JP3979758B2 - Foam molding method - Google Patents

Foam molding method Download PDF

Info

Publication number
JP3979758B2
JP3979758B2 JP33771899A JP33771899A JP3979758B2 JP 3979758 B2 JP3979758 B2 JP 3979758B2 JP 33771899 A JP33771899 A JP 33771899A JP 33771899 A JP33771899 A JP 33771899A JP 3979758 B2 JP3979758 B2 JP 3979758B2
Authority
JP
Japan
Prior art keywords
cylinder
nozzle
pressure
inert gas
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33771899A
Other languages
Japanese (ja)
Other versions
JP2001150512A (en
Inventor
淳男 寺岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP33771899A priority Critical patent/JP3979758B2/en
Publication of JP2001150512A publication Critical patent/JP2001150512A/en
Application granted granted Critical
Publication of JP3979758B2 publication Critical patent/JP3979758B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3469Cell or pore nucleation
    • B29C44/348Cell or pore nucleation by regulating the temperature and/or the pressure, e.g. suppression of foaming until the pressure is rapidly decreased
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/12Incorporating or moulding on preformed parts, e.g. inserts or reinforcements

Landscapes

  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、発泡成形方法に関し、特に、ノズル部に絞り手段を設けて、射出等のシリンダ内が不活性ガスの超臨界圧力以下とならないようにして低圧発泡成形を可能とすると共に、流量制御弁を設けてスクリュの回転速度に応じて不活性ガスの供給量を制御するための新規な改良に関する。
【0002】
【従来の技術】
従来、用いられていたこの種の発泡成形方法としては、例えば、熱可塑性樹脂に化学的発泡剤を混合させて発泡成形する第1方法、熱可塑性樹脂に物理的発泡剤を用いて発泡成形する第2方法が採用されていた。
また、特許第2625576号公報に開示されているように、超臨界状態の二酸化炭素を溶融樹脂中に注入して発泡成形を行う第3方法が採用されていた。
【0003】
【発明が解決しようとする課題】
従来の発泡成形方法は以上のように構成されていたため、次のような課題が存在していた。
すなわち、前述の第1の方法においては、化学発泡剤を熱分解させて発泡成形を行う方法であるが、発泡剤のコストが高いこと、又分解ガスの残留物のため、異臭の発生、食品衛生上の問題、成形機、金型の汚れ等による成形品の品質問題が発生していた。
これに対し、第2の方法である物理的発泡法は、成形機で溶融した樹脂に、ブタン、ベタン、フロン等を混練した後、金型内に射出して発泡成形品を得る方法であるが、これらの発泡剤は、コストが高いことに加え、オゾン層破壊等の環境汚染を引き起こす。
また、第3の方法の場合、二酸化炭素等の不活性ガスを用いるため、コストも安く、地球環境に有害となる物質の発生はなく、かつ、発泡セルサイズも10μm以下となって成形性も良好な上、成形品強度も低下しない等の特長があるが、射出前の工程でシリンダ内を超臨界状態に保持することが難しく、この超臨界圧力が保持されないと、シリンダ内でガスが分離、金型内で充分な発泡成形品が得られない。
【0004】
本発明は、以上のような課題を解決するためになされたもので、特に、ノズル部に絞り手段を設けて射出前のシリンダ内が超臨界圧力以下とならないようにして低圧発泡成形を可能とすると共に、流量制御弁を設けてスクリュの回転速度に応じて不活性ガスの供給量を制御するようにした発泡成形方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明による発泡成形方法は、不活性ガスを溶融樹脂に溶解させてスクリュによりシリンダの先端のノズル部から射出し、発泡成形体を成形する場合、前記ノズル部に絞り手段を設け、前記ノズル部を金型のタッチ部にタッチして射出中に前記シリンダに設けた圧力センサからの前記シリンダの内圧を制御部に取込み、前記内圧前記不活性ガスの超臨界圧力以下とならないように前記絞り手段のアクチュエータの動作を前記制御部からの絞り指令により制御し前記絞り手段による前記ノズル部開口の開度を可変とし、前記シリンダ内への不活性ガスの供給量を前記シリンダに接続した流量制御弁により、前記スクリュの回転速度に応じて制御するようにした発泡成形方法において、前記シリンダのスクリュヘッド部に設けた射出圧力センサによって射出時の射出圧力を検出し、この射出圧力に応じて前記制御部から出される絞り指令により前記絞り手段のアクチュエータの動作を制御して前記絞り手段による前記ノズル部の開口の開度を制御することによりインサート成形を行う方法である。
ことを特徴とする発泡成形方法。
【0006】
【発明の実施の形態】
以下、図面と共に本発明による発泡成形方法の好適な実施の形態について説明する。
図1において符号1で示されるものは全体形状が長手筒状をなすと共にヒータ1Aを有するシリンダであり、このシリンダ1の内部に形成された内腔2にはスクリュ3がエンコーダ等の回転検出器Eを有するモータMによって回転自在に配設されている。
【0007】
前記シリンダ1は、その長手方向に沿って、ホッパ4が設けられた原料供給口5側からスクリュヘッド部6側へ向けて供給部7、第1溶融部8、低圧部9及び第2溶融部10が順次形成されている。
前記スクリュヘッド部6の先端側には絞り弁又は絞りノズル等からなり図示しないアクチュエータにより作動する絞り手段11を有すると共にヒータ12Aを備え射出用の開口12aを有するノズル部12が設けられている。なお、この絞り手段11は前記ノズル部12の開口12a内に設けられ、この絞り手段11のアクチュエータは後述の制御部14からの絞り指令14bに基づいて絞り状態、すなわち、開口12aの開度を可変できるように構成されている。
【0008】
前記シリンダ1の前記スクリュヘッド部6には、このスクリュヘッド部6内の圧力を検出するための射出圧力センサ13が設けられ、この射出圧力センサ13で検出された射出圧力13aが制御部14に取込まれるように構成されている。 また、前記シリンダ1のほぼ中央位置に設けられた圧力センサ15の内圧15aは前記制御部14に取込まれるように構成されている。
【0009】
前記シリンダ1のほぼ中央部位置に設けられた注入口16には、可変電磁型の流量制御弁17が接続され、この流量制御弁17は二酸化炭素、窒素等の液体又は気体からなる不活性ガスを内蔵したタンク18に接続されており、この流量制御弁17の開度は、前記制御部14からの制御信号14aによって可変式に制御されるように構成されている。
【0010】
前記モータMに設けられた回転検出器Eで検出されたスクリュ3のスクリュ回転速度Vは、前記制御部14に取込まれ、このスクリュ回転速度Vに基づいて、制御部14からのモータ速度指令VcomによってモータMすなわちスクリュ3の回転速度を所要の速度に制御することができるように構成されている。
【0011】
次に、動作について述べる。まず、図1の状態で、ホッパ4からシリンダ1の供給口5を介してシリンダ1内へ送られた樹脂原料20は、制御部14からのモータ速度指令Vcomに基づいて回転するスクリュ3により送られ、この樹脂原料20は、ヒータ1Aによる加熱とスクリュ3による剪断熱によって溶融しつつ下流側へ送られる。
この場合、ノズル部12の絞り手段11は閉状態に保持され、スクリュ3の先端側のスクリュヘッド部6の内室4内へ可塑化されて蓄積される。
【0012】
前述の場合、制御部14からの制御信号14aによって流量制御弁17が開弁され、不活性ガス18aが注入口16を介してシリンダ1内へ供給され、溶融樹脂内へ不活性ガス18aが混合される。
この場合、不活性ガス18aの溶融樹脂中への混合量は、5〜20W%が好適であるため、図2で示されるように、スクリュ回転速度Vに応じて制御部14によって演算し、制御信号14aのレベルを制御し、例えば、図2の段階特性に見られるような制御を行って、流量制御弁17の開度を制御している。
たとえば、図2において、スクリュ回転速度を100%、たとえば可塑化能力を100Kg/Hr、60%(30100Kg/Hr)、20%(20Kg/Hr)と変化させた場合、それぞれ、この回転速度に対応したガス供給量を制御し、溶融樹脂へのガス供給量を一定に保つ。
【0013】
また、溶融樹脂内へ注入して混合された不活性ガスは、シリンダ1内の内圧15aが一定レベル(例えば、7.5Ma以上)よりも低下すると超臨界状態とならなくなるため、この一定レベルを保持して超臨界圧力以下とならないように図3のようにノズル部12を金型30のタッチ部31にタッチして射出できるように、シリンダ1の圧力センサ15からの内圧15aを制御部14に取込んで絞り手段11のアクチュエータ(開示せず)の動作制御部14から出される絞り指令14bによって前記ノズル部12の開口12aの開度を可変として制御しつつ射出を行う。
前述のように、不活性ガスを超臨界圧力状態を保持して射出することにより、シリンダ1内では発泡状態とならずに、金型30のキャビティ33内で発泡するため、微細発泡の成形品(たとえば、10μm以下のセル径)が得られ、成形品強度も低下しない。又樹脂の流動性も向上するため、低圧成形が可能となり、たとえば、ICカード成形においてのIC、コイル等の電子部品の破損や損傷を防止することができる。
また、前述の場合、スクリュヘッド部6に設けた射出圧力センサ13によって、射出時の射出圧力13aを検出し、この射出圧力13aに応じて前記制御部14からの絞り指令14bにより前記絞り手段11の前記アクチュエータの動作を制御して前記絞り手段11による前記ノズル部12の開口12aの開度を可変制御している。
なお、前述のシリンダ1を前進させてノズル部12を金型30のタッチ部31にタッチさせる動作は、図示していないが、周知のシリンダ台(図示せず)を前進させるシリンダ手段によって前進動作が行われる。
【0014】
【発明の効果】
本発明による発泡成形方法は、以上のように構成されているため、次のような効果を得ることができる。すなわち、発泡成形時に、シリンダ内の圧力が常に不活性ガスの超臨界圧力以下とならないように、かつ射出時も射出圧力をフィードバック制御して絞り手段によるノズル部の開口の開度を制御することによって、シリンダ内の内圧を一定以上として、シリンダ内での発泡を制御しているため、金型内で微細発泡の成形品が得られ強度の強い成形品が得られ、又低圧成形が可能となるため、例えば、ICカード等のインサート成形時の電子部品の損傷等を防止することができる。
また、スクリュ回転速度に応じて流量制御弁の開度を制御しているため、溶融樹脂中の不活性ガスの混合量を一定の範囲内に制御することができ、成形目的に応じた発泡状態の制御が可能であり、一定した、発泡の成形品が得られる。
【図面の簡単な説明】
【図1】 本発明による発泡成形方法を示す断面構成図である。
【図2】 図1におけるスクリュ回転速度に応じて流量制御を行う場合の特性図である。
【図3】 図1のノズルタッチ状態の拡大構成図である。
【符号の説明】
1 シリンダ
3 スクリュ
スクリュヘッド部
11 絞り手段
12 ノズル部
12a 開口
13 射出圧力センサ
13a 射出圧力
14 制御部
14b 絞り指令
15 圧力センサ
15a 内圧
17 流量制御弁
18a 不活性ガス
18 タンク
30 金型
31 タッチ部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a foam molding method, and in particular, a throttle means is provided in a nozzle portion to enable low-pressure foam molding so that the inside of a cylinder such as injection does not become supercritical pressure of an inert gas , and flow rate control. The present invention relates to a novel improvement for providing a valve to control the supply amount of an inert gas in accordance with the rotational speed of a screw.
[0002]
[Prior art]
Conventional foam molding methods of this type include, for example, a first method of foam molding by mixing a thermoplastic foaming agent with a thermoplastic resin, and foam molding using a physical foaming agent for a thermoplastic resin. The second method was adopted.
In addition, as disclosed in Japanese Patent No. 2625576, a third method in which supercritical carbon dioxide is injected into a molten resin to perform foam molding has been adopted.
[0003]
[Problems to be solved by the invention]
Since the conventional foam molding method is configured as described above, the following problems exist.
That is, in the first method described above, the chemical foaming agent is thermally decomposed to perform foam molding, but the cost of the foaming agent is high, and because of the residue of cracked gas, the generation of off-flavors, food Hygiene problems, molding machine, mold quality problems due to mold contamination, etc. have occurred.
On the other hand, the physical foaming method, which is the second method, is a method in which butane, betane, chlorofluorocarbon or the like is kneaded with a resin melted by a molding machine and then injected into a mold to obtain a foam molded product. However, these foaming agents are costly and cause environmental pollution such as ozone layer destruction.
In the case of the third method, since an inert gas such as carbon dioxide is used, the cost is low, there is no generation of a substance harmful to the global environment, and the foamed cell size is 10 μm or less and the moldability is also improved. Although it is good and has the advantage that the strength of the molded product does not decrease, it is difficult to maintain the cylinder in a supercritical state in the pre-injection process. If this supercritical pressure is not maintained, gas will be separated in the cylinder. A sufficient foamed molded product cannot be obtained in the mold.
[0004]
The present invention has been made to solve the above-described problems, and in particular, it is possible to perform low-pressure foam molding by providing a throttle means in the nozzle portion so that the inside of the cylinder before injection does not become below the supercritical pressure. In addition, an object of the present invention is to provide a foam molding method in which a flow rate control valve is provided to control the supply amount of the inert gas according to the rotational speed of the screw.
[0005]
[Means for Solving the Problems]
Foam molding method according to the invention, the inert gas is dissolved in the molten resin is injected from the nozzle portion of the distal end of the cylinder by the screw, the case of forming a foam molded article, a throttle means provided in the nozzle portion, the nozzle portion The internal pressure of the cylinder from the pressure sensor provided in the cylinder is taken into the control unit during injection by touching the touch part of the mold, and the restriction is performed so that the internal pressure does not become lower than the supercritical pressure of the inert gas. the opening of the opening of the nozzle portion by the diaphragm controlled by a command the throttle means from the control unit the operation of the actuator means is variable, and connected to the supply amount of the inert gas into the cylinder in the cylinder the flow control valve, the foam molding method to be controlled according to the rotational speed of the screw, the injection pressure sensor provided in the screw head portion of the cylinder Detecting the injection pressure at the time of injection by the opening of the opening of the nozzle portion by the control to the throttle means the operation of the actuator of the throttle means by the stop command issued from the control unit depending on the injection pressure It is a method of performing insert molding by controlling.
A foam molding method characterized by the above.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of a foam molding method according to the present invention will be described with reference to the drawings.
In FIG. 1, reference numeral 1 denotes a cylinder having an overall cylindrical shape and a heater 1 </ b> A. In a lumen 2 formed in the cylinder 1, a screw 3 is a rotation detector such as an encoder. It is rotatably arranged by a motor M having E.
[0007]
The cylinder 1 has a supply part 7, a first melting part 8, a low pressure part 9 and a second melting part from the raw material supply port 5 side where the hopper 4 is provided to the screw head part 6 side along the longitudinal direction thereof. 10 are sequentially formed.
Nozzle portion 12 having an opening 12a for injection comprising a heater 12A is provided which has a stop means 11 operated by the screw head part 6 actuator Do Ri not shown from the tip throttle valve side or the throttle nozzle like the . The diaphragm means 11 is provided in the opening 12a of the nozzle section 12, and the actuator of the diaphragm means 11 controls the throttle state , that is, the opening degree of the opening 12a based on a diaphragm command 14b from the control section 14 described later. It is configured to be variable.
[0008]
The screw head portion 6 of the cylinder 1 is provided with an injection pressure sensor 13 for detecting the pressure in the screw head portion 6, and the injection pressure 13 a detected by the injection pressure sensor 13 is supplied to the control portion 14. It is configured to be captured. Further, an internal pressure 15 a of a pressure sensor 15 provided at a substantially central position of the cylinder 1 is configured to be taken into the control unit 14.
[0009]
A variable electromagnetic flow control valve 17 is connected to an inlet 16 provided at a substantially central position of the cylinder 1, and the flow control valve 17 is an inert gas made of a liquid or gas such as carbon dioxide or nitrogen. The opening of the flow control valve 17 is configured to be variably controlled by a control signal 14a from the control unit 14.
[0010]
The screw rotation speed V of the screw 3 detected by the rotation detector E provided in the motor M is taken into the control unit 14, and a motor speed command from the control unit 14 is based on the screw rotation speed V. The rotation speed of the motor M, that is, the screw 3 can be controlled to a required speed by Vcom.
[0011]
Next, the operation will be described. First, in the state of FIG. 1, the resin raw material 20 sent into the cylinder 1 from the hopper 4 through the supply port 5 of the cylinder 1 is sent by the screw 3 that rotates based on the motor speed command Vcom from the control unit 14. The resin material 20 is sent to the downstream side while being melted by the heating by the heater 1 </ b> A and the shearing heat by the screw 3.
In this case, the throttle means 11 of the nozzle portion 12 is held in a closed state, and is plasticized and accumulated in the inner chamber 4 of the screw head portion 6 on the tip side of the screw 3.
[0012]
In the above case, the flow rate control valve 17 is opened by the control signal 14a from the control unit 14, the inert gas 18a is supplied into the cylinder 1 through the inlet 16, and the inert gas 18a is mixed into the molten resin. Is done.
In this case, since the mixing amount of the inert gas 18a into the molten resin is preferably 5 to 20 W%, the calculation is performed by the control unit 14 according to the screw rotation speed V as shown in FIG. The level of the signal 14a is controlled and, for example, the control shown in the step characteristic of FIG.
For example, in FIG. 2, when the screw rotation speed is changed to 100%, for example, the plasticizing ability is changed to 100Kg / Hr, 60% (30100Kg / Hr), and 20% (20Kg / Hr), this corresponds to the rotation speed, respectively. The gas supply amount is controlled to keep the gas supply amount to the molten resin constant.
[0013]
The inert gas injected and mixed into the molten resin does not become a supercritical state when the internal pressure 15a in the cylinder 1 falls below a certain level (for example, 7.5 Ma or more). The internal pressure 15a from the pressure sensor 15 of the cylinder 1 is controlled by the control unit 14 so that the nozzle unit 12 can be ejected by touching the touch unit 31 of the mold 30 as shown in FIG. And the operation of an actuator (not disclosed) of the throttle means 11 is controlled while the opening degree of the opening 12a of the nozzle part 12 is controlled to be variable by a throttle command 14b issued from the control part 14 .
As described above, by injecting the inert gas while maintaining the supercritical pressure state, the cylinder 1 does not become a foamed state but foams in the cavity 33 of the mold 30. (For example, a cell diameter of 10 μm or less) is obtained, and the strength of the molded product does not decrease. In addition, since the fluidity of the resin is improved, low-pressure molding is possible, and for example, breakage and damage of electronic parts such as ICs and coils in IC card molding can be prevented.
In the above-described case, the injection pressure sensor 13 provided in the screw head unit 6 detects the injection pressure 13a at the time of injection, and the throttle means 11 is controlled by the throttle command 14b from the control unit 14 according to the injection pressure 13a. The aperture of the opening 12a of the nozzle portion 12 by the throttle means 11 is variably controlled by controlling the operation of the actuator .
The operation of advancing the cylinder 1 and touching the nozzle portion 12 to the touch portion 31 of the mold 30 is not shown, but is advanced by a cylinder means that advances a known cylinder base (not shown). Is done.
[0014]
【The invention's effect】
Since the foam molding method according to the present invention is configured as described above, the following effects can be obtained. That is, during foam molding, the pressure in the cylinder is not always less than or equal to the supercritical pressure of the inert gas , and the injection pressure is also feedback controlled during injection to control the opening of the nozzle opening by the throttle means. Because the internal pressure in the cylinder is kept above a certain level and foaming in the cylinder is controlled, a finely foamed molded product can be obtained in the mold and a strong molded product can be obtained, and low pressure molding is possible. Therefore, for example, damage to electronic components during insert molding of an IC card or the like can be prevented.
In addition, since the opening of the flow control valve is controlled according to the screw rotation speed, the amount of inert gas in the molten resin can be controlled within a certain range, and the foamed state according to the molding purpose Can be controlled, and a constant, foamed molded product can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a foam molding method according to the present invention.
FIG. 2 is a characteristic diagram when flow control is performed according to the screw rotation speed in FIG.
FIG. 3 is an enlarged configuration diagram of a nozzle touch state in FIG. 1;
[Explanation of symbols]
1 cylinder 3 screw
6 Screw head part 11 Throttling means 12 Nozzle part
12a opening 13 injection pressure sensor 13a injection pressure
14 control unit
14b aperture command
15 pressure sensor
15a Internal pressure 17 Flow control valve 18a Inert gas 18 Tank
30 molds
31 touch part

Claims (1)

不活性ガス(18a)を溶融樹脂に溶解させてスクリュ(3)によりシリンダ(1)の先端のノズル部(12)から射出し、発泡成形体を成形する場合、前記ノズル部(12)に絞り手段(11)を設け、前記ノズル部 (12) を金型 (30) のタッチ部 (31) にタッチして射出中に前記シリンダ(1)に設けた圧力センサ (15) からの前記シリンダ (1) の内圧 (15a) を制御部 (14) に取込み、前記内圧 (15a)前記不活性ガス (18a) 超臨界圧力以下とならないように前記絞り手段(11)のアクチュエータの動作を前記制御部 (14) からの絞り指令 (14b) により制御し前記絞り手段 (11) による前記ノズル部 (12)開口の開度を可変とし、前記シリンダ(1)内への不活性ガス(18a)の供給量を前記シリンダ(1)に接続した流量制御弁(17)により、前記スクリュ(3)の回転速度に応じて制御するようにした発泡成形方法において、
前記シリンダ (1) のスクリュヘッド部 (6) に設けた射出圧力センサ (13) によって射出時の射出圧力(13a)を検出し、この射出圧力(13a)に応じて前記制御部 (14) から出される絞り指令 (14b) により前記絞り手段(11)のアクチュエータの動作を制御して前記絞り手段 (11) による前記ノズル部 (12) の開口の開度を制御することによりインサート成形を行うことを特徴とする発泡成形方法。
Emitted from the nozzle of the tip of the cylinder (1) by screw inert gas (18a) is dissolved in the molten resin (3) (12), when molding foamed molded diaphragm to the nozzle portion (12) Means (11), the cylinder from the pressure sensor (15) provided on the cylinder (1) during injection by touching the touch part (31) of the mold (30 ) with the nozzle part (12) ( The internal pressure (15a) of 1) is taken into the control unit (14) , and the operation of the actuator of the throttle means (11) is performed so that the internal pressure (15a) does not become lower than the supercritical pressure of the inert gas (18a). the nozzle unit according to the control by the throttle means by the stop command from the control unit (14) (14b) (11) the opening of the opening (12) is made variable, inert gas into said cylinder (1) in ( In the foam molding method in which the supply amount of 18a) is controlled according to the rotational speed of the screw (3) by the flow rate control valve (17) connected to the cylinder (1) .
Wherein detecting the injection time of the injection pressure (13a) by the cylinder screw head portion (1) injection pressure sensor provided in (6) (13), the control unit depending on the injection pressure (13a) (14) The insert command is performed by controlling the opening of the nozzle portion (12) by the throttle means (11) by controlling the operation of the actuator of the throttle means (11 ) by the throttle command (14b) issued from A foam molding method characterized by the above.
JP33771899A 1999-11-29 1999-11-29 Foam molding method Expired - Fee Related JP3979758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33771899A JP3979758B2 (en) 1999-11-29 1999-11-29 Foam molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33771899A JP3979758B2 (en) 1999-11-29 1999-11-29 Foam molding method

Publications (2)

Publication Number Publication Date
JP2001150512A JP2001150512A (en) 2001-06-05
JP3979758B2 true JP3979758B2 (en) 2007-09-19

Family

ID=18311322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33771899A Expired - Fee Related JP3979758B2 (en) 1999-11-29 1999-11-29 Foam molding method

Country Status (1)

Country Link
JP (1) JP3979758B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008172A1 (en) * 2001-07-16 2003-01-30 Siemens Aktiengesellschaft Method for the injection moulding of plastic workpieces
KR100654620B1 (en) 2004-06-28 2006-12-08 주식회사 프라코 The Adjustable Method for Gas
KR100654619B1 (en) 2004-06-29 2006-12-08 주식회사 프라코 The Adjustable Method for Gas
KR100641599B1 (en) 2004-07-02 2006-11-10 주식회사 프라코 The Adjustable Method for Gas
JP6777610B2 (en) * 2017-09-14 2020-10-28 株式会社神戸製鋼所 Kneading device

Also Published As

Publication number Publication date
JP2001150512A (en) 2001-06-05

Similar Documents

Publication Publication Date Title
JP6522701B2 (en) Production device for foam molding
JP3288356B2 (en) Method and apparatus for injection-molding plastic moldings made of thermoplastics
JP4502805B2 (en) Polymer processing system with screw
JP2005532939A5 (en)
JPH066308B2 (en) Injection molding method for molded articles made of thermoplastic synthetic resin and apparatus for carrying out the method
KR20190142427A (en) Method and apparatus for manufacturing foam molded body
WO2006011415A1 (en) Method for injection expansion molding of thermoplastic resin
JP3590559B2 (en) Injection molding equipment for thermoplastic resin molded products
JP3979758B2 (en) Foam molding method
KR950012850B1 (en) Injection molding method
JP2004017285A (en) Method for molding thin wall foamed molding, thin wall foamed molding and apparatus for molding foamed molding
JP2022500289A (en) Polymer foam processing systems and methods
JP2001341152A (en) Injection molding machine
JP4223236B2 (en) Gas impregnated resin injection apparatus and injection molding method
JP3598017B2 (en) Injection molding equipment for thermoplastic resin molded products
KR101959325B1 (en) Apparatus of foam-injection molding
JP6474330B2 (en) Injection molding method
JP2004050566A (en) Method for producing thermoplastic resin molded foam having high quality appearance
JP2001170982A (en) Method and apparatus for injection molding using hot runner mold
JP2001062883A (en) Weighing method in preplastication type injection molding machine
JP2002321256A (en) Mold for foam injection molding and foamed molded product
JPH09323338A (en) Method and apparatus for injection molding foamed molding
JP2005074794A (en) Apparatus for molding foamed thermoplastic resin composition molding
KR20040009077A (en) A plastic gear manufacturing apparatus and method
JP2002361709A (en) Safety device of injection molding machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070626

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees