JP3982126B2 - Refrigerant cooling type power control device - Google Patents

Refrigerant cooling type power control device Download PDF

Info

Publication number
JP3982126B2
JP3982126B2 JP33978199A JP33978199A JP3982126B2 JP 3982126 B2 JP3982126 B2 JP 3982126B2 JP 33978199 A JP33978199 A JP 33978199A JP 33978199 A JP33978199 A JP 33978199A JP 3982126 B2 JP3982126 B2 JP 3982126B2
Authority
JP
Japan
Prior art keywords
power control
refrigerant
cooling
plate portion
cooling body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33978199A
Other languages
Japanese (ja)
Other versions
JP2001156482A (en
Inventor
孝史 鳥井
山本  憲
訓孝 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP33978199A priority Critical patent/JP3982126B2/en
Publication of JP2001156482A publication Critical patent/JP2001156482A/en
Application granted granted Critical
Publication of JP3982126B2 publication Critical patent/JP3982126B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、冷媒が冷媒冷却型電力制御装置収容ケ−ス内を流れて内部の大発熱部品を冷却する冷媒冷却型電力制御装置に関する。
【0002】
【従来の技術】
近年、電気自動車やハイブリッド車では、走行用モ−タやエアコン用コンプレッサ駆動モ−タなどの制御に大電力のスイッチング制御が要求され、これを行う電力制御装置の発熱が問題となっている。また、通常のエンジン駆動車でもエミッション低減や燃費向上の観点からアイドルストップが要望されており、アイドルストップ時の空調のためにエアコン用コンプレッサのモータ駆動が必要となり、上記と同様にその電力制御のための電力制御装置の発熱が問題となっている。
【0003】
この種の半導体装置の冷却に冷媒を用いることはたとえば下記の公報などで公知となっている。すなわち、特開平7−336078号公報は、発熱体(半導体チップ)が密閉された発熱体パッケ−ジの一主面に密着して、冷媒が流れる冷却体を設け、更に、これら発熱体パッケ−ジ及び冷却体(コ−ルドプレ−ト)を断熱材で被覆した構造を開示している。
【0004】
車載の電力制御装置では、車両がエアコン用の冷凍サイクル装置を搭載し、その冷媒を流用できるため、システムの複雑化を抑止しつつ電力制御装置の冷媒冷却が実現するため、実現可能性が高いと予想されている。
【0005】
【発明が解決しようとする課題】
しかしながら、上記した公報の冷媒冷却ICパッケ−ジのように、従来の冷媒冷却方式は発熱体パッケ−ジ(回路又はチップを収容するモジュ−ル)の頂面(上面)に冷媒が流通する冷却体を載置、密着して行われる。これは、電子回路部品である発熱体パッケ−ジが基板の配線と接続される端子を底面(下面)すなわち基板側にもつため、こちらから冷却できないためである。
【0006】
このため、従来の冷媒冷却方式では、冷却体が発熱体パッケ−ジの上面に固定されるため、この冷却体への冷媒配管が基板上を中空配管されることになり、部品やブスバ−などを配置する場合の障害となって高密度実装を妨げていた。また、冷媒配管の支持構造が必要となり、配管引き回しも面倒であった。更に、冷却体を発熱体パッケ−ジに安定に固定するための工夫も必要であった。更にその上、冷却体の底面以外の部分は空気に露出するため冷熱が周囲の空気などに逸散したり、結露を生じたりする結果、それらを防止するために冷却体の底面以外を厚い断熱材で被覆する必要が生じ、発熱体パッケ−ジ上方空間がこれら冷却体や断熱材で占有され、発熱体パッケ−ジ直上やその周囲に他の回路部品を配置することが妨げられるという問題も生じた。たとえば、モ−タ制御用のインバ−タ用モジュ−ルについて説明すれば、このインバ−タ用モジュ−ル上には電力平滑コンデンサを配置してインバ−タ用モジュ−ルとその直上の電力平滑コンデンサとの配線距離の短縮を図り、配線抵抗損失の低減及び配線インダクタンスの低減によるスイッチングサ−ジノイズ電圧の低減を図ることが重要であるが、このような回路部品の二階建配置は実現が困難であった。
【0007】
本発明は従来の冷媒冷却電力制御装置の上記問題点に鑑みなされたものであり、回路部品配置や配線引き回しの自由度の低下を回避しつつ大発熱部品の良好な冷却を実現可能な冷媒冷却型電力制御装置を提供することを、その目的としている。
【0008】
【課題を解決するための手段】
請求項1記載の冷媒冷却型電力制御装置によれば、冷却体(コ−ルドプレ−ト)は、ケ−ス内の冷却べき大発熱部品、たとえばパワ−モジュ−ル、トランス、コンデンサなどの直下に位置して、ケ−スの底板部に設けられた凹部に配設され、この大発熱部品の底面に直接又は伝熱用金属板を通じて密接される。
【0009】
このようにすれば、回路部品配置や配線引き回しの自由度の低下を回避しつつ大発熱部品の良好な冷却を実現可能な冷媒冷却型電力制御装置を実現することができる。
【0010】
更に説明する。
【0011】
本構成によれば、冷却体やそれに冷媒を流通させる冷媒配管が回路部品収容用のケ−ス自体に内蔵されるので、ケ−ス内の部品配置やブスバ−引き回しの障害となることがない。
【0012】
また、冷媒配管がケ−ス内に露出したり、延設されたりすることがないので、冷媒配管構造中空支持構造やその断熱被覆構造が不必要となり、ケ−ス内の部品配置、配線引き回しが自由になる。なお、この冷媒配管は、ケ−ス内に露出したり、引き回す場合、必ず断熱材で被覆されねばならない。これは冷たい冷媒配管表面に空気が接触すると結露が生じ、この結露水分が滴下したりしてショ−トや腐食などの問題が発生するためである。これに対し、本構成では、冷却体は伝熱用金属板又は大発熱部品とケ−スとによってケ−ス内空間から遮断されるために、ケ−ス内の空気に結露が生じることが一切ない。また、ケ−スの底板部内に埋設された冷却体への冷媒配管は当然、底板部を通じて外部へ抜けることができ、冷媒配管の断熱も必要ではない。ただし、本構成は、冷媒配管の底板部への埋設に限定されるものではない。
【0013】
また、本構成では、冷却体の有効冷却面以外の面がケ−スにより断熱囲覆されるので、冷却体の断熱被覆部材なしに冷却体を空気から遮断することができ、簡素な構成で結露及び冷熱損失を防止することができる。
【0014】
更に、本構成では、大発熱部品の直上及びその周辺空間が空くので、部品を二階建構造(高さ方向二重配置)とすることができ、高密度実装及び配線短縮を実現することができる。
【0015】
請求項2記載の冷媒冷却型電力制御装置において、冷却体(コ−ルドプレ−ト)は、ケ−ス内の冷却べき大発熱部品、たとえばパワ−モジュ−ル、トランス、コンデンサなどの直上に位置して、ケ−スの蓋部に設けられた凹部に配設され、この大発熱部品の頂面に直接又は伝熱用金属板を通じて密接される。
【0016】
このようにすれば、回路部品配置や配線引き回しの自由度の低下を回避しつつ大発熱部品の良好な冷却を実現可能な冷媒冷却型電力制御装置を実現することができる。
【0017】
更に説明する。
【0018】
本構成によれば、冷却体やそれに冷媒を流通させる冷媒配管が回路部品収容用のケ−ス自体に内蔵されるので、ケ−ス内の部品配置やブスバ−引き回しの障害となることがない。
【0019】
また、冷媒配管がケ−ス内に露出したり、延設されたりすることがないので、冷媒配管構造中空支持構造やその断熱被覆構造が不必要となり、ケ−ス内の部品配置、配線引き回しが自由になる。なお、この冷媒配管は、ケ−ス内に露出したり、引き回す場合、必ず断熱材で被覆されねばならない。これは冷たい冷媒配管表面に空気が接触すると結露が生じ、この結露水分が滴下したりしてショ−トや腐食などの問題が発生するためである。これに対し、本構成では、冷却体は伝熱用金属板又は大発熱部品とケ−スとによってケ−ス内空間から遮断されるために、ケ−ス内の空気に結露が生じることが一切ない。また、ケ−スの蓋部内に埋設された冷却体への冷媒配管は当然、蓋部を通じて外部へ抜けることができ、冷媒配管の断熱も必要ではない。ただし、本構成は、冷媒配管の蓋部への埋設に限定されるものではない。
【0020】
また、冷却体の有効冷却面以外の面がケ−スにより断熱囲覆されるので、冷却体の断熱被覆部材なしに冷却体を空気から遮断することができ、簡素な構成で結露及び冷熱損失を防止することができる。
【0021】
また、底板部に固定される大発熱部品と底板部との間の空間を空けることができ、部品を二階建構造(高さ方向二重配置)にすることができ、高密度実装及び配線短縮を実現することができる。
【0022】
更に、回路部品群は底板部側に、冷却体及び冷媒配管を蓋部側に分けるので、回路部品点検や交換などにおいて、固定された蓋部から回路部品が収容された底板部を自由に分離することができ、作業が極めて簡単となる。また、冷却蓋部はそのままとして、回路部品を底板部とともに一挙に交換することもでき、修理作業を簡単化することができる。
【0023】
なお、本明細書でいうケ−スの配置姿勢は自由であり、通常の底板部の上方に蓋部が位置する基本姿勢の他に、底板部及び蓋部は垂直又は斜めに配置されてもよく、あるいは蓋部が底板部の直下に配置されてもよい。したがって、本明細書でいう上又は下という用語は、ケ−スに上記基本姿勢を与えた場合の相対空間位置関係を意味するものである。
【0024】
請求項3記載の構成によれば請求項1又は2記載の冷媒冷却型電力制御装置において更に、ケ−スの少なくとも凹部を含む部分は、樹脂成形部材からなる。
【0025】
このようにすれば、冷却体や冷却体近傍の冷媒配管の断熱及び結露防止のための断熱構造が簡素となる。
【0026】
請求項4記載の構成によれば請求項3記載の冷媒冷却型電力制御装置において更に、ケ−スの底板部又は蓋部は、側板部とともに樹脂成形された平板状の内板部と、内板部の外主面に密着された平板状の外板部とからなり、凹部は、内板部に貫設されて外側開口を外板部で閉鎖された開口部からなる。
【0027】
すなわち、本構成では、孔あきの内板部の外主面に外板部を密着して、冷却体収容用の凹部を形成するので、ケ−スが大型であっても、インサ−ト成形なしに冷却体埋設ケ−スを実現でき、更に、冷却体はケ−スの外方から上記開口に挿入できるので、ケ−スに回路部品を実装した後で冷却体を埋設したり、外板部を取り外して点検したりすることができ、利便性を向上することができる。
【0028】
請求項5記載の構成によれば請求項4記載の冷媒冷却型電力制御装置において更に、外板部は、開口部に面して冷却体に当接する突起部を有するので、冷却体と外板部との間の伝熱抵抗を増大することができ、冷却体の望ましくない冷熱損失を低減することができる。
【0029】
請求項6記載の構成によれば請求項4又は5記載の冷媒冷却型電力制御装置において更に、伝熱用金属板は、内板部に埋設されて開口部の内側開口を閉鎖するので、冷却体とケ−ス内部の空気との接触が完全に遮断され、冷却体を収容する凹部に結露水が溜まったりすることがない。
【0030】
請求項7記載の構成によれば請求項1乃至6のいずれか記載の冷媒冷却型電力制御装置において更に、冷却体は、冷凍サイクル装置の蒸発器の一部をなし、空調で吸熱して加温された冷媒を再利用して制御装置を冷却することができ、空調用の冷媒を有効活用することができる。
【0031】
請求項8記載の構成によれば請求項1乃至7のいずれか記載の冷媒冷却型電力制御装置において更に、ケ−ス内の電力制御回路は、ケ−ス内の所定部位の温度、好ましくは大発熱部品の温度を検出し、この温度に基づいて冷却体への冷媒流量を制御するので、冷却装置用電力損失の無駄がない。
【0032】
請求項9記載の構成によれば請求項1乃至8のいずれか記載の冷媒冷却型電力制御装置において更に、大発熱部品と垂直に重ねて他の前記回路部品を配置するので、一層の高密度実装が可能となる。
【0033】
【発明の実施の形態】
本発明の好適な態様を以下の実施例を参照して説明する。
【0034】
【実施例1】
実施例1の冷媒冷却型電力制御装置を図1を参照して説明する。
(車両用空調機の電気回路)
この装置は、車両用空調機のコンプレッサ駆動モ−タ制御回路を示し、1は高圧バッテリ、2は低圧バッテリ、3は電力制御装置であり、電力制御装置3は、三相インバ−タ回路4、電力平滑コンデンサ5及びそれを制御するコントローラ6を有している。
【0035】
三相インバータ回路4は、高圧バッテリ1から給電された直流電力を三相交流電力に変換して車両用空調機のコンプレッサ駆動モ−タ7に給電する。三相インバータ回路4は合計6つのIGBTとそれらと個別に逆並列接続されたフライホイルダイオ−ドとからなる。
【0036】
電力平滑コンデンサ5は三相インバータ回路4の一対の直流入力端間に接続されて三相インバータ回路4の上記IGBTのスイッチングに付随するスイッチングサ−ジ電圧の低減を行う。
【0037】
コントローラ6は低圧バッテリ2から電源電圧を供給されて三相インバータ回路4の制御を行う。この種の電動機制御用の電力制御装置3自体は周知であるので、これ以上の説明は省略する。
(電力制御装置3の構造)
電力制御装置3は、図2に示すように、ケ−ス8に収容されている。
【0038】
ケ−ス8は、上端開口の角箱形状を有する箱部81、箱部81の上端に固定されて箱部81の上記開口を閉鎖する蓋部82、箱部81の外底面に密着、固定されてこの外底面を覆う外板部83からなり、これら箱部81、蓋部82及び外板部83はそれぞれ樹脂成形品で構成されている。
【0039】
箱部81は、平坦な底板部(内板部)811と、この底板部811の周縁から立設される所定高さの側板部812とからなる。
【0040】
底板部811には開口部813が貫設され、開口部813には、開口部813の内側開口端8131の側に平板状の伝熱用金属板9が、開口部813の外側開口端8132の側に平板状の冷却体10がそれぞれ埋設されている。
【0041】
伝熱用金属板9は、アルミニウム板であって、箱部81に一体成形されて、開口部813の内側開口端側8131側を閉鎖している。伝熱用金属板9の内側主面は底板部811の内側主面と同一平面を構成し、外板部83は開口部813の外側開口端側8132側を閉鎖している。
【0042】
その結果、冷却体10は、外板部83、開口部813の側面、伝熱用金属板9に囲まれた密閉空間に変位不能に収容され、冷却体10の内側主面は伝熱用金属板の外側主面に熱伝導良好に密接し、冷却体10の外側主面は外板部83の内側主面に密着して支持されている。
【0043】
ケ−ス8内に露出する伝熱用金属板の内側主面には三相インバータ回路モジュ−ル4’の底面が密着、固定されている。この三相インバータ回路モジュ−ル4’は、図1に示す三相インバータ回路4を樹脂又はセラミックパッケ−ジに収容してなり、三相インバータ回路モジュ−ル4’の底面は伝熱用金属板9の内側主面を完全に覆っている。これは伝熱用金属板9がケ−ス8内の空気に触れてその表面に結露が生じるのを防ぐためである。
【0044】
三相インバータ回路モジュ−ル4’の上方には、ホルダ11に支持されて電力平滑コンデンサ5が配置されている。電力平滑コンデンサ5の端子51と三相インバータ回路モジュ−ル4’の上面に設けられた図示しない電極端子とはブスバ−12により接続されている。
【0045】
冷却体10は、アルミダキャスト又は引き抜き加工により形成されて内部に互いに並列に延在する冷媒通路用の長孔100を有し、これら長孔100の両端は、図示しない冷媒入り口配管部及び冷媒出口配管部をもつ遮蔽板で閉鎖され、これら冷媒入り口配管部及び冷媒出口配管部はそれぞれ冷媒配管を通じて外板部83を貫通して図2における下方へ延設され、図示しない車両用空調装置のエバポレ−タと並列接続されている。
【0046】
外板部83の内側主面830は、図3に示すように、突起831が設けられ、各突起831の頂面は冷却体10の底面に密接してそれを支持している。832は隣接する突起831間の凹部である。このようにすれば、冷却体10から下方へ逃げる冷熱を減らすことができる。
【0047】
(動作)
この電力制御装置4を駆動して車両用空調機を運転し、冷却体10に冷媒を通過させることにより、冷却体10は伝熱用金属板9を通じて、三相インバータ回路モジュ−ル4’の熱を吸収し、その温度上昇を抑止する。
(変形態様)
三相インバータ回路4の温度を検出し、その温度に応じて冷却体10の冷却流量を変更又はオン、オフすることは可能である。
(作用効果)
上記説明したこの実施例の電力制御装置によれば、上述した種々の効果を奏することができる。
【0048】
【実施例2】
本発明の電力制御装置の他の実施例を説明する。
(電力制御装置3の構造)
電力制御装置3は、図4に示すように、ケ−ス8’に収容されている。
【0049】
ケ−ス8’は、下端開口の角箱形状を有する箱部13、箱部13の下端に固定されて箱部13の上記開口を閉鎖する底板部14、箱部13の外主面(頂面)に密着、固定されてこの外主面を覆う外板部15からなり、これら箱部13、底板部14、及び外板部15はそれぞれ樹脂成形品で構成されている。
【0050】
箱部13は、平坦な上板部(内板部)131と、この上板部131の周縁から垂下する所定高さの側板部132とからなる。
【0051】
上板部131には開口部133が貫設され、開口部133には、開口部133の内側開口端の側にブロック状の伝熱用金属板9’が、開口部133の外側開口端の側に平板状の冷却体10がそれぞれ埋設されている。
【0052】
伝熱用金属板9’は、アルミニウム板であって、箱部13に一体成形されて、開口部133の内側開口端側の側を閉鎖し、外板部15は開口部133の外側開口端の側を閉鎖している。
【0053】
その結果、冷却体10は、外板部15、開口部133の側面、伝熱用金属板9’に囲まれた密閉空間に変位不能に収容され、冷却体10の内側主面は伝熱用金属板9’の外側主面に熱伝導良好に密接し、冷却体10の外側主面は外板部15の内側主面に密着して支持されている。
【0054】
ケ−ス8’内に露出する伝熱用金属板9’の内側主面には三相インバータ回路モジュ−ル4’の頂面が密着している。三相インバータ回路モジュ−ル4’は、図1に示す三相インバータ回路4を樹脂又はセラミックパッケ−ジに収容してなり、三相インバータ回路モジュ−ル4’はバンプやボ−ルなどを通じて配線基板を兼ねる底板部14の上面(部品載置面)に実装されている。
【0055】
冷却体10は、アルミダキャスト又は引き抜き加工により形成されて内部に互いに並列に延在する冷媒通路用の長孔100を有し、これら長孔100の両端は、図示しない冷媒入り口配管部及び冷媒出口配管部をもつ遮蔽板で閉鎖され、これら冷媒入り口配管部及び冷媒出口配管部はそれぞれ冷媒配管を通じて外板部15を貫通して図3における上方へ延設され、図示しない車両用空調装置のエバポレ−タと並列接続されている。
(作用効果)
上記説明したこの実施例の電力制御装置によれば、上述した種々の効果を奏することができる。
【図面の簡単な説明】
【図1】実施例1の電力制御装置を用いた車両用冷凍機用モ−タ制御回路を示す回路図である。
【図2】図1の電力制御装置の縦断面図である。
【図3】図2の電力制御装置の部分拡大断面図である。
【図4】実施例2の電力制御装置の縦断面図である。
【符号の説明】
4’:三相インバータ回路モジュ−ル(大発熱部品) 8:ケ−ス
9:伝熱用金属板
10:冷却体
813:凹部
811:底板部(内板部)
14:外板部
15:蓋部
812:側板部
831:突起部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigerant cooling type electric power control apparatus in which a refrigerant flows in a refrigerant cooling type electric power control apparatus housing case to cool an internal large heat generating component.
[0002]
[Prior art]
In recent years, in electric vehicles and hybrid vehicles, high-power switching control is required for control of a traveling motor, a compressor driving motor for an air conditioner, and the like, and heat generation of a power control device that performs this is a problem. In addition, idling stops are required from the viewpoint of reducing emissions and improving fuel efficiency even with ordinary engine-driven vehicles, and it is necessary to drive the motor of an air conditioner compressor for air conditioning during idling stop. Therefore, the heat generation of the power control device is a problem.
[0003]
The use of a refrigerant for cooling this type of semiconductor device is known, for example, in the following publications. That is, Japanese Patent Laid-Open No. 7-336078 discloses a cooling body through which a refrigerant flows in close contact with one main surface of a heating element package in which a heating element (semiconductor chip) is sealed, and these heating element packages. A structure in which a die and a cooling body (cold plate) are covered with a heat insulating material is disclosed.
[0004]
The in-vehicle power control device is equipped with a refrigeration cycle device for an air conditioner, and the refrigerant can be diverted. Therefore, the cooling of the power control device is realized while suppressing the complexity of the system, so the possibility is high. It is expected.
[0005]
[Problems to be solved by the invention]
However, like the refrigerant cooling IC package of the above-mentioned publication, the conventional refrigerant cooling system is a cooling in which the refrigerant flows through the top surface (upper surface) of the heating element package (module that accommodates the circuit or chip). The body is placed and closely attached. This is because the heating element package, which is an electronic circuit component, has a terminal connected to the wiring of the substrate on the bottom surface (lower surface), that is, the substrate side, and cannot be cooled from here.
[0006]
For this reason, in the conventional refrigerant cooling system, the cooling body is fixed to the upper surface of the heating element package, so that the refrigerant piping to this cooling body is a hollow piping on the substrate, and parts, bus bars, etc. This hinders high-density mounting as an obstacle to the placement. In addition, a support structure for the refrigerant piping is required, and the piping is troublesome. Furthermore, a device for stably fixing the cooling body to the heating element package is also required. In addition, since the parts other than the bottom surface of the cooling body are exposed to the air, the heat is dissipated into the surrounding air or the like, resulting in condensation. There is a problem that the space above the heating element package is occupied by the cooling body and the heat insulating material, and it is difficult to arrange other circuit components directly on or around the heating element package. occured. For example, if an inverter module for motor control is described, a power smoothing capacitor is arranged on the inverter module and the inverter module and the power just above it are arranged. It is important to shorten the wiring distance to the smoothing capacitor, to reduce the wiring resistance loss and to reduce the switching surge noise voltage by reducing the wiring inductance, but such a two-story arrangement of circuit components can be realized. It was difficult.
[0007]
The present invention has been made in view of the above-described problems of conventional refrigerant cooling power control devices, and is capable of realizing good cooling of large heat generating components while avoiding a decrease in the degree of freedom in circuit component arrangement and wiring routing. An object of the present invention is to provide a type power control apparatus.
[0008]
[Means for Solving the Problems]
According to the refrigerant cooling type power control apparatus of the first aspect, the cooling body (cold plate) is directly below a large heat generating component to be cooled in the case, for example, a power module, a transformer, a condenser and the like. And disposed in a recess provided in the bottom plate portion of the case, and is in close contact with the bottom surface of the large heat generating component directly or through a heat transfer metal plate.
[0009]
In this way, it is possible to realize a refrigerant cooling type power control apparatus that can realize good cooling of large heat generating components while avoiding a decrease in the degree of freedom of circuit component arrangement and wiring routing.
[0010]
Further explanation will be given.
[0011]
According to this configuration, since the cooling body and the refrigerant pipe for circulating the refrigerant are built in the case for housing the circuit components, there is no obstacle to the arrangement of the components in the case and the bus bar routing. .
[0012]
In addition, since the refrigerant pipe is not exposed or extended in the case, the refrigerant pipe structure hollow support structure and its heat insulation covering structure are unnecessary, and the arrangement of parts in the case and wiring routing are not required. Becomes free. Note that this refrigerant pipe must be covered with a heat insulating material when exposed or routed in the case. This is because condensation occurs when air comes into contact with the cold refrigerant pipe surface, and this condensed moisture drops, causing problems such as short circuit and corrosion. On the other hand, in this configuration, since the cooling body is blocked from the space in the case by the heat transfer metal plate or the large heat generating component and the case, condensation may occur in the air in the case. Nothing at all. In addition, the refrigerant piping to the cooling body embedded in the bottom plate portion of the case can naturally go out to the outside through the bottom plate portion, and it is not necessary to insulate the refrigerant piping. However, this configuration is not limited to the embedding in the bottom plate portion of the refrigerant pipe.
[0013]
Further, in this configuration, since the surfaces other than the effective cooling surface of the cooling body are thermally insulated by the case, the cooling body can be shielded from the air without the heat insulation covering member of the cooling body, and the configuration is simple. Condensation and heat loss can be prevented.
[0014]
Furthermore, in this configuration, the space immediately above the large heat generating component and its peripheral space are vacant, so that the component can have a two-story structure (double arrangement in the height direction), and high-density mounting and wiring shortening can be realized. .
[0015]
3. The refrigerant cooling type power control apparatus according to claim 2, wherein the cooling body (cold plate) is positioned directly above a large heat generating component to be cooled in the case, for example, a power module, a transformer, a condenser or the like. And it is arrange | positioned by the recessed part provided in the cover part of the case, and it closely_contact | adheres to the top face of this large heat-emitting component directly or through the metal plate for heat transfer.
[0016]
In this way, it is possible to realize a refrigerant cooling type power control apparatus that can realize good cooling of large heat generating components while avoiding a decrease in the degree of freedom of circuit component arrangement and wiring routing.
[0017]
Further explanation will be given.
[0018]
According to this configuration, since the cooling body and the refrigerant pipe for circulating the refrigerant are built in the case for housing the circuit components, there is no obstacle to the arrangement of the components in the case and the bus bar routing. .
[0019]
In addition, since the refrigerant pipe is not exposed or extended in the case, the refrigerant pipe structure hollow support structure and its heat insulation covering structure are unnecessary, and the arrangement of parts in the case and wiring routing are not required. Becomes free. Note that this refrigerant pipe must be covered with a heat insulating material when exposed or routed in the case. This is because condensation occurs when air comes into contact with the cold refrigerant pipe surface, and this condensed moisture drops, causing problems such as short circuit and corrosion. On the other hand, in this configuration, since the cooling body is blocked from the space in the case by the heat transfer metal plate or the large heat generating component and the case, condensation may occur in the air in the case. Nothing at all. In addition, the refrigerant piping to the cooling body embedded in the case lid portion can of course pass through the lid portion to the outside, and it is not necessary to insulate the refrigerant piping. However, this configuration is not limited to the embedding in the lid of the refrigerant pipe.
[0020]
Further, since the surfaces other than the effective cooling surface of the cooling body are thermally insulated by the case, the cooling body can be shielded from the air without the heat insulation covering member of the cooling body, and condensation and cooling loss can be achieved with a simple configuration. Can be prevented.
[0021]
In addition, a space between the large heat generating component fixed to the bottom plate and the bottom plate can be made free, and the component can be made into a two-story structure (double arrangement in the height direction). Can be realized.
[0022]
Furthermore, since the circuit component group is divided into the bottom plate side and the cooling body and the refrigerant pipe are divided into the lid side, the bottom plate portion containing the circuit components is freely separated from the fixed lid portion in the inspection and replacement of the circuit components. Can be very easy. Further, the circuit components can be exchanged together with the bottom plate portion while leaving the cooling lid portion as it is, and the repair work can be simplified.
[0023]
In addition, the arrangement | positioning attitude | position of the case as used in this specification is free, and in addition to the basic attitude in which the lid portion is positioned above the normal bottom plate portion, the bottom plate portion and the lid portion may be arranged vertically or obliquely. Alternatively, the lid portion may be disposed immediately below the bottom plate portion. Accordingly, the terms “upper” and “lower” in the present specification mean a relative spatial positional relationship when the above basic posture is given to the case.
[0024]
According to the configuration of the third aspect, in the refrigerant cooling type power control device according to the first or second aspect, the portion of the case including at least the concave portion is formed of a resin molded member.
[0025]
This simplifies the heat insulating structure for heat insulation and prevention of condensation on the cooling body and the refrigerant piping in the vicinity of the cooling body.
[0026]
According to the fourth aspect of the present invention, in the refrigerant cooling type power control apparatus according to the third aspect, the bottom plate portion or the lid portion of the case further includes a flat inner plate portion formed by resin molding together with the side plate portion, and the inner plate portion. It consists of a flat outer plate part closely attached to the outer main surface of the plate part, and the recessed part consists of an opening part penetrating the inner plate part and closing the outer opening with the outer plate part.
[0027]
That is, in this configuration, the outer plate portion is brought into close contact with the outer main surface of the perforated inner plate portion to form a recess for accommodating the cooling body, so that there is no insert molding even if the case is large. In addition, the cooling body embedded case can be realized, and the cooling body can be inserted into the opening from the outside of the case. The part can be removed and inspected, and convenience can be improved.
[0028]
According to the configuration of the fifth aspect, in the refrigerant cooling type power control device according to the fourth aspect, the outer plate portion further includes a protrusion that faces the opening and contacts the cooling body. The heat transfer resistance between the parts can be increased, and undesirable cooling loss of the cooling body can be reduced.
[0029]
According to the configuration of the sixth aspect, in the refrigerant cooling type power control device according to the fourth or fifth aspect, the heat transfer metal plate is embedded in the inner plate portion and closes the inner opening of the opening portion. The contact between the body and the air inside the case is completely cut off, so that dew condensation does not accumulate in the recess housing the cooling body.
[0030]
According to the configuration of the seventh aspect, in the refrigerant cooling type power control device according to any one of the first to sixth aspects, the cooling body is a part of the evaporator of the refrigeration cycle device and absorbs heat by air conditioning. The control device can be cooled by reusing the warmed refrigerant, and the air conditioning refrigerant can be effectively utilized.
[0031]
According to the configuration of the eighth aspect, in the refrigerant cooling power control device according to any one of the first to seventh aspects, the power control circuit in the case further includes a temperature of a predetermined part in the case, preferably Since the temperature of the large heat generating component is detected and the refrigerant flow rate to the cooling body is controlled based on this temperature, there is no waste of power loss for the cooling device.
[0032]
According to the configuration of the ninth aspect, in the refrigerant cooling type power control device according to any one of the first to eighth aspects, since the other circuit components are arranged perpendicularly to the large heat generating components, a higher density is achieved. Implementation is possible.
[0033]
DETAILED DESCRIPTION OF THE INVENTION
Preferred aspects of the invention are described with reference to the following examples.
[0034]
[Example 1]
A refrigerant cooling power control apparatus according to Embodiment 1 will be described with reference to FIG.
(Electric circuit of vehicle air conditioner)
This apparatus shows a compressor drive motor control circuit for a vehicle air conditioner, wherein 1 is a high voltage battery, 2 is a low voltage battery, 3 is a power control device, and the power control device 3 is a three-phase inverter circuit 4. And a power smoothing capacitor 5 and a controller 6 for controlling the same.
[0035]
The three-phase inverter circuit 4 converts the DC power fed from the high-voltage battery 1 into three-phase AC power and feeds it to the compressor drive motor 7 of the vehicle air conditioner. The three-phase inverter circuit 4 is composed of a total of six IGBTs and flywheel diodes individually connected in reverse parallel.
[0036]
The power smoothing capacitor 5 is connected between a pair of DC input terminals of the three-phase inverter circuit 4 to reduce the switching surge voltage associated with the switching of the IGBT of the three-phase inverter circuit 4.
[0037]
The controller 6 is supplied with a power supply voltage from the low voltage battery 2 and controls the three-phase inverter circuit 4. Since this type of electric power control device 3 for controlling an electric motor is well known, further explanation is omitted.
(Structure of power control device 3)
The power control device 3 is accommodated in the case 8 as shown in FIG.
[0038]
The case 8 has a box part 81 having a rectangular box shape with an upper end opening, a lid part 82 that is fixed to the upper end of the box part 81 and closes the opening of the box part 81, and an outer bottom surface of the box part 81. The box portion 81, the lid portion 82, and the outer plate portion 83 are each formed of a resin molded product.
[0039]
The box portion 81 includes a flat bottom plate portion (inner plate portion) 811 and a side plate portion 812 having a predetermined height standing from the periphery of the bottom plate portion 811.
[0040]
An opening 813 is provided in the bottom plate portion 811, and the flat plate-shaped heat transfer metal plate 9 is provided on the inner opening end 8131 side of the opening 813, and the outer opening end 8132 of the opening 813 is provided in the opening 813. A flat plate-like cooling body 10 is embedded on the side.
[0041]
The heat transfer metal plate 9 is an aluminum plate, and is integrally formed with the box portion 81 to close the inner opening end side 8131 side of the opening portion 813. The inner main surface of the heat transfer metal plate 9 is flush with the inner main surface of the bottom plate portion 811, and the outer plate portion 83 closes the outer opening end side 8132 side of the opening 813.
[0042]
As a result, the cooling body 10 is undisplaceably accommodated in a sealed space surrounded by the outer plate portion 83, the side surface of the opening 813, and the heat transfer metal plate 9, and the inner main surface of the cooling body 10 is the heat transfer metal. The outer main surface of the cooling body 10 is in close contact with the outer main surface of the plate with good heat conduction, and the outer main surface of the cooling body 10 is supported in close contact with the inner main surface of the outer plate portion 83.
[0043]
The bottom surface of the three-phase inverter circuit module 4 ′ is adhered and fixed to the inner main surface of the heat transfer metal plate exposed in the case 8. This three-phase inverter circuit module 4 ′ is obtained by housing the three-phase inverter circuit 4 shown in FIG. 1 in a resin or ceramic package, and the bottom surface of the three-phase inverter circuit module 4 ′ is a metal for heat transfer. The inner main surface of the plate 9 is completely covered. This is to prevent the heat transfer metal plate 9 from coming into contact with the air in the case 8 and causing condensation on the surface thereof.
[0044]
Above the three-phase inverter circuit module 4 ′, a power smoothing capacitor 5 is arranged supported by the holder 11. A terminal 51 of the power smoothing capacitor 5 and an electrode terminal (not shown) provided on the upper surface of the three-phase inverter circuit module 4 ′ are connected by a bus bar 12.
[0045]
The cooling body 10 has long holes 100 for refrigerant passages formed by aluminum casting or drawing and extending in parallel with each other, and both ends of the long holes 100 are connected to a refrigerant inlet pipe section and a refrigerant (not shown). The refrigerant inlet pipe part and the refrigerant outlet pipe part are respectively extended through the outer plate part 83 through the refrigerant pipe and extending downward in FIG. It is connected in parallel with the evaporator.
[0046]
As shown in FIG. 3, the inner main surface 830 of the outer plate portion 83 is provided with a protrusion 831, and the top surface of each protrusion 831 is in close contact with and supports the bottom surface of the cooling body 10. Reference numeral 832 denotes a recess between adjacent protrusions 831. If it does in this way, the cold heat which escapes from the cooling body 10 below can be reduced.
[0047]
(Operation)
By driving the power control device 4 to operate the vehicle air conditioner and passing the refrigerant through the cooling body 10, the cooling body 10 passes through the heat transfer metal plate 9 and the three-phase inverter circuit module 4 ′. Absorbs heat and suppresses temperature rise.
(Modification)
It is possible to detect the temperature of the three-phase inverter circuit 4 and change or turn on / off the cooling flow rate of the cooling body 10 according to the temperature.
(Function and effect)
According to the power control apparatus of this embodiment described above, the various effects described above can be achieved.
[0048]
[Example 2]
Another embodiment of the power control apparatus of the present invention will be described.
(Structure of power control device 3)
As shown in FIG. 4, the power control device 3 is accommodated in a case 8 ′.
[0049]
The case 8 ′ has a box part 13 having a rectangular box shape with a lower end opening, a bottom plate part 14 that is fixed to the lower end of the box part 13 and closes the opening of the box part 13, and an outer main surface (top) of the box part 13. The outer plate 15 includes an outer plate 15 that is in close contact with and fixed to the outer surface. The box portion 13, the bottom plate 14, and the outer plate 15 are each formed of a resin molded product.
[0050]
The box portion 13 includes a flat upper plate portion (inner plate portion) 131 and a side plate portion 132 having a predetermined height that hangs down from the periphery of the upper plate portion 131.
[0051]
An opening 133 is provided in the upper plate 131, and the opening 133 has a block-shaped heat transfer metal plate 9 ′ on the inner opening end side of the opening 133, and an outer opening end of the opening 133. A flat plate-like cooling body 10 is embedded on the side.
[0052]
The heat transfer metal plate 9 ′ is an aluminum plate, and is integrally formed with the box portion 13 to close the inner opening end side of the opening 133, and the outer plate portion 15 is an outer opening end of the opening 133. The side is closed.
[0053]
As a result, the cooling body 10 is undisplaceably accommodated in a sealed space surrounded by the outer plate 15, the side surface of the opening 133, and the heat transfer metal plate 9 ′, and the inner main surface of the cooling body 10 is for heat transfer. The outer main surface of the metal plate 9 ′ is in close contact with the outer main surface with good heat conduction, and the outer main surface of the cooling body 10 is supported in close contact with the inner main surface of the outer plate portion 15.
[0054]
The top surface of the three-phase inverter circuit module 4 ′ is in close contact with the inner main surface of the heat transfer metal plate 9 ′ exposed in the case 8 ′. The three-phase inverter circuit module 4 'is formed by housing the three-phase inverter circuit 4 shown in FIG. 1 in a resin or ceramic package, and the three-phase inverter circuit module 4' is through bumps or balls. It is mounted on the upper surface (component mounting surface) of the bottom plate portion 14 that also serves as a wiring board.
[0055]
The cooling body 10 has long holes 100 for refrigerant passages formed by aluminum casting or drawing and extending in parallel with each other, and both ends of the long holes 100 are connected to a refrigerant inlet pipe section and a refrigerant (not shown). The refrigerant inlet pipe part and the refrigerant outlet pipe part are respectively extended through the outer plate part 15 through the refrigerant pipe and extending upward in FIG. It is connected in parallel with the evaporator.
(Function and effect)
According to the power control apparatus of this embodiment described above, the various effects described above can be achieved.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a motor control circuit for a refrigerator for a vehicle using the power control apparatus according to the first embodiment.
2 is a longitudinal sectional view of the power control device of FIG. 1. FIG.
3 is a partial enlarged cross-sectional view of the power control device of FIG. 2;
4 is a longitudinal sectional view of a power control apparatus according to a second embodiment. FIG.
[Explanation of symbols]
4 ': Three-phase inverter circuit module (large heat generating component) 8: Case 9: Metal plate for heat transfer 10: Cooling body 813: Recessed portion 811: Bottom plate portion (inner plate portion)
14: Outer plate portion 15: Lid portion 812: Side plate portion 831: Projection portion

Claims (8)

大発熱部品を含んで電力制御回路を構成する多数の回路部品を載置する平板状の底板部を有して前記回路部品および配線体を収納するケ−スと、
良熱伝導性の金属を素材としてプレ−ト状に形成されて冷媒が外部から供給される冷却体と、
前記大発熱部品の直下に位置して部品載置面側から前記底板部に凹設されて前記冷却体を収容する凹部と、
を備え、
前記冷却体は、前記ケ−スの前記底板部に断熱支持されて前記凹部に収容されるとともに前記大発熱部品の底面に直接または良熱伝導性の伝熱用金属板を通じて密着することを特徴とする冷媒冷却型電力制御装置。
A case which has a flat bottom plate portion on which a large number of circuit components constituting a power control circuit including a large heat generating component are placed, and which accommodates the circuit component and the wiring body;
A cooling body that is formed in a plate shape from a metal having good heat conductivity and to which a refrigerant is supplied from the outside;
A concave portion that is located directly below the large heat generating component and is recessed in the bottom plate portion from the component placement surface side to accommodate the cooling body;
With
The cooling body is insulated and supported by the bottom plate portion of the case and is accommodated in the concave portion, and is in close contact with the bottom surface of the large heat generating component directly or through a heat conductive metal plate. Refrigerant cooling type power control device.
大発熱部品を含んで電力制御回路を構成する多数の回路部品を載置する平板状の底板部、並びに、前記底板部に対面する平板状の蓋部を有して前記回路部品および配線体を収納するケ−スと、
良熱伝導性の金属を素材としてプレ−ト状に形成されて冷媒が外部から供給される冷却体と、
前記大発熱部品の直上に位置して内主面側から前記蓋部に凹設されて前記冷却体を収容する凹部と、
を備え、
前記冷却体は、前記ケ−スの前記蓋部に断熱支持されて前記凹部に収容されるとともに前記大発熱部品の頂面に直接または良熱伝導性の伝熱用金属板を通じて密着することを特徴とする冷媒冷却型電力制御装置。
A plate-like bottom plate portion on which a large number of circuit components constituting a power control circuit including a large heat generating component are placed, and a plate-like lid portion facing the bottom plate portion, and the circuit component and the wiring body are arranged. The case to be stored;
A cooling body that is formed in a plate shape from a metal having good heat conductivity and to which a refrigerant is supplied from the outside;
A recess that is located directly above the large heat generating component and that is recessed in the lid from the inner main surface side and accommodates the cooling body;
With
The cooling body is insulated and supported by the lid portion of the case and is accommodated in the concave portion, and is in close contact with the top surface of the large heat generating component directly or through a metal plate for heat conduction. A refrigerant-cooled power control device.
請求項1又は2記載の冷媒冷却型電力制御装置において、
前記ケ−スの少なくとも前記凹部を含む部分は、樹脂成形部材からなることを特徴とする冷媒冷却型電力制御装置。
In the refrigerant cooling type power control device according to claim 1 or 2,
The part including at least the concave portion of the case is made of a resin molded member.
請求項1乃至3のいずれか記載の冷媒冷却型電力制御装置において、
前記ケ−スの底板部又は蓋部は、側板部とともに樹脂成形された平板状の内板部と、前記内板部の外主面に密着された平板状の外板部とからなり、
前記凹部は、前記内板部に貫設されて外側開口端を前記外板部で閉鎖された開口部からなることを特徴とする冷媒冷却型電力制御装置。
In the refrigerant cooling type power control device according to any one of claims 1 to 3,
The bottom plate portion or the lid portion of the case includes a flat plate-like inner plate portion that is resin-molded together with the side plate portion, and a flat plate-like outer plate portion that is in close contact with the outer main surface of the inner plate portion,
The coolant-cooled power control apparatus according to claim 1, wherein the recess includes an opening that extends through the inner plate and has an outer opening end closed by the outer plate.
請求項4記載の冷媒冷却型電力制御装置において、
前記外板部は、前記開口部に面して前記冷却体に当接する突起部を有することを特徴とする冷媒冷却型電力制御装置。
The refrigerant-cooled power control apparatus according to claim 4,
The refrigerant cooling power control apparatus, wherein the outer plate part has a protrusion part facing the opening and contacting the cooling body.
請求項4又は5記載の冷媒冷却型電力制御装置において、
前記伝熱用金属板は、前記内板部に埋設されて前記開口部の内側開口部を閉鎖することを特徴とする冷媒冷却型電力制御装置。
The refrigerant-cooled power control apparatus according to claim 4 or 5,
The refrigerant-cooled power control apparatus, wherein the heat transfer metal plate is embedded in the inner plate portion and closes an inner opening portion of the opening portion.
請求項1乃至6のいずれか記載の冷媒冷却型電力制御装置において、
前記冷却体は、冷凍サイクル装置の蒸発器の一部をなすことを特徴とする冷媒冷却型電力制御装置。
The refrigerant cooling power control apparatus according to any one of claims 1 to 6,
The refrigerant cooling power control apparatus, wherein the cooling body forms part of an evaporator of a refrigeration cycle apparatus.
請求項1乃至7のいずれか記載の冷媒冷却型電力制御装置において、
前記大発熱部品と垂直に重ねて他の前記回路部品を配置することを特徴とする冷媒冷却型電力制御装置。
The refrigerant cooling power control apparatus according to any one of claims 1 to 7,
A refrigerant cooling type power control device, wherein the other circuit components are arranged vertically overlapping the large heat generating component.
JP33978199A 1999-11-30 1999-11-30 Refrigerant cooling type power control device Expired - Lifetime JP3982126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33978199A JP3982126B2 (en) 1999-11-30 1999-11-30 Refrigerant cooling type power control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33978199A JP3982126B2 (en) 1999-11-30 1999-11-30 Refrigerant cooling type power control device

Publications (2)

Publication Number Publication Date
JP2001156482A JP2001156482A (en) 2001-06-08
JP3982126B2 true JP3982126B2 (en) 2007-09-26

Family

ID=18330759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33978199A Expired - Lifetime JP3982126B2 (en) 1999-11-30 1999-11-30 Refrigerant cooling type power control device

Country Status (1)

Country Link
JP (1) JP3982126B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109275326A (en) * 2018-11-29 2019-01-25 徐州华琅自动化设备有限公司 A kind of controller for electric vehicle radiator

Also Published As

Publication number Publication date
JP2001156482A (en) 2001-06-08

Similar Documents

Publication Publication Date Title
US5631821A (en) Cooling system for electric vehicle inverter system
US7656016B2 (en) Power semiconductor device
CN101064289B (en) Power inverter
JP3786356B2 (en) Inverter-integrated electric compressor for vehicles
EP2605392B1 (en) Electric power converter
US7252167B2 (en) Electrical apparatus, cooling system therefor, and electric vehicle
US20170040907A1 (en) Converter and electric power conversion apparatus
US8391005B2 (en) Frequency converter on a motor
CN102916566A (en) Power supply unit using housing in which printed circuit board is housed
JP2008125240A (en) Power conversion device
JP3239310U (en) Cooling pulse inverter for operating electrical machines in automobiles
JP2022061801A (en) Vehicle driving system
JP3367411B2 (en) Power converter
US20140285970A1 (en) Electric Power Conversion System
JP2004128099A (en) Water-cooled inverter
US20210144887A1 (en) Power converter device for a vehicle, and vehicle
JP2005123265A (en) Power device cooling apparatus and inverter unit for motor driving
JP3982126B2 (en) Refrigerant cooling type power control device
JP2002369550A (en) Power converter and movable body therewith
JP3409434B2 (en) Inverter
JP4120581B2 (en) Power module
JP6583513B2 (en) Power converter
JP3544089B2 (en) Semiconductor control device for vehicles
US20230188000A1 (en) Rotary electric machine unit
JP2004096135A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060113

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Effective date: 20070625

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20100713

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150