JP3979721B2 - Simple continuous activated carbon production equipment - Google Patents

Simple continuous activated carbon production equipment Download PDF

Info

Publication number
JP3979721B2
JP3979721B2 JP12660998A JP12660998A JP3979721B2 JP 3979721 B2 JP3979721 B2 JP 3979721B2 JP 12660998 A JP12660998 A JP 12660998A JP 12660998 A JP12660998 A JP 12660998A JP 3979721 B2 JP3979721 B2 JP 3979721B2
Authority
JP
Japan
Prior art keywords
gas
furnace
activated carbon
biomass
grate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12660998A
Other languages
Japanese (ja)
Other versions
JPH11278822A (en
Inventor
正康 坂井
Original Assignee
株式会社長崎鋼業所
有限会社マツオアンドパートナーズ
有限会社環境産業
株式会社九州スチールセンター
長菱ハイテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社長崎鋼業所, 有限会社マツオアンドパートナーズ, 有限会社環境産業, 株式会社九州スチールセンター, 長菱ハイテック株式会社 filed Critical 株式会社長崎鋼業所
Priority to JP12660998A priority Critical patent/JP3979721B2/en
Publication of JPH11278822A publication Critical patent/JPH11278822A/en
Application granted granted Critical
Publication of JP3979721B2 publication Critical patent/JP3979721B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin

Description

【0001】
【発明の属する技術分野】
本発明は、竪型下向き流れの反応炉に於いて、建築廃木材を含む各種のバイオマスを反応炉頂部より投入して、反応炉内にバイオマスの下向移動床を形成し、一方高温ガスを炉頂部より供給して、バイオマスの乾燥から活性炭の生成迄一貫して行い、活性炭を連続して製造する内熱式(バイオマスの揮発分の熱エネルギーと水性ガス化反応によって発生した可燃ガスの熱エネルギーを利用)連続活性炭製造装置を提供する。
注)下向移動床
火格子は火炉下部に固定され、原料は火炉上部より供給される。火炉で生成された活性炭を下方より取出すので、床の構成物質は下方へ移動する。故に下向移動床と称す。
【0002】
【従来の技術】
図1にバイオマスより粉末活性炭を製造する従来のプロセスを示す。従来バイオマスの乾燥・乾留による木炭の製造プロセスと、木炭をガス(水蒸気又は二酸化炭素)により賦活して活性炭を製造するプロセスは通常それぞれ独立している。図2にバイオマスを回転乾操機で乾燥したあと、別置の炭化筒で外部加熱により乾留し、木炭を製造するプロセスを示す。図3に木炭を水蒸気で賦活して活性炭を製造するプロセスを示す。図4にロータリキルンでバイオマスから一貫して活性炭を製造する例を示す。この場合加熱ガスは燃焼炉2で重油又はガスを燃焼して得られる。前者に於いては装置が複雑であり、後者に於いては装置が過大となる。そのため両者共に装置の建設費及び運転経費が高く活性炭の装置コストは高価となる。
【0003】
【発明が解決しようとする課題】
1.本発明はガス化反応炉の中にバイオマスを原材料とする移動床を形成し、当該バイオマスを加熱反応させる高温ガスを空気と共に上方から下方に流動させることにより、安定した炭化・賦活反応を炉横断面にわたって均一に発生させて、構造的に単純でコンパクトな反応炉の中でバイオマスから活性炭迄一貫した工程を連続的に行わせることを可能にする低コストの活性炭製造装置の提供を目的とする。
【0004】
2.化学物質を含む建築廃木材等のバイオマスを原料とする場合、炭化・賦活反応で発生した可燃ガス(H,CO,CnHm等)を含む反応炉出口のガスを1000℃以上の高温で燃焼してガス中の有害物質を酸化・分解して無害化した後その高温ガスの一部をガス化反応炉頂部に再循環して反応に利用する活性炭製造装置及び残余の高温ガスで高温・高圧蒸気を生成するボイラの提供を目的とする。
【0005】
【課題を解決する為の手段】
(1)活性炭製造に関する上記の課題を解決する為に、本発明者らは直立竪型反応炉に於いて、下部に火格子又は同等の活性炭/可燃ガス排出装置を設置して反応炉上部よりバイオマスを投入し、上記火格子及び同等の装置の上部にバイオマスの移動床を形成させ、一方数%〜十数%の酸索を含む高温ガスを炉上部より導入し、上記移動床内を上から下へ流通せしめると高温ガスはバイオマスと反応して上より順に乾燥・揮発・燃焼・炭化・賦活の各反応層を形成するが、その際、乾燥・揮発・燃焼の段階で生成したバイオマスの水分蒸発及び揮発分の燃焼によって得られる水蒸気が高温ガスに混在し炭化物を賦活する。移動床内を下降する高温ガスは、移動床のガス流動に対する抵抗と、各反応生成ガスが下降する高温ガスで抑圧されて横に広がることにより、各反応層の横断面全体にわたって均一に流下することに着目し、図5−cに示す如き実験炉でバイオマスと高温ガス及び空気を上部より投入した所、各層での反応が均一に行われ、火格子及び同等の装置部より活性炭を取り出し得ることを確認し、本発明に至った。尚、高温ガスの生成供給手段としては下記の4つの方法がある。
【0006】
1、反応炉頂部に補助燃料と空気を供給して、炉頂部での燃焼反応により数%〜十数%の濃度の酸素を含む高温ガスを生成供給する方法(図5−a)
【0007】
2、1項に於いて反応炉の起動時のみ補助燃料を使用し、炉内反応が安定し移動床が形成され始めると補助燃料を徐々に減少し、補助燃料の代替としてバイオマスの揮発分を利用する方法(図5−a)
【0008】
3、1項に於いて炉内反応が安定してくると補助燃料の代わりに反応炉下部より抽出された可燃ガスの一部を再循環して使用する方法(図5−b)
【0009】
4、図5−cに示す如く炉下部より抽出された可燃ガスを1000℃以上の高温で燃焼して、その燃焼ガスの一部を空気と共に炉頂部に供給する方法
【0010】
【発明の実施の形態】
以下に、本発明を詳細に説明する。
図5−cに依り本発明の簡易型連続活性炭製造装置を説明する。図5−a及び 図5−bも活性炭生成反応の基本は同じである。
【0011】
1)反応炉1の頂部に設けられたバイオマス投入口2より数mm〜数百mmに破砕されたバイオマス(廃木材等)を炉横断面にわたって均一になるように炉内に連続的に投入する。
【0012】
2)炉内に投入されたバイオマスは反応炉1の下部に設けられた火格子3の上方に上から順に乾燥層イ、揮発層ロ、燃焼層ハ、炭化層ニ、賦活層ホ及び活性炭層ヘより構成される移動床を連続的に形成する。(層イ〜ヘの形成の機構については後述する。)
【0013】
3)同じく反応炉1の頂部に設けられたガス吹き込み口4から数%〜十数%の酸素を含有する高温ガスを炉上部に吹き込む。
【0014】
4)上記高温ガスは、移動床の中を上から下へ流下する。その際移動床の最上部の乾燥層イのバイオマスは高温ガスで加熱、乾燥されゆっくり沈降して揮発層口に移動する。乾燥により保有熱の一部をうばわれた高温ガスはバイオマスの水分を水蒸気の形で含有しながら揮発層に流下する。その際揮発分はバイオマスより高温ガス中に飛び出す。揮発分は高温ガスと共に流下しながら高温ガス中の酸素により酸化・燃焼され、燃焼層ハを形成する。その下部では固形分の一部も燃焼し、炭化層ニを形成する。上記揮発分の燃料及び固形分の一部の燃焼によって発生した熱エネルギーと水蒸気は、下記のガス化反応に利用される。
【0015】
5)炭化層ニでは、燃焼によって生成した炭化物の一部と高温ガス中の二酸化炭素が次式(1)に示す如く熱エネルギーを吸収して一酸化炭素(可燃ガス)を生成する。
C(炭化物)+CO=2CO−38,200kcal/kmol・・・(1)
【0016】
6)炭化層二の下部において、上記乾燥及び揮発分燃焼によって生成した水蒸気が、炭化物の微細な多数の細孔(バイオマスが内部から揮発分を外部に放出する事と、有機物の一部が燃焼して炭酸ガス(CO,CO等)分を外部に放出する事により出来る細孔)の中に浸入して、次式(2)、(3)の水性ガス化反応を起して、細孔を更に増殖・発達せしめて、炭化物を賦活する。
C+HO=CO+H−28,200 (2)
C+2HO=CO+2H−18,200 (3)
この炭化物の賦活に於いても(2)(3)式に示す如く熱エネルギーが吸収される。通常のバイオマスでは上記(2)及び(3)式の反応で必要とされる水蒸気の量はバイオマスの乾燥及びバイオマスの揮発分によって得られる水蒸気の量で充分であるが炭化物の賦活を強化する場合などには補助ノズル5より蒸気を追加する。此の賦活層ホで炭化物は活性炭となる。図6に移動床のモデルを示す。
【0017】
7)火格子3上部には賦活層から沈下して来た活性炭の層へが形成され、活性炭取出口6より連続的に炉外に取り出される。一方上記(1)、(2)、(3)式の反応で発生した可燃ガスは残余のガスと共に連絡煙道7を経て後部燃焼炉8に送られる。
【0018】
8)図5−cに示す反応炉での実験の結果得られた反応炉の高さ位置におけるバイオマスの質量変化とガス温度変化を図7に示す。揮発・燃焼ゾーンで揮発分の飛び出しにより質量は急激に減少し、ガス温度は急上昇する。賦活層では水性ガス化反応により、質量は緩かに減少し、ガス温度は急激に低下する。賦活が終了して活性炭層になると質量、ガス温度共に一定となる。図8に炉内を流下する高温ガスの組成の炉高さによる変化を示す。揮発層の途中よりH、COが発生し、賦活層に於いてその生成が増加し、活性炭層では発生は零となる。図5、6に示す如く、炉頂部よりバイオマスを投入して、火格子3の上方に移動床を形成させ、個々の固形物は上方より下方に沈降し、一方高温ガス(酸素を含む)も炉頂より投入されて移動床内を流下させる本発明装置に於いては、移動床の中の粗粒バイオマス及び反応生成固体の集積がガス流れに対して抵抗となり、整流効果を与える(図9−a参照)。その結果、高温ガスは炉の全横断面にわたって均一な分布で流下し、バイオマス等と反応し、生成ガスは、下降する高温ガスに抑圧されて下方に流下せざるを得なくなる。その際、生成ガスの弱い上昇ベクトルと高温ガスの強い下降ベクトルの合成に依り、生成ガスは横方向に広がりながら高温ガスとともに流下する(図9−b参照)。上記二要因(図9−a、図9−bに図示)に依り、反応は全炉横断面にわたって均一に行なわれる(一方従来の固定床反応炉で、ガスが上向き流れでは、固定床内で高温ガスの偏流があると、高温ガスの多い部分のガス化反応が盛んになり、当該部の燃焼が活発化して、高温ガスの上昇力が増大し、当該部に高温ガスが集中する傾向を示し、炉横断面にわたっての反応のムラが発生する)。その結果、本発明装置では図7及び図8に示す如く反応炉内で乾燥、揮発、燃焼、炭化、賦活の反応が安定して行なわれ、活性炭の収率を高めることができる。揮発分及び水分が少ないバイオマスの場合あるいは炭化物の賦活を強化する場合は補助的水蒸気ノズルが必要条件であるが、それ以外のバイオマスでは定常運転状態では充分に賦活に必要な水蒸気がバイオマスより得られるので補助的水蒸気ノズルは不要である。
【0019】
【発明の実施例】
1.図10に本発明の一実施例を示す。
この実施例では、反応炉で活性炭を製造し、その際発生する還元性ガスを隣接するボイラで燃焼し、発生した熱エネルギーにより高温・高圧の蒸気をつくり、タービン・発電機に送って電気をつくる。一方燃焼ガスの一部は高温ガスとして反応炉に循環する。以下図10で詳細説明する。数mm〜数百mmに破砕されたバイオマスは投入口2から反応炉1の頂部に投入される。運転開始に当っては、まず火格子3の上部にバイオマスは比較的に低い積層トを造る。次いで補助燃料バーナA9と空気ノズルA10からそれぞれ燃料と空気が噴射され、炉頂部で燃焼して数%〜十数%の酸素を含む高温ガスを生成する。高温ガスは、バイオマス積層トを上から下へと通過してバイオマスを乾燥→揮発→燃焼一炭化の順で炭化物化する。その際発生する可燃ガスは上記高温ガスと共に火格子3を通過して連絡煙道7を経て接続するボイラの燃焼炉8に導入される。可燃ガスは燃焼炉8で補助燃料バーナA9より噴射された補助燃料と共に空気ノズルA10より噴射された空気により完全燃焼して高温ガスを生成する。高温ガスの一部は燃焼炉8上部と反応炉1頂部をつなぐ再循環煙道14を経てガス吹込口4から反応炉1の頂部に吹き込まれる。火格子3の上部のバイオマス堆積層の安定した揮発分燃焼・炭化反応が確認された時点からバイオマスを投入口2より連続供給すると共に、ほぼ炉中央で炭化層の下部レベルに設置された、補助的水蒸気ノズル5から水蒸気を噴射し、バイオマスの表面水分及び揮発分の燃焼によって得られた水蒸気と共に、炭化物の賦活反応を行わせる。定常状態では揮発分の燃焼によって得られる水蒸気と、バイオマスの表面水分で賦活を充分に行うことが出来るので水蒸気ノズル5からの水蒸気噴射量は零にすることが可能である。その結果反応によって発生する可燃ガスの量も増大し、連絡煙道7から燃焼炉8に導入される可燃ガスも増大する。それに伴いガス吹込口4ら吹き込まれる高温ガスの熱量も増大するので補助燃料バーナA9から噴射される補助燃料を徐々に減少し、最終的には零とする。空気ノズルA10から噴射される空気量は、当該補助燃料を炉頂部で完全燃焼して、ガス吸込口バーナから吸込まれた高温ガスと合体して数%〜十数%の酸素を含む高温ガスとなる。此の高温ガスは連続して投入されるバイオマスを下向きに通り抜けて上記反応を起こさせる。バイオマス堆積の層高が高くなり層の頂部が空気ノズルA10と蒸気ノズル5の中間位の位置に達すると活性炭取出口6を開口して、火格子3の真上の活性炭を連続的に取り出す。その結果前述の[発明の実施の形態]で図5−cに依って説明した乾燥層イ、揮発層ロ、燃焼層ハ、炭化層ニ、賦活層ホ及び活性炭層ヘより構成される移動床が形成される。反応炉内でのバイオマスと高温ガス及び水蒸気との反応による活性炭の生成機構と可燃ガスの生成機構に就いては同じく[発明の実施の形態]で詳述しているものと同様である。定常状態に於いては、炉頂部より投入された数mm〜数百mmの寸法を有するバイオマスは火格子3の上部に上より順に図5−c及び図6に示す如く乾燥イ、揮発ロ、燃焼ハ、炭化ニ、賦活ホ、活性炭ヘの各層より構成される移動床を構成し、活性炭は取出口6より連続的に排出される。一方火格子3を通過して燃焼炉8に導入された可燃ガスは、空気ノズルB25より噴射された高温空気により1000℃以上の高温で燃焼する。そのため、建築廃材等に含まれた化学物質は酸化・分解され無害化する。燃焼によって発生した高温燃焼ガスは燃焼炉8の水冷壁21で蒸気を発生する。蒸気は蒸気ドラム18を経て過熱器15に送られ高温高圧蒸気となりタービンへ送られる。以下ボイラを構成する部品について説明する。19は降水管、20は水ドラム、16は給水管、17は節炭器、22は強圧通風機、24は風道、23は空気予熱器、25は空気ノズルB、26は補助燃料バーナB、27は誘引通風機、29は煙道、28はガス清浄装置、30は煙突、31は給水連絡管である。以上のボイラで発生した燃焼ガスの一部は再循環煙道14を経てガス再循環機13により、噴射ノズル4から反応炉1の頂部に投入される。その際この高温ガスは木材を乾燥すると共に、水性ガス反応に必要な熱エネルギーを提供する。揮発分の燃焼によって生成する水蒸気と、バイオマスの表面水分による水蒸気は炭化物と水性ガス化反応を行う。空気ノズルA10より噴出される空気量は高温ガスと当該空気が合体した後の酸素濃度が数%〜十数%になるように調整されて、反応に必要な高温ガスを提供する。以上の繰返しにより安定した活性炭の連続生成が可能となる。
【0020】
【発明の効果】
本発明により従来厄介視されていた建築廃木材を含め、各種のバイオマスをガス化反応炉で乾燥から活性炭迄、バイオマスの保有する揮発分の熱エネルギーを利用して一貫して製造できるため、従来の活性炭製造装置に比べて、
【0021】
1、設備費が1/2である。
【0022】
2、定常状態では、補助燃料等の外部からの熱エネルギーは零である。
【0023】
3、反応炉だけの操作で活性炭が製造できるので、従来の炭化、賦活の2炉方式に比べて操作員は(ユーティリティ関連を除けば)1/2となる。
【0024】
4、以上2、3を総合すると運転費も1/2以下となる。
【0025】
5、反応炉が竪型であるため敷地面積を大巾に削減できる。
【0026】
6、連続的に安定して量産できる。
以上総合すると従来の活性炭製造炉に比較し、材料を限定することなく広範囲にわたるバイオマスより安価な活性炭を量産でき、ダイオキシンの吸着等排ガスの浄化に容易且つ安価に利用できる。
【0027】
又、水性ガス化反応によって発生した可燃ガスはボイラ/タービンを介し電気を生成でき、また各種熱源としても利用できる。
【図面の簡単な説明】
【図1】粉末活性炭製造プロセス
バイオマスを炭化した後、粉砕整流して水蒸気で賦活し、粉末活性炭を製造する従来プロセスを示す。
【図2】木炭製造プロセス
バイオマスを回転乾燥機で乾燥した後、別置きの炭化筒で外部加熱により乾留し、木炭を製造するプロセスを示す。
【図3】内熱式縦型流動賦活炉例
木炭を水蒸気で賦活して活性炭を製造するプロセスを示す。
【図4】ロータリーキルン型活性炭製造炉
ロータリーキルンでバイオマスから一貫して活性炭を製造する装置を示す。
【図5−a】直立竪型反応炉
反応炉頂部に補助燃料と空気を供給して数%〜十数%の濃度の酸素を含む高温ガスを生成し、その高温ガスでバイオマスを活性炭に転化する装置。
【図5−b】生成ガス再循環装置を有する直立竪型反応炉
図5−aの直立竪型反応炉において、補助燃料の使用量を節減する為排出される可燃ガスの一部を炉頂部に再循環させるようにしたもの。
【図5−c】簡易型連続活性炭製造装置(実験炉)
本発明の実証確認の為に制作した実験炉の構造を示すものであって、廃木材を頂部より供給し、炉内で低酸素雰囲気の下に乾燥、揮発、燃焼、炭化、賦活を行う下向移動床を形成させ、一貫して且つ連続的に活性炭の製造を行う装置を示す。その際、炉内で生成された可燃ガスは補助燃料(ガス)を用いて燃焼させ、その一部を炉内へ再循環して熱を有効利用している。
【符号の説明】
1 反応炉
2 バイオマス投入口
3 火格子
4 再循環ガス
5 灰出口
6 活性炭取出口
7 連絡煙道
8 燃焼炉
9 火口
10 トーチ
11 空気ファン
12 二次空気
13 一次空気
14 一次空気調節ダンバー
15 二次空気調節ダンバー
16 エジェクター
17 再循環ガス吹込口
【図6】移動床の構成
移動床における木材の乾燥、揮発、燃焼、炭化、賦活の構成と各ステージでの成分変化を示す。
【図7】炉の高さ位置での質量、温度の変化
縦軸を高さの変化(%)で示し、横軸を温度(℃)又は質量(重量%)の変化で示すグラフである。
【図8】炉の高さ位置における容積分率の変化
縦軸を高さの変化(%)で示し、横軸を酸素,二酸化炭素、水蒸気、一酸化炭素、水素、窒素の容積分率の変化(%)で示すグラフである。
【図9−a】集積粗粒により整流効果
移動床内の集積粗粒(バイオマス)により、高温ガスが整流される様子をイメージ的に示す。
【図9−b】下降流域内での反応モデル
高温ガス(CO,HO,N,NOx)と炭化物の反応生成ガス(H,CO,CO)とが合体して次の層で反応するモデルを示す。
【図10】活性炭製造・処理・蒸気発生システム
反応炉で活性炭を製造し、その際発生する還元性ガスを隣接するボイラで燃焼し、発生した熱エネルギーにより高温高圧の蒸気をつくり、タービン・発電機に送って電気をつくるシステムを示す。
【符号の説明】
1 反応炉
2 投入口
3 火格子
4 ガス吹込口
5 水蒸気ノズル
6 活性炭取出口
7 連絡煙道
8 燃焼炉
9 補助燃料バーナA
10 空気ノズルA
11 空気送風機
12 空気送風管
13 ガス再循環機
14 再循環煙道
15 過熱器
16 給水管
17 節炭器
18 蒸気ドラム
19 降水管
20 水ドラム
21 水冷壁
22 強圧通風機
23 空気予熱器
24 風道
25 空気ノズルB
26 補助燃料バーナB
27 誘引通風機
28 ガス清浄装置
29 煙道
30 煙突
31 給水連絡管
[0001]
BACKGROUND OF THE INVENTION
In the vertical downflow reactor, various biomass containing building waste wood is introduced from the top of the reactor to form a downward moving bed of biomass in the reactor, while hot gas is supplied. An internal heating system that continuously supplies activated carbon by supplying from the top of the furnace, from drying of biomass to generation of activated carbon (thermal energy of volatiles of biomass and heat of combustible gas generated by water gasification reaction) Uses energy) to provide continuous activated carbon production equipment.
Note) Downward moving floor The grate is fixed to the lower part of the furnace, and the raw material is supplied from the upper part of the furnace. Since the activated carbon generated in the furnace is taken out from below, the constituent materials of the floor move downward. Therefore, it is called a downward moving floor.
[0002]
[Prior art]
FIG. 1 shows a conventional process for producing powdered activated carbon from biomass. Conventionally, a process for producing charcoal by drying / dry distillation of biomass and a process for producing activated carbon by activating charcoal with gas (water vapor or carbon dioxide) are usually independent of each other. FIG. 2 shows a process for producing charcoal by drying biomass by a rotary dryer and then dry-distilling by external heating in a separate carbonization cylinder. FIG. 3 shows a process for producing activated carbon by activating charcoal with water vapor. FIG. 4 shows an example of producing activated carbon consistently from biomass in a rotary kiln. In this case, the heated gas is obtained by burning heavy oil or gas in the combustion furnace 2. In the former, the apparatus is complicated, and in the latter, the apparatus is excessive. Therefore, both the construction cost and operation cost of the apparatus are high, and the apparatus cost of the activated carbon is high.
[0003]
[Problems to be solved by the invention]
1. The present invention forms a moving bed using biomass as a raw material in a gasification reaction furnace, and flows a high-temperature gas for heating and reacting the biomass from above with air, so that stable carbonization / activation reaction can be performed across the furnace. The purpose is to provide a low-cost activated carbon production device that can be generated uniformly over the surface and can continuously perform a consistent process from biomass to activated carbon in a structurally simple and compact reactor. .
[0004]
2. When biomass such as building waste wood containing chemical substances is used as a raw material, the gas at the outlet of the reactor containing the combustible gas (H 2 , CO, CnHm, etc.) generated by the carbonization / activation reaction is burned at a high temperature of 1000 ° C or higher. After oxidizing and decomposing harmful substances in the gas to make them harmless, a part of the high-temperature gas is recycled to the top of the gasification reactor and used for the reaction, and the remaining high-temperature gas is used for high-temperature and high-pressure steam. It aims at providing the boiler which generates.
[0005]
[Means for solving the problems]
(1) In order to solve the above-mentioned problems relating to the production of activated carbon, the present inventors installed a grate or an equivalent activated carbon / combustible gas discharge device in the lower part of an upright vertical reactor and installed it from the upper part of the reactor. Biomass is charged, and a moving bed of biomass is formed on the upper part of the grate and the equivalent device. On the other hand, high-temperature gas containing several to dozens of acid cords is introduced from the upper part of the furnace, and the moving bed is moved upward. When flowing from the bottom to the top, the hot gas reacts with the biomass to form reaction layers of drying, volatilization, combustion, carbonization, and activation in order from the top. Water vapor obtained by moisture evaporation and volatile combustion is mixed with high-temperature gas and activates carbides. The hot gas descending in the moving bed flows evenly across the entire cross section of each reaction layer by spreading to the side by suppressing the resistance of the moving bed to gas flow and the reaction product gas being suppressed by the descending hot gas. Paying attention to this, when biomass, high-temperature gas and air are introduced from the top in an experimental furnace as shown in FIG. 5-c, the reaction in each layer is uniformly performed, and the activated carbon can be taken out from the grate and the equivalent device part It was confirmed that the present invention was reached. There are the following four methods for generating and supplying the hot gas.
[0006]
1. Supplying auxiliary fuel and air to the top of the reactor, and generating and supplying a high-temperature gas containing oxygen at a concentration of several to tens of percent by a combustion reaction at the top of the reactor (FIG. 5-a)
[0007]
2) Use auxiliary fuel only at the time of reactor start-up in items 1 and 2. When the reaction in the furnace stabilizes and the moving bed begins to form, the auxiliary fuel is gradually reduced, and the volatile content of biomass is used as an alternative to auxiliary fuel. How to use (Figure 5-a)
[0008]
3. When the reaction in the furnace becomes stable in the item 1 and 1, a part of the combustible gas extracted from the lower part of the reaction furnace is recirculated and used instead of the auxiliary fuel (FIG. 5-b).
[0009]
4. A method of burning a combustible gas extracted from the lower part of the furnace at a high temperature of 1000 ° C. or more and supplying a part of the combustion gas together with air to the top of the furnace as shown in FIG.
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
The simplified continuous activated carbon production apparatus of the present invention will be described with reference to FIG. The basics of the activated carbon generation reaction are the same in FIGS.
[0011]
1) Biomass (waste wood, etc.) crushed to several mm to several hundred mm from a biomass charging port 2 provided at the top of the reaction furnace 1 is continuously charged into the furnace so as to be uniform across the furnace cross section. .
[0012]
2) The biomass charged into the furnace is in the order from the top above the grate 3 provided in the lower part of the reactor 1 in the order of dry layer a, volatile layer b, combustion layer c, carbonized layer d, activated layer e and activated carbon layer. A moving bed composed of (i) is continuously formed. (The mechanism for forming layers A to F will be described later.)
[0013]
3) Similarly, a high temperature gas containing several percent to several tens of percent oxygen is blown into the upper portion of the furnace from a gas blowing port 4 provided at the top of the reaction furnace 1.
[0014]
4) The hot gas flows down from the top through the moving bed. At that time, the biomass in the dry layer (i) at the top of the moving bed is heated and dried with a high-temperature gas, slowly settles, and moves to the volatile layer port. The high-temperature gas, which has received part of the heat retained by drying, flows down into the volatile layer while containing the moisture of the biomass in the form of water vapor. At that time, the volatile matter jumps out of the biomass into the hot gas. Volatile components are oxidized and burned by oxygen in the high temperature gas while flowing down with the high temperature gas to form a combustion layer c. In the lower part, a part of the solid content is burned to form a carbonized layer d. Thermal energy and water vapor generated by combustion of the volatile fuel and part of the solid are used for the following gasification reaction.
[0015]
5) In the carbonized layer D, part of the carbide generated by combustion and carbon dioxide in the high-temperature gas absorb heat energy as shown in the following formula (1) to generate carbon monoxide (combustible gas).
C (Carbide) + CO 2 = 2CO−38, 200 kcal / kmol (1)
[0016]
6) In the lower part of the carbonized layer 2, the water vapor generated by the drying and volatile matter combustion is a large number of fine pores of the carbide (the biomass releases the volatile matter from the inside, and a part of the organic matter burns) Then, carbon dioxide (CO 2 , CO, etc.) is infiltrated into the pores that are released to the outside, and the water gasification reaction of the following formulas (2) and (3) is caused to occur. The pores are further expanded and developed to activate the carbide.
C + H 2 O = CO + H 2 -28,200 (2)
C + 2H 2 O═CO 2 + 2H 2 −18,200 (3)
Even in the activation of the carbide, thermal energy is absorbed as shown in the equations (2) and (3). In ordinary biomass, the amount of water vapor required for the reactions of the above formulas (2) and (3) is sufficient when the amount of water vapor obtained by drying of biomass and volatile matter of biomass is sufficient, but the activation of carbides is strengthened. For example, steam is added from the auxiliary nozzle 5. In this activation layer E, the carbide becomes activated carbon. FIG. 6 shows a moving floor model.
[0017]
7) On the grate 3 is formed an activated carbon layer that has sunk from the activation layer, and is continuously taken out from the furnace through the activated carbon outlet 6. On the other hand, the combustible gas generated by the reactions of the above formulas (1), (2), and (3) is sent to the rear combustion furnace 8 through the communication flue 7 together with the remaining gas.
[0018]
8) FIG. 7 shows changes in biomass mass and gas temperature at the height of the reactor obtained as a result of the experiment in the reactor shown in FIG. In the volatilization / combustion zone, the mass rapidly decreases due to the volatile component jumping out, and the gas temperature rapidly increases. In the activation layer, the mass gradually decreases due to the water gasification reaction, and the gas temperature rapidly decreases. When activation is completed and the activated carbon layer is formed, both the mass and the gas temperature become constant. FIG. 8 shows a change in the composition of the hot gas flowing down in the furnace depending on the furnace height. H 2 and CO are generated in the middle of the volatile layer, the generation increases in the activation layer, and the generation becomes zero in the activated carbon layer. As shown in FIGS. 5 and 6, biomass is introduced from the top of the furnace to form a moving bed above the grate 3 and individual solids settle downward from above, while hot gases (including oxygen) are also present. In the apparatus of the present invention, which is introduced from the top of the furnace and flows down in the moving bed, accumulation of coarse biomass and reaction product solids in the moving bed becomes a resistance to the gas flow and gives a rectifying effect (FIG. 9). -A). As a result, the high temperature gas flows down in a uniform distribution over the entire cross section of the furnace, reacts with biomass and the like, and the product gas is forced to flow downward by being suppressed by the descending high temperature gas. At that time, due to the synthesis of the weak rising vector of the product gas and the strong descending vector of the hot gas, the product gas flows down along with the hot gas while spreading in the lateral direction (see FIG. 9B). Depending on the above two factors (shown in FIGS. 9a and 9b), the reaction is carried out uniformly across the entire furnace cross section (while in the conventional fixed bed reactor, the gas flows upward in the fixed bed. If there is a drift of the hot gas, the gasification reaction of the part where the hot gas is large becomes active, the combustion of the part is activated, the rising power of the hot gas increases, and the hot gas tends to concentrate on the part. And uneven reaction occurs across the furnace cross section). As a result, in the apparatus of the present invention, as shown in FIGS. 7 and 8, the reaction of drying, volatilization, combustion, carbonization, and activation is stably performed in the reaction furnace, and the yield of activated carbon can be increased. In the case of biomass with low volatile content and moisture, or when strengthening the activation of carbides, an auxiliary steam nozzle is a necessary condition, but with other biomass, sufficient steam can be obtained from the biomass in steady operation Therefore, an auxiliary water vapor nozzle is unnecessary.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
1. FIG. 10 shows an embodiment of the present invention.
In this example, activated carbon is produced in a reactor, reducing gas generated at that time is combusted in an adjacent boiler, high-temperature and high-pressure steam is produced by the generated thermal energy, and it is sent to a turbine / generator for electricity. to make. On the other hand, a part of the combustion gas is circulated as a high-temperature gas to the reaction furnace. This will be described in detail below with reference to FIG. Biomass crushed to several mm to several hundred mm is fed into the top of the reactor 1 through the charging port 2. At the start of operation, first, a relatively low stack of biomass is formed on the upper part of the grate 3. Subsequently, fuel and air are respectively injected from the auxiliary fuel burner A9 and the air nozzle A10, and burned at the top of the furnace to generate a high-temperature gas containing several to tens of percent oxygen. The hot gas passes through the biomass stack from the top to the bottom, and the biomass is carbonized in the order of drying → volatilization → combustion / carbonization. The combustible gas generated at that time is introduced together with the high-temperature gas into the combustion furnace 8 of the boiler that passes through the grate 3 and is connected via the connecting flue 7. The combustible gas is completely burned by the air injected from the air nozzle A10 together with the auxiliary fuel injected from the auxiliary fuel burner A9 in the combustion furnace 8 to generate a high temperature gas. A part of the hot gas is blown into the top of the reaction furnace 1 from the gas blowing port 4 through the recirculation flue 14 connecting the upper part of the combustion furnace 8 and the top of the reaction furnace 1. A biomass is continuously supplied from the inlet 2 from the time when stable volatile combustion / carbonization reaction of the biomass deposit on the upper part of the grate 3 is confirmed, and is installed at the lower level of the carbonization layer at the center of the furnace. Steam is sprayed from the mechanical steam nozzle 5 to cause the activation reaction of the carbide together with the water content of the biomass and the steam obtained by the combustion of the volatile matter. In a steady state, activation can be sufficiently performed with water vapor obtained by combustion of volatile matter and surface moisture of the biomass, so that the water vapor injection amount from the water vapor nozzle 5 can be made zero. As a result, the amount of combustible gas generated by the reaction also increases, and the combustible gas introduced from the communication flue 7 into the combustion furnace 8 also increases. Along with this, the amount of heat of the high-temperature gas blown from the gas blow-in port 4 also increases, so the auxiliary fuel injected from the auxiliary fuel burner A9 is gradually reduced to finally zero. The amount of air injected from the air nozzle A10 is such that the auxiliary fuel is completely combusted at the top of the furnace, combined with the high temperature gas sucked from the gas inlet burner, and a high temperature gas containing several percent to tens of percent oxygen. Become. This high temperature gas passes through continuously input biomass and causes the above reaction. When the height of the biomass deposition increases and the top of the layer reaches a position intermediate between the air nozzle A10 and the steam nozzle 5, the activated carbon outlet 6 is opened, and the activated carbon directly above the grate 3 is continuously taken out. As a result, the moving bed composed of the dry layer b, the volatile layer b, the combustion layer c, the carbonized layer d, the activation layer e and the activated carbon layer described in FIG. Is formed. The generation mechanism of activated carbon and the generation mechanism of combustible gas by the reaction of biomass with high-temperature gas and water vapor in the reaction furnace are the same as those described in detail in [Embodiment of the Invention]. In the steady state, the biomass having a size of several mm to several hundreds mm introduced from the top of the furnace is dried and volatilized as shown in FIGS. A moving bed composed of each layer of combustion chamber, carbonized carbon, activated carbon and activated carbon is constituted, and the activated carbon is continuously discharged from the outlet 6. On the other hand, the combustible gas introduced into the combustion furnace 8 through the grate 3 is combusted at a high temperature of 1000 ° C. or higher by the high-temperature air injected from the air nozzle B25. Therefore, chemical substances contained in building waste materials are oxidized and decomposed to make them harmless. The high-temperature combustion gas generated by the combustion generates steam at the water cooling wall 21 of the combustion furnace 8. The steam passes through the steam drum 18 and is sent to the superheater 15 to become high-temperature and high-pressure steam and is sent to the turbine. Hereinafter, components constituting the boiler will be described. 19 is a precipitation pipe, 20 is a water drum, 16 is a water supply pipe, 17 is a economizer, 22 is a high pressure ventilator, 24 is an air passage, 23 is an air preheater, 25 is an air nozzle B, 26 is an auxiliary fuel burner B , 27 is an induction fan, 29 is a flue, 28 is a gas purifier, 30 is a chimney, and 31 is a water supply connecting pipe. A part of the combustion gas generated in the boiler is supplied to the top of the reactor 1 from the injection nozzle 4 through the recirculation flue 14 by the gas recirculator 13. The hot gas then dries the wood and provides the thermal energy necessary for the water gas reaction. Water vapor generated by the combustion of volatile matter and water vapor due to the surface moisture of the biomass undergo a water-gasification reaction with the carbide. The amount of air ejected from the air nozzle A10 is adjusted so that the oxygen concentration after the high-temperature gas and the air are combined is several percent to several tens of percent to provide the high-temperature gas necessary for the reaction. By repeating the above, stable activated carbon can be continuously produced.
[0020]
【The invention's effect】
Various types of biomass, including construction waste wood, which has been conventionally troublesome according to the present invention, can be produced consistently from gasification reactors through drying to activated carbon using the thermal energy of the volatile content of the biomass. Compared to the activated carbon production equipment of
[0021]
1. Equipment cost is ½.
[0022]
2. In the steady state, the heat energy from the outside such as auxiliary fuel is zero.
[0023]
3. Since activated carbon can be produced by operating only the reactor, the number of operators is ½ (excluding utilities) compared to the conventional carbonization and activation two-furnace system.
[0024]
When the above 4, 2 and 3 are combined, the operating cost is ½ or less.
[0025]
5. Since the reactor is vertical, the site area can be greatly reduced.
[0026]
6. Can be mass-produced stably and continuously.
In summary, compared to conventional activated carbon production furnaces, activated carbon cheaper than a wide range of biomass can be mass-produced without limiting the material, and can be easily and inexpensively used for purification of exhaust gas such as dioxin adsorption.
[0027]
Further, the combustible gas generated by the water gasification reaction can generate electricity through the boiler / turbine and can be used as various heat sources.
[Brief description of the drawings]
FIG. 1 shows a conventional process for producing powdered activated carbon by carbonizing biomass, then pulverizing and rectifying and activating with steam.
FIG. 2 shows a process for producing charcoal by drying biomass with a rotary dryer and then carbonizing it by external heating in a separate carbonization cylinder.
FIG. 3 shows an example of an internal heat type vertical flow activation furnace showing a process for producing activated carbon by activating charcoal with steam.
FIG. 4 shows a rotary kiln type activated carbon production furnace showing an apparatus for consistently producing activated carbon from biomass in a rotary kiln.
Fig. 5-a Upright vertical reactor Auxiliary fuel and air are supplied to the top of the reactor to generate a high-temperature gas containing oxygen with a concentration of several to tens of percent, and the high-temperature gas converts biomass into activated carbon. Device to do.
Fig. 5-b Upright vertical reactor with product gas recirculation device In the vertical vertical reactor of Fig. 5-a, a part of the combustible gas discharged to reduce the amount of auxiliary fuel used is reduced to the top of the furnace. It was made to recirculate.
Fig. 5-c Simple continuous activated carbon production equipment (experimental furnace)
The structure of an experimental furnace produced for verification verification of the present invention is shown, in which waste wood is supplied from the top, and drying, volatilization, combustion, carbonization and activation are performed in a low oxygen atmosphere in the furnace. 1 shows an apparatus for forming activated moving beds and producing activated carbon consistently and continuously. At that time, the combustible gas generated in the furnace is combusted using auxiliary fuel (gas), and a part thereof is recirculated into the furnace to effectively use heat.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Reactor 2 Biomass inlet 3 Grate 4 Recirculation gas 5 Ash outlet 6 Activated charcoal outlet 7 Communication flue 8 Combustion furnace 9 Tinder 10 Torch 11 Air fan 12 Secondary air 13 Primary air 14 Primary air control damper 15 Secondary Air conditioning damper 16 Ejector 17 Recirculation gas inlet [Fig. 6] Structure of moving bed The structure of drying, volatilization, combustion, carbonization and activation of wood in the moving bed and the change of components in each stage are shown.
FIG. 7 is a graph showing changes in mass and temperature at the height of the furnace, with the vertical axis representing the change in height (%) and the horizontal axis representing the change in temperature (° C.) or mass (% by weight).
[Fig. 8] Change in volume fraction at the height of the furnace The vertical axis shows the change in height (%), and the horizontal axis shows the volume fraction of oxygen, carbon dioxide, water vapor, carbon monoxide, hydrogen, and nitrogen. It is a graph shown by change (%).
Fig. 9-a Image of rectification effect by accumulated coarse particles Fig. 9-a shows a state in which high-temperature gas is rectified by accumulated coarse particles (biomass) in a moving bed.
[FIG. 9-b] Reaction model in the downward flow region The high-temperature gas (CO 2 , H 2 O, N 2 , NO x) and the carbide reaction product gas (H 2 , CO, CO 2 ) are combined and The model which reacts in a layer is shown.
[Fig. 10] Activated carbon production / treatment / steam generation system Activated carbon is produced in a reaction furnace, the reducing gas generated in that process is burned in an adjacent boiler, and high-temperature and high-pressure steam is generated by the generated thermal energy to generate turbine / power generation. A system for producing electricity by sending to a machine.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Reactor 2 Input 3 Grate 4 Gas inlet 5 Steam nozzle 6 Activated carbon outlet 7 Connection flue 8 Combustion furnace 9 Auxiliary fuel burner A
10 Air nozzle A
DESCRIPTION OF SYMBOLS 11 Air blower 12 Air blower pipe 13 Gas recirculation machine 14 Recirculation flue 15 Superheater 16 Water supply pipe 17 Eco-container 18 Steam drum 19 Precipitation pipe 20 Water drum 21 Water cooling wall 22 Strong pressure ventilator 23 Air preheater 24 Air path 25 Air nozzle B
26 Auxiliary fuel burner B
27 Induction ventilator 28 Gas purifier 29 Chimney 30 Chimney 31 Water supply connection pipe

Claims (3)

炉頂部にバイオマスの投入口、空気吹込口及び補助燃料吹込口と、炉下部には火格子と、当該火格子上部に活性炭取出口と、火格子下部に可燃ガス取出口をそれぞれ有する反応炉において、炉頂部より数mm〜数百mmに破砕されたバイオマスを順次投入して火格子上部に下降流の移動床を形成させる一方、炉頂部より投入された空気と補助燃料及び/又はバイオマスの揮発分の燃焼反応によって生成され、且つ数%〜十数%濃度の酸素を含有する高温ガスを上記移動床の中を上から下へ通過させ、バイオマスと反応させることに依り、下向移動床を上より順に乾燥層、揮発層、燃焼層、炭化層、賦活層及び活性炭層で形成させ、火格子上部より活性炭を火格子下部より可燃ガスを取り出すことを特徴とする活性炭製造装置。In a reactor having a biomass inlet, an air inlet and an auxiliary fuel inlet at the top of the furnace, a grate at the bottom of the furnace, an activated carbon outlet at the top of the grate, and a combustible gas outlet at the bottom of the grate The biomass crushed to several mm to several hundred mm from the top of the furnace is sequentially added to form a moving bed in a downward flow at the top of the grate, while the volatilization of air and auxiliary fuel and / or biomass input from the top of the furnace By passing a hot gas produced by a combustion reaction for a minute and containing oxygen at a concentration of several to dozens of percent through the moving bed from above to react with biomass. An activated carbon production apparatus comprising: a dry layer, a volatile layer, a combustion layer, a carbonization layer, an activation layer, and an activated carbon layer in order from above, and taking out activated carbon from a grate upper part and a combustible gas from a grate lower part. 請求項1の炉項部に更にガス吹込口と、炉中央部に補助的水蒸気吹込口を設け、当該ガス吹込口に火格子下部より取り出された可燃ガスの一部を再循環して炉頂部に吹込み空気との燃焼反応によって数%〜十数%の濃度の酸素を含有する高温ガスを生成し、移動床に供給して、補助燃料を節減若しくは零にすると共に、補助的水蒸気により炭化物の賦活を強化することを特徴とする請求項1の活性炭製造装置。A gas inlet is further provided in the furnace section of claim 1 and an auxiliary steam inlet is provided in the center of the furnace, and a part of the combustible gas taken out from the lower part of the grate is recirculated to the gas inlet to recirculate the top of the furnace. A high-temperature gas containing oxygen with a concentration of several to tens of percent is generated by a combustion reaction with the blown air and supplied to the moving bed to reduce or eliminate auxiliary fuel, and carbide by auxiliary steam The activated carbon production apparatus according to claim 1, wherein the activation of the activated carbon is reinforced. 請求項1の炉頂部にガス吹込口と炉中央部に補助的水蒸気吹込口と更には請求項1の反応炉下部可燃ガス取出口に接続して燃焼室を有し、当該燃焼室で可燃ガスを1000℃以上の高温で燃焼し、当該燃焼ガスの一部を上記ガス吹込口に再循環して、空気吹込口からの空気と合体して数%〜十数%の濃度の酸素を有する高温ガスを生成し移動床に供給すると共に補助的水蒸気により炭化物の賦活を強化することを特徴とする請求項1の活性炭製造装置。A gas inlet at the top of the furnace according to claim 1, an auxiliary steam inlet at the center of the furnace, and a combustion chamber connected to the combustible gas outlet at the lower part of the reactor according to claim 1, and a combustible gas in the combustion chamber. Is heated at a high temperature of 1000 ° C. or higher, a part of the combustion gas is recirculated to the gas injection port, and combined with the air from the air injection port, the oxygen has a concentration of several to tens of percent. 2. The activated carbon production apparatus according to claim 1, wherein gas is generated and supplied to the moving bed, and activation of the carbide is enhanced by auxiliary steam.
JP12660998A 1998-03-31 1998-03-31 Simple continuous activated carbon production equipment Expired - Lifetime JP3979721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12660998A JP3979721B2 (en) 1998-03-31 1998-03-31 Simple continuous activated carbon production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12660998A JP3979721B2 (en) 1998-03-31 1998-03-31 Simple continuous activated carbon production equipment

Publications (2)

Publication Number Publication Date
JPH11278822A JPH11278822A (en) 1999-10-12
JP3979721B2 true JP3979721B2 (en) 2007-09-19

Family

ID=14939442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12660998A Expired - Lifetime JP3979721B2 (en) 1998-03-31 1998-03-31 Simple continuous activated carbon production equipment

Country Status (1)

Country Link
JP (1) JP3979721B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009179485A (en) * 2006-04-10 2009-08-13 Ipb:Kk Activated carbon, method for producing the same, and production apparatus
DE102007056170A1 (en) * 2006-12-28 2008-11-06 Dominik Peus Substance or fuel for producing energy from biomass, is manufactured from biomass, which has higher carbon portion in comparison to raw material concerning percentaged mass portion of elements
JP4834615B2 (en) * 2007-06-14 2011-12-14 日立造船株式会社 Manufacturing apparatus and manufacturing method for vapor-grown carbon structure
CN108441262A (en) * 2018-01-24 2018-08-24 石辉权 One step generates the biomass gasifying furnace of activated carbon
CN111378509B (en) * 2018-12-28 2021-05-04 中国石油化工股份有限公司 Biomass microwave pyrolysis gasification method and system
CN110079351A (en) * 2019-05-30 2019-08-02 青岛科技大学 It is a kind of using helix tube moving-burden bed reactor as the biomass through pyrolysis production technology of core
JP2021028354A (en) * 2019-08-09 2021-02-25 吉田 茂 Carbonization apparatus
CN111804272A (en) * 2020-06-23 2020-10-23 生态环境部南京环境科学研究所 Preparation and activation integrated device of charcoal adsorbent for organic sewage treatment
CN111646467A (en) * 2020-06-29 2020-09-11 厦门中科城环新能源有限公司 Method and system device for manufacturing biomass power generation coupling activated carbon
CN111792645A (en) * 2020-08-11 2020-10-20 聚农(湖州)新能源科技有限公司 Movable miniaturized biomass continuous thermal cracking, carbonization and activation method and all-in-one machine
CN112940765A (en) * 2021-02-07 2021-06-11 四川大学 System for biomass non-phase change drying coupled downer pyrolysis
CN113685817B (en) * 2021-08-11 2023-08-25 生态环境部华南环境科学研究所 Three-section type garbage incineration system and method

Also Published As

Publication number Publication date
JPH11278822A (en) 1999-10-12

Similar Documents

Publication Publication Date Title
JP5631313B2 (en) Thermal reactor
US10947466B2 (en) Method for reducing NOx emissions from gasification power plants
JP4264525B2 (en) Method for gasifying organic substances and substance mixtures
JP4112364B2 (en) Small scale high throughput biomass gasification system and method
JP3979721B2 (en) Simple continuous activated carbon production equipment
JP2012531296A (en) Waste management system
CN102322630A (en) The macromolecular substances high-efficiency cleaning uses method and device
CN204756902U (en) System for utilize gasifier to realize that carbon reduces discharging
US10782021B2 (en) Ash sintering gasifier
JP2006300501A (en) Downward moving bed type furnace
JP2003176486A (en) Integrated circulating fluidized bed gasifying furnace
CN112111302B (en) Low-order material gasification combustion and flue gas pollutant control integrated process and device and application
CN1834535A (en) Smokeless coal burning boiler and gas synthetizing equipment thereof
JP4696969B2 (en) Gasifier
RU2615690C1 (en) Plant for hot gas production from carbonaceous material
JP2008520785A (en) Gasification method of carbonaceous material and apparatus for carrying out this method
US20110197797A1 (en) Method and apparatus for efficient production of activated carbon
CN104879745A (en) Method and system of realizing carbon emission reduction by gasifier
JP3559163B2 (en) Gasification method using biomass and fossil fuel
JP2003166706A (en) Combustion method and combustion device of stoker type incinerator
JP3790418B2 (en) Operating method of external circulating fluidized bed furnace for waste incinerator with high water content and high volatility such as sewage sludge
RU2549947C1 (en) Biomass utilisation plant and method
KR102620079B1 (en) Fluidized bed gasification system united biomass torrefacion pellet
CN115031250A (en) Thermal power generation energy-saving carbon-reducing method
ITUD990126A1 (en) GASOGEN FOR THE PRODUCTION OF METHANE GAS AND CARBON OXIDE

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070626

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3