JP3982176B2 - Arsenous acid production method - Google Patents

Arsenous acid production method Download PDF

Info

Publication number
JP3982176B2
JP3982176B2 JP2000391868A JP2000391868A JP3982176B2 JP 3982176 B2 JP3982176 B2 JP 3982176B2 JP 2000391868 A JP2000391868 A JP 2000391868A JP 2000391868 A JP2000391868 A JP 2000391868A JP 3982176 B2 JP3982176 B2 JP 3982176B2
Authority
JP
Japan
Prior art keywords
acid
arsenic
arsenous acid
arsenous
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000391868A
Other languages
Japanese (ja)
Other versions
JP2002193619A (en
Inventor
靖志 一色
保彦 鎌田
修 中野
晴正 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2000391868A priority Critical patent/JP3982176B2/en
Publication of JP2002193619A publication Critical patent/JP2002193619A/en
Application granted granted Critical
Publication of JP3982176B2 publication Critical patent/JP3982176B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【0001】
【発明の属する技術分野】
本発明は、粒子径が大きく高純度の亜砒酸を製造する方法、特に銅製錬において硫化沈殿生成による重金属分離回収工程より産出する硫化砒素含有物から亜砒酸を回収する方法に関するものである。
【0002】
【従来の技術】
銅製錬中間物として産出する硫化砒素含有物から亜砒酸を回収する方法として、特公昭60−46048公報に記載された方法がある。この方法は、まず第1工程として、硫化砒素含有物を加温状態の硫酸銅含有水溶液とを反応させることにより、砒素を亜砒酸イオンとして液中に溶解して抽出する。
【0003】
次の第2工程では、抽出残渣を含むスラリーを冷却して亜砒酸を含む固形分を回収した後、この固形分をリパルプして1g/l以上の銅イオンの存在下でエアレーションすることにより、亜砒酸の大部分を砒酸に酸化する。その後、第3工程において、固液分離した溶液中の砒酸を亜硫酸ガス(SO)により還元し、亜砒酸として析出させる。
【0004】
【本発明が解決しようとする課題】
上記特公昭60−46048公報に記載の亜砒酸の製造方法では、析出させた砒素の回収率は70%以上と高く、またZn等の不純物は第2工程で固形分を得る際に濾液中から系外へ払い出すことができるが、溶液中のCuやZnの濃度が高いと亜砒酸に付着して不純物となる。そのため、CuやZnの濃度をそれぞれ20g/l程度とすることが実際的であるが、これのようにCuやZnの濃度を調節するためには、処理可能な硫化砒素含有物の品位に制約を受けるという問題があった。
【0005】
また、上記の亜砒酸の製造方法では、得られる亜砒酸の粒子径が比較的小さいため流動性が悪く、ドラム缶などに充填する際にフィーダーが詰まりやすいなど、ハンドリング性に劣るという問題があった。
【0006】
本発明は、このような従来の事情に鑑み、砒酸と亜砒酸を含む溶液、特に銅製錬中間物として産出する硫化砒素含有物を特公昭60−46048公報に記載の方法により処理した砒酸と亜砒酸を含む溶液から、不純物の付着が少なく高品位であると共に、粒子径が大きく荷造りや充填時のハンドリング性の良い亜砒酸を製造する方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するため、本発明が提供する亜砒酸の製造方法は、硫化砒素含有物から硫酸銅含有水溶液中に砒素を抽出し、抽出残渣を含むスラリーを冷却して亜砒酸を含む固形分を回収した後、この固形分をリパルプして1g/l以上の銅イオンの存在下でエアレーションすることにより亜砒酸の大部分を砒酸に酸化し、固液分離した砒酸と亜砒酸を含む溶液中の砒酸を亜硫酸ガスで亜砒酸に還元して析出回収する方法において、前記砒酸と亜砒酸を含む溶液の液張り量を調製して該溶液中の5価と3価の砒素の合計濃度を40〜50g/lに制御した後、該溶液に亜硫酸ガスを吹き込むことにより、平均粒子径が39μm以上の亜砒酸を析出させることを特徴とする。
【0009】
更に、上記本発明の亜砒酸の製造方法においては、析出回収した亜砒酸を洗浄して付着不純物を洗い流すことにより、高純度の亜砒酸を得ることを特徴とするものである。
【0010】
【発明の実施の形態】
本発明方法においては、予め砒酸と亜砒酸を含む溶液中の5価の砒素と3価の砒素の合計濃度を40〜50g/lに制御することにより、溶液中の砒酸を亜硫酸ガスで亜砒酸に還元するとき、反応槽での過飽和度を下げ、結晶の成長を促進させて、析出する亜砒酸の粒子を粗大化させることができる。
【0011】
前記溶液中の5価と3価の砒素の合計濃度を制御するには、例えば、亜砒酸を含む固形分をリパルプして1g/l以上の銅イオンの存在下でエアレーションすることにより亜砒酸の大部分を砒酸に酸化する際に、パルプ濃度を調整する方法がある。具体的には、原料である硫化砒素含有物品位の分析値より推定される砒素量に対し、レパルプ槽への液張り量を調整する。
【0012】
本発明方法では、上記のごとく還元析出する亜砒酸結晶の粒子径を粗大化することができるので、析出した亜砒酸の固液分離工程での洗浄により、亜砒酸結晶に付着しているCuやZnなどの不純物が洗い流されやすくなり、結果的に不純物の低減を図って高純度の亜砒酸を回収することが可能である。
【0013】
以下、本発明方法を更に具体的に説明する。まず、銅製錬において硫化沈殿生成による重金属分離回収工程で産出する硫化砒素含有物を、硫酸銅含有水溶液中にリパルプしてスラリーとし、加温して撹拌しながら砒素を抽出する(第1工程)。次に、抽出残渣を含むスラリーを冷却して、析出した亜砒酸を含む固形分を回収した後、この固形分をリパルプして1g/l以上、好ましくは30g/l程度の銅イオンの存在下でエアレーションすることにより、亜砒酸の大部分を砒酸に酸化する(第2工程)。
【0014】
その後、固液分離して砒酸と亜砒酸を含む溶液を回収し、この溶液中に亜硫酸ガス(SO)を吹き込むことにより、溶液中に含まれる砒酸を亜砒酸に還元し、析出した亜砒酸を回収する(第3工程)。本発明方法では、この第3工程において、砒酸を還元して亜砒酸を析出させる溶液中の5価の砒素(砒酸)と3価の砒素(亜砒酸)の合計濃度を制御するものである。
【0015】
前記第3工程の還元反応により、溶液から析出回収される亜砒酸中に含まれるCuやZn等の不純物の低減について検討した結果、析出回収した亜砒酸ケーキの洗浄が極めて有効であることが分った。即ち、遠心分離器で亜砒酸ケーキを分離回収すると同時に亜砒酸を水洗するが、その際に一定洗浄時間毎にサンプリングした亜砒酸中の不純物であるCu品位の推移を図1に示す。この図1から亜砒酸ケーキの洗浄の洗浄による効果は明らかであり、またCu等の不純物は主に亜砒酸の付着水中に存在していることが想定される。
【0016】
また、洗浄により不純物が洗い流されることは明らかであるものの、図1に示すように洗浄後の品位にはロット毎に差が見られた。即ち、亜砒酸を還元析出させる溶液中の5価の砒素と3価の砒素の合計濃度(以下、As合計濃度と云う)が59.5g/lの試料は、5分以上洗浄してもCu品位が20ppm程度に留まっているのに対して、As合計濃度が46.0g/lの試料は5分の洗浄でCu品位が10ppm以下にまで低下しており、後者における洗浄の効果が著しい。
【0017】
このように、亜砒酸中のCu等の不純物濃度に差が現れる原因については、亜砒酸結晶の粒子径が小さくなるとケーキ洗浄が完全に行えないことが影響していると推定される。ただし、亜砒酸の粒子径が小さなものについては、更に長時間洗浄すれば同様の不純物低減効果が得られると考えられるが、洗浄時間が長くなると処理液量が増大して設備の大型化を招くと共に、工程外への払出し液量が増加することで砒素の回収率が低下するという不都合がある。
【0018】
また、ハンドリングの面からも、亜砒酸の粒子径が小さく、具体的には平均粒子径が約40μm程度よりも小さくなると、粉体の流動性が極端に悪化するため、亜砒酸をドラム缶に充填する際にフィーダー部で詰まりが発生する等のトラブルを招くことが多い。
【0019】
そこで、亜砒酸の粒子径に影響する要因を検討した結果、砒酸を還元する第3工程での砒酸と亜砒酸を含む溶液中のAs合計濃度(5価の砒素と3価の砒素の合計濃度)が最も強く影響していることを見出した。即ち、As合計濃度と亜砒酸の平均粒子径との関係を示す図2から分るように、As合計濃度が低下するに伴って亜砒酸の平均粒子径は直線的に大きくなる。尚、亜砒酸の粒子径は、COULTER社製のCOULTER COUNTER TA−IIを用いて測定した。
【0020】
このように、亜砒酸の粒子径を大きくし、水洗による亜砒酸の高純度化を図るためには、亜砒酸を還元析出させる溶液中のAs合計濃度が低いほど好ましいが、砒酸濃度が余り低くなると、ケーキ洗浄時の水量増加の場合と同じく、工程内の処理液量が増大して設備の大型化を招くことになり、また払い出し液量が増加することでAsの回収率の低下を招く。従って、実際の運転範囲としては、As合計濃度はなるべく高い濃度が望ましい。
【0021】
次に、亜砒酸のCu品位を不純物の代替値として、As合計濃度との関係を調査した結果を図3に示す。この結果から、溶液中のAs合計濃度が低いほど洗浄による不純物低減効果が顕著になり、As合計濃度が50g/l以下であれば洗浄後の亜砒酸Cu品位は10ppm以下となることが確認できた。尚、溶液中のAs合計濃度が50g/l以下であるとき、図2から分るように、亜砒酸の平均粒子径は約39μm以上の大きさとなる。
【0022】
図3に示すようにAs合計濃度が低いほど不純物低減効果はあるが、As合計濃度を40g/lより低くしても不純物低減効果は飽和してくるうえ、上述のごとく運転上はAs合計濃度が高い方が望ましいこと、原料である硫化砒素含有物中のAs品位のバラツキも考慮すると、溶液中のAs合計濃度は40〜50g/lの範囲が最適である。
【0023】
上記した溶液中のAs合計濃度の調整は、前述した第2工程にて、銅と置換反応を終えた抽出残渣を含むスラリーを冷却し、亜砒酸を含む固形分を回収した後、この固形分をリパルプする際に、原料である硫化砒素含有物位の分析値より推定される砒素量に対してパルプ濃度を調整する、具体的にはレパルプ槽への液張り量を調整することで、容易に制御することができる。
【0024】
【実施例】
硫化砒素含有物から砒素を抽出する第1工程と、そのスラリーを冷却して回収した亜砒酸を含む固形分をリパルプし、30g/l程度の銅イオンの存在下でエアレーションして亜砒酸の大部分を砒酸に酸化する第2工程を経て、砒酸と亜砒酸を含む溶液を得た。この溶液中のAs合計濃度、Cu濃度、及びZn濃度を、下記表1に示す。この溶液を第3工程に共し、亜硫酸ガス(SO)を吹き込むことにより砒酸を亜砒酸に還元し、溶液から析出した亜砒酸を回収した。回収した亜砒酸の1ヶ月平均の品位を表1に併せて示した。
【0025】
次に、レパルプ槽への液張り量を調整することで、第3工程に供する溶液中のAs合計濃度を46.3g/lに制御した。このAs合計濃度を制御した溶液に、上記と同様に亜硫酸ガス(SO)を吹き込んで砒酸を亜砒酸に還元し、溶液から析出回収した亜砒酸の1ヶ月平均の品位を測定し、溶液のAs合計濃度、Cu濃度、及びZn濃度と共に下記表1に示した。
【0026】
【表1】

Figure 0003982176
【0027】
この結果から、溶液中のAs合計濃度を40〜50g/lの範囲に制御することによって、その溶液中のCu濃度及びZn濃度が共に元の濃度と同等あるいは上昇するが、得られる亜砒酸中のCu及びZn品位は濃度制御前の半分以下に低減されることが分る。尚、この間の遠心分離器の洗浄時間はそれぞれ8分間実施しており、濃度制御の前後で変わりないものであった。
【0028】
【発明の効果】
本発明によれば、砒酸と亜砒酸を含む溶液から、不純物の付着が少なく高品位であると共に、粒子径が大きく荷造りや充填時のハンドリング性の良い亜砒酸を、特に反応槽などを増強することなく、簡単に製造することができる。
【図面の簡単な説明】
【図1】析出回収した亜砒酸の洗浄時間と、洗浄後の亜砒酸Cu品位との関係を示すグラフである。
【図2】砒酸を還元する第2工程での溶液中のAs合計濃度と、析出回収された亜砒酸の平均粒子径との関係を示すグラフである。
【図3】砒酸を還元する第2工程での溶液中のAs合計濃度と、析出回収された亜砒酸の洗浄後のCu品位との関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing high-purity arsenous acid having a large particle size, and more particularly, to a method for recovering arsenous acid from an arsenic sulfide-containing material produced from a heavy metal separation and recovery step by sulfide precipitation in copper smelting.
[0002]
[Prior art]
As a method for recovering arsenous acid from an arsenic sulfide-containing product produced as a copper smelting intermediate, there is a method described in Japanese Patent Publication No. 60-46048. In this method, first, as a first step, an arsenic sulfide-containing substance is reacted with a heated copper sulfate-containing aqueous solution, whereby arsenic is dissolved and extracted as arsenite ions in the liquid.
[0003]
In the next second step, the slurry containing the extraction residue is cooled to recover a solid content including arsenous acid, and then the solid content is repulped and aerated in the presence of 1 g / l or more of copper ions to thereby form arsenous acid. Most of it is oxidized to arsenic acid. Thereafter, in the third step, the arsenic acid in the solid-liquid separated solution is reduced with sulfurous acid gas (SO 2 ) and precipitated as arsenous acid.
[0004]
[Problems to be solved by the present invention]
In the method for producing arsenous acid described in the above Japanese Patent Publication No. 60-46048, the recovery rate of precipitated arsenic is as high as 70% or more, and impurities such as Zn are produced from the filtrate in the second step to obtain a solid content. Although it can be discharged to the outside, if the concentration of Cu or Zn in the solution is high, it adheres to arsenous acid and becomes an impurity. Therefore, it is practical to set the concentrations of Cu and Zn to about 20 g / l. However, in order to adjust the concentrations of Cu and Zn like this, the quality of the arsenic sulfide-containing material that can be processed is limited. There was a problem of receiving.
[0005]
In addition, the above arsenous acid production method has a problem that the arsenous acid particle size obtained is relatively small, resulting in poor fluidity and poor handling properties, such as the feeder being easily clogged when filling a drum can.
[0006]
In view of such conventional circumstances, the present invention provides a solution containing arsenic acid and arsenous acid, in particular, an arsenic acid and arsenous acid obtained by treating an arsenic sulfide-containing material produced as a copper smelting intermediate by the method described in Japanese Patent Publication No. 60-46048. It is an object of the present invention to provide a method for producing arsenous acid from a solution containing it, which has high quality with little adhesion of impurities, and has a large particle size and good handling during packing and filling.
[0007]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the method for producing arsenous acid provided by the present invention extracts arsenic from an arsenic sulfide-containing material into a copper sulfate-containing aqueous solution, cools a slurry containing an extraction residue, and collects a solid content containing arsenous acid. After this, the solid content is repulped and aerated in the presence of 1 g / l or more of copper ions to oxidize most of the arsenous acid to arsenic acid, and the solid-liquid separated arsenic acid and arsenous acid in the solution containing arsenous acid are sulfite. In the method of reducing and collecting arsenous acid with gas, the amount of solution filled with arsenic acid and arsenous acid is adjusted, and the total concentration of pentavalent and trivalent arsenic in the solution is controlled to 40 to 50 g / l. Then, arsenous acid having an average particle size of 39 μm or more is precipitated by blowing sulfurous acid gas into the solution .
[0009]
Furthermore, the arsenous acid production method of the present invention is characterized in that high-purity arsenous acid is obtained by washing out the precipitated and recovered arsenous acid and washing away the adhering impurities.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the method of the present invention, the total concentration of pentavalent arsenic and trivalent arsenic in a solution containing arsenic acid and arsenous acid is controlled to 40 to 50 g / l in advance to reduce arsenic acid in the solution to arsenous acid with sulfurous acid gas. In this case, the degree of supersaturation in the reaction vessel can be lowered, the crystal growth can be promoted, and the precipitated arsenous acid particles can be coarsened.
[0011]
In order to control the total concentration of pentavalent and trivalent arsenic in the solution, for example, by repulping a solid containing arsenous acid and aeration in the presence of 1 g / l or more of copper ions, There is a method of adjusting the pulp concentration when oxidizing succinic acid to arsenic acid. Specifically, the amount of liquid filling the repulp tank is adjusted with respect to the amount of arsenic estimated from the analysis value of the arsenic sulfide-containing article grade as the raw material.
[0012]
In the method of the present invention, the particle diameter of the arsenous acid crystal that is reduced and precipitated as described above can be increased, so that the deposited arsenous acid is washed in the solid-liquid separation step so that Cu, Zn, and the like adhering to the arsenous acid crystal are removed. Impurities are easily washed away. As a result, it is possible to reduce impurities and recover high-purity arsenous acid.
[0013]
Hereinafter, the method of the present invention will be described more specifically. First, the arsenic sulfide-containing material produced in the heavy metal separation / recovery process by sulfide precipitation in copper smelting is repulped into a copper sulfate-containing aqueous solution to form a slurry, which is then heated and stirred to extract arsenic (first process) . Next, the slurry containing the extraction residue is cooled, and the solid content including the precipitated arsenous acid is recovered. Then, the solid content is repulped in the presence of 1 g / l or more, preferably about 30 g / l of copper ions. By aeration, most of the arsenous acid is oxidized to arsenic acid (second step).
[0014]
Thereafter, the solution containing arsenic acid and arsenous acid is recovered by solid-liquid separation, and sulfurous acid gas (SO 2 ) is blown into the solution, whereby the arsenic acid contained in the solution is reduced to arsenous acid and the precipitated arsenous acid is recovered. (Third step). In the method of the present invention, in this third step, the total concentration of pentavalent arsenic (arsenic acid) and trivalent arsenic (arsenous acid) in a solution for reducing arsenic acid to precipitate arsenous acid is controlled.
[0015]
As a result of examining reduction of impurities such as Cu and Zn contained in arsenous acid precipitated and collected from the solution by the reduction reaction in the third step, it was found that cleaning of the arsenous acid cake collected and collected is extremely effective. . That is, while the arsenous acid cake is separated and recovered with a centrifugal separator, the arsenous acid is washed with water at the same time. FIG. 1 shows the transition of Cu quality, which is an impurity in arsenous acid sampled at regular cleaning times. From FIG. 1, the effect of cleaning the arsenous acid cake is clear, and it is assumed that impurities such as Cu are mainly present in the adhering water of arsenous acid.
[0016]
In addition, although it is clear that impurities are washed away by washing, as shown in FIG. 1, there is a difference in quality after washing for each lot. That is, a sample with a total concentration of pentavalent arsenic and trivalent arsenic (hereinafter referred to as As total concentration) of 59.5 g / l in the solution for reducing and precipitating arsenous acid is Cu grade even after washing for 5 minutes or more. In contrast, the sample with an As total concentration of 46.0 g / l decreased to a Cu quality of 10 ppm or less after 5 minutes of cleaning, and the effect of cleaning in the latter is remarkable.
[0017]
As described above, the cause of the difference in the impurity concentration of Cu or the like in arsenous acid is presumed to be due to the fact that cake cleaning cannot be performed completely when the particle size of arsenous acid crystals is reduced. However, if the particle size of arsenous acid is small, it is thought that the same impurity reduction effect can be obtained if it is washed for a longer time. However, if the washing time is lengthened, the amount of the processing liquid increases and the size of the equipment is increased. There is an inconvenience that the recovery rate of arsenic decreases due to an increase in the amount of liquid discharged outside the process.
[0018]
Also, from the viewpoint of handling, when the particle diameter of arsenous acid is small, specifically, when the average particle diameter is smaller than about 40 μm, the fluidity of the powder is extremely deteriorated. In many cases, troubles such as clogging occur in the feeder section.
[0019]
Therefore, as a result of examining the factors affecting the particle size of arsenous acid, the total concentration of As in the solution containing arsenic acid and arsenous acid in the third step of reducing arsenic acid (total concentration of pentavalent arsenic and trivalent arsenic) is I found the strongest influence. That is, as can be seen from FIG. 2 showing the relationship between the total concentration of As and the average particle size of arsenous acid, the average particle size of arsenous acid increases linearly as the total concentration of As decreases. The particle diameter of arsenous acid was measured using COULTER COUNTER TA-II manufactured by COULTER.
[0020]
Thus, in order to increase the particle size of arsenous acid and to increase the purity of arsenous acid by washing with water, the lower the total concentration of As in the solution for reducing and precipitating arsenous acid is preferable, but if the arsenic acid concentration is too low, the cake As in the case of an increase in the amount of water during cleaning, the amount of processing liquid in the process increases, leading to an increase in the size of the equipment, and an increase in the amount of discharged liquid causes a reduction in the recovery rate of As. Therefore, as the actual operation range, the As total concentration is preferably as high as possible.
[0021]
Next, FIG. 3 shows the results of investigating the relationship with the total concentration of As using the Cu grade of arsenous acid as an alternative value for impurities. From this result, it was confirmed that the lower the As concentration in the solution, the more remarkable the effect of reducing impurities by washing, and that the Cu arsenite grade after washing would be 10 ppm or less if the As concentration was 50 g / l or less. . When the total concentration of As in the solution is 50 g / l or less, as can be seen from FIG. 2, the average particle diameter of arsenous acid is about 39 μm or more.
[0022]
As shown in FIG. 3, the lower the total As concentration, the more effective the impurity reduction is. However, even if the total As concentration is lower than 40 g / l, the impurity reduction effect is saturated and, as described above, the total As concentration in operation. In view of the fact that the higher is desirable and the variation in As quality in the arsenic sulfide-containing material as the raw material, the total concentration of As in the solution is optimally in the range of 40 to 50 g / l.
[0023]
The adjustment of the total concentration of As in the solution described above was performed by cooling the slurry containing the extraction residue after completion of the substitution reaction with copper in the second step described above, and collecting the solid content containing arsenous acid. When repulping, the pulp concentration is adjusted with respect to the amount of arsenic estimated from the analytical value of the arsenic sulfide content level as the raw material. Can be controlled.
[0024]
【Example】
The first step of extracting arsenic from arsenic sulfide-containing material and the solid content containing arsenous acid recovered by cooling the slurry is repulped and aerated in the presence of about 30 g / l of copper ions to remove most of the arsenic acid. Through a second step of oxidizing to arsenic acid, a solution containing arsenic acid and arsenous acid was obtained. The total concentration of As, Cu and Zn in this solution are shown in Table 1 below. This solution was used in the third step, and by blowing in sulfurous acid gas (SO 2 ), arsenic acid was reduced to arsenous acid, and arsenous acid precipitated from the solution was recovered. Table 1 also shows the average monthly quality of the collected arsenous acid.
[0025]
Next, the total concentration of As in the solution subjected to the third step was controlled to 46.3 g / l by adjusting the amount of liquid filling the repulp tank. Sulfurous acid gas (SO 2 ) was blown into the solution in which the total concentration of As was controlled to reduce arsenic acid to arsenous acid, and the average quality of arsenous acid precipitated and collected from the solution was measured for one month. The concentration, Cu concentration, and Zn concentration are shown in Table 1 below.
[0026]
[Table 1]
Figure 0003982176
[0027]
From this result, by controlling the total concentration of As in the solution to a range of 40-50 g / l, both the Cu concentration and the Zn concentration in the solution are equal to or higher than the original concentration. It can be seen that the quality of Cu and Zn is reduced to less than half that before the concentration control. In addition, the washing time of the centrifuge during this period was 8 minutes, and it did not change before and after concentration control.
[0028]
【The invention's effect】
According to the present invention, from a solution containing arsenic acid and arsenous acid, there is little adhesion of impurities, high quality, arsenous acid having a large particle size and good handling property during packing and filling, without particularly enhancing the reaction tank or the like. Can be manufactured easily.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the cleaning time of precipitated and collected arsenous acid and the quality of Cu arsenite after cleaning.
FIG. 2 is a graph showing the relationship between the total concentration of As in the solution in the second step of reducing arsenic acid and the average particle size of the arsenious acid collected and collected.
FIG. 3 is a graph showing the relationship between the total concentration of As in the solution in the second step of reducing arsenic acid and the quality of Cu after washing the precipitated and collected arsenous acid.

Claims (2)

硫化砒素含有物から硫酸銅含有水溶液中に砒素を抽出し、抽出残渣を含むスラリーを冷却して亜砒酸を含む固形分を回収した後、この固形分をリパルプして1g/l以上の銅イオンの存在下でエアレーションすることにより亜砒酸の大部分を砒酸に酸化し、固液分離した砒酸と亜砒酸を含む溶液中の砒酸を亜硫酸ガスで亜砒酸に還元して析出回収する方法において、前記砒酸と亜砒酸を含む溶液の液張り量を調製して該溶液中の5価と3価の砒素の合計濃度を40〜50g/lに制御した後、該溶液に亜硫酸ガスを吹き込むことにより、平均粒子径が39μm以上の亜砒酸を析出させることを特徴とする亜砒酸の製造方法。 Arsenic is extracted from an arsenic sulfide-containing material into a copper sulfate-containing aqueous solution, the slurry containing the extraction residue is cooled to recover a solid content containing arsenous acid, and then the solid content is repulped to contain 1 g / l or more of copper ions. In the method of oxidizing a large portion of arsenous acid to arsenic by aeration in the presence, and reducing and solidifying the arsenic acid in the solution containing arsenic acid and arsenous acid to arsenous acid with sulfurous acid gas, the arsenic acid and arsenous acid are collected. After adjusting the amount of the solution to be contained and controlling the total concentration of pentavalent and trivalent arsenic in the solution to 40 to 50 g / l , sulfur dioxide gas was blown into the solution to obtain an average particle size of 39 μm. A method for producing arsenous acid, comprising depositing the above arsenous acid. 析出回収した亜砒酸を洗浄して付着不純物を洗い流すことにより、高純度の亜砒酸を得ることを特徴とする、請求項1に記載の亜砒酸の製造方法。 The method for producing arsenous acid according to claim 1, wherein high purity arsenous acid is obtained by washing out the deposited impurities by washing out the collected and collected arsenous acid .
JP2000391868A 2000-12-25 2000-12-25 Arsenous acid production method Expired - Fee Related JP3982176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000391868A JP3982176B2 (en) 2000-12-25 2000-12-25 Arsenous acid production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000391868A JP3982176B2 (en) 2000-12-25 2000-12-25 Arsenous acid production method

Publications (2)

Publication Number Publication Date
JP2002193619A JP2002193619A (en) 2002-07-10
JP3982176B2 true JP3982176B2 (en) 2007-09-26

Family

ID=18857948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000391868A Expired - Fee Related JP3982176B2 (en) 2000-12-25 2000-12-25 Arsenous acid production method

Country Status (1)

Country Link
JP (1) JP3982176B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE055220T2 (en) 2014-01-31 2021-11-29 Goldcorp Inc Process for separation of at least one metal sulfide comprising arsenic and/or antimony from a mixed sulfide concentrate

Also Published As

Publication number Publication date
JP2002193619A (en) 2002-07-10

Similar Documents

Publication Publication Date Title
CN101643245B (en) Process for preparing high-purity ammonium paratungstate
CA1096588A (en) Recovery of selenium
JP4846677B2 (en) Arsenic-containing solution processing method
US5204084A (en) Hydrometallurgical production of zinc oxide from roasted zinc concentrates
JP6743491B2 (en) Waste acid treatment method
JP2006265592A (en) Wet treatment method for zinc leaching residue
US4352786A (en) Treatment of copper refinery anode slime
FR2766842A1 (en) PROCESS FOR SELECTIVE PRECIPITATION OF NICKEL AND COBALT
CA2825228C (en) Precipitation of zinc from solution
JP3982176B2 (en) Arsenous acid production method
US4071422A (en) Process for concentrating and recovering gallium
US5939042A (en) Tellurium extraction from copper electrorefining slimes
US4437953A (en) Process for solution control in an electrolytic zinc plant circuit
CN100338240C (en) Method for removing thallium from a zinc-containing solution
CN108411109A (en) A kind of golden tellurium new technique for separating and extracting of the Gold Concentrate under Normal Pressure containing tellurium
JP4735943B2 (en) Zinc raw material processing method
JP4657172B2 (en) Method for purifying metal silicon
JP7279546B2 (en) Nickel oxide ore leaching method and hydrometallurgical method including the same
US5711929A (en) Purification of elemental sulphur
JP6983083B2 (en) A method for removing SiO2 from a slurry containing silver and SiO2 and a method for purifying silver.
US4299810A (en) Process for separating selenium and telurium from each other
JP6842041B2 (en) How to recover high-purity rhenium sulfide
JP6962017B2 (en) Waste acid treatment method
KR20090051034A (en) Iron arsenate powder
JP6780563B2 (en) How to recover rhenium sulfide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3982176

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees