JP3982136B2 - Laser processing method and apparatus - Google Patents

Laser processing method and apparatus Download PDF

Info

Publication number
JP3982136B2
JP3982136B2 JP2000027806A JP2000027806A JP3982136B2 JP 3982136 B2 JP3982136 B2 JP 3982136B2 JP 2000027806 A JP2000027806 A JP 2000027806A JP 2000027806 A JP2000027806 A JP 2000027806A JP 3982136 B2 JP3982136 B2 JP 3982136B2
Authority
JP
Japan
Prior art keywords
laser
laser beam
workpiece
processing
irradiating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000027806A
Other languages
Japanese (ja)
Other versions
JP2001212685A (en
Inventor
淳 尼子
一成 梅津
斉 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2000027806A priority Critical patent/JP3982136B2/en
Publication of JP2001212685A publication Critical patent/JP2001212685A/en
Application granted granted Critical
Publication of JP3982136B2 publication Critical patent/JP3982136B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0613Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams having a common axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0619Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams with spots located on opposed surfaces of the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/57Working by transmitting the laser beam through or within the workpiece the laser beam entering a face of the workpiece from which it is transmitted through the workpiece material to work on a different workpiece face, e.g. for effecting removal, fusion splicing, modifying or reforming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/60Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • B23K2103/166Multilayered materials
    • B23K2103/172Multilayered materials wherein at least one of the layers is non-metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/30Organic material
    • B23K2103/32Material from living organisms, e.g. skins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/52Ceramics

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Lasers (AREA)
  • Laser Beam Processing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はレーザ加工方法及びその装置に関し、特に超短パルスレーザを適用した微細加工技術に関する。
【0002】
【従来の技術】
超短パルスレーザを適用した微細加工については、例えば「超短パルスレーザによるクロム薄膜のアブレーション加工」p53−60、第48回レーザ熱加工研究会論文集(1999.12)において提案されている加工方法がある。
【0003】
上記の文献においては、フェムト秒領域(〜10-13秒)の超短パルスレーザを光源に用いてフォトマスクに応用されるクロム膜にレーザ光を照射して熱損傷の無いアブレーション加工について提案している。
【0004】
図6は上記の文献において報告されている加工方法により得られた被加工物の加工断面図であり、フェムト秒領域(〜10-13秒)のパルス幅の超短パルスレーザ光を複数回照射したときの加工断面を示している。同図からも明らかなように、加工周囲に熱損傷の無い、シャープな加工エッジをもったパターンが得られている。しかし、加工底部22には円錐状のクロム残渣23が散在している。
【0005】
図7は上記よりもパルス幅の広い(例えばナノ秒の領域)パルスレーザ光を照射したときの加工断面図である。パルスレーザ光が照射された領域のクロム薄膜21は殆ど除去されており、加工底部22には残渣がなく、また、水晶基板20に対するダメージの無いフラットな加工面が得られている。しかし、加工周囲には熱損傷によるロールアップ24と呼ばれる溶融・再凝固部による盛り上がりが観測され、加工領域が広がっている。
【0006】
【発明が解決しようとする課題】
上記のような従来のレーザ加工方法においては、アブレーションと熱伝導効果とを両立するための加工条件を見い出すことが難しかった。このため、熱損傷や加工の不均一が起こり、高精度な微細加工ができなかった。
【0007】
本発明は、上記のような問題点を解決するためになされたものであり、アブレーションと熱伝導効果とを両立させて高精度な微細加工を可能にしたレーザ加工方法及びその装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明に係るレーザ加工方法は、第1のレーザ光を照射して被加工物を予備加熱する工程と、第2のレーザ光を照射して予備加熱された被加工物を加工する工程とを有し、第2のレーザ光はフェムト秒レーザ光である。本発明においては、第1のレーザ光により被加工物を予め加熱してからフェムト秒レーザ光により加工を施すようにしたので、フェムト秒レーザ光による加工が適切になされており、加工底部に残渣が生ぜず、また、加工周囲の熱損傷が抑制され、シャープな加工形状が得られる。このため、高精度な微細加工が可能になっている。また、予備加熱を第1のレーザ光を照射することにより行っているので、加熱箇所を所望の箇所に限定することができ、例えば残渣が予想される部位に限って予備加熱をすることができるので、この点からも高精度な加工が可能になっている。
【0010】
本発明に係るレーザ加工方法において、上記の第1のレーザ光は連続したレーザ光である。
また、本発明に係るレーザ加工方法において、上記の第1のレーザ光はパルスレーザ光である。
また、本発明に係るレーザ加工方法において、予備加熱は被加工物の溶融温度を超えないようにする。第1のレーザ光による被加工物に対する不可逆的な変化を避け、予備加熱による加工を避ける。
【0011】
また、本発明に係るレーザ加工方法は、第1のレーザ光を照射している間に第2のレーザ光を照射する。
また、本発明に係るレーザ加工方法は、第1のレーザ光を照射した後に、第2のレーザ光を照射する。
【0012】
また、本発明に係るレーザ加工方法は、第1のレーザ光と第2のレーザ光とを、被加工物に対して同じ方向から照射する。
また、本発明に係るレーザ加工方法は、第1のレーザ光と第2のレーザ光とを、被加工物に対して反対方向から照射することを特徴とする。
【0013】
また、本発明に係るレーザ加工方法は、第1のレーザ光により一光子吸収過程よる予備加熱を行い、第2のレーザ光により多光子吸収過程よる加工を行う。予備加熱を行った後にフェムト秒レーザ光を照射するので、多光吸収が起こりやすくなっており、光化学反応によるアブレーション加工が行われ、熱損傷が抑制される。
また、本発明に係るレーザ加工方法は、第1のレーザ光の集光スポット径を第2のレーザ光による集光スポット径よりも小さく設定する。予備加熱を主として加工底部の残渣が生じ易い部位に行ってその部位の熱的ポテンシャルを上昇しておくことにより加工底部に残渣が生ぜず、また、加工形状も更にシャープになる。
【0014】
本発明に係るレーザ加工装置は、被加工物にレーザ光を照射して予備加熱する第1のレーザと、被加工物にレーザ光を照射して予備加熱された被加工物を加工する第2のレーザとを有し、第2のレーザはフェムト秒パルスレーザである。本発明においては、第1のレーザ光により被加工物を予備加熱してからフェムト秒パルスレーザにより加工を施すようにしたので、フェムト秒パルスレーザ光による加工が適切になされており、加工底部に残渣が生ぜず、また、加工周囲の熱損傷が抑制され、シャープな加工形状が得られる。このため、高精度な微細加工が可能になっている。また、予備加熱を第1のレーザ光を照射することにより行っているので、加熱箇所を所望の箇所に限定することができ、例えば残渣が予想される部位に限って予備加熱をすることができるので、この点からも高精度な加工が可能になっている。
【0016】
また、本発明に係るレーザ加工装置において、第1のレーザは連続したレーザ光を出力するものである。
また、本発明に係るレーザ加工装置において、第1のレーザはパルスレーザ光を出力するものである。
【0017】
また、本発明に係るレーザ加工装置は、第1のレーザと第2のレーザとを駆動して、第1のレーザによる照射をしている間に第2のレーザを照射させる制御手段を有する。
また、本発明に係るレーザ加工装置は、第1のレーザ及び第2のレーザを駆動して、第1のレーザにより照射を行った後に、第2のレーザによる照射を行わせる制御手段を有する。
【0018】
また、本発明に係るレーザ加工装置は、第1のレーザと第2のレーザとを、被加工物に対して同じ方向から照射するための光学系を有する。
また、本発明に係るレーザ加工装置は、第1のレーザと第2のレーザとを、被加工物に対して反対方向から照射するための光学系を有する。
また、本発明に係るレーザ加工装置は、第1のレーザによるレーザ光の集光スポット径を第2のレーザによる集光スポット径よりも小さく設定するための光学系を有する。予備加熱を主として加工底部の残渣が生じ易い部位に行ってその部位の熱的ポテンシャルを上昇させておくことにより加工底部に残渣が生ぜず、また、加工形状も更にシャープになる。
【0019】
【発明の実施の形態】
実施形態1.
図1は本発明の実施形態1に係るレーザー加工装置の構成を示すブロック図である。このレーザー加工装置は、YAGレーザ10及びチタンサファイアレーザ(フェムト秒レーザ)11を備えており、これらは制御装置12によりその照射タイミングが制御される。YAGレーザ10は、波長λ1:1064nm、パルス幅Δt1:10nsのパルスレーザ光10aを出力する。チタンサファイアレーザ11は、波長λ2:800nm、パルス幅Δt2:100fsのフェムト秒レーザ光11aを出力する。
【0020】
YAGレーザ10からのパルスレーザ光10aは、ビームスプリッタ15にて反射された後に、集光レンズ(焦点距離f100mm)16にて集光されて、水晶基板20上に形成されているクロム膜21に照射される。また、チタンサファイアレーザ11からのフェムト秒レーザ光11aは、全反射ミラー14にて反射された後に、ビームスプリッタ15を透過した後に、集光レンズ16にて集光されてクロム膜21に照射される。水晶基板20はXYテーブル30上に配置されており、XYテーブル30を加工形状に対応して移動することにより、クロム膜21が所望の形状に加工される。なお、全反射ミラー14は800nmのレーザ光を反射し、また、ビームビームスプリッタ15は波長が800nmのレーザ光を透過して波長が1064nmのレーザ光を反射するように設定されているものとする。
【0021】
図2は図1のレーザー加工装置の動作を示すタイミングチャートである。制御装置12から制御信号12aが出力されると、YAGレーザ10はその制御信号12aとほぼ同じパルス幅(Δt1:10ns)のパルスレーザ光10aを出力してクロム膜21に照射する。また、その所定時間後に、制御装置12から制御信号12bが出力されると、チタンサファイアレーザ11はその制御信号12の立ち上がりに同期した、パルス幅Δt2:100fsのフェムト秒レーザ光11aを出力してクロム膜21の上記の照射位置と同じ位置に照射する。
【0022】
パルスレーザ光10aが照射されるとクロム膜21の温度は次第に上昇していき、熱的ポテンシャルが高くなる。但し、この時の最大温度はクロム膜21の溶融温度を超えないようにし、クロム膜21には不可逆的な変化を与えないようにする。そして、このような状態のときに、フェムト秒レーザ光11aが照射されることで、熱的ポテンシャルが高くなっているクロム膜21が気化してアブレーション加工がなされる。なお、このときのフェムト秒レーザ光11aのエネルギー密度は、予備加熱後の被加工物に対する加工閾値よりも若干大きめに設定するものとする。
【0023】
ここで、フェムト秒レーザ光11aの照射による動作を説明する。一般に、クロム膜21に照射されたレーザ光のエネルギーは電子に吸収された後に格子系へ移動してクロム膜21の温度を上昇させる。その後に、熱はクロム特有の熱物性に従って周囲に拡散していく。しかし、フェムト秒レーザ光11aのパルス幅は電子から格子系へのエネルギーの移動時間よりも短いので、パルス光が照射中に照射領域外に拡散しない。このため、照射領域を効率良く加熱することができ、周囲への熱損傷の抑制が可能になっている。
【0024】
また、フェムト秒レーザ光11aの照射による動作を別の観点から説明する。パルスレーザ光10aはエネルギー密度の小さいレーザ光が得られているから、1光子分吸収過程が行われており、パルス幅が長い(時間が長い)ことから熱拡散が行われる。そして、上記の予備加熱により多光子吸収過程が起きやすい状態になっているときに、上述のフェムト秒レーザ光11aが照射されると、そのパルス幅が短いことから結果的にエネルギー密度の大きいレーザ光が照射されて多光子吸収過程が起き、エネルギーがバンドギャップを超えて分子が分離する。このようにして被加工物のアブレーション加工が、熱反応よらず、光・化学反応によりなされるので、加工周囲への熱損傷の抑制ができ、高精度な微細加工が可能になっている。
【0025】
図3は上記の実施形態による加工断面図である。上述のように、パルスレーザ10aにより予備加熱をしてからフェムト秒レーザ光11aを照射して加工するようにしたので、図示のように、加工底部22には残渣が生じることなく、また、加工形状も熱損傷がなくシャープな加工形状になっている。
【0026】
実施形態2.
図4は本発明の実施形態2に係るレーザー加工装置の構成を示すブロック図である。このレーザー加工装置は、上記の実施形態と同様に、YAGレーザ10及びチタンサファイアレーザ11を備えており、これらは制御装置12によりその照射タイミングが制御される。YAGレーザ10からのパルスレーザ光10aは集光レンズ16にて集光されてクロム膜2に照射される。また、チタンサファイアレーザ(フェムト秒レーザ)11からのフェムト秒レーザ光11aは全反射ミラー17,18にて反射されて集光レンズ19にて集光され、水晶基板20を介してクロム膜21に照射される。このようにして、クロム膜21にはその裏側及び表側の両側からフェムト秒レーザ光11a及びパルスレーザ光10bが照射される。そして、上記の実施形態と同様に、クロム膜21はパルスレーザ光10aの照射により予備加熱がなされ、フェムト秒レーザ光11aの照射によりアブレーション加工が施される。なお、全反射ミラー17,18は波長が800nmのレーザ光を反射するように設定されているものとする。
【0027】
ところで、上記の実施形態においては、パルスレーザ光10aをクロム膜21の表側から照射し、フェムト秒レーザ光11aをクロム膜21の裏側から照射した例を示したが、その逆でも良い。即ち、フェムト秒レーザ光11aをクロム膜21の表側から照射し、パルスレーザ光10aをクロム膜21の裏側から照射してもた良い。いずれの場合においても、水晶基板20を介してクロム膜21にレーザ光を照射する場合には、レーザ光の波長を水晶基板20を透過し易い波長に設定する必要がある。
【0028】
実施形態3.
図5は上記実施形態1,2においてクロム膜に照射されるレーザ光の集光スポットの大きさの説明図である。図示の例においては、パルスレーザ光10aの集光スポット10bをフェムト秒レーザ光11aの集光スポット11bよりも小さくしており、主として加工底部22に相当する位置の熱的ポテンシャルを上昇させておいて、フェムト秒レーザ光11aを照射させた際に残渣が残らないようにしている。また、加工部の周囲の熱的ポテンシャルを上げないようしてシャープな加工形状が得られるようにしてある。
【0029】
なお、図5の例は典型的な例であり、この他に、集光スポット10b=集光スポット11b、或いは、集光スポット10b>フェムト秒レーザ光11aの集光スポット11bであっても良い。なお、この集光スポットの径の調整は、例えばYAGレーザ10又はチタンサファイアレーザ11にビームエキスパンダを内蔵しておいてビーム径を調整したり、或いは、YAGレーザ10又はチタンサファイアレーザ11から出射されたレーザ光の光学系にビームエキスパンダを挿入することでビーム径を調整することによりなされる。
【0030】
実施形態4.
また、被加工物を予備加熱するためのレーザ光は、必ずしもパルスレーザ光である必要はなく連続光であっても良い。また、その光源はYAGレーザに限られず他の固体レーザ、或いはガスレーザ(例えばCO2レーザ)、半導体レーザを用いても良い。また、被加工物に加工を施すためのレーザについてもチタンサファイアレーザに限られず他のレーザであっても良い。また、上記のYAGレーザ10とチタンサファイアレーザ11とではその波長を異ならせた例(λ1>λ2)について示したが、その波長については同じでも良い。また、発明に係る超短パルスレーザは、熱損傷が抑制されれば良いので、そのパルス幅がフェムト秒領域〜ピコ秒領域(〜10-15秒−10-12秒)のパルス幅のパルスレーザが該当する。
【0031】
また、被加工物は、上記のクロム膜に限定されるものではなく、例えばアルミナ、シリコン、ゲルマニウム、水晶等の熱伝導率の高い材料においても熱拡散領域が限定されるので精密な加工ができる。更に、本発明の加工は生体、例えば角膜、歯、脳等のレーザアブレーションにも適用することができる。
【図面の簡単な説明】
【図1】本発明の実施形態1に係るレーザー加工装置の構成を示すブロック図である。
【図2】図1のレーザー加工装置の動作を示すタイミングチャートである。
【図3】本実施形態による加工断面図である。
【図4】本発明の実施形態2に係るレーザー加工装置の構成を示すブロック図である。
【図5】クロム膜に照射されるレーザ光の集光スポットの大きさの説明図である。
【図6】先行文献において報告されている加工断面図である。
【図7】図6の例よりもパルス幅の広いレーザ光をを照射したときの加工断面図である。
【符号の説明】
10 YAGレーザ
11 チタンサファイアレーザ
14,17,18 反射ミラー
15 ビームスプリッタ
16,19 集光レンズ
20 水晶基板
21 クロム膜
30 XYテーブル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a laser processing method and an apparatus therefor, and more particularly to a fine processing technique using an ultrashort pulse laser.
[0002]
[Prior art]
As for microfabrication using an ultrashort pulse laser, for example, the processing proposed in “Ablation Machining of Chromium Thin Films by Ultrashort Pulse Laser” p53-60, Proc. 48th Laser Thermal Processing Research Group (1999.12). There is a way.
[0003]
In the above-mentioned document, ablation processing without thermal damage is proposed by irradiating a chromium film applied to a photomask with a laser beam to an ultrashort pulse laser in the femtosecond region ( -10-13 seconds) as a light source. ing.
[0004]
FIG. 6 is a cross-sectional view of a workpiece obtained by the processing method reported in the above-mentioned literature, and an ultrashort pulse laser beam having a pulse width in a femtosecond region (10 −13 seconds) is irradiated a plurality of times. The processing cross section when doing is shown. As is apparent from the figure, a pattern having a sharp processing edge without thermal damage around the processing is obtained. However, conical chromium residues 23 are scattered on the processed bottom 22.
[0005]
FIG. 7 is a cross-sectional view of processing when irradiated with pulsed laser light having a wider pulse width (for example, nanosecond region) than the above. The chromium thin film 21 in the region irradiated with the pulsed laser light is almost removed, and there is no residue on the processed bottom 22 and a flat processed surface without damage to the quartz substrate 20 is obtained. However, a swell due to a melted / resolidified portion called a roll-up 24 due to thermal damage is observed around the processing, and the processing area is widened.
[0006]
[Problems to be solved by the invention]
In the conventional laser processing methods as described above, it has been difficult to find processing conditions for achieving both ablation and a heat conduction effect. For this reason, thermal damage and non-uniform processing occurred, and high-precision fine processing could not be performed.
[0007]
The present invention has been made in order to solve the above-described problems, and provides a laser processing method and apparatus capable of achieving high-precision fine processing by achieving both ablation and a heat conduction effect. With the goal.
[0008]
[Means for Solving the Problems]
The laser processing method according to the present invention includes a step of preheating a workpiece by irradiating a first laser beam, and a step of processing the preheated workpiece by irradiating a second laser beam. And the second laser beam is a femtosecond laser beam. In the present invention, since the workpiece is preheated with the first laser beam and then processed with the femtosecond laser beam, the processing with the femtosecond laser beam is appropriately performed, and a residue is formed on the bottom of the processing. In addition, thermal damage around the machining is suppressed, and a sharp machining shape can be obtained. For this reason, high-precision fine processing is possible. In addition, since the preheating is performed by irradiating the first laser beam, the heating location can be limited to a desired location, and for example, the preheating can be limited only to a location where a residue is expected. Therefore, high-precision processing is possible from this point.
[0010]
In the laser processing method according to the present invention, the first laser beam is a continuous laser beam.
In the laser processing method according to the present invention, the first laser beam is a pulsed laser beam.
In the laser processing method according to the present invention, the preheating is performed so as not to exceed the melting temperature of the workpiece. Avoid irreversible changes to the workpiece by the first laser beam and avoid pre-heating processing.
[0011]
In the laser processing method according to the present invention, the second laser beam is irradiated while the first laser beam is irradiated.
In the laser processing method according to the present invention, the second laser beam is irradiated after the first laser beam is irradiated.
[0012]
In the laser processing method according to the present invention, the workpiece is irradiated with the first laser beam and the second laser beam from the same direction.
The laser processing method according to the present invention is characterized in that the first laser beam and the second laser beam are irradiated to the workpiece from opposite directions.
[0013]
In the laser processing method according to the present invention, preheating is performed by the first laser beam by the one-photon absorption process, and processing by the multi-photon absorption process is performed by the second laser beam. Since the femtosecond laser beam is irradiated after the preheating, multi-light absorption is likely to occur, ablation processing is performed by a photochemical reaction, and thermal damage is suppressed.
In the laser processing method according to the present invention, the focused spot diameter of the first laser beam is set smaller than the focused spot diameter of the second laser beam. By performing preheating mainly on a portion where the residue at the bottom of the machining is likely to be generated and increasing the thermal potential of the portion, no residue is generated at the bottom of the machining, and the machining shape is further sharpened.
[0014]
The laser processing apparatus according to the present invention includes a first laser that preheats a workpiece by irradiating the workpiece with laser light, and a second laser that processes the preheated workpiece by irradiating the workpiece with laser light. The second laser is a femtosecond pulse laser. In the present invention, since the workpiece is preheated with the first laser beam and then processed with the femtosecond pulse laser, the processing with the femtosecond pulse laser beam is appropriately performed, There is no residue, and thermal damage around the processing is suppressed, and a sharp processing shape is obtained. For this reason, high-precision fine processing is possible. In addition, since the preheating is performed by irradiating the first laser beam, the heating location can be limited to a desired location, and for example, the preheating can be limited only to a location where a residue is expected. Therefore, high-precision processing is possible from this point.
[0016]
In the laser processing apparatus according to the present invention, the first laser outputs a continuous laser beam.
In the laser processing apparatus according to the present invention, the first laser outputs pulsed laser light.
[0017]
In addition, the laser processing apparatus according to the present invention includes a control unit that drives the first laser and the second laser to irradiate the second laser while irradiating with the first laser.
In addition, the laser processing apparatus according to the present invention includes a control unit that drives the first laser and the second laser to perform irradiation with the first laser, and then performs irradiation with the second laser.
[0018]
The laser processing apparatus according to the present invention includes an optical system for irradiating the workpiece with the first laser and the second laser from the same direction.
The laser processing apparatus according to the present invention has an optical system for irradiating the workpiece with the first laser and the second laser from opposite directions.
In addition, the laser processing apparatus according to the present invention has an optical system for setting the focused spot diameter of the laser beam by the first laser to be smaller than the focused spot diameter by the second laser. Preliminary heating is mainly performed on a portion where the residue at the bottom of the machining is likely to generate a residue, and the thermal potential at that portion is increased, so that no residue is generated at the bottom of the machining, and the machining shape is further sharpened.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1. FIG.
FIG. 1 is a block diagram showing a configuration of a laser processing apparatus according to Embodiment 1 of the present invention. This laser processing apparatus includes a YAG laser 10 and a titanium sapphire laser (femtosecond laser) 11, and the irradiation timing of these is controlled by a control device 12. The YAG laser 10 outputs a pulsed laser beam 10a having a wavelength λ1: 1064 nm and a pulse width Δt1: 10 ns. The titanium sapphire laser 11 outputs a femtosecond laser beam 11a having a wavelength λ2: 800 nm and a pulse width Δt2: 100 fs.
[0020]
The pulse laser beam 10 a from the YAG laser 10 is reflected by the beam splitter 15, then condensed by the condenser lens (focal length f100 mm) 16, and applied to the chromium film 21 formed on the quartz substrate 20. Irradiated. Further, the femtosecond laser beam 11a from the titanium sapphire laser 11 is reflected by the total reflection mirror 14, passes through the beam splitter 15, is condensed by the condenser lens 16, and is applied to the chromium film 21. The The quartz crystal substrate 20 is disposed on the XY table 30, and the chrome film 21 is processed into a desired shape by moving the XY table 30 corresponding to the processing shape. The total reflection mirror 14 reflects an 800 nm laser beam, and the beam beam splitter 15 is set so as to transmit a laser beam having a wavelength of 800 nm and reflect a laser beam having a wavelength of 1064 nm. .
[0021]
FIG. 2 is a timing chart showing the operation of the laser processing apparatus of FIG. When the control signal 12a is output from the control device 12, the YAG laser 10 outputs a pulse laser beam 10a having a pulse width (Δt1: 10 ns) substantially the same as the control signal 12a and irradiates the chromium film 21. When the control signal 12b is output from the control device 12 after the predetermined time, the titanium sapphire laser 11 outputs a femtosecond laser beam 11a having a pulse width Δt2: 100fs synchronized with the rising edge of the control signal 12. The chromium film 21 is irradiated at the same position as the above irradiation position.
[0022]
When the pulse laser beam 10a is irradiated, the temperature of the chromium film 21 gradually increases, and the thermal potential increases. However, the maximum temperature at this time does not exceed the melting temperature of the chromium film 21, and the irreversible change is not given to the chromium film 21. In such a state, the chromium film 21 having a high thermal potential is vaporized and ablation is performed by irradiating the femtosecond laser beam 11a. Note that the energy density of the femtosecond laser beam 11a at this time is set slightly larger than the processing threshold for the workpiece after preheating.
[0023]
Here, the operation | movement by irradiation of the femtosecond laser beam 11a is demonstrated. In general, the energy of laser light applied to the chromium film 21 is absorbed by electrons and then moves to the lattice system to raise the temperature of the chromium film 21. After that, the heat diffuses to the surroundings according to the thermal properties peculiar to chromium. However, since the pulse width of the femtosecond laser beam 11a is shorter than the energy transfer time from the electrons to the lattice system, the pulsed light does not diffuse outside the irradiation region during irradiation. For this reason, an irradiation area | region can be heated efficiently and suppression of the heat damage to the circumference | surroundings is attained.
[0024]
Further, the operation by irradiation with the femtosecond laser beam 11a will be described from another viewpoint. Since the pulse laser beam 10a is a laser beam having a low energy density, a one-photon absorption process is performed, and thermal diffusion is performed because the pulse width is long (time is long). Then, when the above-mentioned preheating is in a state where a multiphoton absorption process is likely to occur, when the femtosecond laser beam 11a is irradiated, the laser has a large energy density as a result of its short pulse width. When light is irradiated, a multiphoton absorption process occurs, and the energy exceeds the band gap and the molecules are separated. In this way, the ablation processing of the workpiece is performed not by thermal reaction but by light / chemical reaction, so that thermal damage to the processing periphery can be suppressed and high-precision fine processing is possible.
[0025]
FIG. 3 is a cross-sectional view of processing according to the above embodiment. As described above, since the pre-heating is performed by the pulse laser 10a and then the femtosecond laser beam 11a is irradiated for processing, no residue is generated on the processing bottom 22 as shown in FIG. The shape is sharp and free from thermal damage.
[0026]
Embodiment 2. FIG.
FIG. 4 is a block diagram showing a configuration of a laser processing apparatus according to Embodiment 2 of the present invention. This laser processing apparatus includes a YAG laser 10 and a titanium sapphire laser 11 as in the above embodiment, and the irradiation timing of these is controlled by the control device 12. The pulse laser beam 10a from the YAG laser 10 is condensed by the condenser lens 16 and irradiated onto the chromium film 2. Further, the femtosecond laser beam 11 a from the titanium sapphire laser (femtosecond laser) 11 is reflected by the total reflection mirrors 17 and 18, collected by the condenser lens 19, and applied to the chromium film 21 via the quartz substrate 20. Irradiated. In this way, the chromium film 21 is irradiated with the femtosecond laser beam 11a and the pulsed laser beam 10b from both the back side and the front side. Similar to the above-described embodiment, the chromium film 21 is preheated by irradiation with the pulsed laser beam 10a, and is subjected to ablation processing by irradiation with the femtosecond laser beam 11a. It is assumed that the total reflection mirrors 17 and 18 are set so as to reflect laser light having a wavelength of 800 nm.
[0027]
In the above embodiment, the pulse laser beam 10a is irradiated from the front side of the chromium film 21 and the femtosecond laser beam 11a is irradiated from the back side of the chromium film 21, but the reverse is also possible. That is, the femtosecond laser beam 11 a may be irradiated from the front side of the chromium film 21, and the pulse laser beam 10 a may be irradiated from the back side of the chromium film 21. In any case, when irradiating the chromium film 21 with the laser beam through the quartz substrate 20, it is necessary to set the wavelength of the laser beam to a wavelength that allows easy transmission through the quartz substrate 20.
[0028]
Embodiment 3. FIG.
FIG. 5 is an explanatory diagram of the size of the focused spot of the laser light irradiated on the chromium film in the first and second embodiments. In the illustrated example, the focused spot 10b of the pulse laser beam 10a is made smaller than the focused spot 11b of the femtosecond laser beam 11a, and the thermal potential mainly at the position corresponding to the processing bottom 22 is increased. Thus, no residue is left when the femtosecond laser beam 11a is irradiated. In addition, a sharp machined shape can be obtained without increasing the thermal potential around the machined part.
[0029]
The example of FIG. 5 is a typical example. In addition, the focused spot 10b = the focused spot 11b or the focused spot 10b> the focused spot 11b of the femtosecond laser beam 11a may be used. . For adjusting the diameter of the focused spot, for example, a beam expander is incorporated in the YAG laser 10 or the titanium sapphire laser 11 to adjust the beam diameter, or the beam spot is emitted from the YAG laser 10 or the titanium sapphire laser 11. The beam diameter is adjusted by inserting a beam expander into the optical system of the laser beam.
[0030]
Embodiment 4 FIG.
Further, the laser beam for preheating the workpiece does not necessarily need to be a pulsed laser beam and may be a continuous beam. The light source is not limited to the YAG laser, and other solid-state lasers, gas lasers (for example, CO 2 lasers), or semiconductor lasers may be used. Further, the laser for processing the workpiece is not limited to the titanium sapphire laser, and may be another laser. Moreover, although the example ((lambda) 1> (lambda) 2) in which the wavelength was different between said YAG laser 10 and titanium sapphire laser 11 was shown, the wavelength may be the same. In addition, since the ultrashort pulse laser according to the present invention is only required to suppress thermal damage, the pulse width is a pulse laser having a pulse width in a femtosecond region to a picosecond region (10 −15 seconds −10 −12 seconds). Is applicable.
[0031]
In addition, the workpiece is not limited to the above-described chromium film, and the heat diffusion region is limited even in a material having high thermal conductivity such as alumina, silicon, germanium, quartz, etc., so that precise processing can be performed. . Furthermore, the processing of the present invention can also be applied to laser ablation of a living body such as the cornea, teeth, and brain.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a laser processing apparatus according to Embodiment 1 of the present invention.
FIG. 2 is a timing chart showing the operation of the laser processing apparatus of FIG.
FIG. 3 is a cross-sectional view of machining according to the present embodiment.
FIG. 4 is a block diagram showing a configuration of a laser processing apparatus according to Embodiment 2 of the present invention.
FIG. 5 is an explanatory diagram of the size of a focused spot of laser light applied to a chromium film.
FIG. 6 is a cross-sectional view of processing reported in the prior art.
7 is a processing cross-sectional view when a laser beam having a wider pulse width than that of the example of FIG. 6 is irradiated. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 YAG laser 11 Titanium sapphire laser 14,17,18 Reflection mirror 15 Beam splitter 16,19 Condensing lens 20 Crystal substrate 21 Chrome film 30 XY table

Claims (18)

第1のレーザ光を照射して被加工物を予備加熱する工程と、第2のレーザ光を照射して予備加熱された被加工物を加工する工程とを有し、前記第2のレーザ光はフェムト秒レーザ光であることを特徴とするレーザ加工方法。  A step of pre-heating the workpiece by irradiating the first laser beam, and a step of processing the pre-heated workpiece by irradiating the second laser beam, the second laser beam Is a femtosecond laser beam. 前記第1のレーザ光は連続したレーザ光であることを特徴とする請求項1記載のレーザ加工方法。  The laser processing method according to claim 1, wherein the first laser beam is a continuous laser beam. 前記第1のレーザ光はパルスレーザ光であることを特徴とする請求項1記載のレーザ加工方法。  The laser processing method according to claim 1, wherein the first laser beam is a pulsed laser beam. 前記予備加熱による被加工物に対する加熱は被加工物の溶融温度を超えないことを特徴とする請求項1〜3の何れかに記載のレーザ加工方法。  The laser processing method according to claim 1, wherein the heating of the workpiece by the preliminary heating does not exceed a melting temperature of the workpiece. 前記第1のレーザ光を照射している間に前記第2のレーザ光を照射することを特徴とする請求項1〜4の何れかに記載のレーザ加工方法。  The laser processing method according to claim 1, wherein the second laser beam is irradiated while the first laser beam is irradiated. 前記第1のレーザ光を照射した後に、前記第2のレーザ光を照射することを特徴とする請求項1〜の何れかに記載のレーザ加工方法。Wherein after irradiating the first laser light, the laser processing method according to any of claims 1-4, characterized by irradiating the second laser beam. 前記第1のレーザ光と前記第2のレーザ光とを、被加工物に対して同じ方向から照射することを特徴とする請求項1〜6の何れかに記載のレーザ加工方法。 The laser processing method according to claim 1, wherein the first laser beam and the second laser beam are irradiated to the workpiece from the same direction. 前記第1のレーザ光と前記第2のレーザ光とを、被加工物に対して反対方向から照射することを特徴とする請求項1〜6の何れかに記載のレーザ加工方法。  The laser processing method according to claim 1, wherein the first laser beam and the second laser beam are irradiated to the workpiece from opposite directions. 前記第1のレーザ光により一光子吸収過程よる予備加熱を行い、前記第2のレーザ光により多光子吸収過程よる加工を行うことを特徴とする請求項1〜8の何れかに記載のレーザ加工方法。  The laser processing according to any one of claims 1 to 8, wherein preheating by a one-photon absorption process is performed by the first laser light, and processing by a multiphoton absorption process is performed by the second laser light. Method. 前記第1のレーザ光の集光スポット径を前記第2のレーザ光による集光スポット径よりも小さく設定したことを特徴とする請求項1〜9の何れかに記載のレーザ加工方法。  The laser processing method according to claim 1, wherein a focused spot diameter of the first laser beam is set smaller than a focused spot diameter of the second laser beam. 被加工物にレーザ光を照射して予備加熱する第1のレーザと、被加工物にレーザ光を照射して予備加熱された被加工物を加工する第2のレーザとを有し、前記第2のレーザはフェムト秒レーザであることを特徴とするレーザ加工装置。  A first laser for preheating by irradiating the workpiece with laser light, and a second laser for processing the preheated workpiece by irradiating the workpiece with laser light; 2. A laser processing apparatus, wherein the laser 2 is a femtosecond laser. 前記第1のレーザは連続したレーザ光を出力するものであることを特徴とする請求項11記載のレーザ加工装置。  The laser processing apparatus according to claim 11, wherein the first laser outputs a continuous laser beam. 前記第1のレーザはパルスレーザ光を出力するものであることを特徴とする請求項11記載のレーザ加工装置。  The laser processing apparatus according to claim 11, wherein the first laser outputs pulsed laser light. 前記第1のレーザ及び前記第2のレーザを駆動して、前記第1のレーザによる照射をしている間に前記第2のレーザを照射させる制御手段を有することを特徴とする請求項11〜13の何れかに記載のレーザ加工装置。  11. A control means for driving the first laser and the second laser to irradiate the second laser while irradiating with the first laser. The laser processing apparatus according to any one of 13. 前記第1のレーザ及び前記第2のレーザを駆動して、前記第1のレーザにより照射を行った後に、前記第2のレーザによる照射を行わせる制御手段を有することを特徴とする請求項11〜13の何れかに記載のレーザ加工装置。  12. The control device for driving the first laser and the second laser and performing irradiation with the second laser after performing irradiation with the first laser. The laser processing apparatus in any one of -13. 前記第1のレーザと前記第2のレーザとを、被加工物に対して同じ方向から照射するための光学系を有することを特徴とする請求項11〜15の何れかに記載のレーザ加工装置。  The laser processing apparatus according to any one of claims 11 to 15, further comprising an optical system for irradiating the workpiece with the first laser and the second laser from the same direction. . 前記第1のレーザと前記第2のレーザとを、被加工物に対して反対方向から照射するための光学系を有することを特徴とする請求項11〜15の何れかに記載のレーザ加工装置。  16. The laser processing apparatus according to claim 11, further comprising an optical system for irradiating the workpiece with the first laser and the second laser from opposite directions. . 前記第1のレーザによるレーザ光の集光スポット径を第2のレーザによる集光スポット径よりも小さく設定するための光学系を有することを特徴とする請求項11〜17の何れかに記載のレーザ加工装置。  The optical system for setting the condensing spot diameter of the laser beam by the first laser to be smaller than the condensing spot diameter by the second laser, according to claim 11. Laser processing equipment.
JP2000027806A 2000-02-04 2000-02-04 Laser processing method and apparatus Expired - Fee Related JP3982136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000027806A JP3982136B2 (en) 2000-02-04 2000-02-04 Laser processing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000027806A JP3982136B2 (en) 2000-02-04 2000-02-04 Laser processing method and apparatus

Publications (2)

Publication Number Publication Date
JP2001212685A JP2001212685A (en) 2001-08-07
JP3982136B2 true JP3982136B2 (en) 2007-09-26

Family

ID=18553327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000027806A Expired - Fee Related JP3982136B2 (en) 2000-02-04 2000-02-04 Laser processing method and apparatus

Country Status (1)

Country Link
JP (1) JP3982136B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10202036A1 (en) * 2002-01-18 2003-07-31 Zeiss Carl Meditec Ag Femtosecond laser system for precise processing of material and tissue
JP2008062302A (en) * 2002-06-21 2008-03-21 Ricoh Microelectronics Co Ltd Laser processing method
US20050155956A1 (en) 2002-08-30 2005-07-21 Sumitomo Heavy Industries, Ltd. Laser processing method and processing device
KR20040089168A (en) * 2003-04-10 2004-10-21 (주)한빛레이저 A battery manufacturing process by pulsed laser welding technologies for the low heat input
JP4534543B2 (en) * 2004-03-19 2010-09-01 凸版印刷株式会社 Material processing by ultra-short pulse laser
US20060000814A1 (en) * 2004-06-30 2006-01-05 Bo Gu Laser-based method and system for processing targeted surface material and article produced thereby
KR100795526B1 (en) * 2006-03-02 2008-01-16 한국표준과학연구원 Laser Processing Method and Processing Apparatus based on conventional laser-induced material changes
US7732351B2 (en) 2006-09-21 2010-06-08 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device and laser processing apparatus
US7767595B2 (en) * 2006-10-26 2010-08-03 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
WO2009091020A1 (en) 2008-01-17 2009-07-23 Honda Motor Co., Ltd. Laser working apparatus, and laser working method
KR101064352B1 (en) 2008-11-27 2011-09-14 한국표준과학연구원 Control of laser processing rate and processed depth profile based on photo-induced absoprtion process
EP2336810A1 (en) * 2009-12-18 2011-06-22 Boegli-Gravures S.A. Method and device for generating colour patterns using a diffraction grating
JP5862088B2 (en) * 2011-07-22 2016-02-16 アイシン精機株式会社 Laser cleaving method and laser cleaving apparatus
FR2989294B1 (en) * 2012-04-13 2022-10-14 Centre Nat Rech Scient DEVICE AND METHOD FOR NANO-MACHINING BY LASER
KR102069724B1 (en) * 2012-05-30 2020-01-23 아이피지 포토닉스 코포레이션 Laser ablation process for manufacturing submounts for laser diode and laser diode units
EP2810736A1 (en) * 2013-05-06 2014-12-10 Siemens Aktiengesellschaft Laser apparatus and method with pre-heating
JP6308733B2 (en) * 2013-07-25 2018-04-11 独立行政法人国立高等専門学校機構 Laser processing apparatus and manufacturing method
CN114682928A (en) * 2020-12-30 2022-07-01 上海飞机制造有限公司 Laser hole making device and laser hole making method suitable for CFRP
CN114434086B (en) * 2021-12-26 2023-06-09 国营四达机械制造公司 Surface crack repairing method for titanium alloy thin-wall part

Also Published As

Publication number Publication date
JP2001212685A (en) 2001-08-07

Similar Documents

Publication Publication Date Title
JP3982136B2 (en) Laser processing method and apparatus
JP4418282B2 (en) Laser processing method
JP3722731B2 (en) Laser processing method
JP2005179154A (en) Method and apparatus for fracturing brittle material
JP5105984B2 (en) Beam irradiation apparatus and laser annealing method
JP4465429B2 (en) Laser processing method
JP4298953B2 (en) Laser gettering method
US20110108532A1 (en) Laser processing method
JP2002316278A (en) Laser controlled material-processing system
KR101184259B1 (en) Laser processing method and laser processing apparatus
JP2001314989A (en) Method and device for using laser pulse for preparing array of micro cavity hole
JP2008538324A (en) Method for precisely polishing / structuring a heat-sensitive dielectric material with a laser beam
JP4256840B2 (en) Laser cutting method and apparatus
JP4659301B2 (en) Laser processing method
JP4167094B2 (en) Laser processing method
KR20160048856A (en) Method of Separating a Glass Sheet from a Carrier
JP2003133690A (en) Method for forming circuit by using ultra short pulse laser
JP5865303B2 (en) Laser processing apparatus and laser processing method
JP2006344909A (en) Laser irradiation equipment and manufacture method of semiconductor device
JP2005118821A (en) Ultrashort pulse laser beam machining method
JP2007237210A (en) Laser beam machining method and apparatus
JPH04167985A (en) Method for cutting off wafer
EP2943973B1 (en) Thermal processing by transmission of mid infra-red laser light through semiconductor substrate
WO2004080642A1 (en) Laser beam machining method
JP2005142303A (en) Method of dividing silicon wafer, and apparatus thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees