JP3982022B2 - Single crystal manufacturing method and single crystal manufacturing apparatus - Google Patents

Single crystal manufacturing method and single crystal manufacturing apparatus Download PDF

Info

Publication number
JP3982022B2
JP3982022B2 JP24427497A JP24427497A JP3982022B2 JP 3982022 B2 JP3982022 B2 JP 3982022B2 JP 24427497 A JP24427497 A JP 24427497A JP 24427497 A JP24427497 A JP 24427497A JP 3982022 B2 JP3982022 B2 JP 3982022B2
Authority
JP
Japan
Prior art keywords
single crystal
silicon carbide
raw material
shielding plate
seed crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24427497A
Other languages
Japanese (ja)
Other versions
JPH1179885A (en
Inventor
正美 内藤
泰男 木藤
英二 北岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP24427497A priority Critical patent/JP3982022B2/en
Publication of JPH1179885A publication Critical patent/JPH1179885A/en
Application granted granted Critical
Publication of JP3982022B2 publication Critical patent/JP3982022B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、昇華再結晶法を用いて単結晶基板上に単結晶を成長させる単結晶製造方法及び単結晶製造装置に関し、特にバルク状の炭化珪素(SiC)単結晶やGaN単結晶を製造する方法及び単結晶製造装置に適用して好適である。
【0002】
【従来の技術】
従来、炭化珪素等の単結晶を製造する方法として、昇華再結晶法が広く用いられている。この昇華再結晶法では、一面が開口したコップ形状を成すルツボ本体と、このルツボ本体の開口面を覆う蓋材とから構成された黒鉛製ルツボを反応容器として用いて単結晶を製造している。
【0003】
具体的には、単結晶の原料を充填したルツボ本体に、種結晶となる単結晶基板を固定した蓋材を取り付けたのち、単結晶の原料を所定温度で加熱昇華させると共に種結晶である単結晶基板を原料よりも低い温度にし、さらに黒鉛製ルツボ内を所定圧力で保持しすることで、単結晶基板上に単結晶を再結晶化させている。
【0004】
【発明が解決しようとする課題】
黒鉛製ルツボ内で、単結晶を成長させる場合、シリコン(Si)又はシリコンを含む気相種と、黒鉛製ルツボの材料である炭素(C)が反応することから、Si/C比が変動し易い。このため、単結晶の原料や単結晶基板の温度、及び黒鉛製ルツボ内の圧力がそれぞれが所定の条件に達するまでの間は、Si/C比が変動してしまうため、品質のよい単結晶が単結晶基板上に形成されない。
【0005】
また、単結晶の原料や単結晶基板の温度、及び黒鉛製ルツボ内の圧力がそれぞれの所定の条件に達するまでの間においても単結晶基板が露出した状態となっているため、上記Si/C比の変動を起因として種結晶にSi液滴が生成したり、黒鉛微粒子や金属不純物が混入したりすることを避けることが困難である。これら混入物が各種欠陥を誘発する原因となり、欠陥の少ない高品質な単結晶の製造を困難にするという問題がある。
【0006】
本発明は上記問題に鑑みてなされ、Si/C変動による影響及びこれを起因とするSi液滴の生成、黒鉛微粒子や金属不純物の単結晶への混入を避けることにより、欠陥の少ない高品質な単結晶が製造できる方法及び単結晶製造装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するため、以下の技術的手段を採用する。
請求項1乃至4に記載の発明においては、原料(2)及び種結晶(5)の温度が所定温度に達するまでの間、かつ反応容器(1)内の圧力が所定圧力に達するまでの間は、種結晶(5)を遮蔽板(6)で覆って種結晶(5)から原料(2)の昇華ガスを遮断し、その後遮断板を移動させて種結晶(5)に原料(2)の昇華ガスを供給することを特徴としている。
【0008】
このように、原料(2)及び種結晶(5)が所定温度になり、かつ反応容器(1)内の圧力が所定圧力に達するまでの間、種結晶(5)を遮蔽板(6)で覆って種結晶(5)から原料(2)の昇華ガスを遮断するようにすれば、Si/C比が変動し易い期間中、種結晶(5)を覆うことになるため、この間においては種結晶(5)上に単結晶が形成されない。
【0009】
さらに、Si/C比の変動に起因して、種結晶(5)にSi液滴が生成されたり、黒鉛微粒子や金属不純物が混入したりすることがなくなるため、種結晶(5)を良質なまま維持することができる。
このため、原料(2)及び種結晶(5)が所定温度になり、かつ反応容器(1)内の圧力が所定圧力に達したときに、良質な種結晶(5)上に単結晶を形成することができるため、高品質な単結晶を形成することができる。
【0011】
請求項に記載の発明においては、遮蔽板(6)と前記単結晶との間隔が一定距離になるように、単結晶の成長速度に合わせて単結晶表面と対向する方向に遮蔽板(6)を移動させることを特徴としている。このように、単結晶の成長面と遮蔽板(6)の間隔を常に所定間隔にすると、単結晶の成長面と遮蔽板(6)の温度差が一定に保たれる。このため、炭化珪素単結晶の成長面の温度が均一的な一定温度に保たれ、同一多形を有する結晶欠陥の少ない高品質な単結晶を形成することができる。
【0012】
なお、請求項1または2の発明を、請求項に示すような炭化珪素単結晶を製造する方法に適用すると好適である。請求項に記載の発明においては、反応容器(1)内に配した原料(2)を加熱昇華させ、反応容器(1)の内壁に固定される種結晶(5)上に単結晶を成長させる単結晶製造装置において、反応容器(1)の内外を連通する開口部(1c)を反応容器(1)に形成し、この開口部(1c)に支軸棒(7)を配置して、反応容器(1)の外部から支軸棒(7)を移動させることにより、遮蔽板(6)を移動させて、種結晶(5)と原料(2)との間を遮断できるようにしていることを特徴としている。
【0013】
このように、反応容器(1)の外部から支軸棒(7)を移動させることにより、遮蔽板(6)を移動させて、種結晶(5)と原料(2)との間を遮断できるようにすることで、Si/C比が変動し易い期間中、さらにSi/C比の変動を起因して、種結晶(5)にSi液滴が生成されたり、黒鉛微粒子や金属不純物が混入したりし易い間は、種結晶(5)と原料(2)との間を遮断することができるため、高品質な単結晶を製造することができる。
【0014】
また、請求項に示すように、反応容器(1)の上面に種結晶(5)が固定されるような場合には、開口部(1c)を反応容器(1)の底面のうち、種結晶(5)が配される位置と対応する位置に形成すれば、単結晶の成長速度に合わせて種結晶(5)表面と対向する方向に遮蔽板(6)を移動させることができるため、請求項と同様の効果を得ることができる。
【0015】
なお、請求項に示すように、遮断板(6)の少なくとも種結晶(5)に面する表面が、反応容器(1)の内壁材料の所定温度における飽和蒸気圧よりも低い材料で構成すれば、遮蔽板(6)自体からガスが出て種結晶(5)に達することがない。
また、請求項に示すように、遮断板(6)の少なくとも種結晶(5)に面する表面を、炭化珪素で形成してもよい。この場合には、炭化珪素が昇華しても炭素と共にシリコンも昇華するため、Si/C変動が発生せず、Si/C変動による影響が発生しないからである。
【0016】
【発明の実施の形態】
以下、この発明の実施の形態を図面に従って説明する。
(第1実施形態)
図1に、本実施形態において用いる単結晶製造装置の模式図を示す。なお、図1は紙面上下方向が天地方向を示している。
【0017】
単結晶製造装置は、黒鉛製ルツボ1を備えており、この黒鉛製ルツボ1内に充填された炭化珪素原料2を熱処理で昇華させることで、種結晶である炭化珪素単結晶基板5上に炭化珪素単結晶を結晶成長させるものである。
黒鉛製ルツボ1は、上面が開口しているコップ形状をしたルツボ本体1aと、ルツボ本体1aの開口部1cを塞ぐ蓋材1bとから構成されている。そして、この黒鉛製ルツボ1の蓋材1bは、種結晶である炭化珪素単結晶基板5を支持する台座となる。
【0018】
また、ルツボ本体1aの底面のうち、炭化珪素単結晶基板5が配置される位置と対応する位置、つまり炭化珪素単結晶基板5の表面の方線と交叉する位置には、この底面を貫通する開口部1cが形成されている。この開口部1cは、黒鉛製ルツボ1の底面から蓋材1bの方向(底面に対して垂直な方向)へ突出した中空形状で形成されており、黒鉛製ルツボ1内に炭化珪素原料2を配したときに突出した部分が炭化珪素原料2よりも高くなるようになっている。
【0019】
そして、この黒鉛製ルツボ1の開口部1cに、遮蔽板6を支持する支軸棒7が配されており、この支軸棒7を上下方向(図中の矢印方向)に移動させることで遮蔽板6を共に移動させ、遮蔽板6にて種結晶となる炭化珪素単結晶基板5を覆ったり、露出させたりできるようになっている。このとき、黒鉛製ルツボ1の開口部1cは支軸棒7によって塞がれるようになっており、黒鉛製ルツボ1が密閉系になるようになっている。
【0020】
遮蔽板6は、黒鉛製ルツボ1の内壁材料の所定温度における飽和蒸気圧よりも低い材料で構成されている。ここで、飽和蒸気圧とは、ある温度におけるその材料の存在できる最大圧力をいう。つまり、遮蔽板6が蒸発してガスを発生し、そのガスが炭化珪素単結晶基板5に達してしまうことを防止するために、上記材料を選択している。具体的には、タンタル、タングステン、モリブデン等の高融点金属、若しくはこれら高融点金属の炭化物(TaC、WC、MoC等)を遮蔽板6の材料として適用することができる。
【0021】
また、黒鉛製ルツボ1は、アルコンガスが導入できる真空容器の中でヒータ8により加熱できるようになっており、このヒータ8のパワーを調節することによって種結晶である炭化珪素単結晶基板5の温度が炭化珪素原料2の温度よりも100℃程度低温に保たれるようになっている。
このように構成されている単結晶製造装置を用いて炭化珪素単結晶を製造する手順を示す。
【0022】
まず、図1に示すように、種結晶となる炭化珪素単結晶基板5を蓋材1bに接着剤等で接合固定し、炭化珪素単結晶基板5が固定された蓋材1bをルツボ本体1aの開口部1cに配置する。そして、支軸棒7と共に遮蔽板6を上方向に移動させ、遮蔽板6にて炭化珪素単結晶基板5を完全に覆う。
この後、黒鉛製ルツボ1内の圧力、炭化珪素原料2や炭化珪素単結晶基板5の温度をそれぞれ、図2に示すように変化させる。
【0023】
まず、黒鉛製ルツボ1内をアルゴンガス雰囲気にし、その圧力を500Torrにする。さらに、炭化珪素原料2の温度が約2400℃、種結晶である炭化珪素単結晶基板5の温度が約2300℃になるようにヒータ8を加熱する。その後、炭化珪素原料2の温度を約2400℃、炭化珪素単結晶基板5の温度を約2300℃に保ちつつ、黒鉛製ルツボ1内のアルゴンガス雰囲気の圧力が約1Torrになるまで減圧する。
【0024】
ここまでの段階は、図2に示す成長条件が一定になるまでの領域(以下、領域Aという)に属しており、この領域A中は種結晶である炭化珪素単結晶基板5を遮蔽板6で完全に覆うようにしている。上述したように、この領域Aにおいては、Si/C比が変動し易く、またSi液滴の生成、黒鉛微粒子や金属不純物の単結晶への混入が生じ易いが、この領域A中は遮蔽板6で炭化珪素単結晶基板5を覆っているため、炭化珪素単結晶基板5はSi/C比の変動による影響を受けず、またSi液滴が生成したり、炭化珪素単結晶基板5中に黒鉛微粒子等の不必要なものが混入しない。これにより、領域Aにおいても炭化珪素単結晶基板5を良質な種結晶のまま維持することができる。
【0025】
続いて、黒鉛製ルツボ1内のアルゴンガス雰囲気の圧力が1Torrになったら、支軸棒7にて遮蔽板6を下方向に移動させ、遮蔽板6が炭化珪素単結晶基板5から所定間隔離れるようにして炭化珪素単結晶基板5を露出させる。そして、炭化珪素原料2の温度が約2400℃、炭化珪素単結晶基板5の温度が約2300℃で保たれるように、ヒータ8のパワーをフィードバック調整しつつ、アルゴンガス雰囲気の圧力を1Torrのまま維持する。
【0026】
この段階は、図2に示す成長条件が一定になった領域(以下、領域Bという)であり、炭化珪素単結晶を結晶成長させる温度条件及び圧力条件に適合する安定状態となる領域である。このような領域Bにおいては、Si/C比の変動が少なくなるため、上記のような問題はなく、好適に炭化珪素単結晶を結晶成長させることができる。従って、このような領域Bにおいて初めて炭化珪素単結晶基板5を露出させるため、良質な種結晶上に好適に炭化珪素単結晶を結晶成長させることができる。
【0027】
この後、炭化珪素単結晶の結晶成長速度に応じて支軸棒7と共に遮蔽板6を下方向に移動させ、炭化珪素単結晶の成長面と遮蔽板6の間隔が常に所定間隔になるようにする。このように、炭化珪素単結晶の成長面と遮蔽板6の間隔を常に所定間隔にすると、炭化珪素単結晶の成長面と遮蔽板6が対向しているため、炭化珪素単結晶の成長面と遮蔽板6の温度差が一定に保たれる。これにより、炭化珪素単結晶の成長面の温度が均一的な一定温度に保たれ、同一多形を有する結晶欠陥の少ない高品質なバルク状の炭化珪素単結晶(炭化珪素単結晶インゴット)が形成される。
【0028】
さらに、炭化珪素単結晶を黒鉛製ルツボの蓋材1bから取り外し、得られた結晶をスライス、研磨することにより炭化珪素単結晶からなる半導体ウェハが完成する。このように、炭化珪素単結晶基板5や炭化珪素原料2の温度、及び黒鉛製ルツボ1内の圧力が安定状態となるまでの間(領域Aの間)、遮蔽板6にて炭化珪素単結晶基板5を覆うようにすることで、炭化珪素単結晶基板5がSi/C比の変動による影響を受けたり、炭化珪素単結晶基板5中に黒鉛微粒子等の不必要なものが混入したりすることを防止することができ、良質な種結晶である炭化珪素単結晶基板5上に同一多形を有する欠陥の少ない炭化珪素単結晶を形成することができる。
【0029】
なお、このウェハをX線回折およびラマン分光により結晶面方位、結晶構造(多形)を判定した結果、炭化珪素単結晶は6H型の(0001)面方位を有していることが確認された。そして、このように完成したウェハを用いて、大電力用の縦型MOSFET、pnダイオード、ショットキーダイオード等の半導体装置を作製することができる。
【0030】
(第2実施形態)
図3(a)に、本実施形態における単結晶製造装置を示す。また、図3(b)に図3(a)のA−A矢視断面図を示す。本実施形態における単結晶製造装置は、第1実施形態における単結晶製造装置とほぼ同様の構成であるため、第1実施形態における単結晶製造装置と異なる部分についてのみ説明する。
【0031】
第1実施形態における単結晶製造装置では、ルツボ本体1aの底面に設けられた開口部1cに遮蔽板6を支持する支軸棒7を配し、支軸棒7と共に遮蔽板6を上下方向に移動させることで、遮蔽板6にて炭化珪素単結晶基板5を覆ったり、露出させたりできるようにしているが、本実施形態ではルツボ本体1aの側壁面に遮蔽板6を支持する支軸棒7を配し、支軸棒7と共に遮蔽板6を水平方向に移動させることで、遮蔽板6にて炭化珪素単結晶基板5を覆ったり、露出させたりできるようにしている。従って、以下の点で本実施形態における単結晶製造装置は、第1実施形態における単結晶製造装置と相違する。
【0032】
本実施形態では、ルツボ本体1aは上面を有しており、この上面のうち蓋材1bを取り付ける部分のみが開口した形状となっている。そして、このルツボ本体1aの側壁面に、部分的に黒鉛製ルツボ1の外側に突出する中空形状の収容部1dが備えられており、この収容部1dに支軸棒7を配すると共に遮蔽板6の収容が行えるようになっている。
【0033】
具体的には、収容部1dには黒鉛製ルツボ1の内外を連通するような連通口が形成されており、この連通口に支軸棒7が配されて、図中の矢印のような水平方向の移動ができるようになっている。そして、支軸棒7を紙面右方向に移動させたときに遮蔽板6が収容部1dに収容されるようになっている。
一方、蓋材1bは、コップ形状を成しており、この蓋材1b内に炭化珪素単結晶基板5が収容されるようになっている。そして、支軸棒7を紙面左方向に移動させると、遮蔽板6にて蓋材1dの全体が覆えるようになっている。なお、ルツボ本体1aの上面と遮蔽板6は接するようになっていて、遮蔽板6によって炭化珪素単結晶基板5が炭化珪素原料粉末の昇華ガスから遮断させれるようになっている。
【0034】
このように、支軸棒7と共に遮蔽板6を水平方向に移動できるようにして、炭化珪素原料2や種結晶である炭化珪素単結晶基板5の温度、及び黒鉛製ルツボ1内の圧力が安定状態に達するまで、蓋材1bに内蔵された炭化珪素単結晶基板5を遮蔽板6で覆うことにより、第1実施形態と同様に、炭化珪素単結晶基板5を良質な種結晶のまま保持することができる。これにより、良質な種結晶である炭化珪素単結晶基板5上に同一多形を有する欠陥の少ない炭化珪素単結晶を形成することができる。
【0035】
(第3実施形態)
図4(a)に、本実施形態における単結晶製造装置を示す。また、図4(b)に図4(a)のB−B矢視断面図を示す。本実施形態における単結晶製造装置は、第1実施形態における単結晶製造装置とほぼ同様の構成であるため、第1実施形態における単結晶製造装置と異なる部分についてのみ説明する。
【0036】
本実施形態では、支軸棒7を上下方向や水平方向に移動させることなく、回転させることによって遮蔽板6で種結晶である炭化珪素単結晶基板5を覆ったり、露出させたりできるようにしている。従って、以下の点で本実施形態における単結晶製造装置は、第1実施形態における単結晶製造装置と相違する。
コップ形状を成すルツボ本体1aの側壁には、黒鉛製ルツボ1の内外を連通する3つの穴が同じ高さに並んで形成されており、この3つの穴のそれぞれに支軸棒7a、7b、7cが配されている。これら3つの支軸棒7a〜7cには、それぞれ遮蔽板6a、6b、6cが備えられており、各遮蔽板6a〜6cの面を水平状態にしたときに、遮蔽板6a〜6cが黒鉛製ルツボ1の水平方向の断面形状と同様の円形状を成して、炭化珪素原料2が備えられた空間と炭化珪素単結晶基板5が備えられた空間が遮断されるようになっている。
【0037】
このように、支軸棒7a〜7cと共に遮蔽板6a〜6cを回転できるようにして、炭化珪素原料2や種結晶である炭化珪素単結晶基板5の温度、及び黒鉛製ルツボ1内の圧力が安定状態に達するまで、蓋材1bの凹部に内蔵された炭化珪素単結晶基板5を遮蔽板6a〜6cで覆うことにより、第1実施形態と同様に、炭化珪素単結晶基板5を良質な種結晶のまま保持することができる。これにより、良質な種結晶である炭化珪素単結晶基板5上に同一多形を有する欠陥の少ない炭化珪素単結晶を形成することができる。
【0038】
なお、本実施形態の場合には、遮蔽板6a〜6cが回転できるように、遮蔽板6a〜6cとルツボ本体1aの側壁面との間を所定間隔空ける必要があるが、炭化珪素原料2が備えられた空間と炭化珪素単結晶基板5が備えられた空間がある程度遮断できれば、十分上記効果をえることができる。
(他の実施形態)
上記第1〜第3実施形態では、炭化珪素原料2や種結晶である炭化珪素単結晶基板5の温度、及び黒鉛製ルツボ1内の圧力が安定状態した状態、すなわち温度や圧力を検出することによって上記安定した状態としているが、黒鉛製ルツボ1の内壁に炭化珪素単結晶基板5の組成と同様の組成を成す結晶が付着したときを上記安定状態としてもよい。つまり、黒鉛製ルツボ1の内壁に炭化珪素単結晶基板5と同様の組成を成す結晶が付着するときは、炭化珪素単結晶を成長させる条件に達したということだからである。なお、黒鉛製ルツボ1の内壁に付着する結晶の組成は、質量分析装置等を用いて検出することができる。
【0039】
第3実施形態では、3つの支軸棒7a〜7c及び遮蔽板6a〜6cを備えて、炭化珪素単結晶基板5を覆ったり、露出させたりしたが、1つの支軸棒及び遮蔽板のみによって、炭化珪素単結晶基板5を覆ったり、露出させたりしてもよい。この場合、図5に示すように、遮蔽板6以外の部分はルツボ本体1aを黒鉛製ルツボ1の内部に突出させる等することで、炭化珪素原料2が備えられた空間と炭化珪素単結晶基板5が備えられた空間を遮断することができる。
【0040】
なお、遮蔽板6を黒鉛製ルツボ1の内壁材料の所定温度における飽和蒸気圧よりも低い材料で構成したが、遮蔽板6のうち少なくとも炭化珪素単結晶基板5(種結晶)に面する表面を前記材料で構成するようにすれば、遮蔽板6からガスがでないようにすることができる。また、遮蔽板6からガスがでても、最終的に形成したい炭化珪素単結晶と同様のSi/C比を有するものであれば良いため、遮蔽板6のうち少なくとも炭化珪素単結晶基板5に面する表面をSiCで形成してもよい。また、黒鉛製ルツボ1内において、遮蔽板6の方が炭化珪素原料2よりも温度が低くなるので、炭化珪素原料2からの昇華量と比べると遮蔽板6からの昇華量は少なく、遮蔽板6からシリコンや炭素ガスが発生しても炭化珪素単結晶5への影響は少ないといえる。
【図面の簡単な説明】
【図1】第1実施形態における単結晶製造装置の模式図である。
【図2】種結晶や炭化珪素原料の温度、及び黒鉛製ルツボ内の圧力を示すタイムチャートである。
【図3】第2実施形態における単結晶製造装置の模式図である。
【図4】第3実施形態における単結晶製造装置の模式図である。
【図5】他の実施形態における単結晶製造装置の模式図である。
【符号の説明】
1…黒鉛製ルツボ、1a…ルツボ本体、1b…蓋部材、1c…開口部、
2…炭化珪素原料、5…炭化珪素単結晶基板(種結晶)、6…遮蔽板、
7…支軸棒。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a single crystal manufacturing method and a single crystal manufacturing apparatus for growing a single crystal on a single crystal substrate using a sublimation recrystallization method, and in particular, manufacturing a bulk silicon carbide (SiC) single crystal or a GaN single crystal. It is suitable to be applied to a method and a single crystal manufacturing apparatus.
[0002]
[Prior art]
Conventionally, a sublimation recrystallization method has been widely used as a method for producing a single crystal such as silicon carbide. In this sublimation recrystallization method, a single crystal is manufactured using a graphite crucible composed of a cup-shaped crucible body having an open surface and a cover material covering the opening surface of the crucible body as a reaction vessel. .
[0003]
Specifically, a crucible body filled with a single crystal raw material is attached with a lid material on which a single crystal substrate serving as a seed crystal is fixed, and then the single crystal raw material is heated and sublimated at a predetermined temperature and a single crystal that is a seed crystal. The single crystal is recrystallized on the single crystal substrate by keeping the temperature of the crystal substrate lower than that of the raw material and holding the inside of the graphite crucible at a predetermined pressure.
[0004]
[Problems to be solved by the invention]
When a single crystal is grown in a graphite crucible, the Si / C ratio fluctuates because silicon (Si) or a gas phase species containing silicon reacts with carbon (C) which is the material of the graphite crucible. easy. For this reason, the Si / C ratio fluctuates until the temperature of the single crystal raw material, the temperature of the single crystal substrate, and the pressure in the graphite crucible reach predetermined conditions. Is not formed on the single crystal substrate.
[0005]
Further, since the single crystal substrate is exposed until the temperature of the single crystal raw material, the temperature of the single crystal substrate, and the pressure in the graphite crucible reach the respective predetermined conditions, the Si / C It is difficult to avoid the formation of Si droplets in the seed crystal and the mixing of graphite fine particles and metal impurities due to the change in the ratio. These contaminants cause various defects, which makes it difficult to produce a high-quality single crystal with few defects.
[0006]
The present invention has been made in view of the above problems, and avoids the influence of Si / C fluctuations and the generation of Si droplets resulting from this, and the incorporation of graphite fine particles and metal impurities into a single crystal, resulting in high quality with few defects. It is an object of the present invention to provide a method and an apparatus for producing a single crystal capable of producing a single crystal.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the following technical means are adopted.
In the invention according to claims 1 to 4, the temperature until the temperature of the raw material (2) and the seed crystal (5) reaches a predetermined temperature and the time when the pressure in the reaction vessel (1) reaches the predetermined pressure. Covers the seed crystal (5) with the shielding plate (6), blocks the sublimation gas of the raw material (2) from the seed crystal (5), and then moves the shielding plate to transfer the raw material (2) to the seed crystal (5). The sublimation gas is supplied.
[0008]
Thus, until the raw material (2) and the seed crystal (5) reach a predetermined temperature and the pressure in the reaction vessel (1) reaches the predetermined pressure, the seed crystal (5) is covered with the shielding plate (6). If the seed crystal (5) is covered and the sublimation gas of the raw material (2) is shut off, the seed crystal (5) is covered during the period when the Si / C ratio is likely to fluctuate. No single crystal is formed on the crystal (5).
[0009]
Further, since the Si droplets are not generated in the seed crystal (5) due to the fluctuation of the Si / C ratio, and the graphite fine particles and metal impurities are not mixed, the seed crystal (5) is improved in quality. Can be maintained.
Therefore, when the raw material (2) and the seed crystal (5) reach a predetermined temperature and the pressure in the reaction vessel (1) reaches the predetermined pressure, a single crystal is formed on the high-quality seed crystal (5). Therefore, a high quality single crystal can be formed.
[0011]
In the invention according to claim 2 , the shielding plate (6) is arranged in a direction facing the surface of the single crystal in accordance with the growth rate of the single crystal so that the distance between the shielding plate (6) and the single crystal becomes a constant distance. ) Is moved. Thus, if the distance between the growth surface of the single crystal and the shielding plate (6) is always set to a predetermined distance, the temperature difference between the growth surface of the single crystal and the shielding plate (6) is kept constant. For this reason, the temperature of the growth surface of the silicon carbide single crystal is kept at a uniform and constant temperature, and a high-quality single crystal having the same polymorphism and few crystal defects can be formed.
[0012]
Preferably, the invention of claim 1 or 2 is applied to a method for producing a silicon carbide single crystal as shown in claim 3 . In the invention according to claim 4 , the raw material (2) disposed in the reaction vessel (1) is heated and sublimated to grow a single crystal on the seed crystal (5) fixed to the inner wall of the reaction vessel (1). In the single crystal production apparatus, an opening (1c) communicating with the inside and outside of the reaction vessel (1) is formed in the reaction vessel (1), and a support shaft (7) is disposed in the opening (1c), By moving the support shaft (7) from the outside of the reaction vessel (1), the shielding plate (6) is moved so that the seed crystal (5) and the raw material (2) can be blocked. It is characterized by that.
[0013]
In this way, by moving the support shaft (7) from the outside of the reaction vessel (1), the shielding plate (6) can be moved to block between the seed crystal (5) and the raw material (2). By doing so, Si droplets are generated in the seed crystal (5) due to fluctuations in the Si / C ratio during the period when the Si / C ratio is likely to fluctuate, and graphite fine particles and metal impurities are mixed. Since it is possible to shut off the seed crystal (5) and the raw material (2) while it is easily processed, a high-quality single crystal can be produced.
[0014]
In addition, as shown in claim 5 , when the seed crystal (5) is fixed to the upper surface of the reaction vessel (1), the opening (1c) is formed on the bottom surface of the reaction vessel (1). If the crystal (5) is formed at a position corresponding to the position where the crystal (5) is arranged, the shielding plate (6) can be moved in a direction facing the surface of the seed crystal (5) in accordance with the growth rate of the single crystal. An effect similar to that of the second aspect can be obtained.
[0015]
In addition, as shown in claim 6 , at least the surface facing the seed crystal (5) of the blocking plate (6) is made of a material lower than the saturated vapor pressure at a predetermined temperature of the inner wall material of the reaction vessel (1). For example, gas does not come out from the shielding plate (6) itself and reach the seed crystal (5).
Further, as shown in claim 7 , at least the surface of the blocking plate (6) facing the seed crystal (5) may be formed of silicon carbide. In this case, even if silicon carbide is sublimated, silicon is sublimated together with carbon, so that Si / C fluctuation does not occur and no influence due to Si / C fluctuation occurs.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
(First embodiment)
In FIG. 1, the schematic diagram of the single-crystal manufacturing apparatus used in this embodiment is shown. In FIG. 1, the vertical direction on the paper indicates the vertical direction.
[0017]
The single crystal manufacturing apparatus includes a graphite crucible 1, and carbonized on a silicon carbide single crystal substrate 5 as a seed crystal by sublimating a silicon carbide raw material 2 filled in the graphite crucible 1 by heat treatment. A silicon single crystal is grown.
The graphite crucible 1 is composed of a cup-shaped crucible main body 1a having an open upper surface and a lid 1b that closes the opening 1c of the crucible main body 1a. And the cover material 1b of this graphite crucible 1 becomes a base which supports the silicon carbide single crystal substrate 5 which is a seed crystal.
[0018]
Further, in the bottom surface of crucible body 1a, a position corresponding to the position where silicon carbide single crystal substrate 5 is arranged, that is, a position intersecting with the direction of the surface of silicon carbide single crystal substrate 5, penetrates this bottom surface. An opening 1c is formed. The opening 1c is formed in a hollow shape protruding from the bottom surface of the graphite crucible 1 in the direction of the lid 1b (direction perpendicular to the bottom surface), and the silicon carbide raw material 2 is disposed in the graphite crucible 1. The protruding part is higher than the silicon carbide raw material 2.
[0019]
A support shaft 7 for supporting the shielding plate 6 is disposed in the opening 1c of the graphite crucible 1. The support rod 7 is shielded by moving the support shaft 7 in the vertical direction (the arrow direction in the figure). The plate 6 is moved together so that the shielding plate 6 can cover or expose the silicon carbide single crystal substrate 5 serving as a seed crystal. At this time, the opening 1c of the graphite crucible 1 is closed by the support shaft 7 so that the graphite crucible 1 becomes a closed system.
[0020]
The shielding plate 6 is made of a material lower than the saturated vapor pressure at a predetermined temperature of the inner wall material of the graphite crucible 1. Here, the saturated vapor pressure refers to the maximum pressure at which the material can exist at a certain temperature. That is, the material is selected in order to prevent the shielding plate 6 from evaporating to generate gas and the gas from reaching the silicon carbide single crystal substrate 5. Specifically, refractory metals such as tantalum, tungsten, and molybdenum, or carbides (TaC, WC, MoC, etc.) of these refractory metals can be used as the material of the shielding plate 6.
[0021]
Further, the graphite crucible 1 can be heated by a heater 8 in a vacuum container into which an alkone gas can be introduced. By adjusting the power of the heater 8, the silicon carbide single crystal substrate 5 which is a seed crystal is heated. The temperature is kept about 100 ° C. lower than the temperature of the silicon carbide raw material 2.
A procedure for manufacturing a silicon carbide single crystal using the single crystal manufacturing apparatus configured as described above will be described.
[0022]
First, as shown in FIG. 1, a silicon carbide single crystal substrate 5 to be a seed crystal is bonded and fixed to a lid 1b with an adhesive or the like, and the lid 1b to which the silicon carbide single crystal substrate 5 is fixed is attached to the crucible body 1a. It arrange | positions in the opening part 1c. Then, shielding plate 6 is moved upward together with support shaft 7 so that silicon carbide single crystal substrate 5 is completely covered with shielding plate 6.
Thereafter, the pressure in the graphite crucible 1 and the temperatures of the silicon carbide raw material 2 and the silicon carbide single crystal substrate 5 are changed as shown in FIG.
[0023]
First, the inside of the graphite crucible 1 is set to an argon gas atmosphere, and the pressure is set to 500 Torr. Further, the heater 8 is heated so that the temperature of the silicon carbide raw material 2 is about 2400 ° C. and the temperature of the silicon carbide single crystal substrate 5 which is a seed crystal is about 2300 ° C. Thereafter, while maintaining the temperature of the silicon carbide raw material 2 at about 2400 ° C. and the temperature of the silicon carbide single crystal substrate 5 at about 2300 ° C., the pressure in the argon gas atmosphere in the graphite crucible 1 is reduced to about 1 Torr.
[0024]
The steps so far belong to a region (hereinafter referred to as region A) until the growth conditions shown in FIG. 2 become constant. In this region A, the silicon carbide single crystal substrate 5 which is a seed crystal is attached to the shielding plate 6. It is completely covered with. As described above, in this region A, the Si / C ratio is likely to fluctuate, and the formation of Si droplets and the incorporation of graphite fine particles and metal impurities into the single crystal are likely to occur. Since silicon carbide single crystal substrate 5 is covered with 6, silicon carbide single crystal substrate 5 is not affected by fluctuations in the Si / C ratio, and Si droplets are generated, or silicon carbide single crystal substrate 5 is formed in silicon carbide single crystal substrate 5. Unnecessary things such as graphite fine particles are not mixed. Thereby, also in region A, silicon carbide single crystal substrate 5 can be maintained as a high-quality seed crystal.
[0025]
Subsequently, when the pressure of the argon gas atmosphere in the graphite crucible 1 becomes 1 Torr, the shielding plate 6 is moved downward by the support shaft 7 so that the shielding plate 6 is separated from the silicon carbide single crystal substrate 5 for a predetermined time. Thus, silicon carbide single crystal substrate 5 is exposed. Then, the pressure of the argon gas atmosphere is adjusted to 1 Torr while feedback adjusting the power of the heater 8 so that the temperature of the silicon carbide raw material 2 is maintained at about 2400 ° C. and the temperature of the silicon carbide single crystal substrate 5 is maintained at about 2300 ° C. Keep it.
[0026]
This stage is a region in which the growth conditions shown in FIG. 2 are constant (hereinafter referred to as region B), and is a region that is in a stable state suitable for the temperature conditions and pressure conditions for crystal growth of the silicon carbide single crystal. In such a region B, since the fluctuation of the Si / C ratio is reduced, there is no such problem as described above, and the silicon carbide single crystal can be preferably grown. Therefore, since silicon carbide single crystal substrate 5 is exposed for the first time in such a region B, a silicon carbide single crystal can be suitably grown on a high-quality seed crystal.
[0027]
Thereafter, the shielding plate 6 is moved downward together with the support shaft 7 in accordance with the crystal growth rate of the silicon carbide single crystal so that the distance between the growth surface of the silicon carbide single crystal and the shielding plate 6 is always a predetermined interval. To do. As described above, when the distance between the growth surface of the silicon carbide single crystal and the shielding plate 6 is always set to a predetermined distance, the growth surface of the silicon carbide single crystal and the shielding plate 6 are opposed to each other. The temperature difference of the shielding plate 6 is kept constant. As a result, the temperature of the growth surface of the silicon carbide single crystal is kept at a uniform and constant temperature, and a high-quality bulk silicon carbide single crystal (silicon carbide single crystal ingot) having the same polymorphism and few crystal defects is obtained. It is formed.
[0028]
Furthermore, remove the silicon carbide Tan'yui crystallized from lid 1b of the graphite crucible, slicing the obtained crystal, semiconductor wafers made of silicon carbide single crystal by polishing is completed. Thus, until the temperature of the silicon carbide single crystal substrate 5 and the silicon carbide raw material 2 and the pressure in the graphite crucible 1 become stable (between the regions A), the silicon carbide single crystal is formed on the shielding plate 6. By covering the substrate 5, the silicon carbide single crystal substrate 5 is affected by the fluctuation of the Si / C ratio, or unnecessary particles such as graphite fine particles are mixed in the silicon carbide single crystal substrate 5. Thus, a silicon carbide single crystal having the same polymorph and having few defects can be formed on the silicon carbide single crystal substrate 5 which is a high-quality seed crystal.
[0029]
The crystal plane orientation of the wafer by X-ray diffraction and Raman spectroscopy, a result of determining the crystal structure (polymorphism), silicon carbide Tan'yui crystal is confirmed to have a 6H-type (0001) plane orientation It was. A semiconductor device such as a high-power vertical MOSFET, a pn diode, or a Schottky diode can be manufactured using the wafer thus completed.
[0030]
(Second Embodiment)
FIG. 3A shows a single crystal manufacturing apparatus according to this embodiment. FIG. 3B shows a cross-sectional view taken along the line AA in FIG. Since the single crystal manufacturing apparatus in the present embodiment has substantially the same configuration as the single crystal manufacturing apparatus in the first embodiment, only the parts different from the single crystal manufacturing apparatus in the first embodiment will be described.
[0031]
In the single crystal manufacturing apparatus in the first embodiment, a support shaft 7 that supports the shielding plate 6 is arranged in the opening 1c provided on the bottom surface of the crucible body 1a, and the shielding plate 6 is moved in the vertical direction together with the support shaft 7. The silicon carbide single crystal substrate 5 can be covered or exposed by the shielding plate 6 by being moved, but in this embodiment, a support shaft that supports the shielding plate 6 on the side wall surface of the crucible body 1a. 7 and the shielding plate 6 is moved in the horizontal direction together with the support shaft 7 so that the silicon carbide single crystal substrate 5 can be covered or exposed by the shielding plate 6. Therefore, the single crystal manufacturing apparatus in the present embodiment is different from the single crystal manufacturing apparatus in the first embodiment in the following points.
[0032]
In the present embodiment, the crucible main body 1a has an upper surface, and only a portion of the upper surface to which the lid member 1b is attached is open. The crucible body 1a is provided with a hollow housing portion 1d partially protruding outside the graphite crucible 1 on the side wall surface, and a support shaft 7 is disposed in the housing portion 1d and a shielding plate. 6 can be accommodated.
[0033]
Specifically, a communication port is formed in the accommodating portion 1d so as to communicate between the inside and the outside of the graphite crucible 1, and a support shaft 7 is arranged in the communication port, and the horizontal direction as indicated by an arrow in the figure. The direction can be moved. The shielding plate 6 is accommodated in the accommodating portion 1d when the support shaft 7 is moved to the right in the drawing.
On the other hand, lid 1b has a cup shape, and silicon carbide single crystal substrate 5 is accommodated in lid 1b. Then, when the support shaft 7 is moved to the left in the drawing, the shielding plate 6 covers the entire lid 1d. The upper surface of the crucible body 1a and the shielding plate 6 are in contact with each other, and the silicon carbide single crystal substrate 5 is shielded from the sublimation gas of the silicon carbide raw material powder by the shielding plate 6.
[0034]
As described above, the shielding plate 6 can be moved in the horizontal direction together with the support shaft 7 so that the temperature of the silicon carbide raw material 2 and the silicon carbide single crystal substrate 5 as a seed crystal and the pressure in the graphite crucible 1 are stable. By covering the silicon carbide single crystal substrate 5 built in the lid 1b with the shielding plate 6 until the state is reached, the silicon carbide single crystal substrate 5 is held as a high-quality seed crystal as in the first embodiment. be able to. Thereby, a silicon carbide single crystal having few defects and having the same polymorph can be formed on silicon carbide single crystal substrate 5 which is a high-quality seed crystal.
[0035]
(Third embodiment)
FIG. 4A shows a single crystal manufacturing apparatus according to this embodiment. FIG. 4B shows a cross-sectional view taken along the line BB in FIG. Since the single crystal manufacturing apparatus in the present embodiment has substantially the same configuration as the single crystal manufacturing apparatus in the first embodiment, only the parts different from the single crystal manufacturing apparatus in the first embodiment will be described.
[0036]
In the present embodiment, the support rod 7 is rotated without being moved in the vertical direction or the horizontal direction, so that the silicon carbide single crystal substrate 5 as the seed crystal can be covered or exposed by the shielding plate 6. Yes. Therefore, the single crystal manufacturing apparatus in the present embodiment is different from the single crystal manufacturing apparatus in the first embodiment in the following points.
Three holes communicating with the inside and outside of the graphite crucible 1 are formed at the same height on the side wall of the cup-shaped crucible body 1a. 7c is arranged. The three support shafts 7a to 7c are respectively provided with shielding plates 6a, 6b, and 6c. When the surfaces of the shielding plates 6a to 6c are in a horizontal state, the shielding plates 6a to 6c are made of graphite. The crucible 1 has a circular shape similar to the cross-sectional shape in the horizontal direction, and the space provided with the silicon carbide raw material 2 and the space provided with the silicon carbide single crystal substrate 5 are blocked.
[0037]
In this way, the shielding plates 6a to 6c can be rotated together with the support shafts 7a to 7c, and the temperature of the silicon carbide raw material 2 and the silicon carbide single crystal substrate 5 as the seed crystal, and the pressure in the graphite crucible 1 are adjusted. By covering the silicon carbide single crystal substrate 5 built in the recess of the lid 1b with the shielding plates 6a to 6c until the stable state is reached, the silicon carbide single crystal substrate 5 is made of a high quality seed as in the first embodiment. It can be maintained as crystals. Thereby, a silicon carbide single crystal having few defects and having the same polymorph can be formed on silicon carbide single crystal substrate 5 which is a high-quality seed crystal.
[0038]
In the present embodiment, the shielding plates 6a to 6c and the side wall surface of the crucible body 1a need to be spaced apart from each other so that the shielding plates 6a to 6c can rotate. If the space provided and the space provided with the silicon carbide single crystal substrate 5 can be cut off to some extent, the above effect can be obtained sufficiently.
(Other embodiments)
In the first to third embodiments, the temperature of the silicon carbide single crystal substrate 5 that is the silicon carbide raw material 2 and the seed crystal and the pressure in the graphite crucible 1 are in a stable state, that is, the temperature and pressure are detected. However, the stable state may be set when a crystal having the same composition as the composition of the silicon carbide single crystal substrate 5 adheres to the inner wall of the graphite crucible 1. That is, when a crystal having the same composition as the silicon carbide single crystal substrate 5 adheres to the inner wall of the graphite crucible 1, the condition for growing the silicon carbide single crystal has been reached. The composition of crystals adhering to the inner wall of the graphite crucible 1 can be detected using a mass spectrometer or the like.
[0039]
In the third embodiment, the three spindle rods 7a to 7c and the shielding plates 6a to 6c are provided and the silicon carbide single crystal substrate 5 is covered or exposed, but only by one spindle rod and the shielding plate. The silicon carbide single crystal substrate 5 may be covered or exposed. In this case, as shown in FIG. 5, the space other than the shielding plate 6 is made such that the crucible body 1 a protrudes into the interior of the graphite crucible 1 so that the space provided with the silicon carbide raw material 2 and the silicon carbide single crystal substrate. The space provided with 5 can be shut off.
[0040]
The shielding plate 6 is made of a material lower than the saturated vapor pressure of the inner wall material of the graphite crucible 1 at a predetermined temperature, but at least the surface of the shielding plate 6 facing the silicon carbide single crystal substrate 5 (seed crystal). If it is made of the above material, it is possible to prevent gas from being emitted from the shielding plate 6. Further, even if gas is emitted from the shielding plate 6, it is sufficient if it has the same Si / C ratio as the silicon carbide single crystal to be finally formed. The facing surface may be formed of SiC. Further, in the graphite crucible 1, the temperature of the shielding plate 6 is lower than that of the silicon carbide raw material 2, so that the sublimation amount from the shielding plate 6 is smaller than the sublimation amount from the silicon carbide raw material 2, and the shielding plate Even if silicon or carbon gas is generated from 6, it can be said that the silicon carbide single crystal 5 has little influence.
[Brief description of the drawings]
FIG. 1 is a schematic view of a single crystal manufacturing apparatus according to a first embodiment.
FIG. 2 is a time chart showing the temperature of seed crystals and silicon carbide raw material, and the pressure in the graphite crucible.
FIG. 3 is a schematic view of a single crystal manufacturing apparatus in a second embodiment.
FIG. 4 is a schematic view of a single crystal manufacturing apparatus in a third embodiment.
FIG. 5 is a schematic view of a single crystal manufacturing apparatus according to another embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Graphite crucible, 1a ... Crucible body, 1b ... Lid member, 1c ... Opening part,
2 ... silicon carbide raw material, 5 ... silicon carbide single crystal substrate (seed crystal), 6 ... shielding plate,
7 ... Spindle bar.

Claims (7)

反応容器(1)内に配した原料(2)を加熱昇華させ、前記反応容器(1)内を所定圧力に保持しながら前記種結晶(5)上に単結晶を成長させる単結晶の製造方法において、前記原料(2)及び前記種結晶(5)の温度が所定温度に達するまでの間、かつ前記反応容器(1)内の圧力が前記所定圧力に達するまでの間は、前記種結晶(5)を遮蔽板(6)で覆って前記種結晶(5)から前記原料(2)の昇華ガスを遮断し、その後前記遮蔽板(6)を移動させて前記種結晶(5)に前記原料(2)の昇華ガスを供給することを特徴とする単結晶の製造方法。  A method for producing a single crystal, in which a raw material (2) disposed in a reaction vessel (1) is heated and sublimated and a single crystal is grown on the seed crystal (5) while maintaining the inside of the reaction vessel (1) at a predetermined pressure. , Until the temperature of the raw material (2) and the seed crystal (5) reaches a predetermined temperature, and until the pressure in the reaction vessel (1) reaches the predetermined pressure. 5) is covered with a shielding plate (6) to block the sublimation gas of the raw material (2) from the seed crystal (5), and then the shielding plate (6) is moved to transfer the raw material to the seed crystal (5). (1) A method for producing a single crystal, comprising supplying a sublimation gas. 前記遮蔽板(6)と前記単結晶との間隔が一定距離になるように、前記単結晶の成長速度に合わせて、前記遮蔽板(6)を前記単結晶の表面と対向する方向に移動させることを特徴とする請求項に記載の単結晶の製造方法。The shielding plate (6) is moved in a direction facing the surface of the single crystal in accordance with the growth rate of the single crystal so that the distance between the shielding plate (6) and the single crystal is a constant distance. The method for producing a single crystal according to claim 1 . 前記原料(2)は炭化珪素原料であり、前記単結晶は炭化珪素単結晶であることを特徴とする請求項1または2に記載の単結晶の製造方法。The method for producing a single crystal according to claim 1 or 2 , wherein the raw material (2) is a silicon carbide raw material, and the single crystal is a silicon carbide single crystal. 反応容器(1)内に配した原料(2)を加熱昇華させ、前記反応容器(1)の内壁に固定される種結晶(5)上に単結晶を成長させる単結晶製造装置において、前記反応容器(1)に形成され、該反応容器(1)のに内外を連通する開口部(1c)と、前記開口部(1c)に配され、前記開口部(1c)から前記種結晶(5)まで延びる支軸棒(7)と、前記支軸棒(7)の端部に配された遮蔽板(6)とを備え、前記反応容器(1)の外部から前記支軸棒(7)を移動させることにより、前記遮蔽板(6)を移動させて、前記種結晶(5)と前記原料(2)との間を遮断できるようになっていることを特徴とする単結晶製造装置。  In the single crystal production apparatus, the raw material (2) disposed in the reaction vessel (1) is heated and sublimated to grow a single crystal on the seed crystal (5) fixed to the inner wall of the reaction vessel (1). An opening (1c) formed in the container (1) and communicating with the inside and outside of the reaction container (1) and the opening (1c), and the seed crystal (5) from the opening (1c) A support shaft (7) extending to the end of the support shaft (7), and a shielding plate (6) disposed at the end of the support shaft (7). By moving, the said shielding board (6) can be moved and the seed crystal (5) and the said raw material (2) can be interrupted | blocked, The single crystal manufacturing apparatus characterized by the above-mentioned. 前記反応容器(1)は筒形状をしていて、この反応容器(1)の上面に前記種結晶(5)が固定されるようになっており、前記開口部(1c)は、前記反応容器(1)の底面のうち、前記種結晶(5)が配される位置と対応する位置に形成されていて、前記支持棒(7)と共に前記遮蔽板(6)が前記種結晶(5)の表面に対向する方向に移動できるようになっていることを特徴とする請求項に記載の単結晶製造装置。The reaction vessel (1) has a cylindrical shape, and the seed crystal (5) is fixed to the upper surface of the reaction vessel (1), and the opening (1c) It is formed in the position corresponding to the position where the said seed crystal (5) is distribute | arranged among the bottom surfaces of (1), The said shielding board (6) with the said support bar (7) is the said seed crystal (5). The single crystal manufacturing apparatus according to claim 4 , wherein the single crystal manufacturing apparatus is movable in a direction opposite to the surface. 前記遮断板(6)の少なくとも前記種結晶(5)に面する表面が、前記反応容器(1)の内壁材料の前記所定温度における飽和蒸気圧よりも低い材料で構成されていることを特徴とする請求項4又は5に記載の単結晶製造装置。The surface facing at least the seed crystal (5) of the blocking plate (6) is made of a material lower than the saturated vapor pressure at the predetermined temperature of the inner wall material of the reaction vessel (1). The single crystal manufacturing apparatus according to claim 4 or 5 . 前記遮蔽板(6)のうち、少なくとも前記種結晶(5)に面する表面が、炭化珪素から形成されていることを特徴とする請求項4又は5に記載の単結晶製造装置。The single crystal manufacturing apparatus according to claim 4 or 5 , wherein at least a surface of the shielding plate (6) facing the seed crystal (5) is made of silicon carbide.
JP24427497A 1997-09-09 1997-09-09 Single crystal manufacturing method and single crystal manufacturing apparatus Expired - Lifetime JP3982022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24427497A JP3982022B2 (en) 1997-09-09 1997-09-09 Single crystal manufacturing method and single crystal manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24427497A JP3982022B2 (en) 1997-09-09 1997-09-09 Single crystal manufacturing method and single crystal manufacturing apparatus

Publications (2)

Publication Number Publication Date
JPH1179885A JPH1179885A (en) 1999-03-23
JP3982022B2 true JP3982022B2 (en) 2007-09-26

Family

ID=17116319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24427497A Expired - Lifetime JP3982022B2 (en) 1997-09-09 1997-09-09 Single crystal manufacturing method and single crystal manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP3982022B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249207A (en) * 2008-04-03 2009-10-29 Nippon Steel Corp Method for manufacturing silicon carbide single crystal ingot
CN103194794A (en) * 2012-01-10 2013-07-10 徐传兴 Quasi monocrystalline silicon casting device and method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4613325B2 (en) * 2004-07-21 2011-01-19 学校法人早稲田大学 Nitride single crystal manufacturing method and manufacturing apparatus
JP4668600B2 (en) * 2004-12-14 2011-04-13 株式会社フジクラ Method for producing nitride single crystal
WO2013151045A1 (en) * 2012-04-03 2013-10-10 独立行政法人物質・材料研究機構 Crystal growth method and crystal growth apparatus
JP5910393B2 (en) * 2012-07-26 2016-04-27 住友電気工業株式会社 Method for manufacturing silicon carbide substrate
JP6238249B2 (en) * 2013-05-20 2017-11-29 国立研究開発法人産業技術総合研究所 Silicon carbide single crystal and method for producing the same
JP6086167B2 (en) * 2016-03-18 2017-03-01 住友電気工業株式会社 Method for manufacturing silicon carbide substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249207A (en) * 2008-04-03 2009-10-29 Nippon Steel Corp Method for manufacturing silicon carbide single crystal ingot
CN103194794A (en) * 2012-01-10 2013-07-10 徐传兴 Quasi monocrystalline silicon casting device and method

Also Published As

Publication number Publication date
JPH1179885A (en) 1999-03-23

Similar Documents

Publication Publication Date Title
JP4121555B2 (en) Apparatus and method for epitaxial growth of objects by CVD
JP5779171B2 (en) Method and apparatus for sublimation growth of SiC single crystal
US6786969B2 (en) Method and apparatus for producing single crystal, substrate for growing single crystal and method for heating single crystal
JP5207427B2 (en) Method for producing liquid phase of single crystal silicon carbide, method for producing liquid phase epitaxial of single crystal silicon carbide substrate, method of producing single crystal silicon carbide substrate
US6336971B1 (en) Method and apparatus for producing silicon carbide single crystal
JP4514339B2 (en) Method and apparatus for growing silicon carbide single crystal
JPH11116399A (en) Coating of tantalum carbide and single crystal production apparatus produced by the coating
KR20120082873A (en) Sublimation growth of sic single crystals
JP4199921B2 (en) Method and apparatus for producing silicon carbide single crystal
US20020056412A1 (en) Manufacturing method for producing silicon carbide crystal using source gases and apparatus for the same
KR102107626B1 (en) Apparatus for growing silicon carbide single cryatal and method for growing silicon carbide single cryatal
JPH11116398A (en) Production of silicon carbide single crystal
JP4140123B2 (en) Silicon carbide single crystal manufacturing method and single crystal manufacturing apparatus
JP3902225B2 (en) Method and apparatus for producing silicon carbide single crystal by sublimation breeding
JP3982022B2 (en) Single crystal manufacturing method and single crystal manufacturing apparatus
US7371281B2 (en) Silicon carbide single crystal and method and apparatus for producing the same
JP4310880B2 (en) Method and apparatus for producing silicon carbide single crystal
Hartmann et al. Homoepitaxial seeding and growth of bulk AlN by sublimation
JPH09263497A (en) Production of silicon carbide single crystal
JPH11199395A (en) Production of silicon carbide single crystal
JPH10324599A (en) Production of silicon carbide single crystal
JP4505202B2 (en) Method and apparatus for producing silicon carbide single crystal
JP2007145679A (en) Apparatus for and method of producing aluminum nitride single crystal
JPH06183897A (en) Method for growing silicon carbide single crystal
JP2001192299A (en) Method and device for producing silicon carbide single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term