JP3982768B2 - Heat exchanger and manufacturing method thereof - Google Patents

Heat exchanger and manufacturing method thereof Download PDF

Info

Publication number
JP3982768B2
JP3982768B2 JP2002287999A JP2002287999A JP3982768B2 JP 3982768 B2 JP3982768 B2 JP 3982768B2 JP 2002287999 A JP2002287999 A JP 2002287999A JP 2002287999 A JP2002287999 A JP 2002287999A JP 3982768 B2 JP3982768 B2 JP 3982768B2
Authority
JP
Japan
Prior art keywords
heat transfer
heat exchanger
copper
fin
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002287999A
Other languages
Japanese (ja)
Other versions
JP2004125235A (en
Inventor
哲郎 細木
主税 佐伯
武史 大脇
清美 青木
Original Assignee
株式会社コベルコ マテリアル銅管
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社コベルコ マテリアル銅管 filed Critical 株式会社コベルコ マテリアル銅管
Priority to JP2002287999A priority Critical patent/JP3982768B2/en
Publication of JP2004125235A publication Critical patent/JP2004125235A/en
Application granted granted Critical
Publication of JP3982768B2 publication Critical patent/JP3982768B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱交換器及びその製造方法に関する。
【0002】
【従来の技術】
エアコン等の空調機器に組み込まれる熱交換器の大半はクロスフィン型熱交換器である。クロスフィン型熱交換器は、比較的密な間隔で相互に平行に配列されたフィンプレートとも呼ばれる複数のフィンと、前記フィンに設けられた穴に拡管固定された内面溝付管等の伝熱管とにより構成されている。そして、この伝熱管の内部にフロン系の冷媒を流すことにより、伝熱管及びフィンを介して、冷媒と外部の空気との間で熱交換が行われる。
【0003】
一般に、フィンの材料としては熱伝導率及び打抜き加工性に優れたアルミニウム又はアルミニウム合金が、伝熱管の材料としては熱伝導性、耐食性及び加工性に優れる銅又は銅合金が用いられる。
【0004】
また、クロスフィン型熱交換器は次のような工程で製造される。初めに、0.1mm程度の厚さのアルミニウム又はアルミニウム合金薄板を打抜き加工し、穴及びカラーを形成してフィンとする。その際、潤滑油を塗布する。次に、銅又は銅合金製の伝熱管をU字型に曲げ加工し、ヘアピン状にする。次に、平行に配列した複数個のフィンに前記伝熱管を通す。そして、前記伝熱管を適当な方法で拡管することにより、伝熱管外面とフィン孔部に形成されているカラーの内面が接触し、伝熱管がフィンに固定される。この状態で加熱してフィンプレス時に使用した潤滑油を揮発させる。加熱条件は、使用するフィンプレス用潤滑油の揮発温度特性及び熱交換器の生産性などを考慮して選択されるため、各メーカーにより異なるが、通常は90〜180℃で5〜20分程度である。最後に、伝熱管の開放端を拡管してUベンド管を差し込み、ろう付けする。
【0005】
一方、「エネルギーの使用の合理化に関する法律」(省エネ法)の改正に伴い、空調機器においても、エネルギー消費効率の大幅な向上が求められている。更に、オゾン層破壊の問題に対応するため、使用される冷媒が従来のR22冷媒に比べ伝熱性能に劣るR407C冷媒、又は同等の性能を引き出すためには運転時の圧力を高くする必要のあるR410A冷媒に切替わりつつある。このため、空調機器に組み込まれているクロスフィン型熱交換器においては、伝熱性能を向上させることが要求されている。
【0006】
クロスフィン型熱交換器の伝熱性能に影響を与える因子としては、冷媒と伝熱管との間の熱伝達率、伝熱管とフィンとの間の熱伝達率及び空気とフィンとの間の熱伝達率が知られている。
【0007】
伝熱管と冷媒との間の熱伝達率向上には、管内の沸騰熱伝達、凝縮熱伝達及び対流熱伝達の促進が有効であるため、伝熱管の内表面積の増加及び冷媒の撹拌効果を増大させる最適な内面溝形状の開発が進められている。
【0008】
また、空気とフィンプレートとの間の熱伝達率を向上させる手段としては、フィンプレート表面に空気の温度境界層の形成を抑制するための凹凸を設けたり、スリット又はルーバーと呼ばれる切り込みを入れたりする方法が開発されている。現在は、これらの凹凸及びスリット又はルーバーの形状の最適化が図られている。
【0009】
伝熱管とフィンとの間の熱伝達率は、伝熱管とフィンの密着の度合いに影響される。例えば、銅又は銅合金を伝熱管用材料として用いた場合、伝熱管を拡管してフィンに固定する際、フィンは塑性変形して拡管後の孔径を維持するのに対し、より弾性係数の大きい伝熱管は拡管後に僅かに縮径して、フィンとの間に僅かな空隙部を形成することが分かっている。この空隙部による熱交換器の熱効率の損失(熱抵抗)は、熱交換器全体の5%程度であると考えられている(例えば、非特許文献1参照)。
【0010】
そこで、このような空隙部を少なくして、熱交換器の伝熱性能を向上させるため、以下に示すような検討がなされている。例えば、クロスフィン型熱交換器においては、伝熱管表面にパラフィンワックス等の常温で粘稠な有機被膜を形成して常温拡管するか、又は高融点パラフィンワックス等の高温で溶融する有機被膜を形成して高温で拡管する技術が提案されている(特許文献1参照)。また、フィン孔部と管との結合部に、金属粉末等の熱伝導性微粉末又は前記微粉末を油等に混入したペーストを介在させるという技術も提案されている(特許文献2参照)。また、伝熱管外表面に伝熱管より低融点の非金属材料を形成し、前記非金属材料を加熱融解することにより、伝熱管とフィンとを密着させ、拡管することなく作製する技術も提案されている(特許文献3参照)。また、液状バインダを封入したマイクロカプセルを分散させた塗料を伝熱管外表面に塗布後拡管を行い、マイクロカプセルを破壊することで、フィンと伝熱管の隙間にバインダを充填する技術も提案されている(特許文献4参照)。また、フィンに形成された切欠部に伝熱管を挿入してかしめ止めにより伝熱管をフィンに固定するクロスフィン型熱交換器においては、かしめ止め後にフィンと管の接触部に液体塗料を進入させ、塗料膜を形成する技術が提案されている(特許文献5)。更に、ヒートパイプに用いるフィン群挿嵌型熱交換器においては、伝熱管とフィンとの間に防食性に富む接着剤の薄膜を存在させる構成が提案されている(特許文献6)。
【0011】
【特許文献1】
特開昭56−133595号公報 (第1−3頁、図1−3)
【特許文献2】
特開昭58−158493号公報 (第1−2頁、図2)
【特許文献3】
特開昭59−15794号公報 (第1−2頁、図1−2)
【特許文献4】
特開平10−160374号公報 (第3−4頁,図8)
【特許文献5】
特開平9−145282号公報 (第3−14頁、図1−20)
【特許文献6】
特開昭60−162193号公報 (第5−8頁、図3−4)
【非特許文献1】
中田,「空調用熱交換器における最適設計と経済性」,機械の研究,1989,第41巻,第9号,p.1005−1011
【0012】
【発明が解決しようとする課題】
しかしながら、上述の従来技術には以下に示すような問題点がある。特許文献1に記載の方法では、常温で粘稠な有機被膜は室温より高温の冷媒が伝熱管内を流れるような状況下では皮膜が流出し、高温で溶融する有機被膜は高温拡管が必要になるため作業性及び作業効率が低下する。また、特許文献2に記載の方法では、所定の箇所に金属粉末を隙間無く充たすのは難しく、製造コストも上昇する。同様に、特許文献3に記載の方法でも、加熱工程が必要になるため製造コストが上昇する。特許文献4に記載の方法では、マイクロカプセルが完全に破壊されないことがあり、破壊したマイクロカプセルの破片による密着阻害及び未硬化のバインダの流出が生じ、材料費も高価である。特許文献5に記載の熱交換器は、伝熱管を拡管してフィンと接触させるタイプの熱交換器ではなく、塗料も毛細管現象により接触部に引き込まれるだけであるため、伝熱管及びフィンとの密着が不十分で、ハンドリング時に流出してしまうこともある。特許文献6に記載の方法も特許文献5と同様に拡管工程を含まないため、フィン及び伝熱管と接着剤とが密着せず、目的とする伝熱性能が得られないことがある。
【0013】
本発明はかかる問題に鑑みてなされたものであって、クロスフィン型の熱交換器において、フィンと伝熱管との間に形成される空隙部の影響を少なくして、伝熱性能が優れた熱交換器及びその製造方法を提供することを目的とする。
【0014】
【課題を解決するための手段】
本願第1発明に係る熱交換器は、互いに平行に配置した複数個のアルミニウム又はアルミニウム合金製フィンと、これらのフィンに設けられた孔を挿通する銅又は銅合金製伝熱管とを有し、前記銅又は銅合金製伝熱管を拡管することにより前記アルミニウム又はアルミニウム合金製フィンに固定した熱交換器において、少なくとも一部の前記伝熱管と前記フィンとの間に、前記拡管時には流動性を有し、拡管後に固化又は硬化した樹脂層が存在し、前記樹脂層が、硬化剤が添加された三フッ化型フッ素系樹脂又は硬化剤が添加されたエチレン酢酸ビニル共重合体により形成されていることを特徴とする。
【0015】
本願第2発明に係る熱交換器は、互いに平行に配置した複数個のアルミニウム又はアルミニウム合金製フィンと、これらのフィンに設けられた孔を挿通する銅又は銅合金製伝熱管とを有し、前記銅又は銅合金製伝熱管を拡管することにより前記アルミニウム又はアルミニウム合金製フィンに固定した熱交換器において、前記伝熱管と前記フィンとの間の少なくとも一部に固化又は硬化した有機無機セラミックス層が存在することを特徴とする。
【0018】
本願第4発明に係る熱交換器の製造方法は、銅又は銅合金製伝熱管の外表面の少なくとも一部に流動性を有する有機無機ハイブリッドセラミックスを塗布する工程と、互いに平行に配置したアルミニウム又はアルミニウム合金製フィンに設けられた孔に前記伝熱管を挿通し、前記伝熱管を拡管することにより前記フィンに固定する工程と、前記有機無機ハイブリッドセラミックスを固化又は硬化させる工程とを有することを特徴とする。
【0019】
本発明によると、流動性を有する樹脂層又は有機無機ハイブリッドセラミックス層を形成した後、固化又は硬化の進行が少ないうちに拡管を行うことにより、拡管の際に伝熱管の径が拡大して伝熱管表面の樹脂又は有機無機ハイブリッドセラミックスがフィンと接触し、空隙部の少なくとも一部を埋める。そして、この樹脂又は有機無機ハイブリッドセラミックスが、その後の乾燥工程又はろう付けで加熱され、前記樹脂又は有機無機ハイブリッドセラミックスは伝熱管及びフィンと接触を保った状態で硬化する。これにより、熱交換器の伝熱性能を向上することができる。
【0020】
また、本発明においては、無機部分が有機ポリマー又はオリゴマーで結合されてネットワークとなった有機無機ハイブリッドセラミックスを使用しており、前記有機無機ハイブリッドセラミックスは、無機と有機の特性を併せ持ち、緻密で、且つ、優れた強度を有しながら、熱交換器表面上の温度分布の差又は冷熱サイクルによる伝熱管又はフィンの膨張及び収縮に追従することができるため、一般のセラミックスで見受けられるような問題点、即ち伝熱管及びフィンの膨張収縮により発生する接触不良によって、伝熱特性が経時的に低下するといった問題点を解消できる。
【0021】
更に、本発明の製造方法によると、伝熱管を拡管した後、樹脂又は有機無機ハイブリッドセラミックスを硬化するため、熱交換器使用中の樹脂又は有機無機ハイブリッドセラミックスの流出がなく、熱交換性能の低下及び樹脂又は有機無機ハイブリッドセラミックスが他の部品に付着することによる前記部品の性能低下を防ぐことができる。
【0022】
【発明の実施の形態】
以下、本発明の実施形態に係る熱交換器及びその製造方法について詳細に説明する。図1は本実施形態のエアコン用熱交換器の一例で、拡管後の要部拡大断面図である。本発明の熱交換器は、互いに平行に配置したアルミニウム又はアルミニウム合金製フィン1に設けられた穴に、銅又は銅合金製伝熱管2が挿通している。更に、銅又は銅合金製伝熱管2の外表面に樹脂層又は有機無機ハイブリッドセラミック層3が存在している。
【0023】
本実施形態の熱交換器は、例えば、以下のような方法で作製することができる。初めに、0.1mm程度のアルミニウム又はアルミニウム合金薄板を打抜き加工し、穴及びカラーを形成したアルミニウム又はアルミニウム合金製フィン(以下、アルミフィンという)とする。その際、潤滑油を塗布する。次に、銅又は銅合金製の伝熱管(以下、銅製伝熱管という)をU字型に曲げ加工してヘアピン状にし、前記銅製伝熱管の少なくともフィンに接触する部分に硬化剤を添加した流動性を有する樹脂又は流動性を有する有機無機ハイブリッドセラミックスを塗布する。その後、前記樹脂層又はセラミックス層を形成した銅製伝熱管を平行に配列した多層のアルミフィンに挿通し、適当な方法で拡管して伝熱管をフィンに固定する。その際、伝熱管とフィンの間に流動性を有する樹脂層又は有機無機ハイブリッドセラミックス層が形成される。熱交換器を加熱して、樹脂又は有機無機ハイブリッドセラミックスを固化又は硬化させるとともにフィンプレス潤滑油を揮発させた後、前記銅製伝熱管の開放端を拡管してUベンド管を差し込みろう付けする。
【0024】
流動性を有する樹脂層を伝熱管の表面に形成する方法としては、液状の樹脂をスプレーにより吹き付ける、液状の樹脂が入った容器に伝熱管を浸漬する、又は筆塗り等を用いることができる。
【0025】
また、流動性を有する有機無機ハイブリッドセラミックス層を伝熱管の表面に形成する方法としては、有機溶剤で適当な濃度に希釈した有機無機ハイブリッドセラミックス原液(以下、処理液という)をスプレーにより吹き付ける、処理液を入れた容器へ伝熱管を浸漬する、又は筆塗り等を用いることができる。
【0026】
銅製伝熱管の拡管は樹脂又は有機無機ハイブリッドセラミックスの固化又は硬化が起こらない(十分な流動性がある)うちに行うことが望ましいが、ある程度固化又は硬化が進行し始めても完全に固化又は硬化していなければ、流動性のある部分が伝熱管とフィンの空隙を埋めるため、熱交換器としての性能を向上させることは可能である。但し、樹脂層又は有機無機ハイブリッドセラミックス層を形成後、それらを完全に固化又は硬化させてから拡管することは、前記樹脂又は有機無機ハイブリッドセラミックス流動性が失われ、伝熱管とフィンとの間の空隙部に進入しないため、フィンと樹脂層又は有機無機ハイブリッドセラミックス層とが密着する部分が少なくなり、熱交換器の性能を向上させることが難しくなるので好ましくない。
【0027】
拡管前の銅製伝熱管の表面に形成される樹脂層及び有機無機ハイブリッドセラミックス層の厚さは、伝熱管とフィンの間の空隙部(最大50μm程度)の距離と同程度であることが好ましい。それより大幅に厚い場合、拡管時にフィンと伝熱管の隙間より樹脂又は有機無機ハイブリッドセラミックスが流出してフィンを汚染してしまう。一方、それより大幅に薄い場合、充填効果の得られる体積が小さくなる。よって、樹脂層及び有機無機ハイブリッドセラミックス層の厚さは、数ミクロン〜数十ミクロンの範囲で、空隙部の距離に応じて設定することができる。
【0028】
本実施形態で使用される樹脂及び有機無機ハイブリッドセラミックスは、以下に示す条件を満たしているものから選ぶのが好ましい。即ち、▲1▼銅製伝熱管及びアルミフィンに対して液状時における濡れ性及び硬化時における密着性が優れている、▲2▼硬化又は固化していない状態で適度な流動性を有する、▲3▼熱交換器組立て時のろう付け工程又は乾燥工程で硬化する、▲4▼エアコン運転時の伝熱管内部を流れる冷媒の温度変化(0乃至80℃程度)にある程度追従して膨張収縮が可能である、▲5▼耐久性及び耐疲労性が優れており、長時間使用によるひび割れ及び剥離等の経時劣化をしにくい、▲6▼銅製伝熱管及びアルミフィンを腐食させない、▲7▼リサイクル時の環境負荷が小さい等の条件を満足することが好ましい。
【0029】
前記条件を満足する樹脂としては、例えば、硬化剤が添加されたフッ素系樹脂、硬化剤が添加されたエチレン酢酸ビニル共重合体(ethylene-vinylacetate copolymer:以下、EVAという)等がある。
【0030】
フッ素系樹脂は、硬化処理後も適度な弾性及び硬度を有しており、エアコン使用時の銅製伝熱管の膨張収縮に追従することができる。また、エアコン暖房運転時の室内機伝熱管表面温度は70℃程度に達することがあるが、これでも軟化又は溶出等を起こさない程度の耐熱性及び化学的安定性を有しているため、熱交換器の伝熱性能に劣化が起きにくい。フッ素系樹脂としては、例えば、三フッ化型フッ素系樹脂等を使用することができる。前記三フッ化型フッ素系樹脂は銅製伝熱管及びアルミフィンとの密着性が優れており、長期間において熱交換器の性能維持が可能になる。
【0031】
一方、EVA樹脂は融点が70℃程度であるため、溶融状態にして伝熱管表面に樹脂層を形成し、樹脂が固化する前に銅製伝熱管をアルミフィンに通して拡管することで、伝熱管とフィンの間の空隙部に容易に樹脂を侵入させることができる。又は、溶融状態にして伝熱管表面に樹脂層を形成した後、伝熱管を冷却してEVA樹脂を一旦固化し、その後再溶融させてから拡管するというプロセスで、伝熱管とフィンの間の空隙部に樹脂を侵入させることも可能である。但し、エアコンの暖房運転時、室内機の伝熱管表面温度は70℃程度に達することがあり、このような状態において、樹脂の溶出及び流出を防止するためには硬化剤の添加が必要である。EVA樹脂のように融点が室温より高い樹脂の場合、伝熱管表面に樹脂層を形成した後、固化した状態で保管し、拡管時に伝熱管を加熱して樹脂層を溶融させるというプロセスも可能になるため、取扱い性が向上する。
【0032】
本発明における有機無機ハイブリッドセラミックスの具体的例としては、SiOガラス網目の中に有機高分子又はオリゴマーを縮合反応によって導入して作った有機修飾シリケート材料、いわゆるセラマーが挙げられる。前記セラマーは−O−Si−O−Si−結合及び−O−Si−C−結合からなる物質で、無機部分が有機ポリマー又はオリゴマーで結合されてネットワーク状になったものである。そのため、有機部分と無機部分の化合物の種類及びそれらの配合比率を調整することにより、目的の性能を有する有機無機ハイブリッドセラミックス層を形成することができる。
【0033】
【実施例】
以下、本発明の熱交換器を実際に製造し、本発明範囲から外れる比較例と比較してその効果について具体的に説明する。
【0034】
熱交換性能は、実施例及び比較例により作製した熱交換器と未処理の熱交換器とを比較し、その性能向上率で評価した。
【0035】
図2は熱交換器の伝熱性能の測定に使用した空気熱交換器性能測定装置(以下、測定装置という)の構成を示す模式図である。図2に示すように、測定装置は、恒温恒湿機能付きの吸引型風洞12、冷媒供給装置(図示せず)及び空調機(図示せず)からなる。吸引型風洞12においては、空気の流通経路に熱交換器11が配置され、この熱交換器11の上流側及び下流側に夫々エアーサンプラー13及び14が配置されている。エアーサンプラー13及び14には夫々温湿度測定装置15及び16が連結されている。温湿度測定装置15及び16は夫々エアーサンプラー13及び14により採取された空気の乾球温度及び湿球温度を測定することにより、この空気の温度及び湿度を測定するものである。温湿度測定装置15及び16には温度を測定するための白金抵抗体が夫々2本設けられており、前記2本の白金抵抗体のうち1本は乾球温度測定用であり、他の1本は湿球温度測定用である。湿球温度測定用の白金抵抗体は常に水を含んだガーゼ(ウィック)に包まれている。また、熱交換器11とエアーサンプラ−14との間には、熱交換器11を通過した空気を整流する整流器17が設けられており、エアーサンプラ−14の下流側には横流ファン(Cross Flow Fan)18が設けられている。熱交換器11の入口及び出口には、冷媒の温度を測定する白金抵抗体及び冷媒の圧力を測定する歪ゲージ式圧力伝送器の双方が設けられている。
【0036】
また、冷媒供給装置は冷媒の圧力及び温度を調節して吸引型風洞12に供給するものであり、凝縮器及び熱交換器を備えている。冷媒供給装置には、冷媒の温度及び圧力を測定する白金抵抗体及び歪みゲージ式圧力伝送器が設けられており、冷媒の流量を測定するコリオリ式流量計も設けられている。更に、空調機は空気の温度及び湿度を制御して吸引型風洞12に供給するものであり、冷却用熱交換器、空気加熱ヒータ及び加湿装置を備えている。
【0037】
次に、測定装置を使用した熱交換器の伝熱性能の測定方法について説明する。伝熱性能の測定は、冷媒の凝縮時及び蒸発時について行う。先ず、図2に示すように、温度及び湿度を所定の条件に調整した空気を吸引型風洞12に送る。エアーサンプラー13はこの空気の温度及び湿度を測定する。また、吸引型風洞12内に送られた空気は熱交換器11のフィンプレート19間を通過する。一方、冷媒を熱交換器11の伝熱管である伝熱管に流す。なお、冷媒にはR410Aを使用する。これにより、伝熱管内の冷媒とフィンプレート19間を通過する空気との間で熱交換を行わせる。このとき、冷媒の凝縮時においては、冷媒から空気へと熱が流れ、冷媒の蒸発時においては、空気から冷媒へと熱が流れる。整流器17が熱交換器11を通過した空気を整流し、エアーサンプラー14が整流器17を通過した空気を採取してその温度及び湿度を測定する。そして、シロッコファン18がこの空気を吸引型風洞12の外へ排出する。
【0038】
凝縮試験時には、冷媒供給装置内の凝縮器に流れる冷却水量を制御し、熱交換器11の冷媒入口圧力が所定の凝縮温度に相当する飽和蒸気圧力の値になるようにする。そして、冷媒供給装置内の熱交換器に温水を流し、この温水の温度を制御することにより、熱交換器11の冷媒入口前の冷媒温度を制御する。また、冷媒流量を制御することにより、出口過冷却度(出口サブクール(SC))を所定の値に制御する。
【0039】
一方、蒸発試験時には、冷媒供給装置内の膨張弁の開度を調節して熱交換器11の冷媒出口圧力が、所定の蒸発温度に相当する飽和蒸気圧力の値になるように制御する。そして、熱交換器11に供給される冷媒の温度を制御することにより、冷媒の入口乾き度を制御する。また、冷媒流量を調節することにより、出口過熱度(出口スーパーヒート(SH))の値を制御する。伝熱管内蒸発側試験及び凝縮側試験における測定条件を表1に示す。
【0040】
【表1】

Figure 0003982768
【0041】
次に、熱交換器11における伝熱量(熱交換量)の測定方法について説明する。熱交換器11の出入口における冷媒の温度及び圧力を測定し、この冷媒の温度及び圧力に基づいて、米国のNational Institute of Standards and Technology (NIST)製のコンピュータソフトREFPROP Ver6.01を使用して、熱交換器11の出入口における冷媒のエンタルピーを算出する。一方、冷媒供給装置のコリオリ式流量計により、冷媒の流量を測定する。冷媒出入口のエンタルピー差をΔH(kJ/kg)とし、冷媒流量をW(kg/h)とし、伝熱量をE(kW)とすると、伝熱量Eは下記数式1により与えられる。
【0042】
【数1】
Figure 0003982768
【0043】
一方、空気の状態量からも伝熱量を算出する。先ず、蒸発試験時における伝熱量の算出方法について説明する。空気の流量をQmi(m/秒)とし、熱交換器11の入口及び出口における空気のエンタルピーを夫々ha1(kJ/kg)及びha2(kJ/kg)とし、空気比体積をvn(m/kg)とし、乾き空気1kg当たりの空気の絶対湿度をxn(kg/kg)とし、熱漏洩量をq(kW)とし、蒸発試験時における熱交換器11の伝熱量をqcti(kW)とすると、伝熱量qctiは下記数式2により与えられる。
【0044】
【数2】
Figure 0003982768
【0045】
次に、凝縮試験時における伝熱量の算出方法について説明する。乾き空気1kg当たりの空気の定圧比熱をCpa(kJ/kg・K)とし、熱交換器11の入口及び出口における空気の乾球温度を夫々ta1及びta2とし、凝縮試験時における熱交換器11の伝熱量をqthi(kW)とすると、伝熱量qthiは下記数式3により与えられる。
【0046】
【数3】
Figure 0003982768
【0047】
このように、空気の状態量から算出した伝熱量を、上述の冷媒の温度及び圧力から算出した伝熱量と比較し、測定の信頼性を評価する。具体的には、{(冷媒からの算出値)/(空気からの算出値)−1}×100(%)の絶対値が5%を超えるようであれば、熱交換器11を設置し直し、再度測定を行う。また、この数式の値の絶対値が5%以内であっても、この値が不安定に変動する場合は、試験装置を確認し、必要に応じて再測定を行う。本実施例においては、伝熱量の測定値として、冷媒の温度及び圧力から求めた値を採用する。
【0048】
図3は図2に示した測定装置に搭載された熱交換器11を示す模式図である。図3に示すように、測定装置10に搭載された熱交換器11は、アルミニウムからなるフィンプレート19及びこのフィンプレートに通された銅からなる内面溝付管20から構成されている。冷媒は凝縮試験時には矢印21が示す方向に流れ、蒸発試験時には矢印22が示す方向に流れる。熱交換器11の共通仕様を表2に示す。なお、表2に示す熱交換器の幅は、アルミフィンが形成されている領域の長さに相当する。
【0049】
【表2】
Figure 0003982768
【0050】
今回の測定で用いた伝熱管は全て内面溝付管とし、その寸法及び形状は、外径7.0mm、溝深さ0.2mm、管の円周方向溝ピッチ0.41mm、管軸に対する捩じれ角度18°(右ねじ方向)、管軸に対して直角に切断した断面からの観察におけるフィン頂角20°、溝底肉厚0.25mmとした。また、拡管条件は、穴径7.20mm、拡管球外径6.55mm、拡管率5.6%で統一した。
【0051】
今回の測定では、フィンは、樹脂皮膜などの表面処理を施していないものを使用した。
【0052】
熱交換性能の評価においては、風速3水準のうち最も未処理熱交換器との性能向上比率が高かったものが、未処理の熱交換器の性能よりも+0.1%以上の向上していた場合を「○」、+0.1未満であった場合を「×(効果無し)」とした。
【0053】
また、熱交換性能比(%)は、( )内に熱交換性能測定時の風速3水準のうち、未処理熱交換器に対して最も性能向上比率が高かった値を参考値として記載した。
【0054】
使用時の樹脂又は有機無機ハイブリッドセラミックスの流出の有無については、蒸発及び凝縮性能測定完了後、熱交換器を目視観察することにより確認した。そ観察の結果、フィンに形成されたヘアピン状伝熱管の挿入穴又はフィン同士のすき間より樹脂の流出が有れば「×」、流出が確認されなければ「○」とした。
【0055】
総合評価は、上記の評価項目に関して全て「○」であった場合「○」、どちらかの項目に「×」があった場合は「×」とした。
【0056】
これらの結果を表3に示す。
【0057】
【表3】
Figure 0003982768
【0058】
実施例1では、伝熱管とフィンの間に存在させる樹脂に、硬化剤を添加した三フッ化型樹脂(旭硝子コートアンドレジン社製ボンフロン2050)を用いて熱交換器を作製した。図4はボンフロン2050の主成分である三フッ化型樹脂の構造図である。前記三フッ化樹脂は、フルオロエチレン単位31とビニルエーテル単位32が交互に並んでいる構造を有する。先ず、長さ約280mmの銅製伝熱管(ヘアピン形状)を、管端の約10mmを除いて樹脂液に浸漬し、ゆっくり引上げ、そのまま銅製伝熱管のトップを持ってアルミフィンに挿入し、直ちに拡管した。次に、拡管固定後の熱交換器を100℃に保温した乾燥炉に5時間保持して樹脂層を硬化させた後、リードパイプをろう付けし、測定に供した。測定の結果、今回作製した熱交換器の中で、最も熱損失が少なく、熱交換性能の向上が優れていた。特に、凝縮性能で大幅な性能向上を示した。これは、銅製伝熱管とアルミフィンとの間に樹脂層が緻密に充填され、更に拡管工程を経てから硬化処理を行ったことにより、伝熱管とフィンとの直接接触が確保されていたためである。一方、蒸発性能では、未処理の熱交換器であっても管外に生成した凝縮水が伝熱管とフィンの間を充填するため、凝縮性能時ほどの性能向上は見られなかった。
【0059】
比較例1は、実施例1と同様に硬化剤を添加した三フッ化型樹脂(旭硝子コートアンドレジン社製ボンフロン2050)を使用し、拡管工程前に銅製伝熱管を100℃に保温した乾燥炉に5時間保持して樹脂を硬化させた後、アルミフィンに挿入し、拡管したものである。本比較例では、伝熱管とフィンの間に形成された樹脂層と伝熱管又はフィンとが接触していない部分が多く、熱交換性能が蒸発性能及び凝縮性能ともに大幅に低下した。
【0060】
比較例2は、伝熱管とフィンの間に存在させる樹脂に、実施例1と同じ三フッ化型樹脂(旭硝子コートアンドレジン社製ボンフロン2050)に硬化剤を添加しないものを使用し、実施例1と同様に、銅製伝熱管をアルミフィンに挿入し、拡管後、実施例1と同条件での加熱による樹脂硬化処理を実施した。測定の結果、性能の向上が確認されたが、硬化剤を添加してないため、凝縮性能測定時における伝熱管表面の昇温(70℃程度)に対する耐熱性を有さず、測定完了後の確認により樹脂の劣化及び流出が確認された。これにより、実施例1ほどの熱交換性能向上は得られず、また、エアコンの長期使用に対する耐久性も不十分であった。
【0061】
実施例2は、伝熱管とフィンの間に存在させる樹脂に、硬化剤としてPeroxideを添加したEVA樹脂を使用した。先ず、容器中で80℃に昇温したEVA樹脂に、長さ約280mmの銅製伝熱管を、管端の約10mmを除いて浸漬し、ゆっくり引上げ、冷却して一旦固体化させた。その銅製伝熱管をアルミフィンに挿入した仮組みの熱交換器を、拡管装置に設置した状態で、温風により加熱し、熱交換器の伝熱管に取付けた温度計(熱伝対)が75℃を指した時点で拡管を行った。拡管完了後、一旦大気中で冷却し、拡管装置から熱交換器を取り外して、配管用リードパイプをろう付けした後、その熱交換器を140℃に加温した乾燥炉に30分間保持して、EVA樹脂を硬化させた。その結果、伝熱管とフィンとの間の硬化樹脂層が、伝熱管とフィンの両者に接触している部分が多くなり、熱抵抗が少なく熱交換性能が向上した。
【0062】
比較例3は、伝熱管とフィンの間に存在させる樹脂に、EVA樹脂に硬化剤を添加しないものを使用し、実施例2と同様の方法で、80℃に加温して銅製伝熱管に樹脂層を形成し、大気中で冷却した後、アルミフィンに挿入、75℃に加温した状態で拡管した。本比較例では、硬化剤を添加していないので、その後の加熱処理は行わなかった。その結果、同熱交換器においては性能の向上が確認されたが、硬化剤を添加してないため、凝縮性能測定において伝熱管表面温度が70℃程度に上昇した際、樹脂の一部が溶融流出し、フィンを汚染した。また、実施例2ほどの熱交換性能向上は得られず、エアコンの長期使用に対する耐久性も不十分であった。
【0063】
実施例3は、伝熱管とフィンの間に存在させる樹脂には、硬化剤としてPeroxideを添加した融点が70℃のパラフィンを使用した。本実施例では、実施例2と同じ硬化剤を使用するため、銅製伝熱管への樹脂層の形成、拡管方法及び硬化処理は実施例2と同様にした。その結果、実施例2と同様の理由により熱交換性能の向上が認められた。
【0064】
比較例4は、伝熱管とフィンの間に存在させる樹脂に、実施例3と同じ融点が70℃のパラフィンに硬化剤を添加しないものを使用し、実施例3と同様の方法で、80℃に加温して銅製伝熱管に樹脂層を形成した。その後、大気中で冷却してアルミフィンに挿入し、75℃に加温した状態で拡管した。本比較例は、硬化剤を添加していないので、その後の加熱処理は行わなかった。その結果、比較例3と同様の結果となった。
【0065】
実施例4は、伝熱管とフィンの間に存在させる有機無機ハイブリッドセラミックスに、JSR社製グラスカHPC7506を使用した。図5はグラスカHPC7506の構造図である。先ず、長さ約280mmの銅製伝熱管を、管端の約10mmを除いて塗料に浸漬し、ゆっくり引上げ、そのまま銅製伝熱管のトップを持ってアルミフィンに挿入し、直ちに拡管した。次に、拡管固定後の熱交換器を100℃に保温した乾燥炉に1時間保持し、有機無機ハイブリッドセラミックス層を硬化させた後、リードパイプをろう付けし、測定に供した。その結果、伝熱管とフィンとの間において有機無機ハイブリッドセラミックス層が緻密に充填され、前記セラミックス層と伝熱管及びフィンとが密着している部分が多くなり、熱交換器としての伝熱性能が向上した。
【0066】
比較例5は、発明例4と同様に有機無機ハイブリッドセラミックスにJSR社製グラスカHPC7506を使用し、拡管前に銅製伝熱管を100℃に保温した乾燥炉に1時間保持して有機無機ハイブリッドセラミックスを硬化させた。その後、アルミフィンに挿入し、拡管して熱交換器を作製した。その結果、伝熱管とフィンとの間は有機無機ハイブリッドセラミックス層が緻密に充填されていたが、有機無機ハイブリッドセラミックス層と伝熱管又はフィンとの間に隙間が多く、熱交換性能が蒸発性能及び凝縮性能ともに大幅に低下した。
【0067】
【発明の効果】
以上詳述したように、本発明によれば、伝熱管とフィンの間の空隙部が、少なくとも一部を硬化した樹脂又は有機無機ハイブリッドセラミックスにより充填されるため、伝熱管とフィンの間の熱抵抗が低減され、伝熱性能に優れた熱交換器を得ることができる。
【図面の簡単な説明】
【図1】本発明に係るエアコン用熱交換器の拡管後の要部拡大断面図である。
【図2】熱交換器の伝熱性能の測定に使用する空気熱交換器性能測定装置の構成を示す模式図である。
【図3】図2に示す空気熱交換器性能測定装置に組み込まれた熱交換器の構成を示す模式図である。
【図4】実施例1、比較例1及び2で用いた三フッ化樹脂の構造図である。
【図5】実施例4及び比較例5で用いた有機無機ハイブリッドセラミックスの構造図である。
【符号の説明】
1;アルミニウム又はアルミニウム合金製フィン
2;銅又は銅合金製伝熱管
3;樹脂層又は有機無機ハイブリッドセラミックス層
11;熱交換器
12;吸引型風洞
13、14;エアーサンプラー
15、16;温室度測定装置
17;整流器
18;横流れファン
19;フィンプレート
20;内面溝付管
21,22;矢印
31;フルオロエチレン単位
32;ビニルエーテル単位[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat exchanger and a manufacturing method thereof.
[0002]
[Prior art]
Most heat exchangers incorporated in air conditioners such as air conditioners are cross fin type heat exchangers. A cross fin type heat exchanger is composed of a plurality of fins, also called fin plates, arranged in parallel with each other at relatively close intervals, and heat transfer tubes such as internally grooved tubes that are expanded and fixed in holes provided in the fins. It is comprised by. Then, by flowing a fluorocarbon refrigerant inside the heat transfer tube, heat exchange is performed between the refrigerant and the outside air via the heat transfer tube and the fins.
[0003]
In general, aluminum or an aluminum alloy excellent in thermal conductivity and punching workability is used as the fin material, and copper or copper alloy excellent in thermal conductivity, corrosion resistance and workability is used as the heat transfer tube material.
[0004]
Moreover, a cross fin type heat exchanger is manufactured in the following processes. First, an aluminum or aluminum alloy thin plate having a thickness of about 0.1 mm is punched to form holes and collars to form fins. At that time, lubricating oil is applied. Next, the heat transfer tube made of copper or copper alloy is bent into a U shape to form a hairpin shape. Next, the heat transfer tubes are passed through a plurality of fins arranged in parallel. Then, by expanding the heat transfer tube by an appropriate method, the outer surface of the heat transfer tube and the inner surface of the collar formed in the fin hole portion come into contact with each other, and the heat transfer tube is fixed to the fin. It heats in this state and volatilizes the lubricating oil used at the time of fin press. The heating conditions are selected in consideration of the volatilization temperature characteristics of the fin press lubricant to be used and the productivity of the heat exchanger, and therefore vary depending on each manufacturer, but usually at 90 to 180 ° C. for about 5 to 20 minutes. It is. Finally, the open end of the heat transfer tube is expanded and a U-bend tube is inserted and brazed.
[0005]
On the other hand, with the revision of the “Act on Rational Use of Energy” (Energy Conservation Law), air conditioning equipment is also required to significantly improve energy consumption efficiency. Furthermore, in order to cope with the problem of ozone layer destruction, it is necessary to increase the operating pressure in order to bring out the R407C refrigerant that is inferior in heat transfer performance compared to the conventional R22 refrigerant or equivalent performance. Switching to R410A refrigerant. For this reason, in the cross fin type heat exchanger incorporated in the air conditioner, it is required to improve the heat transfer performance.
[0006]
Factors affecting the heat transfer performance of the cross fin heat exchanger include heat transfer coefficient between the refrigerant and the heat transfer tube, heat transfer coefficient between the heat transfer tube and the fin, and heat between the air and the fin. The transmission rate is known.
[0007]
In order to improve the heat transfer coefficient between the heat transfer tube and the refrigerant, it is effective to promote boiling heat transfer, condensation heat transfer, and convection heat transfer in the tube, increasing the internal surface area of the heat transfer tube and increasing the stirring effect of the refrigerant The development of the optimum inner groove shape is underway.
[0008]
As means for improving the heat transfer coefficient between air and the fin plate, the fin plate surface is provided with irregularities for suppressing the formation of a temperature boundary layer of air, or a notch called a slit or louver is made. A method has been developed. At present, the shape of these irregularities and slits or louvers is optimized.
[0009]
The heat transfer coefficient between the heat transfer tube and the fin is affected by the degree of adhesion between the heat transfer tube and the fin. For example, when copper or copper alloy is used as the material for the heat transfer tube, when the heat transfer tube is expanded and fixed to the fin, the fin is plastically deformed to maintain the hole diameter after the expansion, but has a larger elastic coefficient. It has been found that the heat transfer tube is slightly reduced in diameter after being expanded to form a slight gap with the fin. It is considered that the heat efficiency loss (heat resistance) of the heat exchanger due to the gap is about 5% of the entire heat exchanger (see Non-Patent Document 1, for example).
[0010]
Therefore, in order to improve the heat transfer performance of the heat exchanger by reducing such voids, the following studies have been made. For example, in a cross-fin type heat exchanger, a viscous organic film such as paraffin wax is formed on the heat transfer tube surface at room temperature and expanded at room temperature, or an organic film that melts at high temperature such as high melting point paraffin wax is formed. Thus, a technique for expanding the tube at a high temperature has been proposed (see Patent Document 1). In addition, a technique has been proposed in which a thermally conductive fine powder such as metal powder or a paste in which the fine powder is mixed in oil or the like is interposed in a joint between the fin hole and the tube (see Patent Document 2). In addition, a technique has also been proposed in which a non-metallic material having a melting point lower than that of the heat transfer tube is formed on the outer surface of the heat transfer tube, and the non-metal material is heated and melted so that the heat transfer tube and the fin are brought into close contact with each other without being expanded. (See Patent Document 3). In addition, a technique for filling the gap between the fin and the heat transfer tube by applying a paint in which microcapsules containing a liquid binder are dispersed to the outer surface of the heat transfer tube and then expanding the tube to destroy the microcapsule has also been proposed. (See Patent Document 4). In addition, in a cross fin type heat exchanger in which a heat transfer tube is inserted into the notch formed in the fin and the heat transfer tube is fixed to the fin by caulking, the liquid paint enters the contact portion between the fin and the tube after the caulking is stopped. A technique for forming a paint film has been proposed (Patent Document 5). Furthermore, in the fin group insertion type heat exchanger used for a heat pipe, the structure which makes the thin film of the adhesive agent rich in corrosion resistance exist between a heat exchanger tube and a fin is proposed (patent document 6).
[0011]
[Patent Document 1]
JP 56-133595 A (page 1-3, FIG. 1-3)
[Patent Document 2]
JP 58-158493 A (page 1-2, FIG. 2)
[Patent Document 3]
JP 59-15794 (page 1-2, Fig. 1-2)
[Patent Document 4]
JP-A-10-160374 (page 3-4, FIG. 8)
[Patent Document 5]
JP-A-9-145282 (page 3-14, FIG. 1-20)
[Patent Document 6]
JP 60-162193 A (page 5-8, FIG. 3-4)
[Non-Patent Document 1]
Nakata, “Optimum Design and Economics in Air-Conditioning Heat Exchangers”, Research on Machinery, 1989, Vol. 41, No. 9, p. 1005-1011
[0012]
[Problems to be solved by the invention]
However, the above-described prior art has the following problems. In the method described in Patent Document 1, the organic film that is viscous at room temperature flows out in a situation where a refrigerant having a temperature higher than room temperature flows through the heat transfer tube, and the organic film that melts at high temperature requires high-temperature tube expansion. Therefore, workability and work efficiency are reduced. Further, in the method described in Patent Document 2, it is difficult to fill a predetermined portion with metal powder without a gap, and the manufacturing cost also increases. Similarly, the method described in Patent Document 3 also requires a heating step, which increases manufacturing costs. In the method described in Patent Document 4, the microcapsule may not be completely destroyed, adhesion failure due to broken pieces of the microcapsule and outflow of uncured binder occur, and the material cost is also expensive. The heat exchanger described in Patent Document 5 is not a type of heat exchanger in which the heat transfer tube is expanded and brought into contact with the fins, but the paint is only drawn into the contact portion by capillary action, so the heat transfer tube and the fin Adhesion may be insufficient and may flow out during handling. Similarly to Patent Document 5, the method described in Patent Document 6 does not include a tube expansion step, and the fins, the heat transfer tubes, and the adhesive do not adhere to each other, and the target heat transfer performance may not be obtained.
[0013]
The present invention has been made in view of such a problem, and in a cross fin type heat exchanger, the influence of a gap formed between the fin and the heat transfer tube is reduced, and the heat transfer performance is excellent. It aims at providing a heat exchanger and its manufacturing method.
[0014]
[Means for Solving the Problems]
The heat exchanger according to the first invention of the present application has a plurality of aluminum or aluminum alloy fins arranged in parallel with each other, and a copper or copper alloy heat transfer tube that passes through holes provided in these fins. In the heat exchanger fixed to the aluminum or aluminum alloy fin by expanding the copper or copper alloy heat transfer tube, the heat exchanger has fluidity between at least a part of the heat transfer tube and the fin during the expansion. And there is a solidified or hardened resin layer after pipe expansion The resin layer is formed of a trifluoride-type fluorine resin to which a curing agent is added or an ethylene vinyl acetate copolymer to which a curing agent is added. It is characterized by that.
[0015]
The heat exchanger according to the second invention of the present application has a plurality of aluminum or aluminum alloy fins arranged in parallel to each other, and a copper or copper alloy heat transfer tube inserted through holes provided in these fins, In the heat exchanger fixed to the aluminum or aluminum alloy fin by expanding the copper or copper alloy heat transfer tube, the organic / inorganic ceramic layer solidified or hardened at least partially between the heat transfer tube and the fin Is present.
[0018]
The manufacturing method of the heat exchanger according to the fourth invention of the present application includes a step of applying an organic-inorganic hybrid ceramic having fluidity to at least a part of an outer surface of a copper or copper alloy heat transfer tube, and aluminum or The heat transfer tube is inserted into a hole provided in an aluminum alloy fin, and the heat transfer tube is expanded to be fixed to the fin, and the organic-inorganic hybrid ceramic is solidified or hardened. And
[0019]
According to the present invention, after forming a fluid resin layer or an organic-inorganic hybrid ceramic layer, the diameter of the heat transfer tube is increased during tube expansion by expanding the tube while the progress of solidification or curing is small. The resin on the surface of the heat tube or the organic / inorganic hybrid ceramic comes into contact with the fin and fills at least a part of the gap. The resin or organic-inorganic hybrid ceramic is heated in a subsequent drying step or brazing, and the resin or organic-inorganic hybrid ceramic is cured while maintaining contact with the heat transfer tube and the fin. Thereby, the heat transfer performance of the heat exchanger can be improved.
[0020]
Further, in the present invention, an organic-inorganic hybrid ceramic is used in which an inorganic portion is combined with an organic polymer or oligomer to form a network, and the organic-inorganic hybrid ceramic has both inorganic and organic characteristics, is dense, In addition, while having excellent strength, it can follow the difference in temperature distribution on the surface of the heat exchanger or the expansion and contraction of the heat transfer tube or fin due to the cooling cycle, so that it is a problem found in general ceramics That is, the problem that the heat transfer characteristics deteriorate with time due to poor contact caused by expansion and contraction of the heat transfer tubes and fins can be solved.
[0021]
Furthermore, according to the manufacturing method of the present invention, after the heat transfer tube is expanded, the resin or organic / inorganic hybrid ceramic is cured, so that there is no outflow of the resin or organic / inorganic hybrid ceramic during use of the heat exchanger, and the heat exchange performance is deteriorated. And the performance fall of the said part by resin or organic-inorganic hybrid ceramics adhering to another part can be prevented.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a heat exchanger and a manufacturing method thereof according to an embodiment of the present invention will be described in detail. FIG. 1 is an example of an air conditioner heat exchanger according to this embodiment, and is an enlarged cross-sectional view of a main part after pipe expansion. In the heat exchanger of the present invention, a copper or copper alloy heat transfer tube 2 is inserted through holes provided in aluminum or aluminum alloy fins 1 arranged in parallel to each other. Furthermore, the resin layer or the organic-inorganic hybrid ceramic layer 3 exists on the outer surface of the heat transfer tube 2 made of copper or copper alloy.
[0023]
The heat exchanger of this embodiment can be manufactured by the following methods, for example. First, an aluminum or aluminum alloy thin plate of about 0.1 mm is punched into aluminum or aluminum alloy fins (hereinafter referred to as aluminum fins) in which holes and collars are formed. At that time, lubricating oil is applied. Next, a copper or copper alloy heat transfer tube (hereinafter referred to as a copper heat transfer tube) is bent into a U-shape to form a hairpin, and a flow in which a hardening agent is added to at least a portion of the copper heat transfer tube that contacts the fins A resin having a property or an organic-inorganic hybrid ceramic having a fluidity is applied. Thereafter, the copper heat transfer tube on which the resin layer or the ceramic layer is formed is inserted into a multi-layered aluminum fin arranged in parallel, and the tube is expanded by an appropriate method to fix the heat transfer tube to the fin. At that time, a resin layer or an organic-inorganic hybrid ceramic layer having fluidity is formed between the heat transfer tubes and the fins. The heat exchanger is heated to solidify or harden the resin or organic / inorganic hybrid ceramic and volatilize the fin press lubricant, and then the open end of the copper heat transfer tube is expanded and a U-bend tube is inserted and brazed.
[0024]
As a method for forming a resin layer having fluidity on the surface of the heat transfer tube, it is possible to spray a liquid resin by spraying, immerse the heat transfer tube in a container containing the liquid resin, or brush painting.
[0025]
In addition, as a method of forming a fluid organic / inorganic hybrid ceramic layer on the surface of the heat transfer tube, spraying an organic / inorganic hybrid ceramic stock solution (hereinafter referred to as a processing solution) diluted with an organic solvent to an appropriate concentration by spraying. It is possible to immerse the heat transfer tube in a container containing the liquid, or to use brushing or the like.
[0026]
It is desirable to expand the copper heat transfer tube before the resin or organic / inorganic hybrid ceramics is solidified or hardened (with sufficient fluidity), but even if solidification or hardening begins to progress to some extent, it completely solidifies or hardens. If not, the fluid part fills the gap between the heat transfer tube and the fin, so that the performance as a heat exchanger can be improved. However, after the resin layer or the organic / inorganic hybrid ceramic layer is formed, the resin or the organic / inorganic hybrid ceramics fluidity is lost when the tubes are completely solidified or cured, and the fluidity of the resin or the organic / inorganic hybrid ceramics is lost. Since it does not enter the gap, the portion where the fin and the resin layer or the organic-inorganic hybrid ceramic layer are in close contact with each other is reduced, and it is difficult to improve the performance of the heat exchanger, which is not preferable.
[0027]
It is preferable that the thickness of the resin layer and the organic-inorganic hybrid ceramic layer formed on the surface of the copper heat transfer tube before the pipe expansion is approximately the same as the distance between the heat transfer tubes and the fins (up to about 50 μm). If it is much thicker than that, resin or organic-inorganic hybrid ceramics will flow out from the gap between the fin and the heat transfer tube during pipe expansion, and the fin will be contaminated. On the other hand, when it is much thinner than that, the volume with which the filling effect is obtained becomes small. Therefore, the thickness of the resin layer and the organic-inorganic hybrid ceramic layer can be set in the range of several microns to several tens of microns according to the distance of the gap.
[0028]
The resin and the organic / inorganic hybrid ceramic used in the present embodiment are preferably selected from those satisfying the following conditions. That is, (1) excellent in wettability in the liquid state and adhesiveness in the curing with respect to the copper heat transfer tube and the aluminum fin, (2) has an appropriate fluidity in a state where it is not cured or solidified, and (3) ▼ Curing in the brazing process or drying process when assembling the heat exchanger. ④Expanding / shrinking to some extent follows the temperature change of the refrigerant flowing in the heat transfer tube during air conditioning operation (about 0 to 80 ℃). Yes, (5) Excellent durability and fatigue resistance, resistant to deterioration over time such as cracking and peeling due to long-term use, (6) Does not corrode copper heat transfer tubes and aluminum fins, (7) During recycling It is preferable to satisfy conditions such as a low environmental load.
[0029]
Examples of the resin that satisfies the above conditions include a fluorine resin to which a curing agent is added, an ethylene-vinyl acetate copolymer (hereinafter referred to as EVA) to which a curing agent is added, and the like.
[0030]
The fluororesin has an appropriate elasticity and hardness even after the curing treatment, and can follow the expansion and contraction of the copper heat transfer tube when the air conditioner is used. In addition, the indoor unit heat transfer tube surface temperature during air-conditioner heating operation may reach about 70 ° C., but it still has heat resistance and chemical stability that do not cause softening or elution. The heat transfer performance of the exchanger is unlikely to deteriorate. As the fluorine resin, for example, a trifluoride fluorine resin can be used. The trifluoride-type fluororesin has excellent adhesion to the copper heat transfer tube and the aluminum fin, and the performance of the heat exchanger can be maintained over a long period of time.
[0031]
On the other hand, since EVA resin has a melting point of about 70 ° C., a resin layer is formed on the surface of the heat transfer tube in a molten state, and the copper heat transfer tube is expanded through an aluminum fin before the resin is solidified. The resin can easily enter the gap between the fins. Alternatively, after forming a resin layer on the surface of the heat transfer tube in a molten state, the heat transfer tube is cooled to solidify the EVA resin, and then remelted and then expanded, and the gap between the heat transfer tube and the fins It is also possible to allow the resin to enter the part. However, during the heating operation of the air conditioner, the heat transfer tube surface temperature of the indoor unit may reach about 70 ° C. In such a state, it is necessary to add a curing agent to prevent the resin from eluting and flowing out. . In the case of a resin having a melting point higher than room temperature, such as EVA resin, a process is possible in which the resin layer is formed on the surface of the heat transfer tube and then stored in a solidified state, and the heat transfer tube is heated to expand the resin layer when expanding the tube. Therefore, the handleability is improved.
[0032]
Specific examples of the organic-inorganic hybrid ceramics in the present invention include organic modified silicate materials made by introducing organic polymers or oligomers into a SiO glass network by a condensation reaction, so-called ceramers. The ceramer is a substance composed of —O—Si—O—Si— bond and —O—Si—C— bond, and has an inorganic portion bonded with an organic polymer or oligomer to form a network. Therefore, an organic-inorganic hybrid ceramic layer having the desired performance can be formed by adjusting the types of compounds of the organic part and the inorganic part and the blending ratio thereof.
[0033]
【Example】
Hereinafter, the heat exchanger of the present invention is actually manufactured, and the effect thereof will be specifically described in comparison with a comparative example that is out of the scope of the present invention.
[0034]
The heat exchange performance was evaluated by comparing the heat exchangers produced in Examples and Comparative Examples with untreated heat exchangers, and the performance improvement rate.
[0035]
FIG. 2 is a schematic diagram showing a configuration of an air heat exchanger performance measuring device (hereinafter referred to as a measuring device) used for measuring the heat transfer performance of the heat exchanger. As shown in FIG. 2, the measuring device includes a suction type wind tunnel 12 having a constant temperature and humidity function, a refrigerant supply device (not shown), and an air conditioner (not shown). In the suction type wind tunnel 12, a heat exchanger 11 is disposed in the air flow path, and air samplers 13 and 14 are disposed on the upstream side and the downstream side of the heat exchanger 11, respectively. Temperature and humidity measuring devices 15 and 16 are connected to the air samplers 13 and 14, respectively. The temperature and humidity measuring devices 15 and 16 measure the temperature and humidity of the air by measuring the dry bulb temperature and wet bulb temperature of the air collected by the air samplers 13 and 14, respectively. The temperature / humidity measuring devices 15 and 16 are each provided with two platinum resistors for measuring the temperature, one of the two platinum resistors is for measuring the dry bulb temperature, and the other 1 The book is for wet bulb temperature measurement. Platinum resistors for wet bulb temperature measurement are always wrapped in water-containing gauze (wick). Further, a rectifier 17 is provided between the heat exchanger 11 and the air sampler 14 to rectify the air that has passed through the heat exchanger 11, and a cross flow fan (Cross Flow) is provided downstream of the air sampler 14. Fan) 18 is provided. Both the platinum resistor that measures the temperature of the refrigerant and the strain gauge pressure transmitter that measures the pressure of the refrigerant are provided at the inlet and the outlet of the heat exchanger 11.
[0036]
The refrigerant supply device adjusts the pressure and temperature of the refrigerant and supplies the refrigerant to the suction type wind tunnel 12, and includes a condenser and a heat exchanger. The refrigerant supply device is provided with a platinum resistor and a strain gauge pressure transmitter that measure the temperature and pressure of the refrigerant, and is also provided with a Coriolis flow meter that measures the flow rate of the refrigerant. Further, the air conditioner controls the temperature and humidity of air and supplies the air to the suction type wind tunnel 12, and includes a cooling heat exchanger, an air heater, and a humidifier.
[0037]
Next, a method for measuring the heat transfer performance of the heat exchanger using the measuring device will be described. The heat transfer performance is measured when the refrigerant is condensed and evaporated. First, as shown in FIG. 2, air whose temperature and humidity are adjusted to predetermined conditions is sent to the suction type wind tunnel 12. The air sampler 13 measures the temperature and humidity of this air. Further, the air sent into the suction type wind tunnel 12 passes between the fin plates 19 of the heat exchanger 11. On the other hand, the refrigerant is passed through a heat transfer tube that is a heat transfer tube of the heat exchanger 11. Note that R410A is used as the refrigerant. Thereby, heat exchange is performed between the refrigerant in the heat transfer tube and the air passing between the fin plates 19. At this time, when the refrigerant is condensed, heat flows from the refrigerant to the air, and when the refrigerant evaporates, heat flows from the air to the refrigerant. The rectifier 17 rectifies the air that has passed through the heat exchanger 11, and the air sampler 14 collects the air that has passed through the rectifier 17 and measures its temperature and humidity. Then, the sirocco fan 18 discharges this air out of the suction type wind tunnel 12.
[0038]
During the condensation test, the amount of cooling water flowing to the condenser in the refrigerant supply device is controlled so that the refrigerant inlet pressure of the heat exchanger 11 becomes a saturated vapor pressure value corresponding to a predetermined condensation temperature. And hot water is poured into the heat exchanger in a refrigerant | coolant supply apparatus, and the refrigerant | coolant temperature before the refrigerant | coolant inlet_port | entrance of the heat exchanger 11 is controlled by controlling the temperature of this hot water. Further, the outlet supercooling degree (outlet subcool (SC)) is controlled to a predetermined value by controlling the refrigerant flow rate.
[0039]
On the other hand, during the evaporation test, the opening degree of the expansion valve in the refrigerant supply device is adjusted so that the refrigerant outlet pressure of the heat exchanger 11 becomes a saturated vapor pressure value corresponding to a predetermined evaporation temperature. And the inlet dryness of a refrigerant | coolant is controlled by controlling the temperature of the refrigerant | coolant supplied to the heat exchanger 11. FIG. Further, the value of the outlet superheat degree (exit superheat (SH)) is controlled by adjusting the refrigerant flow rate. Table 1 shows the measurement conditions in the evaporation side test and the condensation side test in the heat transfer tube.
[0040]
[Table 1]
Figure 0003982768
[0041]
Next, a method for measuring the heat transfer amount (heat exchange amount) in the heat exchanger 11 will be described. The temperature and pressure of the refrigerant at the entrance and exit of the heat exchanger 11 are measured, and based on the temperature and pressure of this refrigerant, using the US National Institute of Standards and Technology (NIST) computer software REFPROP Ver6.01, The enthalpy of the refrigerant at the entrance / exit of the heat exchanger 11 is calculated. On the other hand, the flow rate of the refrigerant is measured by the Coriolis flow meter of the refrigerant supply device. When the enthalpy difference at the refrigerant inlet / outlet is ΔH (kJ / kg), the refrigerant flow rate is W (kg / h), and the heat transfer amount is E (kW), the heat transfer amount E is given by the following Equation 1.
[0042]
[Expression 1]
Figure 0003982768
[0043]
On the other hand, the heat transfer amount is also calculated from the air state quantity. First, a method for calculating the amount of heat transfer during the evaporation test will be described. Let the air flow rate be Qmi (m 3 ), The enthalpies of air at the inlet and outlet of the heat exchanger 11 are ha1 (kJ / kg) and ha2 (kJ / kg), respectively, and the air specific volume is vn (m 3 / Kg), the absolute humidity of air per kg of dry air is xn (kg / kg), the amount of heat leakage is q (kW), and the heat transfer amount of the heat exchanger 11 during the evaporation test is qcti (kW). Then, the heat transfer amount qcti is given by the following mathematical formula 2.
[0044]
[Expression 2]
Figure 0003982768
[0045]
Next, a method for calculating the heat transfer amount during the condensation test will be described. The constant-pressure specific heat of air per kg of dry air is Cpa (kJ / kg · K), the dry bulb temperatures of the air at the inlet and outlet of the heat exchanger 11 are ta1 and ta2, respectively, and the heat exchanger 11 during the condensation test If the heat transfer amount is qth i (kW), the heat transfer amount q th i is given by the following Equation 3.
[0046]
[Equation 3]
Figure 0003982768
[0047]
In this way, the heat transfer amount calculated from the air state amount is compared with the heat transfer amount calculated from the temperature and pressure of the refrigerant described above, and the reliability of the measurement is evaluated. Specifically, if the absolute value of {(calculated value from refrigerant) / (calculated value from air) −1} × 100 (%) exceeds 5%, the heat exchanger 11 is re-installed. Measure again. Even if the absolute value of the value of this mathematical formula is within 5%, if this value fluctuates in an unstable manner, check the test apparatus and perform re-measurement if necessary. In the present embodiment, a value obtained from the temperature and pressure of the refrigerant is employed as the measured value of the heat transfer amount.
[0048]
FIG. 3 is a schematic diagram showing the heat exchanger 11 mounted on the measuring apparatus shown in FIG. As shown in FIG. 3, the heat exchanger 11 mounted on the measuring device 10 includes a fin plate 19 made of aluminum and an inner grooved tube 20 made of copper passed through the fin plate. The refrigerant flows in the direction indicated by the arrow 21 during the condensation test, and flows in the direction indicated by the arrow 22 during the evaporation test. Table 2 shows common specifications of the heat exchanger 11. In addition, the width | variety of the heat exchanger shown in Table 2 is equivalent to the length of the area | region in which the aluminum fin is formed.
[0049]
[Table 2]
Figure 0003982768
[0050]
The heat transfer tubes used in this measurement are all internally grooved tubes, and the dimensions and shape are 7.0mm outer diameter, 0.2mm groove depth, 0.41mm circumferential groove pitch, and twisting with respect to the tube axis. The angle was 18 ° (right screw direction), the fin apex angle was 20 °, and the groove bottom thickness was 0.25 mm when observed from a cross section cut at right angles to the tube axis. In addition, the tube expansion conditions were unified with a hole diameter of 7.20 mm, a tube expansion bulb outer diameter of 6.55 mm, and a tube expansion ratio of 5.6%.
[0051]
In this measurement, fins that were not subjected to surface treatment such as resin film were used.
[0052]
In the evaluation of the heat exchange performance, the one with the highest performance improvement ratio with the untreated heat exchanger among the three wind speeds was improved by + 0.1% or more than the performance of the untreated heat exchanger. The case was “◯” and the case of less than +0.1 was “× (no effect)”.
[0053]
In addition, the heat exchange performance ratio (%) is described as a reference value in (), the value of which has the highest performance improvement ratio with respect to the untreated heat exchanger among the three wind speed levels at the time of measuring the heat exchange performance.
[0054]
The presence or absence of outflow of the resin or the organic / inorganic hybrid ceramic during use was confirmed by visually observing the heat exchanger after completion of the evaporation and condensation performance measurement. As a result of the observation, “X” was given if the resin flowed out from the insertion hole of the hairpin-shaped heat transfer tube formed in the fin or the gap between the fins, and “◯” if the flow was not confirmed.
[0055]
The overall evaluation was “◯” when all of the above evaluation items were “◯”, and “×” when either item was “×”.
[0056]
These results are shown in Table 3.
[0057]
[Table 3]
Figure 0003982768
[0058]
In Example 1, a heat exchanger was manufactured using a trifluoride type resin (Bonflon 2050 manufactured by Asahi Glass Coat and Resin Co., Ltd.) in which a curing agent was added to the resin present between the heat transfer tube and the fin. FIG. 4 is a structural diagram of a trifluoride resin that is the main component of Bonflon 2050. The trifluoride resin has a structure in which fluoroethylene units 31 and vinyl ether units 32 are alternately arranged. First, a copper heat transfer tube (hairpin shape) with a length of about 280 mm is immersed in a resin solution except for about 10 mm at the end of the tube. did. Next, the heat exchanger after tube expansion was held in a drying furnace kept at 100 ° C. for 5 hours to cure the resin layer, and then the lead pipe was brazed and subjected to measurement. As a result of the measurement, the heat exchanger produced this time had the least heat loss, and the improvement in heat exchange performance was excellent. In particular, the condensation performance showed a significant performance improvement. This is because the resin layer was densely filled between the copper heat transfer tube and the aluminum fin, and the direct contact between the heat transfer tube and the fin was ensured by performing the hardening process after the tube expansion process. . On the other hand, with regard to the evaporation performance, even with an untreated heat exchanger, the condensed water generated outside the tube fills the space between the heat transfer tube and the fin, so that the performance improvement as in the condensation performance was not seen.
[0059]
Comparative Example 1 uses a trifluoride type resin (Bonflon 2050 manufactured by Asahi Glass Coat and Resin Co., Ltd.) to which a curing agent is added in the same manner as in Example 1, and a drying furnace in which the copper heat transfer tube is kept at 100 ° C. before the tube expansion process. For 5 hours to harden the resin, and then inserted into an aluminum fin and expanded. In this comparative example, there are many portions where the resin layer formed between the heat transfer tubes and the fins and the heat transfer tubes or fins are not in contact with each other, and the heat exchange performance is greatly reduced in both the evaporation performance and the condensation performance.
[0060]
In Comparative Example 2, the resin to be present between the heat transfer tube and the fin is the same trifluoride type resin as in Example 1 (Bonflon 2050 manufactured by Asahi Glass Coat and Resin Co., Ltd.) that does not contain a curing agent. In the same manner as in No. 1, a copper heat transfer tube was inserted into an aluminum fin, and after pipe expansion, a resin curing process was performed by heating under the same conditions as in Example 1. As a result of the measurement, it was confirmed that the performance was improved, but since the curing agent was not added, it did not have heat resistance against the temperature rise (about 70 ° C.) of the heat transfer tube surface at the time of condensation performance measurement. As a result of the confirmation, deterioration and outflow of the resin were confirmed. Thereby, the heat exchange performance improvement like Example 1 was not acquired, and the durability with respect to long-term use of an air-conditioner was also inadequate.
[0061]
In Example 2, an EVA resin in which Peroxide was added as a curing agent to the resin present between the heat transfer tube and the fins was used. First, a copper heat transfer tube having a length of about 280 mm was immersed in EVA resin heated to 80 ° C. in a container except for about 10 mm at the end of the tube, slowly pulled up, cooled and solidified once. A temporary heat exchanger in which the copper heat transfer tubes are inserted into aluminum fins is installed in a tube expansion device, heated with warm air, and a thermometer (thermocouple) attached to the heat exchanger tubes of the heat exchanger is 75. Tube expansion was performed when the temperature was pointed to ° C. After completion of tube expansion, cool in the atmosphere, remove the heat exchanger from the tube expansion device, braze the lead pipe for piping, and hold the heat exchanger in a drying furnace heated to 140 ° C. for 30 minutes. The EVA resin was cured. As a result, the portion of the cured resin layer between the heat transfer tube and the fin that is in contact with both the heat transfer tube and the fin is increased, and the heat exchange performance is improved with less thermal resistance.
[0062]
Comparative Example 3 uses a resin that does not add a curing agent to EVA resin as the resin that exists between the heat transfer tube and the fin, and is heated to 80 ° C. in the same manner as in Example 2 to form a copper heat transfer tube. A resin layer was formed, cooled in the atmosphere, inserted into an aluminum fin, and expanded in a state heated to 75 ° C. In this comparative example, since the curing agent was not added, the subsequent heat treatment was not performed. As a result, although the improvement in performance was confirmed in the heat exchanger, since no curing agent was added, when the heat transfer tube surface temperature rose to about 70 ° C in the condensation performance measurement, a part of the resin melted. Spilled and contaminated the fins. Moreover, the heat exchange performance improvement like Example 2 was not acquired, and the durability with respect to long-term use of an air-conditioner was also inadequate.
[0063]
In Example 3, paraffin having a melting point of 70 ° C. to which Peroxide was added as a curing agent was used for the resin present between the heat transfer tube and the fin. In this example, since the same curing agent as in Example 2 was used, the formation of the resin layer on the copper heat transfer tube, the tube expansion method, and the curing treatment were the same as in Example 2. As a result, improvement in heat exchange performance was recognized for the same reason as in Example 2.
[0064]
In Comparative Example 4, the same resin as that used in Example 3 with no melting agent added to paraffin having a melting point of 70 ° C. was used as the resin to be present between the heat transfer tube and the fin. And a resin layer was formed on the copper heat transfer tube. Then, it cooled in air | atmosphere, inserted in the aluminum fin, and expanded the tube in the state heated at 75 degreeC. In this comparative example, since no curing agent was added, the subsequent heat treatment was not performed. As a result, the same result as in Comparative Example 3 was obtained.
[0065]
In Example 4, Glasca HPC7506 manufactured by JSR Corporation was used as the organic-inorganic hybrid ceramics present between the heat transfer tubes and the fins. FIG. 5 is a structural diagram of the glass ska HPC7506. First, a copper heat transfer tube having a length of about 280 mm was dipped in the paint except for the tube end of about 10 mm, slowly pulled up, directly inserted into an aluminum fin with the top of the copper heat transfer tube, and immediately expanded. Next, the heat exchanger after tube expansion was held in a drying furnace kept at 100 ° C. for 1 hour to cure the organic-inorganic hybrid ceramic layer, and then brazed the lead pipe and used for measurement. As a result, the organic-inorganic hybrid ceramic layer is densely packed between the heat transfer tube and the fin, and the ceramic layer, the heat transfer tube, and the fin are in close contact with each other, and the heat transfer performance as a heat exchanger is increased. Improved.
[0066]
In Comparative Example 5, JSR Glasska HPC7506 was used as the organic-inorganic hybrid ceramic as in Invention Example 4, and the copper-heat transfer tube was held in a drying furnace kept at 100 ° C. for 1 hour before expanding the tube. Cured. Then, it inserted in the aluminum fin and expanded the tube, and produced the heat exchanger. As a result, the organic-inorganic hybrid ceramic layer was densely filled between the heat transfer tubes and the fins, but there were many gaps between the organic-inorganic hybrid ceramic layers and the heat transfer tubes or fins, and the heat exchange performance was the evaporating performance and Condensation performance decreased significantly.
[0067]
【The invention's effect】
As described above in detail, according to the present invention, since the gap between the heat transfer tube and the fin is filled with a resin or organic-inorganic hybrid ceramic that is at least partially cured, the heat between the heat transfer tube and the fin is reduced. A heat exchanger with reduced resistance and excellent heat transfer performance can be obtained.
[Brief description of the drawings]
FIG. 1 is an enlarged cross-sectional view of a main part after expansion of a heat exchanger for an air conditioner according to the present invention.
FIG. 2 is a schematic diagram showing the configuration of an air heat exchanger performance measuring apparatus used for measuring the heat transfer performance of the heat exchanger.
3 is a schematic diagram showing the configuration of a heat exchanger incorporated in the air heat exchanger performance measuring apparatus shown in FIG. 2. FIG.
4 is a structural diagram of a trifluoride resin used in Example 1 and Comparative Examples 1 and 2. FIG.
5 is a structural diagram of organic-inorganic hybrid ceramics used in Example 4 and Comparative Example 5. FIG.
[Explanation of symbols]
1: Aluminum or aluminum alloy fins
2; Heat transfer tube made of copper or copper alloy
3; Resin layer or organic / inorganic hybrid ceramic layer
11; Heat exchanger
12: Suction type wind tunnel
13, 14; Air sampler
15, 16; Greenhouse degree measuring device
17; Rectifier
18; Cross-flow fan
19; Fin plate
20: Internal grooved tube
21, 22; arrows
31; fluoroethylene unit
32; Vinyl ether unit

Claims (4)

互いに平行に配置した複数個のアルミニウム又はアルミニウム合金製フィンと、これらのフィンに設けられた孔を挿通する銅又は銅合金製伝熱管とを有し、前記銅又は銅合金製伝熱管を拡管することにより前記アルミニウム又はアルミニウム合金製フィンに固定した熱交換器において、少なくとも一部の前記伝熱管と前記フィンとの間に、前記拡管時には流動性を有し、拡管後に固化又は硬化した樹脂層が存在し、前記樹脂層が、硬化剤が添加された三フッ化型フッ素系樹脂により形成されていることを特徴とする熱交換器。A plurality of fins made of aluminum or aluminum alloy arranged in parallel to each other and copper or copper alloy heat transfer tubes that pass through holes provided in these fins, and expand the copper or copper alloy heat transfer tubes Thus, in the heat exchanger fixed to the aluminum or aluminum alloy fin, between at least a part of the heat transfer tubes and the fins, there is a resin layer that has fluidity at the time of the expansion and is solidified or cured after the expansion. A heat exchanger characterized in that the resin layer is formed of a trifluorinated fluororesin to which a curing agent is added . 互いに平行に配置した複数個のアルミニウム又はアルミニウム合金製フィンと、これらのフィンに設けられた孔を挿通する銅又は銅合金製伝熱管とを有し、前記銅又は銅合金製伝熱管を拡管することにより前記アルミニウム又はアルミニウム合金製フィンに固定した熱交換器において、少なくとも一部の前記伝熱管と前記フィンとの間に、前記拡管時には流動性を有し、拡管後に固化又は硬化した樹脂層が存在し、前記樹脂層が、硬化剤が添加されたエチレン酢酸ビニル共重合体により形成されていることを特徴とする熱交換器。A plurality of fins made of aluminum or aluminum alloy arranged in parallel to each other and copper or copper alloy heat transfer tubes that pass through holes provided in these fins, and expand the copper or copper alloy heat transfer tubes Thus, in the heat exchanger fixed to the aluminum or aluminum alloy fin, between at least a part of the heat transfer tubes and the fins, there is a resin layer that has fluidity at the time of the expansion and is solidified or cured after the expansion. A heat exchanger , wherein the resin layer is formed of an ethylene vinyl acetate copolymer to which a curing agent is added . 互いに平行に配置した複数個のアルミニウム又はアルミニウム合金製フィンと、これらのフィンに設けられた孔を挿通する銅又は銅合金製伝熱管とを有し、前記銅又は銅合金製伝熱管を拡管することにより前記アルミニウム又はアルミニウム合金製フィンに固定した熱交換器において、前記伝熱管と前記フィンとの間の少なくとも一部に固化又は硬化した有機無機ハイブリッドセラミックス層が存在することを特徴とする熱交換器。  A plurality of fins made of aluminum or aluminum alloy arranged in parallel to each other and copper or copper alloy heat transfer tubes that pass through holes provided in these fins, and expand the copper or copper alloy heat transfer tubes In the heat exchanger fixed to the aluminum or aluminum alloy fins, there is a solidified or hardened organic-inorganic hybrid ceramic layer in at least a part between the heat transfer tubes and the fins. vessel. 銅又は銅合金製伝熱管の外表面の少なくとも一部に流動性を有する有機無機ハイブリッドセラミックスを塗布する工程と、互いに平行に配置したアルミニウム又はアルミニウム合金製フィンに設けられた孔に前記伝熱管を挿通し、前記伝熱管を拡管することにより前記フィンに固定する工程と、前記有機無機ハイブリッドセラミックスを固化又は硬化させる工程とを有することを特徴とする熱交換器の製造方法。  The step of applying a fluid organic-inorganic hybrid ceramic to at least a part of the outer surface of a copper or copper alloy heat transfer tube, and the heat transfer tube in a hole provided in an aluminum or aluminum alloy fin arranged in parallel to each other A method of manufacturing a heat exchanger, comprising: inserting and fixing the heat transfer tube to the fin by expanding the tube; and solidifying or curing the organic-inorganic hybrid ceramic.
JP2002287999A 2002-09-30 2002-09-30 Heat exchanger and manufacturing method thereof Expired - Fee Related JP3982768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002287999A JP3982768B2 (en) 2002-09-30 2002-09-30 Heat exchanger and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002287999A JP3982768B2 (en) 2002-09-30 2002-09-30 Heat exchanger and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004125235A JP2004125235A (en) 2004-04-22
JP3982768B2 true JP3982768B2 (en) 2007-09-26

Family

ID=32280613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002287999A Expired - Fee Related JP3982768B2 (en) 2002-09-30 2002-09-30 Heat exchanger and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3982768B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019095089A (en) * 2017-11-20 2019-06-20 アルコム・ニッケイ・スペシャルティ・コーティングズ・エスデーエヌ・ビーエッチデーAlcom Nikkei Specialty Coatings Sdn. Bhd. Fin and tube type heat exchanger and process of manufacturing the same
US20220282936A1 (en) * 2021-03-03 2022-09-08 Rheem Manufacturing Company Finned tube heat exchangers and methods for manufacturing same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4868912B2 (en) * 2006-03-31 2012-02-01 株式会社神戸製鋼所 Heat exchanger
JP2009186090A (en) * 2008-02-06 2009-08-20 Mitsubishi Electric Corp Heat exchanger and its manufacturing method
JP2010169344A (en) * 2009-01-26 2010-08-05 Fujitsu General Ltd Heat exchanger
JP2011220554A (en) * 2010-04-05 2011-11-04 Sumitomo Light Metal Ind Ltd Heat-transfer tube for fin-and-tube type heat exchanger, fin-and-tube type heat exchanger using the heat-transfer tube, and manufacturing method for the fin-and-tube type heat exchanger
JP5727299B2 (en) * 2010-05-31 2015-06-03 株式会社Uacj Manufacturing method of fin-and-tube heat exchanger
JP5460474B2 (en) * 2010-06-15 2014-04-02 三菱電機株式会社 Heat exchanger, and air conditioner and refrigerator provided with this heat exchanger
JP5753355B2 (en) * 2010-09-02 2015-07-22 株式会社Uacj Heat transfer tube for fin-and-tube heat exchanger, fin-and-tube heat exchanger using the same, and manufacturing method thereof
JP2012127605A (en) * 2010-12-17 2012-07-05 Suction Gas Engine Mfg Co Ltd Heat exchanger and method for peoduction thereof
JP2013113486A (en) * 2011-11-29 2013-06-10 Fujitsu General Ltd Method of manufacturing heat exchanger

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019095089A (en) * 2017-11-20 2019-06-20 アルコム・ニッケイ・スペシャルティ・コーティングズ・エスデーエヌ・ビーエッチデーAlcom Nikkei Specialty Coatings Sdn. Bhd. Fin and tube type heat exchanger and process of manufacturing the same
JP7281866B2 (en) 2017-11-20 2023-05-26 アルコム・ニッケイ・スペシャルティ・コーティングズ・エスデーエヌ・ビーエッチデー Fin-and-tube heat exchanger and manufacturing method thereof
US20220282936A1 (en) * 2021-03-03 2022-09-08 Rheem Manufacturing Company Finned tube heat exchangers and methods for manufacturing same
US11835306B2 (en) * 2021-03-03 2023-12-05 Rheem Manufacturing Company Finned tube heat exchangers and methods for manufacturing same

Also Published As

Publication number Publication date
JP2004125235A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
JP3982768B2 (en) Heat exchanger and manufacturing method thereof
Moallem et al. Experimental measurements of the surface coating and water retention effects on frosting performance of microchannel heat exchangers for heat pump systems
JP6114327B2 (en) Heat transfer tubes and fins for fin-and-tube heat exchangers, and fin-and-tube heat exchangers using them
JP6030300B2 (en) Heat exchanger manufacturing method using pre-coated fin material and heat exchanger
JP4868912B2 (en) Heat exchanger
EP3561434B1 (en) Heat exchanger, method for manufacturing same, and refrigeration cycle device
JPH03259975A (en) Water-repellent coating composition and heat exchanger coated therewith
JP6468620B2 (en) Mixed composition paint for brazing
Muneeshwaran et al. Energy-saving of air-cooling heat exchangers operating under wet conditions with the help of superhydrophobic coating
JP2012052747A (en) Heat transfer tube for fin and tube type heat exchanger, fin and tube type heat exchanger using the same, and method of manufacturing the same
WO2017017789A1 (en) Heat exchanger and refrigeration cycle apparatus
JP2003222487A (en) Pipe with inner face grooves for fin tube-type heat exchanger, and plate fin tube-type heat exchanger
JP2001201289A (en) Aluminum fin material for heat exchanger
JPWO2017072945A1 (en) Heat exchanger and air conditioner
Webb Test results on a thermo-syphon concept to high-power cool desktop computers and servers
JP5932597B2 (en) HEAT EXCHANGER, MANUFACTURING METHOD THEREOF, AND AIR CONDITIONER HAVING THE HEAT EXCHANGER
JP6166873B2 (en) Aluminum fin material for heat exchanger
JP7116882B2 (en) Hydrophilic paint, hydrophilic film, aluminum fin material for heat exchangers with excellent hydrophilicity, and heat exchangers
CN108168358B (en) Finned tube type heat exchanger
JPH03244680A (en) Water-repellent coating composition and heat exchanger using water repellent-coating composition
JP2013164247A (en) Anticorrosive coating layer, thermoconductive pipe having the anticorrosive coating layer, and heat exchanger having the thermoconductive pipe
Gang et al. Characteristic of flat plate heat pipe with different filling ratios
JP5460474B2 (en) Heat exchanger, and air conditioner and refrigerator provided with this heat exchanger
WO2016119366A1 (en) Closed cooling tower having tubesheet combined heat exchange piece
JPH05117637A (en) Water-repellent coating composition and heat exchanger coated with water-repellent coating composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050114

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070323

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3982768

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees