JP2013164247A - Anticorrosive coating layer, thermoconductive pipe having the anticorrosive coating layer, and heat exchanger having the thermoconductive pipe - Google Patents

Anticorrosive coating layer, thermoconductive pipe having the anticorrosive coating layer, and heat exchanger having the thermoconductive pipe Download PDF

Info

Publication number
JP2013164247A
JP2013164247A JP2012028808A JP2012028808A JP2013164247A JP 2013164247 A JP2013164247 A JP 2013164247A JP 2012028808 A JP2012028808 A JP 2012028808A JP 2012028808 A JP2012028808 A JP 2012028808A JP 2013164247 A JP2013164247 A JP 2013164247A
Authority
JP
Japan
Prior art keywords
coating layer
corrosion
fluororesin
resistant coating
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012028808A
Other languages
Japanese (ja)
Other versions
JP5972594B2 (en
Inventor
Terumasa Harada
照正 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2012028808A priority Critical patent/JP5972594B2/en
Publication of JP2013164247A publication Critical patent/JP2013164247A/en
Application granted granted Critical
Publication of JP5972594B2 publication Critical patent/JP5972594B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an anticorrosive coating layer which can be formed into an elongate pipe without spending a time and effort and is excellent in thermal conductivity, a thermoconductive pipe (including a pipe with fins) having the anticorrosive coating layer, and a heat exchanger having the thermoconductive pipe.SOLUTION: In the thermoconductive pipe 24, fins 28 are fixedly arranged at an outer peripheral face of a cylindrical thermoconductive pipe body 26 at predetermined pitch intervals. Surfaces of the thermoconductive pipe body 26 and the fins 28 are covered with the anticorrosive coating layer 40. The anticorrosive coating layer 40 is formed of a fluorine resin mixture. The fluorine resin mixture is formed by mixing carbon fiber 43, a low melting point alloy 44 containing tin, graphite 45, and silicone carbide 46 into a fluorine resin 42. The fluorine resin 42, the carbon fiber 43, and the low melting point alloy 44 are stuck to the surface of the thermoconductive pipe 24 while being dispersed.

Description

本発明は、ボイラ等から排出される燃焼ガス中で使用される金属部材の表面に施されて耐食性及び伝熱性を有する耐食性被覆層、当該耐食性被覆層を有する伝熱管及び当該伝熱管を備えた熱交換器に関する。   The present invention is provided with a corrosion-resistant coating layer having corrosion resistance and heat transfer applied to the surface of a metal member used in combustion gas discharged from a boiler or the like, a heat transfer tube having the corrosion-resistant coating layer, and the heat transfer tube. It relates to a heat exchanger.

一般的に、ボイラ等の熱効率を高めるために、火炉で発生した高温の燃焼ガスから熱回収してボイラ水を加熱する熱交換器が使用されている。燃焼ガス中には、水蒸気、硫黄酸化物(SOx)等が含まれており、燃焼ガス中の水蒸気量、硫黄酸化物の濃度等にもよるが、約160℃以下の雰囲気下では、結露が生じて腐食性の強い硫酸が生成されて熱交換器に付着する(以下、硫酸が生成される温度を硫酸露点温度という)。これにより、熱交換器は腐食、いわゆる低温腐食を受けることとなる。そこで、硫酸が生じることを防止するために、硫酸露点温度よりも高い温度(例えば180℃以上)で運用することで、硫酸が生成されることを防止し、低温腐食が生じることを回避している。   In general, in order to increase the thermal efficiency of a boiler or the like, a heat exchanger that recovers heat from high-temperature combustion gas generated in a furnace and heats boiler water is used. The combustion gas contains water vapor, sulfur oxide (SOx), etc., and depending on the amount of water vapor in the combustion gas, the concentration of sulfur oxide, etc., dew condensation occurs in an atmosphere of about 160 ° C. or lower. As a result, highly corrosive sulfuric acid is generated and adheres to the heat exchanger (hereinafter, the temperature at which sulfuric acid is generated is referred to as sulfuric acid dew point temperature). As a result, the heat exchanger is subjected to corrosion, so-called low temperature corrosion. Therefore, in order to prevent the generation of sulfuric acid, by operating at a temperature higher than the sulfuric acid dew point temperature (for example, 180 ° C. or more), it prevents the generation of sulfuric acid and avoids the occurrence of low temperature corrosion. Yes.

ところで、ボイラ等の効率化を図るために、硫酸露点温度以下での運用が強く望まれていた。そこで、フッ素樹脂やガラスを含む耐食性被覆層を有する熱交換器が用いられている。しかし、フッ素樹脂やガラスを含む耐食性被覆層は伝熱性が低いため、熱回収率が低下してしまう。そこで、熱回収率を向上させるために、熱交換器の表面積を広くしたり、フィン付管を採用したりして伝熱面積を拡大することにより、熱回収率を向上させていた。   By the way, in order to improve the efficiency of boilers and the like, it has been strongly desired to operate at a sulfuric acid dew point temperature or lower. Therefore, a heat exchanger having a corrosion-resistant coating layer containing a fluororesin or glass is used. However, since the corrosion-resistant coating layer containing fluororesin or glass has low heat conductivity, the heat recovery rate decreases. Therefore, in order to improve the heat recovery rate, the heat recovery rate has been improved by enlarging the heat transfer area by increasing the surface area of the heat exchanger or adopting a finned tube.

しかしながら、伝熱面積を拡大すると、製造コストが増大するとともに、ボイラシステム全体の小型化が困難になるという問題があった。   However, when the heat transfer area is increased, there are problems that the manufacturing cost increases and it is difficult to downsize the entire boiler system.

そこで、例えば特許文献1には、熱回収率を損なうことの無い耐食性被覆層を有する節炭器が開示されている。
特許文献1に記載の節炭器は、カーボンナノチューブ等の炭素樹脂を含む耐食性被覆層を有している。この耐食性被覆層は、電着性物質である合成高分子樹脂中に炭素樹脂を分散させた電着液を電着により金属管の表面に付着させた後、加熱硬化することにより、形成される。電着性の合成高分子樹脂として、アニオン性合成高分子樹脂を用いた場合には、トリメチルアミン、ジエチルアミン等の無機アルカリで中和して水に可溶化された状態、或いは水分散状態で電着に供される。また、カチオン性合成高分子樹脂を用いた場合には、ギ酸、酢酸等の酸で中和して、水に可溶化された状態、或いは水分散状態で電着に供される。
Thus, for example, Patent Document 1 discloses a economizer having a corrosion-resistant coating layer that does not impair the heat recovery rate.
The economizer described in Patent Document 1 has a corrosion-resistant coating layer containing a carbon resin such as a carbon nanotube. This corrosion-resistant coating layer is formed by depositing an electrodeposition solution in which a carbon resin is dispersed in a synthetic polymer resin, which is an electrodeposition material, on the surface of a metal tube by electrodeposition, followed by heat curing. . When an anionic synthetic polymer resin is used as the electrodepositable synthetic polymer resin, it is neutralized with an inorganic alkali such as trimethylamine or diethylamine, solubilized in water, or electrodeposited in a water-dispersed state. To be served. Further, when a cationic synthetic polymer resin is used, it is neutralized with an acid such as formic acid or acetic acid and is subjected to electrodeposition in a state solubilized in water or in a water-dispersed state.

特開2011−2110号公報JP 2011-2110 A

しかしながら、特許文献1に記載の耐食性被覆層を形成するには、上述したように、合成高分子樹脂を無機アルカリや酸で中和して水に可溶化した状態、或いは水分散状態にしなけれればならず、多くの作業工程と多大な時間を要すること、更には長尺管への施工が困難という問題点があった。   However, in order to form the corrosion-resistant coating layer described in Patent Document 1, as described above, the synthetic polymer resin must be neutralized with an inorganic alkali or acid and solubilized in water, or in a water-dispersed state. In other words, many work steps and a lot of time are required, and it is difficult to construct the long pipe.

そこで本発明は、上述したような従来技術の状況の下になされた発明であって、手間をかけることなく長尺管にも形成可能で、且つ伝熱性に優れた耐食性被覆層、当該耐食性被覆層を有する伝熱管(フィン付き管を含む)、及び当該伝熱管を有する熱交換器を提供することを目的としている。   Therefore, the present invention is an invention made under the state of the prior art as described above, and can be formed on a long tube without trouble, and the corrosion-resistant coating layer having excellent heat conductivity and the corrosion-resistant coating. It aims at providing the heat exchanger tube (including a tube with a fin) which has a layer, and a heat exchanger which has the heat exchanger tube concerned.

本発明は、上述したような従来技術における課題を解決するために発明されたものであって、本発明の耐食性被覆層は、水分及び硫黄酸化物を含む燃焼ガス中で使用される金属部材の表面に付着して、当該金属部材の腐食を防止する耐食性被覆層であって、
フッ素樹脂と、炭素繊維と、低融点合金(例えば、はんだ材料)とを含むフッ素樹脂混合物からなり、
前記フッ素樹脂、前記炭素繊維及び前記低融点合金が分散されていることを特徴とする。
The present invention has been invented to solve the above-described problems in the prior art, and the corrosion-resistant coating layer of the present invention is a metal member used in a combustion gas containing moisture and sulfur oxide. A corrosion-resistant coating layer that adheres to the surface and prevents corrosion of the metal member,
A fluororesin mixture containing a fluororesin, carbon fiber, and a low melting point alloy (for example, a solder material),
The fluororesin, the carbon fiber, and the low melting point alloy are dispersed.

上記耐食性被覆層によれば、フッ素樹脂を含んでいるため、硫酸に対する耐食性を有している。
また、炭素繊維、黒鉛及び低融点合金を含んでいるため、フッ素樹脂のみからなる耐食性被覆層よりも熱伝導率を高くすることができる。これにより優れた伝熱性を有することができる。さらに、フッ素樹脂、炭素繊維及び低融点合金は、金属の表面に分散された状態で付着している。これにより、金属の表面全体にわたって耐食性及び熱伝導率を均質にすることができる。
また、フッ素樹脂混合物は、フッ素樹脂に炭素繊維、低融点合金を混合するだけなので手間をかけることなく短時間で作成することができる。そして、長尺管への施工も容易となる。
According to the said corrosion-resistant coating layer, since it contains a fluororesin, it has corrosion resistance against sulfuric acid.
Moreover, since carbon fiber, graphite, and a low melting point alloy are included, heat conductivity can be made higher than the corrosion-resistant coating layer which consists only of a fluororesin. Thereby, it can have the outstanding heat conductivity. Further, the fluororesin, the carbon fiber, and the low melting point alloy are adhered to the metal surface in a dispersed state. Thereby, corrosion resistance and thermal conductivity can be made uniform over the entire surface of the metal.
In addition, the fluororesin mixture can be prepared in a short time without trouble because only the carbon fiber and the low melting point alloy are mixed with the fluororesin. And the installation to a long pipe becomes easy.

また、上記発明において、前記フッ素樹脂混合物は、静電塗装され後、焼付けられることにより前記金属の表面に付着され、
前記低融点合金は、前記焼付け温度よりも低い融点を有することとしてもよい。
Moreover, in the said invention, the said fluororesin mixture adheres to the surface of the said metal by being baked after electrostatic coating,
The low melting point alloy may have a melting point lower than the baking temperature.

このように、焼付け温度よりも低い融点の低融点合金を用いるため、焼付けを実施する際に、低融点合金が溶融することにより金属の表面全体に広がり、かつ被覆層中の厚さ方向へも広がるため、金属の表面全体にわたって熱伝導率を均質に高めることができる。   In this way, since a low melting point alloy having a melting point lower than the baking temperature is used, when baking is performed, the low melting point alloy melts and spreads over the entire metal surface, and also in the thickness direction in the coating layer. Due to the spread, the thermal conductivity can be increased uniformly over the entire surface of the metal.

また、上記発明において、前記フッ素樹脂混合物は、前記フッ素樹脂を40〜60重量%、前記炭素繊維を10〜40重量%、前記低融点合金を10〜40重量%含むこととしてもよい。   In the above invention, the fluororesin mixture may include 40 to 60% by weight of the fluororesin, 10 to 40% by weight of the carbon fiber, and 10 to 40% by weight of the low melting point alloy.

このように、耐食性被覆層は、フッ素樹脂を40〜60重量%、炭素繊維を10〜40重量%、低融点合金を10〜40重量%含んでいるため、フッ素樹脂のみからなる耐食性被覆層よりも耐食性を向上させるとともに、熱伝導率を高くすることができる。   Thus, since the corrosion-resistant coating layer contains 40 to 60% by weight of the fluororesin, 10 to 40% by weight of the carbon fiber, and 10 to 40% by weight of the low melting point alloy, the corrosion-resistant coating layer is more than the corrosion-resistant coating layer made of only the fluororesin. In addition, the corrosion resistance can be improved and the thermal conductivity can be increased.

また、上記発明において、前記フッ素樹脂混合物は、黒鉛及び炭化ケイ素の少なくとも何れか一方を含むこととしてもよい。   In the above invention, the fluororesin mixture may contain at least one of graphite and silicon carbide.

黒鉛を含む場合には、熱伝導率及び耐食性を更に向上させることができる。また、炭化ケイ素を含む場合には、耐食性を更に向上させることができる。   When graphite is included, thermal conductivity and corrosion resistance can be further improved. Further, when silicon carbide is included, the corrosion resistance can be further improved.

また、上記発明において、前記フッ素樹脂混合物は、前記黒鉛を0〜15重量%、前記炭化ケイ素を0〜15重量%含むこととしてもよい。   In the above invention, the fluororesin mixture may contain 0 to 15% by weight of the graphite and 0 to 15% by weight of the silicon carbide.

このように、耐食性被覆層は、黒鉛を0〜15重量%、炭化ケイ素を0〜15重量%含んでいるため、フッ素樹脂のみからなる耐食性被覆層よりも耐食性を向上させるとともに、熱伝導率を高くすることができる。   Thus, since the corrosion-resistant coating layer contains 0 to 15% by weight of graphite and 0 to 15% by weight of silicon carbide, the corrosion resistance is improved as compared with the corrosion-resistant coating layer made of only a fluororesin, and the thermal conductivity is increased. Can be high.

また、本発明の伝熱管は、上述したフッ素樹脂混合物からなる耐食性被覆層を表面に有することを特徴とする。   The heat transfer tube of the present invention is characterized by having a corrosion-resistant coating layer made of the above-mentioned fluororesin mixture on the surface.

上記伝熱管によれば、上述した耐食性被覆層を表面に有しているため、従来のフッ素樹脂のみからなる耐食性被覆層よりも効率良く熱交換することができる。即ち、熱回収率を向上させることができる。さらに、熱回収率が優れているため、従来の熱回収率を高めるために大型化された伝熱管よりも小型化することができる。
また、上述した耐食性被覆層を表面に有しているため、従来の耐食性被覆層よりも硫酸に対する耐食性が向上されており、従来の伝熱管よりも腐食を低減することができる。
According to the heat transfer tube, since the above-described corrosion-resistant coating layer is provided on the surface, heat exchange can be performed more efficiently than a conventional corrosion-resistant coating layer made of only a fluororesin. That is, the heat recovery rate can be improved. Furthermore, since the heat recovery rate is excellent, it is possible to reduce the size of the heat transfer tube that has been enlarged to increase the heat recovery rate.
Moreover, since it has the corrosion-resistant coating layer mentioned above on the surface, the corrosion resistance with respect to a sulfuric acid is improved rather than the conventional corrosion-resistant coating layer, and corrosion can be reduced rather than the conventional heat exchanger tube.

また、本発明の熱交換器は、上述した伝熱管を、水分及び硫黄酸化物を含む燃焼ガスが冷却されて露点以下となり硫酸が発生する部位に備えることを特徴とする。   The heat exchanger according to the present invention is characterized in that the above-described heat transfer tube is provided in a portion where the combustion gas containing moisture and sulfur oxide is cooled to be below the dew point and sulfuric acid is generated.

上記熱交換器によれば、水分及び硫黄酸化物を含む燃焼ガスが冷却されて露点以下となり硫酸が発生する部位に、上述した伝熱管を備えているため、従来の伝熱管よりも硫酸に対する耐食性が向上されており、従来の伝熱管よりも腐食量を低減することができる。
また、上述した伝熱管を硫酸が発生する部位にのみ用いるため、上述した伝熱管を全ての部位に設けた場合に比べて安価に熱交換器を製作することができる。
そして、上述した伝熱管を備えているため、従来の熱交換器よりも熱回収率を向上させつつ、長期間使用することができる。
さらに、上述した伝熱管を備えているため、従来の熱回収率を高めるために大型化された熱交換器を小型化することができる。
また、硫酸露点温度以下でもボイラ等を運転することが可能となるため、ボイラの効率を向上させることができる。
According to the above heat exchanger, the combustion gas containing water and sulfur oxide is cooled to have a dew point or lower and the above-described heat transfer tube is provided at a site where sulfuric acid is generated. Is improved, and the amount of corrosion can be reduced as compared with the conventional heat transfer tube.
In addition, since the above-described heat transfer tube is used only at a site where sulfuric acid is generated, a heat exchanger can be manufactured at a lower cost compared to the case where the above-described heat transfer tube is provided at all sites.
And since the heat exchanger tube mentioned above is provided, it can be used for a long time, improving a heat recovery rate rather than the conventional heat exchanger.
Furthermore, since the above-described heat transfer tube is provided, the heat exchanger that has been increased in size to increase the conventional heat recovery rate can be reduced in size.
Moreover, since it becomes possible to operate a boiler etc. even below sulfuric acid dew point temperature, the efficiency of a boiler can be improved.

本発明によれば、手間をかけることなく長尺管にも形成可能で、且つ伝熱性に優れた耐食性被覆層、当該耐食性被覆層を有する伝熱管(フィン付き管を含む)、及び当該伝熱管を有する熱交換器を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, it can form also in a long pipe without taking an effort, and is a heat-resistant coating layer excellent in heat conductivity, the heat-transfer tube (including a finned tube) which has the said corrosion-resistant coating layer, and the said heat-transfer tube Can be provided.

本発明の実施形態に係るボイラの排熱回収装置を示す図である。It is a figure which shows the waste heat recovery apparatus of the boiler which concerns on embodiment of this invention. 本発明に係る耐食性被覆層を有する伝熱管の側断面図である。It is a sectional side view of the heat exchanger tube which has a corrosion-resistant coating layer concerning the present invention. 耐食性被覆層内に分散されたフッ素樹脂、炭素繊維、黒鉛、炭化ケイ素、低融点合金を示す模式図である。It is a schematic diagram which shows the fluororesin, carbon fiber, graphite, silicon carbide, and low melting point alloy which were disperse | distributed in the corrosion-resistant coating layer. 黒鉛の配合量と熱伝導率との関係を示す図である。It is a figure which shows the relationship between the compounding quantity of graphite, and thermal conductivity. 耐食被覆層に含まれる材料と熱伝達率との関係を示す図である。It is a figure which shows the relationship between the material contained in a corrosion-resistant coating layer, and a heat transfer rate. 本発明による効果を示す概念図である。It is a conceptual diagram which shows the effect by this invention.

以下、本発明の実施形態について、図面に基づいてより詳細に説明する。
ただし、本発明の範囲は以下の実施形態に限定されるものではない。以下の実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に記載がない限り、本発明の範囲をそれにのみ限定する趣旨ではなく、単なる説明例に過ぎない。
Hereinafter, embodiments of the present invention will be described in more detail based on the drawings.
However, the scope of the present invention is not limited to the following embodiments. The dimensions, materials, shapes, relative arrangements, and the like of the components described in the following embodiments are merely illustrative examples and are not intended to limit the scope of the present invention only unless otherwise specified.

図1は、本発明の実施形態に係るボイラの排熱回収装置を示す図である。
図1に示すように、ボイラ1のバーナ2にて火炉4に供給された燃料は、空気ダクト6から供給された空気と混合し、火炉4内で高温の燃焼ガスを生成する。高温の燃焼ガスは、火炉4内や排ガス通路8内に設置された過熱器10、再熱器12及び節炭器14で熱回収される。燃焼ガスの温度は、過熱器10、再熱器12及び節炭器14を通過するにしたがって次第に低くなる。
FIG. 1 is a diagram illustrating a boiler exhaust heat recovery apparatus according to an embodiment of the present invention.
As shown in FIG. 1, the fuel supplied to the furnace 4 by the burner 2 of the boiler 1 is mixed with the air supplied from the air duct 6 to generate high-temperature combustion gas in the furnace 4. The hot combustion gas is recovered by the superheater 10, the reheater 12, and the economizer 14 installed in the furnace 4 and the exhaust gas passage 8. The temperature of the combustion gas gradually decreases as it passes through the superheater 10, the reheater 12, and the economizer 14.

汽水ドラム16で蒸発した水蒸気は過熱器10へ送給される。そして、過熱器10で加熱された水蒸気は高圧タービンへ供給される。
また、高圧タービンで仕事をした水蒸気は再熱器12へ送給される。そして、再熱器12で加熱された水蒸気は中圧タービンへ供給される。
The water vapor evaporated in the brackish water drum 16 is fed to the superheater 10. And the water vapor | steam heated with the superheater 10 is supplied to a high pressure turbine.
Further, the steam that has worked in the high-pressure turbine is supplied to the reheater 12. Then, the steam heated by the reheater 12 is supplied to the intermediate pressure turbine.

また、復水ポンプから供給されたボイラ水は給水ポンプ22にて節炭器14へ送給される。そして、節炭器14で加熱されたボイラ水は汽水ドラム16へ供給される。
節炭器14の伝熱管24の周囲を通過する燃焼ガスと伝熱管24内のボイラ水とが熱交換することにより、伝熱管24内のボイラ水が加熱される。
Further, boiler water supplied from the condensate pump is supplied to the economizer 14 by the water supply pump 22. Then, the boiler water heated by the economizer 14 is supplied to the brackish water drum 16.
The boiler water in the heat transfer tube 24 is heated by exchanging heat between the combustion gas passing around the heat transfer tube 24 of the economizer 14 and the boiler water in the heat transfer tube 24.

節炭器14は、上段ブロック14a、中段ブロック14b、下段ブロック14cから構成されている。給水ポンプ22からの供給されるボイラ水は、下段ブロック14c下端の伝熱管24の端部に設けられた給水口32から伝熱管24内に供給される。そして、下段ブロック14c内、中段ブロック14b内及び上段ブロック14a内を通過した後、上段ブロック14a上端の伝熱管24の端部に設けられた給水口32から汽水ドラム16へ供給される。   The economizer 14 includes an upper block 14a, a middle block 14b, and a lower block 14c. Boiler water supplied from the water supply pump 22 is supplied into the heat transfer tube 24 from a water supply port 32 provided at the end of the heat transfer tube 24 at the lower end of the lower block 14c. Then, after passing through the lower block 14c, the middle block 14b, and the upper block 14a, the water is supplied to the brackish water drum 16 from the water supply port 32 provided at the end of the heat transfer tube 24 at the upper end of the upper block 14a.

ボイラ水は、下段ブロック14cから上段ブロック14aへ移動するにつれて徐々に加熱される。したがって、燃焼ガスの温度は、上段ブロック14aから下段ブロック14cへむかうにしたがって次第に低くなる。
例えば、節炭器14の上端付近を通過する燃焼ガスの温度は約373℃で、節炭器14を通過した後の燃焼ガスの温度は約163℃である。また、節炭器14に供給されるボイラ水の温度は約145℃とした。したがって、中段ブロック14b又は下段ブロック14c内では、硫酸露点温度(約160℃)以下となり、硫酸が生成される部位が発生する。硫酸が生成されると、伝熱管24は低温腐食を受ける。そこで、硫酸露点温度以下となる部位に、後述する本発明に係る耐食性被覆層を有する伝熱管24を配置する。配置箇所は、予め設計等により硫酸露点温度以下となる位置を算出することにより決定される。本実施形態では、例えば、下段ブロック14cの伝熱管24に本発明に係る耐食性被覆層を施した。したがって、上段ブロック14a及び中段ブロック14bは、一般的な伝熱管を配置した。
なお、本実施形態では、節炭器14の上端付近を通過する燃焼ガスの温度を約373℃、節炭器14を通過した後の燃焼ガスの温度を約163℃、節炭器14に供給されるボイラ水の温度を約145℃としたが、これらの値に限定されるものではない。
The boiler water is gradually heated as it moves from the lower block 14c to the upper block 14a. Therefore, the temperature of the combustion gas gradually decreases as it goes from the upper block 14a to the lower block 14c.
For example, the temperature of the combustion gas passing near the upper end of the economizer 14 is about 373 ° C., and the temperature of the combustion gas after passing through the economizer 14 is about 163 ° C. Moreover, the temperature of the boiler water supplied to the economizer 14 was about 145 ° C. Therefore, in the middle block 14b or the lower block 14c, the sulfuric acid dew point temperature (about 160 ° C.) or lower is generated, and a site where sulfuric acid is generated is generated. When sulfuric acid is generated, the heat transfer tube 24 undergoes low temperature corrosion. In view of this, a heat transfer tube 24 having a corrosion-resistant coating layer according to the present invention, which will be described later, is disposed at a site that is equal to or lower than the sulfuric acid dew point temperature. The arrangement location is determined in advance by calculating a position where the sulfuric acid dew point temperature is lower than the design. In the present embodiment, for example, the corrosion-resistant coating layer according to the present invention is applied to the heat transfer tube 24 of the lower block 14c. Therefore, the upper block 14a and the middle block 14b are provided with general heat transfer tubes.
In this embodiment, the temperature of the combustion gas passing near the upper end of the economizer 14 is about 373 ° C., and the temperature of the combustion gas after passing the economizer 14 is about 163 ° C. and supplied to the economizer 14. Although the temperature of the boiler water made was about 145 degreeC, it is not limited to these values.

図2は、本発明に係る耐食性被覆層40を有する伝熱管24の側断面図である。
図2に示すように、伝熱管24は、円筒形の伝熱管本体26の外周面にフィン28が所定のピッチ間隔で固設されている。伝熱管本体26及びフィン28の表面は、本発明に係る耐食性被覆層40で覆われている。
FIG. 2 is a side sectional view of the heat transfer tube 24 having the corrosion-resistant coating layer 40 according to the present invention.
As shown in FIG. 2, in the heat transfer tube 24, fins 28 are fixed to the outer peripheral surface of a cylindrical heat transfer tube main body 26 at a predetermined pitch interval. The surfaces of the heat transfer tube body 26 and the fins 28 are covered with a corrosion-resistant coating layer 40 according to the present invention.

図3は、耐食性被覆層40内に分散されたフッ素樹脂42、炭素繊維43、黒鉛45、炭化ケイ素46、低融点合金44を示す模式図である。
図3に示すように、耐食性被覆層40はフッ素樹脂混合物から形成される。このフッ素樹脂混合物は、炭素繊維43、スズを含む低融点合金44、黒鉛45及び炭化ケイ素46をフッ素樹脂42に混合することにより形成される。フッ素樹脂42、炭素繊維43、低融点合金44、黒鉛45及び炭化ケイ素46は、全て粉末状、繊維状およびペースト状のものを用いる。
FIG. 3 is a schematic diagram showing the fluororesin 42, the carbon fibers 43, the graphite 45, the silicon carbide 46, and the low melting point alloy 44 dispersed in the corrosion resistant coating layer 40.
As shown in FIG. 3, the corrosion-resistant coating layer 40 is formed from a fluororesin mixture. This fluororesin mixture is formed by mixing carbon fiber 43, low melting point alloy 44 containing tin, graphite 45 and silicon carbide 46 with fluororesin 42. The fluororesin 42, the carbon fiber 43, the low melting point alloy 44, the graphite 45, and the silicon carbide 46 are all in the form of powder, fiber, and paste.

フッ素樹脂混合物には、フッ素樹脂42が40〜60重量%、炭素繊維43が10〜40重量%、低融点合金44が10〜40重量%、黒鉛45が0〜15重量%、炭化ケイ素46が0〜15重量%含まれている。   In the fluororesin mixture, the fluororesin 42 is 40 to 60 wt%, the carbon fiber 43 is 10 to 40 wt%, the low melting point alloy 44 is 10 to 40 wt%, the graphite 45 is 0 to 15 wt%, and the silicon carbide 46 is 0 to 15% by weight is contained.

本実施形態では、フッ素樹脂42として粉末状のテトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)を用いたが、これに限定されるものではなく、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、ポリビリニデンフルオライド(PVDF)、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、エチレン−テトラフルオロエチレン共重合体(ETFE)等を用いても良い。   In the present embodiment, a powdery tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) is used as the fluororesin 42, but is not limited thereto. For example, polytetrafluoroethylene (PTFE), Tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polybilinidene fluoride (PVDF), ethylene-chlorotrifluoroethylene copolymer (ECTFE), ethylene-tetrafluoroethylene copolymer (ETFE), etc. It may be used.

また、炭素繊維43は、石油ピッチやコールタールピッチを原料とする粉末状のピッチ系炭素繊維43を用いた。ピッチ系炭素繊維43は、耐食性、伝熱性に優れ、且つ高剛性を有するからである。   As the carbon fiber 43, powdery pitch-based carbon fiber 43 made of petroleum pitch or coal tar pitch was used. This is because the pitch-based carbon fiber 43 is excellent in corrosion resistance and heat conductivity and has high rigidity.

また、低融点合金44として、例えば、鉛フリーはんだ合金を用いた。鉛フリーはんだ合金とは、スズを主成分とし、これに銅、銀、アルミニウム、ビスマス、亜鉛等を添加したものである。詳細は後述するが、粉体静電塗装後、フッ素樹脂混合物を150〜200℃程度で焼付ける際に溶融可能なSn−Ag−Cu、Sn−Al、Sn−Bi、Sn−Bi−Ag等の低融点合金を用いる。なお、本実施形態では、粉末状の鉛フリーはんだ合金を用いたが、ペースト状のものを用いてもよい。   Moreover, as the low melting point alloy 44, for example, a lead-free solder alloy was used. The lead-free solder alloy is mainly composed of tin and added with copper, silver, aluminum, bismuth, zinc or the like. Although details will be described later, Sn-Ag-Cu, Sn-Al, Sn-Bi, Sn-Bi-Ag, etc. that can be melted when the fluororesin mixture is baked at about 150 to 200 ° C. after electrostatic powder coating The low melting point alloy is used. In this embodiment, a powdery lead-free solder alloy is used, but a paste-like one may be used.

そして、黒鉛45として、粉末状のダイヤモンドライクカーボン(DLC)を用いた。なお、DLCに限定されるものではなく、一般的な黒鉛45を用いてもよい。   As the graphite 45, powdery diamond-like carbon (DLC) was used. Note that the graphite is not limited to DLC, and general graphite 45 may be used.

フッ素樹脂42のみならず、硬度が高い黒鉛45及び炭化ケイ素46が、図3に示すように、分散された状態で耐食性被覆層40内に存在しているので、耐食性を向上させることができる。また、熱伝達率の高い炭素繊維43及び黒鉛45が、分散され、低融点合金44により線上に結びついた状態で耐食性被覆層40内に存在しているので伝熱性を向上させることができる。粉末状の炭素繊維43、低融点合金44、黒鉛45、炭化ケイ素46、フッ素樹脂42を混合することで、耐食性被覆層40内に分散させることができる。
粉末状の黒鉛45を含むことによる熱伝導率への影響について検討した結果について以下で説明する。
Since not only the fluororesin 42 but also the graphite 45 and silicon carbide 46 having high hardness are present in the corrosion-resistant coating layer 40 in a dispersed state as shown in FIG. 3, the corrosion resistance can be improved. Further, since the carbon fibers 43 and the graphite 45 having a high heat transfer coefficient are dispersed and are connected to the wire by the low melting point alloy 44, the heat transfer property can be improved. By mixing the powdered carbon fiber 43, the low melting point alloy 44, the graphite 45, the silicon carbide 46, and the fluororesin 42, it can be dispersed in the corrosion resistant coating layer 40.
The result of examining the influence on the thermal conductivity by including powdery graphite 45 will be described below.

図4は、黒鉛45の配合量と熱伝導率との関係を示す図である。
図4に示すように、黒鉛45の配合量が異なる複数種の混合物を用いて、それぞれの熱伝導率を計測した。具体的には、黒鉛45とポリフェニレンサルファイド(PPS)樹脂42とを溶融して混合した混合物(以下、溶融混合物という)、粉末状の黒鉛45と粉末状のポリフェニレンサルファイド(PPS)樹脂42とを粉体状に混合した混合物(以下、粉体混合物という)、黒鉛45とポリフェニレンサルファイド(PPS)樹脂42とを溶液中で混合した混合物(以下、溶液混合物という)、黒鉛45とポリフェニレンサルファイド(PPS)樹脂42とをロールで加圧して混練した混合物(以下、ロール混練物という)を用いた。
FIG. 4 is a diagram showing the relationship between the blending amount of graphite 45 and the thermal conductivity.
As shown in FIG. 4, the thermal conductivity of each mixture was measured using a plurality of types of mixtures having different amounts of graphite 45. Specifically, a mixture obtained by melting and mixing graphite 45 and polyphenylene sulfide (PPS) resin 42 (hereinafter referred to as a molten mixture), powdered graphite 45 and powdered polyphenylene sulfide (PPS) resin 42 are powdered. A mixture (hereinafter referred to as powder mixture), graphite 45 and polyphenylene sulfide (PPS) resin 42 mixed in a solution (hereinafter referred to as solution mixture), graphite 45 and polyphenylene sulfide (PPS) resin A mixture (hereinafter referred to as a roll kneaded product) obtained by pressurizing and kneading 42 with a roll was used.

すべての混合物において、黒鉛45の含有量が増加すると熱伝達率は増加することが確認できた。また、粉体混合物が他の混合物よりも最も熱伝導率が高い値を示すことが確認できた。例えば、黒鉛45の含有量が20重量%の場合、粉体混合物の熱伝達率が最も高い値を示す。そして、溶液混合物、ロール混合物、溶融混合物の順番で熱伝導率は低くなっている。したがって、粉末状の黒鉛45を混合することにより、高い熱伝導率を得ることができることが確認できた。   In all the mixtures, it was confirmed that the heat transfer coefficient increased as the content of graphite 45 increased. Moreover, it has confirmed that a powder mixture showed the value whose heat conductivity is the highest than another mixture. For example, when the content of graphite 45 is 20% by weight, the heat transfer coefficient of the powder mixture shows the highest value. And the heat conductivity is low in the order of the solution mixture, the roll mixture, and the molten mixture. Therefore, it was confirmed that high thermal conductivity can be obtained by mixing the powdery graphite 45.

ところで、フッ素樹脂混合物は、粉体静電塗装にて伝熱管24に付着される。フッ素樹脂混合物が付着した伝熱管24は、焼付乾燥炉に入れられて、約150〜200℃で焼付けられる。焼付けによって、フッ素樹脂混合物に含まれる低融点合金44の粉末の粒子が溶融して伝熱管24の表面全体に分散した後、硬化することで、耐食性被覆層40が形成される。   By the way, the fluororesin mixture is attached to the heat transfer tube 24 by powder electrostatic coating. The heat transfer tube 24 to which the fluororesin mixture is adhered is placed in a baking and drying furnace and baked at about 150 to 200 ° C. By baking, the powder particles of the low melting point alloy 44 contained in the fluororesin mixture are melted and dispersed over the entire surface of the heat transfer tube 24, and then cured, whereby the corrosion-resistant coating layer 40 is formed.

炭素繊維43、低融点合金44、黒鉛45及び炭化ケイ素46は、それぞれ粉末状の粒子なので、伝熱管24の表面に分散された状態で耐食性被覆層40が形成される。   Since the carbon fiber 43, the low melting point alloy 44, the graphite 45 and the silicon carbide 46 are powder particles, the corrosion-resistant coating layer 40 is formed in a state of being dispersed on the surface of the heat transfer tube 24.

次に、炭素繊維43、低融点合金44、黒鉛45等を含むことにより、伝熱性を向上させることができた結果について説明する。   Next, the result of having improved the heat transfer by including the carbon fiber 43, the low melting point alloy 44, the graphite 45, etc. will be described.

図5は、耐食被覆層に含まれる材料と熱伝達率との関係を示す図である。
図5に示すように、配合材料の異なる複数種類の耐食性被覆層(以下、試料という)を作成し、各試料の熱伝導率を計測した。なお、比較検討のために、一般的に実施されている配合材料からなる試料1〜5も作成した。最初に、一般的に実施されている試料1〜5について説明し、次に、本発明に係る配合材料からなる試料6〜8について説明する。
FIG. 5 is a diagram showing the relationship between the material contained in the corrosion-resistant coating layer and the heat transfer coefficient.
As shown in FIG. 5, a plurality of types of corrosion-resistant coating layers (hereinafter referred to as samples) having different blending materials were prepared, and the thermal conductivity of each sample was measured. For comparison, Samples 1 to 5 made of commonly used blending materials were also prepared. First, samples 1 to 5 that are generally implemented will be described, and then samples 6 to 8 made of the blended material according to the present invention will be described.

まず、フッ素樹脂42のみからなる試料1、フッ素樹脂42に窒化ホウ素を20容量%混合した試料2、フッ素樹脂42に黒鉛45を30容量%混合した試料3、フッ素樹脂42に銅を30容量%混合した試料4、フッ素樹脂42にアルミニウムを50容量%混合した試料5を作成した。これら試料1〜5に配合された配合材や配合割合は、耐食性や伝熱性を高める場合に一般的に実施されているものである。   First, sample 1 consisting only of fluororesin 42, sample 2 in which 20% by volume of boron nitride is mixed in fluororesin 42, sample 3 in which 30% by volume of graphite 45 is mixed in fluororesin 42, and 30% by volume of copper in fluororesin 42 Sample 4 was mixed, and Sample 5 was prepared by mixing 50% by volume of aluminum with the fluororesin 42. The compounding material and the compounding ratio blended in these samples 1 to 5 are generally implemented when enhancing corrosion resistance and heat transfer.

次に、フッ素樹脂42のPFAに黒鉛45及び炭化ケイ素46を混合した試料6、PFAに黒鉛45、炭化ケイ素46及び鉛フリーはんだ合金を混合した試料7、PFAに黒鉛45、炭化ケイ素46、鉛フリーはんだ合金及び炭素繊維43を混合した試料8を作成した。これら試料6〜8に配合された配合材料の組合せ及び配合割合等は、耐食性や伝熱性を高めるために、今回新たに発明したものである。   Next, sample 6 in which graphite 45 and silicon carbide 46 are mixed in PFA of fluororesin 42, sample 7 in which graphite 45, silicon carbide 46 and lead-free solder alloy are mixed in PFA, graphite 45, silicon carbide 46 and lead in PFA Sample 8 in which a free solder alloy and carbon fiber 43 were mixed was prepared. The combination of the blending materials blended in these samples 6 to 8, the blending ratio, etc. are newly invented this time in order to improve the corrosion resistance and heat transfer.

試料1の熱伝導率は0.2(W/mK)となり、全試料の中で最も小さい値となった。また、試料2、3、4、5の熱伝導率は、それぞれ0.5、1.0、0.6、2.6(W/mK)となり、試料1の熱伝達率よりも高い値となった。特にアルミニウムを含む試料5では、高い熱伝達率が得られたが、アルミニウムを50容量%も含むため、高コストになってしまう。   The thermal conductivity of Sample 1 was 0.2 (W / mK), which was the smallest value among all the samples. The thermal conductivities of Samples 2, 3, 4, and 5 are 0.5, 1.0, 0.6, and 2.6 (W / mK), respectively, which are higher than the heat transfer coefficient of Sample 1. became. In particular, in the sample 5 containing aluminum, a high heat transfer coefficient was obtained. However, since aluminum contained 50% by volume, the cost becomes high.

そして、試料6の熱伝達率は1.5(W/mK)となり、試料1の7倍以上の熱伝達率を有している。
また、試料7の熱伝達率は13.9(W/mK)となり、今回の試料の中では2番目に高い熱伝達率を有している。
最後に、試料8の熱伝達率は28.5(W/mK)となり、今回の試料の中では最も高い熱伝達率を有している。
The heat transfer coefficient of the sample 6 is 1.5 (W / mK), which is 7 times or more that of the sample 1.
Moreover, the heat transfer coefficient of the sample 7 is 13.9 (W / mK), which is the second highest heat transfer coefficient among the samples of this time.
Finally, the heat transfer coefficient of the sample 8 is 28.5 (W / mK), and has the highest heat transfer coefficient among the samples of this time.

これらの結果より、黒鉛45、炭素繊維43、鉛フリーはんだ合金を含むことにより、熱伝導率を高くすることができる事を確認できた。特に、炭素繊維43、鉛フリーはんだ合金を含むことにより、高い熱伝導率を得ることができる。   From these results, it was confirmed that the thermal conductivity could be increased by including graphite 45, carbon fiber 43, and lead-free solder alloy. In particular, high thermal conductivity can be obtained by including the carbon fiber 43 and the lead-free solder alloy.

上述した本発明に係る耐食性被覆層40によれば、フッ素樹脂42を40〜60重量%含んでいるため、硫酸に対する耐食性を有している。そして、炭化ケイ素46を0〜15重量%含んでいるため、耐食性を更に向上させることができる。
また、炭素繊維43を10〜40重量%、低融点合金44を10〜40重量%含んでいるため、フッ素樹脂42のみからなる耐食性被覆層40よりも熱伝導率を高くすることができる。そして、黒鉛45を0〜15重量%含んでいるため、熱伝導率を更に高くするとともに、耐食性を更に向上させることができる。
また、フッ素樹脂42、炭素繊維43及び低融点合金44は、伝熱管24の表面に分散された状態で付着している。これにより、伝熱管24の表面全体にわたって耐食性及び伝熱性を均質にすることができる。
そして、焼付け温度よりも低い融点を有する低融点合金44を用いるため、焼付けを実施する際に、低融点合金44が溶けてフッ素樹脂混合物を伝熱管24の表面に強固に付着させることができる。また、低融点合金44が溶融することにより高い熱伝導性を有する炭素繊維、炭化ケイ素などを結びつける作用により、伝熱管24の表面全体に広がる。これにより、伝熱管24の表面全体にわたって熱伝導率を均質にすることができる。
さらに、フッ素樹脂混合物は、フッ素樹脂42に炭素繊維43、低融点合金44等を混合するだけなので手間をかけることなく短時間で作成することができる。そして、長尺管への施工も容易となる。
According to the corrosion-resistant coating layer 40 according to the present invention described above, since the fluororesin 42 is contained in an amount of 40 to 60% by weight, it has corrosion resistance against sulfuric acid. And since it contains 0-15 weight% of silicon carbide 46, corrosion resistance can further be improved.
Further, since the carbon fiber 43 is contained in an amount of 10 to 40% by weight and the low melting point alloy 44 is contained in an amount of 10 to 40% by weight, the thermal conductivity can be made higher than that of the corrosion-resistant coating layer 40 made of only the fluororesin 42. And since it contains 0 to 15 wt% of graphite 45, it is possible to further increase the thermal conductivity and further improve the corrosion resistance.
Further, the fluororesin 42, the carbon fiber 43, and the low melting point alloy 44 are adhered to the surface of the heat transfer tube 24 in a dispersed state. Thereby, corrosion resistance and heat transfer property can be made uniform over the entire surface of the heat transfer tube 24.
Since the low melting point alloy 44 having a melting point lower than the baking temperature is used, the low melting point alloy 44 can be melted and the fluororesin mixture can be firmly attached to the surface of the heat transfer tube 24 when baking is performed. Further, the low melting point alloy 44 is melted and spreads over the entire surface of the heat transfer tube 24 by the action of binding carbon fibers, silicon carbide, etc. having high thermal conductivity. Thereby, the thermal conductivity can be made uniform over the entire surface of the heat transfer tube 24.
Furthermore, the fluororesin mixture can be prepared in a short time without trouble because only the carbon fiber 43 and the low melting point alloy 44 are mixed with the fluororesin 42. And the installation to a long pipe becomes easy.

また、本発明に係る伝熱管24によれば、従来のフッ素樹脂42のみからなる耐食性被覆層よりも熱伝導率が高い本発明に係る耐食性被覆層40を有しているため、効率良く熱交換することができる。即ち、熱回収率を向上させることができる。さらに、熱回収率が優れているため、図6に示すように、従来の熱回収率を高めるために大型化された伝熱管よりも小型化することができる。
そして、従来の耐食性被覆層よりも耐食性に優れた本発明に係る耐食性被覆層40を有しているため、硫酸に対する耐食性が向上されており、従来の伝熱管よりも腐食を低減することができる。
Further, according to the heat transfer tube 24 according to the present invention, the heat transfer tube 24 according to the present invention has the corrosion resistance coating layer 40 according to the present invention, which has a higher thermal conductivity than the conventional corrosion resistance coating layer made of only the fluororesin 42, so that heat exchange can be performed efficiently can do. That is, the heat recovery rate can be improved. Furthermore, since the heat recovery rate is excellent, as shown in FIG. 6, it can be made smaller than a heat transfer tube that has been enlarged to increase the heat recovery rate.
And since it has the corrosion-resistant coating layer 40 according to the present invention, which is superior in corrosion resistance to the conventional corrosion-resistant coating layer, the corrosion resistance against sulfuric acid is improved, and corrosion can be reduced as compared with the conventional heat transfer tube. .

また、本発明に係る伝熱管24を備える節炭器14によれば、燃焼ガスが冷却されて露点以下となり硫酸が発生する部位、例えば下段ブロック14cに、従来の伝熱管よりも耐食性に優れた本発明に係る伝熱管24を備えているため、従来の伝熱管よりも腐食量を低減することができる。
また、本発明に係る伝熱管24を硫酸が発生する部位にのみ用いるため、本発明に係る伝熱管24を全ての部位、例えば、上段ブロック14a、中段ブロック14b及び下段ブロック14cに設けた場合に比べて安価に節炭器14を製作することができる。
また、本発明に係る伝熱管24を備えているため、従来の節炭器よりも熱回収率を向上させつつ、長期間使用することができる。
さらに、本発明に係る伝熱管24を備えているため、従来の熱回収率を高めるために大型化された節炭器を小型化することができる。
また、硫酸露点温度以下でもボイラ1を運転することが可能となるため、ボイラ1の効率を向上させることができる。
Moreover, according to the economizer 14 provided with the heat transfer tube 24 according to the present invention, the portion where the combustion gas is cooled to be below the dew point and sulfuric acid is generated, for example, the lower block 14c, has better corrosion resistance than the conventional heat transfer tube. Since the heat transfer tube 24 according to the present invention is provided, the amount of corrosion can be reduced as compared with the conventional heat transfer tube.
In addition, since the heat transfer tube 24 according to the present invention is used only in a portion where sulfuric acid is generated, the heat transfer tube 24 according to the present invention is provided in all the portions, for example, the upper block 14a, the middle block 14b, and the lower block 14c. In comparison, the economizer 14 can be manufactured at a low cost.
Moreover, since the heat transfer tube 24 according to the present invention is provided, it can be used for a long time while improving the heat recovery rate as compared with the conventional economizer.
Furthermore, since the heat transfer tube 24 according to the present invention is provided, it is possible to reduce the size of the conventional economizer to increase the heat recovery rate.
Moreover, since it becomes possible to drive the boiler 1 even if it is below a sulfuric-acid dew-point temperature, the efficiency of the boiler 1 can be improved.

1 ボイラ
2 バーナ
4 火炉
6 空気ダクト
8 排ガス通路
10 過熱器
12 再熱器
14 節炭器
14a 上段ブロック
14b 中段ブロック
14c 下段ブロック
16 汽水ドラム
22 給水ポンプ
24 伝熱管
26 伝熱管本体
28 フィン
32 給水口
40 耐食性被膜層
42 フッ素樹脂
43 炭素繊維
44 低融点合金
45 黒鉛
46 炭化ケイ素
1 boiler 2 burner 4 furnace 6 air duct 8 exhaust gas passage 10 superheater 12 reheater 14 economizer 14a upper block 14b middle block 14c lower block 16 brackish drum 22 water supply pump 24 heat transfer tube 26 heat transfer tube main body 28 fin 32 water supply port 40 Corrosion resistant coating layer 42 Fluororesin 43 Carbon fiber 44 Low melting point alloy 45 Graphite 46 Silicon carbide

Claims (7)

水分及び硫黄酸化物を含む燃焼ガス中で使用される金属部材の表面に付着して、当該金属部材の腐食を防止する耐食性被覆層であって、
フッ素樹脂と、炭素繊維と、低融点合金とを含むフッ素樹脂混合物からなり、
前記フッ素樹脂、前記炭素繊維及び前記低融点合金が分散されていることを特徴とする耐食性被覆層。
A corrosion-resistant coating layer that adheres to the surface of a metal member used in a combustion gas containing moisture and sulfur oxide and prevents corrosion of the metal member,
A fluororesin mixture containing a fluororesin, carbon fiber, and a low melting point alloy,
A corrosion-resistant coating layer in which the fluororesin, the carbon fiber, and the low melting point alloy are dispersed.
前記フッ素樹脂混合物は、静電塗装され後、焼付けられることにより前記金属の表面に付着され、
前記低融点合金は、前記焼付け温度よりも低い融点を有することを特徴とする請求項1に記載の耐食性被覆層。
The fluororesin mixture is attached to the surface of the metal by being baked after electrostatic coating,
The corrosion-resistant coating layer according to claim 1, wherein the low melting point alloy has a melting point lower than the baking temperature.
前記フッ素樹脂混合物は、前記フッ素樹脂を40〜60重量%、前記炭素繊維を10〜40重量%、前記低融点合金を10〜40重量%含むことを特徴とする請求項1又は2に記載の耐食性被覆層。   The said fluororesin mixture contains 40 to 60 weight% of the said fluororesin, 10 to 40 weight% of the said carbon fiber, and 10 to 40 weight% of the said low melting point alloy, It is characterized by the above-mentioned. Corrosion-resistant coating layer. 前記フッ素樹脂混合物は、黒鉛及び炭化ケイ素の少なくとも何れか一方を含むことを特徴とする請求項1〜3のうち何れか一項に記載の耐食性被覆層。   The said fluororesin mixture contains at least any one of graphite and silicon carbide, The corrosion-resistant coating layer as described in any one of Claims 1-3 characterized by the above-mentioned. 前記フッ素樹脂混合物は、前記黒鉛を0〜15重量%、前記炭化ケイ素を0〜15重量%含むことを特徴とする請求項4に記載の耐食性被覆層。   The corrosion-resistant coating layer according to claim 4, wherein the fluororesin mixture contains 0 to 15 wt% of the graphite and 0 to 15 wt% of the silicon carbide. 請求項1〜5のうち何れか一項に記載のフッ素樹脂混合物からなる耐食性被覆層を表面に有することを特徴とする伝熱管。   A heat transfer tube having a corrosion-resistant coating layer made of the fluororesin mixture according to any one of claims 1 to 5 on a surface thereof. 請求項6に記載の伝熱管を、水分及び硫黄酸化物を含む燃焼ガスが冷却されて露点以下となり硫酸が発生する部位に備えることを特徴とする熱交換器。   A heat exchanger comprising the heat transfer tube according to claim 6 at a site where the combustion gas containing moisture and sulfur oxide is cooled to be below the dew point and sulfuric acid is generated.
JP2012028808A 2012-02-13 2012-02-13 Heat transfer tube having a corrosion-resistant coating layer, heat exchanger provided with the heat transfer tube, and method for manufacturing the heat transfer tube Active JP5972594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012028808A JP5972594B2 (en) 2012-02-13 2012-02-13 Heat transfer tube having a corrosion-resistant coating layer, heat exchanger provided with the heat transfer tube, and method for manufacturing the heat transfer tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012028808A JP5972594B2 (en) 2012-02-13 2012-02-13 Heat transfer tube having a corrosion-resistant coating layer, heat exchanger provided with the heat transfer tube, and method for manufacturing the heat transfer tube

Publications (2)

Publication Number Publication Date
JP2013164247A true JP2013164247A (en) 2013-08-22
JP5972594B2 JP5972594B2 (en) 2016-08-17

Family

ID=49175696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012028808A Active JP5972594B2 (en) 2012-02-13 2012-02-13 Heat transfer tube having a corrosion-resistant coating layer, heat exchanger provided with the heat transfer tube, and method for manufacturing the heat transfer tube

Country Status (1)

Country Link
JP (1) JP5972594B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244847A1 (en) * 2018-06-21 2019-12-26 Agc株式会社 Liquid composition, layered body, heat exchanger and production method for corrosion-resistant cover film
CN112710035A (en) * 2020-12-29 2021-04-27 宁波奥克斯电气股份有限公司 Triple co-generation system
WO2021125049A1 (en) * 2019-12-18 2021-06-24 Agc株式会社 Coated substrate, heat exchanger, coated substrate production method, and liquid composition

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS591948A (en) * 1982-06-24 1984-01-07 Matsushita Electric Ind Co Ltd Surface treatment for heat exchanger or the like
JPS61179880A (en) * 1985-12-10 1986-08-12 Hitachi Cable Ltd Production of fin material for radiator
JPH0740506A (en) * 1993-08-02 1995-02-10 Nippon Futsuso Kogyo Kk Corrosion preventing surface coating of metal and its method
JPH0736097B2 (en) * 1985-04-04 1995-04-19 昭和電線電纜株式会社 Fixing roller for copier
JPH1096600A (en) * 1996-09-20 1998-04-14 Noritake Co Ltd Corrosion resistant heat exchanger with thermal impact resistance
JPH11148723A (en) * 1997-11-19 1999-06-02 Gastar Corp Heat exchanger
JP2002338882A (en) * 2001-05-11 2002-11-27 Du Pont Toray Co Ltd Chemical plant equipment
JP2004283699A (en) * 2003-03-20 2004-10-14 Osaka Gas Co Ltd Member for gas using facility applied with high durable coating
JP2005098666A (en) * 2003-09-01 2005-04-14 Usui Kokusai Sangyo Kaisha Ltd Heat transfer tube with fin member
JP2005302691A (en) * 2003-10-24 2005-10-27 Ricoh Co Ltd Heating member, manufacturing method for heating member surface layer, fixing member, heating device, fixing method, fixing device and image forming device
JP2007071526A (en) * 2005-08-09 2007-03-22 Kobelco & Materials Copper Tube Inc Heat exchanger with corrosion resistant coating, and latent heat recovery type water heater

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS591948A (en) * 1982-06-24 1984-01-07 Matsushita Electric Ind Co Ltd Surface treatment for heat exchanger or the like
JPH0736097B2 (en) * 1985-04-04 1995-04-19 昭和電線電纜株式会社 Fixing roller for copier
JPS61179880A (en) * 1985-12-10 1986-08-12 Hitachi Cable Ltd Production of fin material for radiator
JPH0740506A (en) * 1993-08-02 1995-02-10 Nippon Futsuso Kogyo Kk Corrosion preventing surface coating of metal and its method
JPH1096600A (en) * 1996-09-20 1998-04-14 Noritake Co Ltd Corrosion resistant heat exchanger with thermal impact resistance
JPH11148723A (en) * 1997-11-19 1999-06-02 Gastar Corp Heat exchanger
JP2002338882A (en) * 2001-05-11 2002-11-27 Du Pont Toray Co Ltd Chemical plant equipment
JP2004283699A (en) * 2003-03-20 2004-10-14 Osaka Gas Co Ltd Member for gas using facility applied with high durable coating
JP2005098666A (en) * 2003-09-01 2005-04-14 Usui Kokusai Sangyo Kaisha Ltd Heat transfer tube with fin member
JP2005302691A (en) * 2003-10-24 2005-10-27 Ricoh Co Ltd Heating member, manufacturing method for heating member surface layer, fixing member, heating device, fixing method, fixing device and image forming device
JP2007071526A (en) * 2005-08-09 2007-03-22 Kobelco & Materials Copper Tube Inc Heat exchanger with corrosion resistant coating, and latent heat recovery type water heater

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244847A1 (en) * 2018-06-21 2019-12-26 Agc株式会社 Liquid composition, layered body, heat exchanger and production method for corrosion-resistant cover film
CN112313279A (en) * 2018-06-21 2021-02-02 Agc株式会社 Liquid composition, laminate, heat exchanger, and method for producing corrosion-resistant coating film
JPWO2019244847A1 (en) * 2018-06-21 2021-07-26 Agc株式会社 Method for manufacturing liquid composition, laminate, heat exchanger and corrosion-resistant coating film
JP7230912B2 (en) 2018-06-21 2023-03-01 Agc株式会社 Liquid composition, laminate, heat exchanger, and method for producing corrosion-resistant coating
CN112313279B (en) * 2018-06-21 2023-04-04 Agc株式会社 Liquid composition, laminate, heat exchanger, and method for producing corrosion-resistant coating film
WO2021125049A1 (en) * 2019-12-18 2021-06-24 Agc株式会社 Coated substrate, heat exchanger, coated substrate production method, and liquid composition
CN114829142A (en) * 2019-12-18 2022-07-29 Agc株式会社 Coated substrate, heat exchanger, method for producing coated substrate, and liquid composition
JP7537440B2 (en) 2019-12-18 2024-08-21 Agc株式会社 Coated substrate, heat exchanger, method for producing coated substrate, and liquid composition
CN112710035A (en) * 2020-12-29 2021-04-27 宁波奥克斯电气股份有限公司 Triple co-generation system

Also Published As

Publication number Publication date
JP5972594B2 (en) 2016-08-17

Similar Documents

Publication Publication Date Title
JP6040308B2 (en) Heat exchanger with excellent corrosion resistance
JP5972594B2 (en) Heat transfer tube having a corrosion-resistant coating layer, heat exchanger provided with the heat transfer tube, and method for manufacturing the heat transfer tube
US20140131010A1 (en) Condensing air preheater with heat pipes
CN103307910A (en) Anti-corrosion and dirt-resistant efficient flue gas waste heat recovery device
JP5301121B2 (en) Synthetic resin pipe for radiant cooling and heating, and panel for radiant cooling and heating
CN201561677U (en) Corrosion-resistant heat exchange tube and air preheater for boiler
CN105783558A (en) U-shaped arranged circular tube type fluoroplastic anti-corrosion flue gas heat exchanger
JP3982768B2 (en) Heat exchanger and manufacturing method thereof
CN104697381A (en) Teflon heat exchange pipe
JP2020026927A (en) Heat exchanger and anticorrosion method for heat exchanger
CN104204712A (en) Rotation heat exchanger having heat exchanger plates or heat exchanger tubes made of carbon and graphite materials
JP2018028415A (en) Heat transfer pipe for heat exchanger, and heat exchanger with heat transfer pipe and holding member for holding the same
JP2005061712A (en) Latent heat recovering economizer with enhanced corrosion resistance
JP2019181457A5 (en)
CN103245227B (en) Flue gas waste heat recovery element and device capable of breaking through low temperature dew point
DK1608723T3 (en) Use of a heat recovery boiler
CN110849202A (en) Composite heat conduction pipe containing modified heat conduction liquid and production method thereof
Raza et al. Design and development of polymer composite heat exchanger tubes using an integrated thermal-hydraulic and material design framework
CN105157208A (en) Scaling-preventing heavy oil heater
CN202432906U (en) Corrosion-resistant finned tube
JP2006145137A (en) Heat exchanger tube having anticorrosion and soot and dust adhesion preventing performance
JPH0282095A (en) Heat exchanger
CN205619800U (en) Anticorrosive gas gas heater of pipe formula fluoroplastics is arranged to U type
CN202013132U (en) Energy-saving and anticorrosive heat exchange tube of economizer
JPS60240956A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160713

R151 Written notification of patent or utility model registration

Ref document number: 5972594

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151