrode than the metal foil, but a sufficiently small contact resistance can be obtained even with the metal foil.
[0050]
Then, the solvent is evaporated to produce an electrode. The coating thickness is preferably about 50 to 400 μm.
[0051]
Such a positive electrode, a solid electrolyte / separator, and a negative electrode are laminated in this order, and are pressed to form a battery body.
[0052]
The electrolyte solution impregnated in the solid electrolyte / separator generally comprises an electrolyte salt and a solvent. Examples of the electrolyte salt include LiBF.Four, LiPF6, LiAsF6, LiSOThreeCFThreeLiClOFour, LiN (SO2 CFThree )2 Lithium salts such as can be applied.
[0053]
The solvent of the electrolytic solution is not particularly limited as long as it has good compatibility with the above-described solid polymer electrolyte and electrolyte salt, but a polar organic solvent that does not decompose even at a high operating voltage in a lithium battery, for example, , Ethylene carbonate (abbreviation EC), propylene carbonate (abbreviation PC), butylene carbonate, dimethyl carbonate (abbreviation DMC), carbonates such as diethyl carbonate and ethyl methyl carbonate, cyclic ethers such as tetrahydrofuran (THF) and 2-methyltetrahydrofuran Cyclic ethers such as 1,3-dioxolane and 4-methyldioxolane, lactones such as γ-butyrolactone, sulfolane and the like are preferably used. 3-methylsulfolane, dimethoxyethane, diethoxyethane, ethoxymethoxyethane, ethyl diglyme and the like may be used.
[0054]
The concentration of the electrolyte salt when it is considered that the electrolytic solution is composed of the solvent and the electrolyte salt is preferably 0.3 to 5 mol / l. Usually, the highest ion conductivity is shown around 0.8 to 1.5 mol / l.
[0055]
<Electric double layer capacitor>
The structure of the electric double layer capacitor used in the present invention is not particularly limited, but usually, a pair of polarizable electrodes are arranged via a solid electrolyte / separator, and the polar electrodes and the periphery of the solid electrolyte / separator are An insulating gasket is preferably arranged. Such an electric double layer capacitor may be any of a paper type, a multilayer type, and the like.
[0056]
As a polarizable electrode, activated carbon, activated carbon fiber, or the like is used as a conductive active material, and a fluororesin, fluororubber, or the like is added as a binder. And it is preferable to use what formed this mixture in the sheet-like electrode. The amount of the binder is about 5 to 15% by mass. A gel electrolyte may be used as the binder.
[0057]
The current collector used for the polarizable electrode may be a conductive rubber such as platinum or conductive butyl rubber, or may be formed by thermal spraying of a metal such as aluminum or nickel. A mesh may be attached.
[0058]
The electric double layer capacitor is combined with the above polarizable electrode and a solid electrolyte / separator.
[0059]
As an electrolyte salt, (C2HFive)FourNBFFour, (C2HFive)ThreeCHThreeNBFFour, (C2HFive)FourPBFFourEtc.
[0060]
The non-aqueous solvent used in the electrolytic solution may be various known ones, and is an electrochemically stable non-aqueous solvent such as propylene carbonate, ethylene carbonate, γ-butyrolactone, acetonitrile, dimethylformamide, 1,2-dimethoxy. Ethane, sulfolane alone or a mixed solvent is preferred.
[0061]
The concentration of the electrolyte in such a nonaqueous solvent electrolyte solution may be 0.1 to 3 mol / l.
[0062]
When the composition of the polymer solid electrolyte is represented by resin / electrolytic solution, the ratio of the electrolytic solution is preferably 40 to 90% by mass from the viewpoint of the strength of the membrane and the ionic conductivity.
[0063]
An insulating material such as polypropylene or butyl rubber may be used as the insulating gasket.
[0064]
The exterior bag is composed of a laminated film in which a polyolefin resin layer such as polypropylene or polyethylene as a heat-adhesive resin layer or a heat-resistant polyester resin layer is laminated on both surfaces of a metal layer such as aluminum. The exterior bag is formed in a bag shape in which two laminated films are bonded in advance to each other by thermally bonding the heat-adhesive resin layers on the end surfaces of the three sides to form a first seal portion. Alternatively, a single laminate film may be folded and the end faces of both sides may be thermally bonded to form a seal portion to form a bag.
[0065]
As a laminate film, a laminate film having a laminated structure of a heat-adhesive resin layer / polyester resin layer / metal foil / polyester resin layer from the interior side is used to ensure insulation between the metal foil constituting the laminate film and the lead-out terminal. It is preferable to use it. By using such a laminate film, the polyester resin layer having a high melting point remains undissolved at the time of thermal bonding, so that a separation distance between the lead-out terminal and the metal foil of the outer bag can be secured and insulation can be secured. Therefore, the thickness of the polyester resin layer of the laminate film is preferably about 5 to 100 μm.
[0066]
【Example】
The present invention will be described below with reference to examples.
[0067]
<Example 1>
LiCoO as positive electrode active material2 (90 parts by weight), carbon black (6 parts by weight) as a conductive additive, and PVDF Kynar 761A (4 parts by weight) as a binder are mixed to form a positive electrode mixture, and N-methyl-2-pyrrolidone is used as a solvent. Dispersed into a slurry. The obtained slurry was applied onto an Al foil as a current collector and dried to obtain a positive electrode.
[0068]
  Artificial graphite powder (90 parts by weight) as a negative electrode active material and PVDF Kynar 761A (10 parts by weight) as a binder were dispersed in N-methyl-2-pyrrolidone to form a slurry. This slurryNegative electrode current collectorIt was applied on a Cu foil and dried to obtain a negative electrode.
[0069]
The electrolyte used was a mixed solvent of ethylene carbonate (30 parts by volume) and diethyl carbonate (70 parts by volume), and LiPF.6 1 mol dm-3 The non-aqueous electrolyte made into a solute at a ratio of
[0070]
The following were used as solid electrolyte components.
[0071]
Polymer: Elf Atchem Kyner 301F
Polyolefin sheet: Asahi Kasei Polyethylene (PE) H6022 sheet thickness 27μm
  3 weights of dimethylacetamide (DMAC) solution for the above polymerPart1-octanol and 1 weightPart2 μm each was applied to both surfaces of the polyolefin sheet by the doctor blade method. Thereafter, DMAC was evaporated at an initial drying step of 65 ° C. and then dried at 100 ° C. to evaporate 1-octanol.
[0072]
Finally, it heated to 110 degreeC, the polyolefin sheet and the polymer were laminated, and the gel electrolyte sheet was obtained.
[0073]
The obtained gel electrolyte sheet is sandwiched between the positive electrode and the negative electrode, laminated, the laminate is put in an aluminum laminate film, impregnated by injecting the electrolyte, and then sealed and subjected to 80 ° C. hot pressing. Ten samples of the laminated solid electrolyte lithium battery were obtained.
[0074]
<Example 2>
In Example 1, a gel electrolyte sheet in which a polymer was applied and adhered to only one side of a polyolefin sheet was prepared, and in the case of battery stacking, the same procedure as in Example 1 was performed except that the polymer-coated surface was stacked so that the negative electrode surface side was the side A laminated solid electrolyte lithium battery was obtained.
[0075]
<Example 3>
In Example 2, a laminated solid electrolyte lithium battery was obtained in the same manner as in Example 2 except that the polymer-coated surface of the gel electrolyte sheet was laminated so as to be on the positive electrode side.
[0076]
<Example 4>
In Example 1, a polymer was applied to the positive and negative electrodes to a film thickness of 2 μm by the doctor blade method, and the electrode and the polymer were adhered by heating to 110 ° C. Thereafter, a laminated solid electrolyte lithium battery was obtained in the same manner as in Example 1 except that a laminate was obtained by sandwiching a polyolefin sheet between both electrodes.
[0077]
<Example 5>
In Example 4, a laminated solid electrolyte lithium battery was obtained in the same manner as in Example 4 except that the polymer was applied only to the negative electrode.
[0078]
<Example 6>
In Example 4, a stacked solid electrolyte lithium battery was obtained in the same manner as in Example 4 except that the polymer was applied only to the positive electrode.
[0079]
<Comparative Example 1>
The following were used as solid electrolyte components.
[0080]
  Polymer: PVDF Kynar 2801 made by Elf Atchem (VDF: HFP = 90: 10wt%)
Plasticizer: Dibutyl phthalate (DBP)
Filler: Fumed silica (average particle size 16 nm)
  Each of the above components by weight ratio PVDF: DBP: SiO2 = Weighed to 30:50:20 and 3 weights of acetone to this mixturePartIn addition, these were mixed and dissolved at room temperature to obtain a slurry gel electrolyte solution.
[0081]
And this gel electrolyte solution was apply | coated to the polyethylene terephthalate (PET) film with the doctor blade method, acetone was evaporated at about 50 degreeC, and the gel electrolysis sheet | seat was obtained.
[0082]
The gel electrolyte sheet was then immersed in hexane to extract the plasticizer DBP. The film thickness (dry film thickness) of this gel electrolyte sheet was 30 μm.
[0083]
Ten samples of solid electrolyte lithium batteries were prepared in the same manner as in Example 1 except that the obtained gel electrolyte sheet was used instead of the gel electrolyte sheet of Example 1.
[0084]
<Comparative example 2>
In Example 1, ten samples of solid electrolyte lithium batteries were prepared in the same manner as in Comparative Example 1 except that the process of applying the polymer was omitted.
[0085]
<Comparative Example 3>
In Example 1, 10 samples of solid electrolyte lithium batteries were prepared in the same manner as in Example 1 except that 1-octanol was not mixed and the 1-octanol drying step was omitted.
[0086]
The batteries prepared in Examples 1-6 and Comparative Example 1-3 were subjected to a charge / discharge cycle test at 23 ° C. with a constant current of 0.5 A and a charge end voltage of 4.2 V and a discharge end voltage of 3.0 V. The cycle test results are shown in FIG. 1, and the overcharge results at 0.5 A current and the heat test results at 155 ° C. for 30 minutes are shown in Table 1. In Table 1,
○: No rupture, ignition, or smoke
×: Any of bursting, ignition, or smoke
It is.
[0087]
[Table 1]
Figure 0003984008
[0088]
As is clear from FIG. 1, charge / discharge characteristics as good as those of Comparative Example 1 were exhibited except for Examples 3 and 6. Examples 3 and 6 are batteries in which no polymer was initially interposed between the negative electrode and the polyolefin porous membrane. The reason why the charge / discharge characteristics of such a battery are not excellent is that the adhesion between the electrolyte layer and the electrode becomes impossible due to gas generation from the negative electrode due to the decomposition of the electrolyte before the formation of SEI (Solid Electrlyte Interphase) during initial charging. As a result, it is considered that current distribution occurs and the charge / discharge characteristics are degraded. On the other hand, in a battery in which a polymer is interposed between the negative electrode and the porous polyolefin membrane, the adhesion between the electrolyte layer and the electrode is maintained even by the gas generation, so that excellent battery characteristics are maintained. It is thought that there is.
[0089]
Also, by interposing a separator that blocks the electrode and ion conduction at a predetermined humidity in the solid electrolyte layer from Table 1, the ion conduction between the electrodes is eliminated due to the temperature rise during high temperature heating or overcharge. It can be seen that thermal runaway due to overcharge and internal short circuit can be prevented, and a highly safe battery can be provided.
[0090]
From the above, it is possible to supply a battery with high safety by interposing the second layer that blocks ion conduction between the electrode and the solid electrolyte layer at a temperature higher than the temperature on the positive electrode or negative electrode side of the solid electrolyte. In particular, it is possible to supply a battery having excellent battery characteristics by allowing a polymer to exist between the negative electrode and the second layer that blocks ion conduction.
[0091]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a method for manufacturing an electrochemical device that includes a solid electrolyte that has a sufficient ability to retain an electrolyte, has excellent performance, and is easy to manufacture.
[0092]
Moreover, the manufacturing method of the electrochemical device excellent in the self-safety function at the time of abnormality can be provided.
[Brief description of the drawings]
FIG. 1 is a graph showing charge / discharge characteristics of solid electrolyte batteries of Examples and Comparative Examples.

Claims (6)

2つの電極が対向して形成され、前記2つの電極間に固体状電解質層及びセパレータ層を有し、少なくとも前記2つの電極のうちいずれか一方の電極と、前記セパレータ層との間に前記固体状電解質層を有する電気化学デバイスの製造方法であって、
前記固体状電解質を形成するマトリクス樹脂を、セパレータ層の一方の面のみ、又は2つの電極のうちの少なくとも片方の少なくとも一方の面に塗布し、これを乾燥した後積層体とし、その後前記マトリクス樹脂に注液して固体状電解質とする電気化学デバイスの製造方法。
Two electrodes are formed to face each other, and have a solid electrolyte layer and a separator layer between the two electrodes, and at least one of the two electrodes and the solid layer between the separator layer A method for producing an electrochemical device having a state electrolyte layer,
The matrix resin that forms the solid electrolyte is applied to only one surface of the separator layer or at least one surface of at least one of the two electrodes , and is dried to form a laminate, and then the matrix resin. A method for producing an electrochemical device by injecting a liquid into a solid electrolyte.
2つの電極が対向して形成され、前記2つの電極間に固体状電解質層及びセパレータ層を有し、少なくとも前記2つの電極のうちいずれか一方の電極と、前記セパレータ層との間に前記固体状電解質層を有する電気化学デバイスの製造方法であって、Two electrodes are formed to face each other, and have a solid electrolyte layer and a separator layer between the two electrodes, and at least one of the two electrodes and the solid layer between the separator layer A method for producing an electrochemical device having a state electrolyte layer,
前記固体状電解質を形成するマトリクス樹脂を、少なくとも、2つの電極、セパレータ層のいずれか一方の面に塗布し、これを乾燥した後積層体とし、その後前記マトリクス樹脂に注液して固体状電解質とし、  The matrix resin that forms the solid electrolyte is applied to at least one of the two electrodes and the separator layer, dried to form a laminate, and then poured into the matrix resin to form a solid electrolyte. age,
前記マトリクス樹脂は、少なくとも2種以上の混合溶媒に溶解され、少なくとも2種以上の異なった条件で乾燥される電気化学デバイスの製造方法。  The method for producing an electrochemical device, wherein the matrix resin is dissolved in at least two kinds of mixed solvents and dried under at least two kinds of different conditions.
前記2種以上の混合溶媒のうち、少なくとも1種の溶媒はマトリクス樹脂に対して不溶性である請求項の電気化学デバイスの製造方法。The method for producing an electrochemical device according to claim 2 , wherein at least one of the two or more mixed solvents is insoluble in the matrix resin. 前記セパレータは、所定の温度以上で電極と固体状電解質層とのイオン伝導を遮断するシャットダウンセパレータである請求項1〜3のいずれかの電気化学デバイスの製造方法。The method for manufacturing an electrochemical device according to claim 1, wherein the separator is a shutdown separator that blocks ion conduction between the electrode and the solid electrolyte layer at a predetermined temperature or higher. 前記マトリックス樹脂は、PVDFホモポリマーである請求項1〜4のいずれかの電気化学デバイスの製造方法。  The method for producing an electrochemical device according to claim 1, wherein the matrix resin is a PVDF homopolymer. 前記電気化学デバイスがリチウム二次電池である請求項1〜5のいずれかの電気化学デバイスの製造方法。  The method for producing an electrochemical device according to claim 1, wherein the electrochemical device is a lithium secondary battery.
JP2001234973A 2001-08-02 2001-08-02 Method for manufacturing electrochemical device Expired - Fee Related JP3984008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001234973A JP3984008B2 (en) 2001-08-02 2001-08-02 Method for manufacturing electrochemical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001234973A JP3984008B2 (en) 2001-08-02 2001-08-02 Method for manufacturing electrochemical device

Publications (2)

Publication Number Publication Date
JP2003045493A JP2003045493A (en) 2003-02-14
JP3984008B2 true JP3984008B2 (en) 2007-09-26

Family

ID=19066491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001234973A Expired - Fee Related JP3984008B2 (en) 2001-08-02 2001-08-02 Method for manufacturing electrochemical device

Country Status (1)

Country Link
JP (1) JP3984008B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004077467A1 (en) 2003-02-25 2004-09-10 Zeon Corporation Process for producing electrode for electrochemical device
US20040241550A1 (en) * 2003-05-28 2004-12-02 Wensley C. Glen Battery separator for lithium polymer battery
JP6295966B2 (en) * 2014-08-08 2018-03-20 トヨタ自動車株式会社 All solid battery

Also Published As

Publication number Publication date
JP2003045493A (en) 2003-02-14

Similar Documents

Publication Publication Date Title
US9166250B2 (en) Separator for battery, method for manufacturing the same, and lithium secondary battery
JP5883762B2 (en) Organic-inorganic composite porous polymer film
CN109792035B (en) Electrode, secondary battery using the same, and method for manufacturing the electrode
US7189478B2 (en) Lithium secondary battery
WO2017014245A1 (en) Lithium ion secondary battery
JP5163439B2 (en) FIBER-CONTAINING POLYMER FILM AND METHOD FOR PRODUCING SAME, ELECTROCHEMICAL DEVICE AND METHOD FOR PRODUCING SAME
JP2016541087A (en) Organic-inorganic composite porous membrane, separator including the same, and electrode structure
KR100547085B1 (en) Manufacturing method of polymer porous separator and lithium ion polymer battery
JP2015069957A (en) Separator for lithium ion secondary battery and method for manufacturing the same, and lithium ion secondary battery and method for manufacturing the same
JP4031635B2 (en) Electrochemical devices
JP4414165B2 (en) Electronic component separator and electronic component
JP2016181324A (en) Separator for electrochemical device
JP2004327183A (en) Battery and its manufacturing method
JP2005243303A (en) Member for electrochemical element and its manufacturing method, and the electrochemical element using it
JP5464766B2 (en) Battery separator and non-aqueous electrolyte battery
JP2002270239A (en) Electrochemical device
JP2005093078A (en) Nonaqueous electrolyte secondary battery
JP5804712B2 (en) Nonaqueous electrolyte secondary battery
JP2005019156A (en) Separator for electronic component, and electronic component
JP4453667B2 (en) Lithium ion secondary battery
JP5213003B2 (en) Nonaqueous electrolyte secondary battery
JP3822550B2 (en) Lithium secondary battery
JP3984008B2 (en) Method for manufacturing electrochemical device
JP4238099B2 (en) Nonaqueous electrolyte secondary battery
JP2008004441A (en) Lithium secondary battery, separator for lithium secondary battery, electrode for lithium secondary battery, nonaqueous electrolyte for lithium secondary battery, and armor for lithium secondary battery

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040601

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050209

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20051031

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20051125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3984008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees