JP3978539B2 - Liquid-filled vibration isolator - Google Patents

Liquid-filled vibration isolator Download PDF

Info

Publication number
JP3978539B2
JP3978539B2 JP2002230115A JP2002230115A JP3978539B2 JP 3978539 B2 JP3978539 B2 JP 3978539B2 JP 2002230115 A JP2002230115 A JP 2002230115A JP 2002230115 A JP2002230115 A JP 2002230115A JP 3978539 B2 JP3978539 B2 JP 3978539B2
Authority
JP
Japan
Prior art keywords
liquid
vibration
attachment
stopper member
liquid chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002230115A
Other languages
Japanese (ja)
Other versions
JP2004068950A (en
Inventor
政昭 伊藤
義徳 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2002230115A priority Critical patent/JP3978539B2/en
Publication of JP2004068950A publication Critical patent/JP2004068950A/en
Application granted granted Critical
Publication of JP3978539B2 publication Critical patent/JP3978539B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は液封入式防振装置に関する。
【0002】
【従来の技術】
図8に示すように液封入式防振装置は、自動車のエンジン等の振動体に取付ける第1取付け具1と、車体フレームに取付ける筒状の第2取付け具2とをゴム状弾性材から成る防振基体3を介して連結し、第2取付け具2に、防振基体3との間に液室4を形成するダイヤフラム5を設け、液室4を第1液室部6と第2液室部7に仕切る仕切り部8としての薄肉の仕切り板20を設け、第1液室部6と第2液室部7を連通させるオリフィス22を形成して構成してある。この構造により、両液室部6,7の液流動効果や防振基体3の防振効果を得て振動体から車体に振動が伝わるのを抑制している。
【0003】
これらの構造に加えて、第2取付け具2の径方向外方側に張り出す被ストッパ部10を第2取付け具2に形成するとともに、被ストッパ部10を第2取付け具2の軸心方向で受止める板状のストッパ部材11を第1取付け具1側に片持ち支持させ、防振基体3の過剰な圧縮・伸長(大変位)を防止してある。
【0004】
ところで、液封入式防振装置の各部の固有振動数が、通常の運転時における振動体の振動数の範囲内にあると、通常の運転時に各部がそれぞれ共振し、液封入式防振装置のばね定数が上がって防振効果を十分に得ることができなくなる。
そこで、従来、ストッパ部材11や仕切り板8や防振基体3を、それらの固有振動数が前記振動数の範囲よりも高くなるように形成してあった。
【0005】
【発明が解決しようとする課題】
上記従来の構成によれば、通常の運転時にはストッパ部材や仕切り板や防振基体の共振を回避でき、液封入式防振装置のばね定数が上がるのを回避できて防振効果を十分に得ることができるものの、ストッパ部材11と仕切り板8と防振基体3のいずれをもそれらの固有振動数が高くなるように形成してあったために、振動体の振動数が前記範囲を越えるような運転状態になると、ストッパ部材と仕切り板と防振基体のいずれもが一斉に共振し、図4の一点鎖線で示すように、液封入式防振装置のばね定数が急激に大きくなって、防振性能が大きく低下しやすかった(図4については[実施形態]の項で詳しく説明してある)。
【0006】
本発明の目的は、振動体の振動数が通常の運転時における範囲を越えるような運転状態になっても防振性能が低下しにくい液封入式防振装置を提供する点にある。
【0007】
【課題を解決するための手段】
請求項1による発明の構成は、振動体側に取り付けられる第1取付け具と、車体側に取り付けられる筒状の第2取付け具とを備えてなり、前記第1取付け具と第2取付け具をゴム状弾性材から成る防振基体を介して連結し、前記第2取付け具に、前記防振基体との間に液室を形成するダイヤフラムを設け、前記液室を第1液室部と第2液室部に仕切る仕切り部を設け、前記第1液室部と第2液室部を連通させるオリフィスを形成した液封入式防振装置であって、前記第2取付け具の径方向外方側に張り出す被ストッパ部を前記第2取付け具側に形成するとともに、前記被ストッパ部を前記第2取付け具の軸心方向で受止めるストッパ部材を前記第1取付け具側に設け、前記ストッパ部材は、前記第1取付け具に重合する重合部を有し、前記振動体側の取付け部への前記第1取付け具の取付け状態で前記重合部が前記第1取付け具と前記振動体側の取付け部とに挟持されて前記第1取付け具側に片持ち支持されるよう構成し、前記ストッパ部材にダイナミックダンパを設け、該ダイナミックダンパは、前記重合部に立設した支持ブラケットにダンパ本体を支持連結することで、前記ダンパ本体を前記重合部から横外方側に張り出す状態に片持ち支持されるよう構成し、前記ストッパ部材の振動を前記ダイナミックダンパで吸収して、前記ストッパ部材が共振するのを回避した点にある。
【0009】
請求項による発明の構成は、請求項による発明の構成において、前記ダイナミックダンパは、前記ダンパ本体を取付けボルトを介して前記支持ブラケットに支持連結して構成し、前記ダンパ本体は、前記取付けボルトを挿通させる内筒と、この内筒を囲む外筒とをこれらの間に介在させたゴム状弾性体で連結して構成してある点にある。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
【0012】
[第1実施形態]
図1,図2,図3に自動車用の液封入式防振装置を示してある。この液封入式防振装置は、エンジン(取付け対象物に相当)に取付ける板状の第1取付け金具1と、エンジンの下方の車体フレームに取付ける筒状の第2取付け金具2の上端部とをゴム状弾性材から成る防振基体3を介して連結し、第2取付け具2に、防振基体3との間に液室4を形成するダイヤフラム5を設け、液室4を上側の第1液室部6と下側の第2液室部7に仕切る仕切り部8を設け、両液室部6,7に液体を封入して構成してある。
【0013】
そして、第2取付け金具2の径方向外方側に張り出す被ストッパ部10を第2取付け金具2の上端側に形成するとともに、エンジンへの第1取付け金具1の取付け状態で、被ストッパ部10を第2取付け金具2の軸心方向(上下方向)及び横方向で受止める板状のストッパ金具11(ストッパ部材に相当)を第1取付け金具1側に、この第1取付け金具1とは別体に設けて防振基体3の過剰な圧縮・伸長(大変位)を防止してある。またストッパ金具11にダイナミックダンパ16を設けてある。このダイナミックダンパ16の構造や作用については後で詳しく説明する。
【0014】
第1取付け金具1は、その中央部に突設した上向きの取付けボルト12をエンジン側の雌ねじ部に螺合してエンジンに取付ける。19は第1取付け金具1に突設した上向きの位置決めピンである。この位置決めピン19でエンジン側に対する第1取付け具1の位置を正確に決めることができる。
【0015】
第2取付け金具2は、防振基体3を加硫接着される筒状金具部13と、この筒状金具部13にかしめ固定された底金具部14とから成り、底金具部14の中央部に突設した下向きの取付け用ボルト15を車体フレーム側の雌ねじ部に螺合して車体フレームに取付ける。
【0016】
防振基体3は円錐台状に形成してあり、その上端面が第1取付け金具1に加硫接着し、下端外周部が筒状金具部13の上広がり状の上端部に加硫接着している。そして、防振基体3の下端部に連なるゴム膜部16が筒状金具部13の内周面に加硫接着している。
【0017】
図2に示すように、ダイヤフラム5は部分球状のゴム膜体17とその外周部側のリング金具18とから成る。
【0018】
仕切り部8は、筒状金具部13に内嵌させる筒部9と、筒部9の上端よりも少し下方の内周壁間の仕切り板20と、下側の取付け用のフランジ21とを、一枚の薄肉の金属板をプレスして形成してある。これらのうち、筒部9は上下両端部を径方向外方側に張り出させてあり、上端部と、取付け用のフランジ21の付け根側の下端部とが筒状金具部13のゴム膜部16に内嵌している。筒部9の周壁と筒状金具部13のゴム膜部16との間は、第1液室部6と第2液室部7を連通させるオリフィス22に形成してある。取付け用のフランジ21はダイヤフラム5のリング金具18・第2取付け金具2の底金具部14と共に筒状金具部13にかしめ固定してある。
【0019】
上記の構造により、振動数の低い大振幅の振動が発生すると、液体がオリフィス22を通って両液室部6,7間を流動することで振動を減衰させ、振動数の高い微振幅の振動が発生すると、液体がオリフィス22を通ることなく、仕切り板20の往復動変形により振動を減衰させる。
【0020】
被ストッパ部10は、筒状金具部13の上端側の平面視長方形状の張り出し片23と、これよりも下方の補強金具板24とを、これらに対応させて張り出させた防振基体部分25で覆って形成してある。
【0021】
ストッパ金具11は、第1取付け金具1に上方側から重合する重合部26と、被ストッパ部10を上下両方向側及び横外方側から囲むストッパ作用部27とを一体に連設して断面「つ」の字状に形成してある。さらに、重合部26の幅方向両端部側を下方に折曲して補強リブ28を形成し、重合部26に、取付けボルト12を挿通させるボルト挿通孔29と、位置きめピン19を挿通させるピン挿通孔30とを形成してある。ストッパ作用部27にもその幅方向中央部を盛り上げて補強リブ45を形成してある。これによりストッパ金具11の強度を上げることができる。上記構造のストッパ金具11は、重合部26が第1取付け金具1とエンジン側の取付け部とに挟持されて第1取付け具1側に片持ち支持された状態になる。
【0022】
前記ダイナミックダンパ16について説明すると、ストッパ金具11の重合部26の幅方向一端部側に支持ブラケット31を立設し、これにダンパ本体32を取付けボルト33を介して着脱自在に支持連結してある。
【0023】
ダンパ本体32は、取付けボルト33を挿通させる内筒34と、この内筒34を囲む外筒35とをこれらの間に介在させたゴム状弾性体36で連結して構成してある。また、支持ブラケット31は「コ」の字状に形成してあり、その両側壁間の縦壁37の裏面にナット38を固着するとともに、ナット38に対するボルト挿通孔39を縦壁37に形成し、平面視で縦壁37がストッパ金具11の長手方向に沿うように、換言すれば、ナット38の軸心がストッパ金具11の幅方向に沿うように、支持ブラケット31の下端部をストッパ金具11の重合部26に固着してある。
【0024】
そして、ダンパ本体32の内筒34に取付けボルト33を挿通させ、この取付けボルト33をナット38に螺合連結してある。つまり、ダンパ本体32を重合部26からその横外方側に張り出す状態に支持ブラケット31に片持ち支持させてある。
【0025】
上記のダイナミックダンパ16の質量とばね定数は、900Hzの高い振動数に対応させて設定してあり(抑制目標の900Hzにチューニングしてあり)、この振動数の振動が液封入式防振装置に加わった場合に、ダイナミックダンパ16がストッパ金具11の振動を特に吸収するように構成してある。
【0026】
図4に示すように本発明者は、上記構造の液封入式防振装置(実施例1)に加わる振動数と液封入式防振装置のばね定数との関係を実験により求めた。同様に、ストッパ金具にダイナミックダンパを設けてない従来例の液封入式防振装置に加わる振動数と液封入式防振装置のばね定数との関係を実験により求め、両実験結果を比較した。
【0027】
[実験の条件]
50Hz〜1000Hz、+−9.8m/s2の振動を液封入式防振装置に加え、各振動数ごとの液封入式防振装置のばね定数を測定した。
【0028】
[実験の結果]
従来例では50Hz〜700Hzの振動が加わると、ばね定数が1500N/mm以内のほぼ一定の値になったが、700Hzを超える振動が加わると、ばね定数が大きく上昇し始め、900Hzの振動が加わると最大の9000N/mmになった。
【0029】
これに対して実施例1では50Hz〜700Hzの振動が加わると、ばね定数が1500N/mm以内のほぼ一定の値になり、700Hzを超える振動が加わるとばね定数が上昇し始め、800Hzの振動が加わると最大の6500N/mmになった。そして、800Hzを超える振動が加わるとばね定数が下降し始め、900Hzで4000N/mmとなった。その後、再び上昇し、950Hzで6500N/mmになり、950Hzを超える振動が加わるとばね定数が再び下降した。このように実施例1では液封入式防振装置のばね定数の最大値が従来例よりも下がった。
【0030】
[第2実施形態(本発明には含まれない参考例。以下同じ。)
図5,図6,図7に示すように、液封入式防振装置のストッパ金具11に、前記ダイナミックダンパ16に換えてマスダンパ40を設けてある。その他の構造は第1実施形態の液封入式防振装置とほぼ同じであり、その構造の説明は省略する。
【0031】
マスダンパ40は複数の同一形状の金属板41を重合し溶接固着して形成してある。各金属板41は台形に近い形状に板材を打ち抜いて形成してある。詳しくは一方の斜辺を他方の斜辺よりも短くして底辺と上辺を非平行にした形状に設定してある。これらを重合したマスダンパ40の短い斜辺と上辺とに対応する部分を、この部分に合わせて形成したストッパ金具11の斜面の凹み部に溶接固着してある。
【0032】
図4に示すように本発明者は、上記構造の液封入式防振装置(実施例2(本発明には含まれない参考例。以下同じ。))に加わる振動数と液封入式防振装置のばね定数との関係を実験により求めた。また、ストッパ金具11にマスダンパ40を設けてない従来例の液封入式防振装置に加わる振動数と液封入式防振装置のばね定数との関係を実験により求め、両実験結果を比較した。実験の条件と、従来例の実験の結果とは第1実施形態に記載した通りである。
【0033】
実施例2では、50Hz〜600Hzの振動が加わると、ばね定数が1800N/mm以内のほぼ一定の値になり、600Hzを超える振動が加わるとばね定数が大きく上昇し始め、800Hzの振動が加わると最大の9000N/mmになった。このように実施例2では、ばね定数が最大値となる振動数が従来例(900Hzの振動で最大の9000N/mm)よりも100Hz低くなった。
[別実施形態]
前記ストッパ金具を第1取付け金具1に一体に固着してあってもよい。上記の実施形態で挙げた数値は一例であり別の数値であってもよい。ダイナミックダンパやマスダンパの形態は上記の形態に限られるものではない。
【0034】
【発明の効果】
ストッパ部材にダイナミックダンパを設けた請求項1の構成によれば、振動体の振動数が通常の運転時における振動体の振動数を越えるような運転状態になった場合、ストッパ部材の振動をダイナミックダンパで吸収することができる
【0035】
その結果、上記の運転状態になって仕切り板や防振基体が共振していても、ストッパ部材が共振するのを回避することができ、仕切り板と防振基体とストッパのいずれもが共振する従来の構造に比べると、上記の運転状態で液封入式防振装置のばね定数が大きくなるのを抑制することができる。また、振動体の振動数が所定の範囲内にある通常の運転状態では、従来の構造と同様に、ストッパ部材と仕切り板が共振するのを回避することができる。
【0036】
従って、振動体の振動数が通常の運転時における振動体の振動数の範囲を越えるような運転状態になっても防振性能が低下しにくい液封入式防振装置を提供することができた。
【0037】
また、本発明の構成によれば、第1取付け具側に片持ち支持されて振動しやすくなっているストッパ部材の振動をダイナミックダンパで吸収することができる
【0038】
請求項2の構成によれば、ダイナミックダンパは、ダンパ本体を取付けボルトを介して支持ブラケットに支持連結して構成し、ダンパ本体は、取付けボルトを挿通させる内筒と、この内筒を囲む外筒とをこれらの間に介在させたゴム状弾性体で連結して構成してあるから、ダイナミックダンパの構造を簡素化できる。さらに、ダンパ本体が支持ブラケットに着脱自在になっているから、ダンパ本体を別のダンパと適宜変更して、ストッパ部材に合ったダンパ本体を支持ブラケットに取付けることができ、ストッパ部材の固有振動数をより正確に設定しやすくすることができる。
【図面の簡単な説明】
【図1】液封入式防振装置の平面図
【図2】液封入式防振装置の縦断正面図
【図3】液封入式防振装置の側面図
【図4】液封入式防振装置の振動数とばね定数の関係を示す図
【図5】第2実施形態の液封入式防振装置の平面図
【図6】第2実施形態の液封入式防振装置の縦断正面図
【図7】第2実施形態の液封入式防振装置の側面図
【図8】従来の技術を示す縦断正面図
【符号の説明】
1 第1取付け具
2 第2取付け具
3 防振基体
4 液室
5 ダイヤフラム
6 第1液室部
7 第2液室部
8 仕切り部
10 被ストッパ部
11 ストッパ部材
16 ダイナミックダンパ
22 オリフィス
23 張り出し片
24 補強金具
25 防振基体部分
31 支持ブラケット
32 ダンパ本体
33 取付けボルト
34 内筒
35 外筒
36 ゴム状弾性体
40 マスダンパ
41 金属板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid-filled vibration isolator.
[0002]
[Prior art]
As shown in FIG. 8, the liquid-filled vibration isolator is composed of a rubber-like elastic material in which a first attachment 1 attached to a vibration body such as an automobile engine and a cylindrical second attachment 2 attached to a vehicle body frame. A diaphragm 5 is formed on the second fixture 2 so as to form a liquid chamber 4 between the anti-vibration base 3 and the anti-vibration base 3. The liquid chamber 4 is connected to the first liquid chamber 6 and the second liquid. A thin partition plate 20 is provided as a partition portion 8 that partitions the chamber portion 7, and an orifice 22 that connects the first liquid chamber portion 6 and the second liquid chamber portion 7 is formed. With this structure, it is possible to obtain the liquid flow effect of both the liquid chamber portions 6 and 7 and the vibration isolation effect of the vibration isolation base 3 to suppress the transmission of vibration from the vibrating body to the vehicle body.
[0003]
In addition to these structures, a stopper portion 10 that projects outward in the radial direction of the second fixture 2 is formed on the second fixture 2, and the stopper portion 10 is formed in the axial direction of the second fixture 2. The plate-like stopper member 11 received in step 1 is cantilevered on the first fixture 1 side to prevent excessive compression / extension (large displacement) of the vibration-proof base 3.
[0004]
By the way, when the natural frequency of each part of the liquid filled type vibration isolator is within the range of the vibration frequency of the vibrating body during normal operation, each part resonates during normal operation, and As a result, the spring constant increases and the vibration isolation effect cannot be obtained sufficiently.
Therefore, conventionally, the stopper member 11, the partition plate 8, and the vibration isolation base 3 have been formed so that their natural frequencies are higher than the range of the frequencies.
[0005]
[Problems to be solved by the invention]
According to the above-described conventional configuration, resonance of the stopper member, the partition plate, and the vibration isolating base can be avoided during normal operation, and an increase in the spring constant of the liquid-filled vibration isolator can be avoided, thereby sufficiently obtaining a vibration isolating effect. However, since all of the stopper member 11, the partition plate 8, and the vibration isolating base 3 are formed so that their natural frequencies are high, the vibration frequency of the vibrating body exceeds the above range. In the operating state, all of the stopper member, the partition plate, and the vibration isolating base resonate all at once, and the spring constant of the liquid-filled vibration isolator suddenly increases as shown by the one-dot chain line in FIG. The vibration performance was likely to be greatly reduced (FIG. 4 is described in detail in the section [Embodiment]).
[0006]
An object of the present invention is to provide a liquid-filled vibration isolator that does not easily deteriorate the vibration isolating performance even when the operating state is such that the vibration frequency of the vibrating body exceeds the range during normal operation.
[0007]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a first mounting tool that is attached to the vibrating body side and a cylindrical second mounting tool that is attached to the vehicle body side, and the first mounting tool and the second mounting tool are made of rubber. The second fixture is provided with a diaphragm for forming a liquid chamber between the first anti-vibration base and the first liquid chamber portion and the second anti-vibration base. A liquid-filled vibration isolator having a partition portion for partitioning into a liquid chamber portion and forming an orifice for communicating the first liquid chamber portion and the second liquid chamber portion, and radially outward of the second fixture to form a target stopper portion to the second fixture side overhanging side, provided the stopper member which receives in the axial direction of the target stopper portion said second fixture to said first fixture side, the stopper The member has an overlapping portion that overlaps the first fixture, and the vibration is The superposition part is sandwiched between the first attachment and the attachment on the vibrating body and cantilevered on the first attachment in a state in which the first attachment is attached to the attachment on the body. The stopper member is provided with a dynamic damper, and the damper is supported and connected to a support bracket erected on the overlapping portion so that the damper body protrudes laterally outward from the overlapping portion. It is configured to be supported in a cantilever state, and the vibration of the stopper member is absorbed by the dynamic damper to avoid resonance of the stopper member .
[0009]
Claims configuration of the invention according to claim 2, in the configuration of the invention according to claim 1, wherein the dynamic damper, through the mounting bolts the damper body and configured to support connected to said support bracket, said damper body, said attachment The inner cylinder through which the bolt is inserted and the outer cylinder surrounding the inner cylinder are connected by a rubber-like elastic body interposed between them.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0012]
[First Embodiment]
1, 2 and 3 show a liquid-filled vibration isolator for an automobile. This liquid-filled vibration isolator includes a plate-shaped first mounting bracket 1 that is mounted on an engine (corresponding to an object to be mounted) and an upper end portion of a cylindrical second mounting bracket 2 that is mounted on a vehicle body frame below the engine. A diaphragm 5 is provided on the second fixture 2 to form a liquid chamber 4 between the vibration isolator base 3 made of a rubber-like elastic material. A partition portion 8 is provided to partition the liquid chamber portion 6 and the lower second liquid chamber portion 7, and the liquid chamber portions 6 and 7 are filled with liquid.
[0013]
A stoppered portion 10 that projects outward in the radial direction of the second mounting bracket 2 is formed on the upper end side of the second mounting bracket 2, and the stoppered portion is mounted in a state where the first mounting bracket 1 is attached to the engine. A plate-like stopper fitting 11 (corresponding to a stopper member) that receives 10 in the axial direction (vertical direction) and the lateral direction of the second attachment fitting 2 is the first attachment fitting 1 side. A separate body is provided to prevent excessive compression / elongation (large displacement) of the vibration-proof substrate 3. A dynamic damper 16 is provided on the stopper fitting 11. The structure and operation of the dynamic damper 16 will be described in detail later.
[0014]
The first mounting bracket 1 is mounted on the engine by screwing an upward mounting bolt 12 projecting from the center of the first mounting bracket 1 into an internal thread portion on the engine side. Reference numeral 19 denotes an upward positioning pin protruding from the first mounting bracket 1. The positioning pin 19 can accurately determine the position of the first fixture 1 relative to the engine side.
[0015]
The second mounting bracket 2 includes a cylindrical metal part 13 to which the vibration-proof base 3 is vulcanized and bonded, and a bottom metal part 14 that is caulked and fixed to the cylindrical metal part 13. A downward mounting bolt 15 projecting from the body is screwed into a female screw portion on the vehicle body frame side and attached to the vehicle body frame.
[0016]
The anti-vibration base 3 is formed in the shape of a truncated cone, and its upper end surface is vulcanized and bonded to the first mounting bracket 1, and its lower end outer peripheral portion is vulcanized and bonded to the upper end of the cylindrical bracket portion 13. ing. The rubber film portion 16 connected to the lower end portion of the vibration isolating base 3 is vulcanized and bonded to the inner peripheral surface of the cylindrical metal portion 13.
[0017]
As shown in FIG. 2, the diaphragm 5 includes a partially spherical rubber film body 17 and a ring fitting 18 on the outer peripheral side thereof.
[0018]
The partition part 8 includes a cylindrical part 9 fitted into the cylindrical metal part 13, a partition plate 20 between the inner peripheral walls slightly below the upper end of the cylindrical part 9, and a lower mounting flange 21. It is formed by pressing a thin metal plate. Among these, the cylindrical part 9 has both upper and lower ends projecting radially outward, and the upper end part and the lower end part on the base side of the mounting flange 21 are the rubber film part of the cylindrical metal part 13. 16 is fitted internally. Between the peripheral wall of the cylindrical part 9 and the rubber film part 16 of the cylindrical metal part 13, an orifice 22 is formed for communicating the first liquid chamber part 6 and the second liquid chamber part 7. The mounting flange 21 is caulked and fixed to the cylindrical fitting 13 together with the ring fitting 18 of the diaphragm 5 and the bottom fitting 14 of the second fitting 2.
[0019]
With the above structure, when a large amplitude vibration having a low frequency is generated, the liquid is attenuated by flowing between the liquid chambers 6 and 7 through the orifice 22, and a small amplitude vibration having a high frequency. When this occurs, the vibration is attenuated by the reciprocating deformation of the partition plate 20 without the liquid passing through the orifice 22.
[0020]
The stopper portion 10 includes a vibration-proof base portion in which a protruding piece 23 having a rectangular shape in a plan view on the upper end side of the cylindrical fitting 13 and a reinforcing fitting plate 24 below the protruding piece 23 are extended correspondingly. 25.
[0021]
The stopper fitting 11 is formed by integrally connecting a superposition portion 26 that overlaps the first attachment fitting 1 from above and a stopper action portion 27 that surrounds the stopper portion 10 from both the upper and lower directions and the lateral outer side. It is formed in a letter shape. Further, both ends of the overlapping portion 26 in the width direction are bent downward to form reinforcing ribs 28, and a bolt insertion hole 29 through which the mounting bolt 12 is inserted and a pin through which the positioning pin 19 is inserted into the overlapping portion 26. An insertion hole 30 is formed. The stopper acting portion 27 is also formed with a reinforcing rib 45 by raising its central portion in the width direction. Thereby, the intensity | strength of the stopper metal fitting 11 can be raised. In the stopper fitting 11 having the above structure, the overlapping portion 26 is sandwiched between the first attachment fitting 1 and the engine-side attachment portion and is cantilevered on the first attachment 1 side.
[0022]
The dynamic damper 16 will be described. A support bracket 31 is erected on one end side in the width direction of the overlapping portion 26 of the stopper fitting 11, and a damper main body 32 is detachably supported and connected thereto via a mounting bolt 33. .
[0023]
The damper main body 32 is configured by connecting an inner cylinder 34 through which the mounting bolt 33 is inserted and an outer cylinder 35 surrounding the inner cylinder 34 with a rubber-like elastic body 36 interposed therebetween. The support bracket 31 is formed in a “U” shape, and a nut 38 is fixed to the back surface of the vertical wall 37 between both side walls thereof, and a bolt insertion hole 39 for the nut 38 is formed in the vertical wall 37. In the plan view, the lower wall of the support bracket 31 is placed at the lower end of the stopper bracket 11 so that the vertical wall 37 is along the longitudinal direction of the stopper bracket 11, in other words, the axial center of the nut 38 is along the width direction of the stopper bracket 11. It adheres to the superposition part 26.
[0024]
The mounting bolt 33 is inserted into the inner cylinder 34 of the damper main body 32, and the mounting bolt 33 is screwed and connected to the nut 38. That is, the damper main body 32 is cantilevered by the support bracket 31 so as to project from the overlapping portion 26 to the laterally outward side.
[0025]
The mass and spring constant of the dynamic damper 16 are set corresponding to a high frequency of 900 Hz (tuned to a suppression target of 900 Hz), and the vibration at this frequency is applied to the liquid-filled vibration isolator. When added, the dynamic damper 16 is configured to particularly absorb the vibration of the stopper fitting 11.
[0026]
As shown in FIG. 4, the present inventor has experimentally determined the relationship between the frequency applied to the liquid-filled vibration isolator (Example 1) having the above structure and the spring constant of the liquid-filled vibration-proof device. Similarly, the relationship between the vibration frequency applied to the conventional liquid-filled vibration isolator without a dynamic damper provided on the stopper metal fitting and the spring constant of the liquid-filled vibration isolator was determined by experiment, and the results of both experiments were compared.
[0027]
[Experimental conditions]
Vibrations of 50 Hz to 1000 Hz and + −9.8 m / s 2 were applied to the liquid-filled vibration isolator, and the spring constant of the liquid-filled vibration isolator for each frequency was measured.
[0028]
[results of the experiment]
In the conventional example, when a vibration of 50 Hz to 700 Hz is applied, the spring constant becomes a substantially constant value within 1500 N / mm. However, when a vibration exceeding 700 Hz is applied, the spring constant starts to increase greatly and a vibration of 900 Hz is applied. The maximum was 9000 N / mm.
[0029]
On the other hand, in Example 1, when the vibration of 50 Hz to 700 Hz is applied, the spring constant becomes a substantially constant value within 1500 N / mm, and when the vibration exceeding 700 Hz is applied, the spring constant starts to increase, and the vibration of 800 Hz is generated. When added, the maximum was 6500 N / mm. And when the vibration exceeding 800 Hz was added, the spring constant began to fall and became 4000 N / mm at 900 Hz. After that, it rose again to 6500 N / mm at 950 Hz, and the spring constant dropped again when vibration exceeding 950 Hz was applied. Thus, in Example 1, the maximum value of the spring constant of the liquid filled type vibration isolator was lower than that of the conventional example.
[0030]
[Second embodiment (reference example not included in the present invention; the same applies hereinafter) ]
As shown in FIGS. 5, 6, and 7, a mass damper 40 is provided in place of the dynamic damper 16 in the stopper fitting 11 of the liquid filled type vibration isolator. Other structures are almost the same as those of the liquid-filled vibration isolator of the first embodiment, and the description of the structure is omitted.
[0031]
The mass damper 40 is formed by polymerizing and welding and fixing a plurality of metal plates 41 having the same shape. Each metal plate 41 is formed by punching a plate material in a shape close to a trapezoid. Specifically, one hypotenuse is made shorter than the other hypotenuse and the base and top are made non-parallel. A portion corresponding to the short oblique side and upper side of the mass damper 40 obtained by superimposing these is welded and fixed to a concave portion of the inclined surface of the stopper fitting 11 formed in accordance with this portion.
[0032]
As shown in FIG. 4, the present inventor has determined the frequency and liquid-filled vibration isolation device applied to the liquid-filled vibration-proof device having the above structure (Example 2 (reference example not included in the present invention; the same applies hereinafter) ) . The relationship with the spring constant of the device was obtained by experiments. Further, the relationship between the frequency applied to the liquid filled type vibration isolator of the conventional example in which the mass damper 40 is not provided on the stopper metal fitting 11 and the spring constant of the liquid filled type vibration isolator was obtained by experiments, and the results of both experiments were compared. The experimental conditions and the results of the conventional experiment are as described in the first embodiment.
[0033]
In Example 2, when a vibration of 50 Hz to 600 Hz is applied, the spring constant becomes a substantially constant value within 1800 N / mm. When a vibration exceeding 600 Hz is applied, the spring constant starts to increase greatly, and when a vibration of 800 Hz is applied. The maximum was 9000 N / mm. As described above, in Example 2, the frequency at which the spring constant reached the maximum value was 100 Hz lower than that in the conventional example (maximum of 9000 N / mm at 900 Hz vibration).
[Another embodiment]
The stopper bracket may be integrally fixed to the first mounting bracket 1. The numerical values given in the above embodiment are merely examples, and may be different numerical values. The form of the dynamic damper or the mass damper is not limited to the above form.
[0034]
【The invention's effect】
According to the configuration of the first aspect in which the stopper member is provided with the dynamic damper, when the vibration state of the vibration body exceeds the vibration body frequency during normal operation, the vibration of the stopper member is dynamically changed. Can be absorbed with a damper .
[0035]
As a result, even if the partition plate and the vibration isolating base resonate in the above operating state, the stopper member can be prevented from resonating, and all of the partition plate, the vibration isolating base, and the stopper resonate. Compared to the conventional structure, it is possible to suppress an increase in the spring constant of the liquid-filled vibration isolator in the above operating state. Further, in a normal operation state where the vibration frequency of the vibrating body is within a predetermined range, it is possible to avoid resonance between the stopper member and the partition plate as in the conventional structure.
[0036]
Accordingly, it is possible to provide a liquid-filled type vibration isolator in which the vibration isolating performance is unlikely to deteriorate even when the operating state is such that the frequency of the vibrating body exceeds the frequency range of the vibrating body during normal operation. .
[0037]
Moreover, according to the structure of this invention , the vibration of the stopper member which is cantilever-supported by the 1st fixture side and is easy to vibrate can be absorbed with a dynamic damper .
[0038]
According to the configuration of the second aspect , the dynamic damper is configured by supporting and connecting the damper main body to the support bracket via the mounting bolt, and the damper main body includes the inner cylinder through which the mounting bolt is inserted and the outer cylinder surrounding the inner cylinder. Since the cylinder is connected by a rubber-like elastic body interposed between them, the structure of the dynamic damper can be simplified. Furthermore, since the damper main body is detachable from the support bracket, the damper main body can be appropriately changed to another damper, and the damper main body that matches the stopper member can be attached to the support bracket. Can be set more accurately.
[Brief description of the drawings]
[Fig. 1] Plan view of liquid-filled vibration isolator [Fig. 2] Vertical front view of liquid-filled vibration isolator [Fig. 3] Side view of liquid-filled vibration isolator [Fig. 4] Liquid-filled vibration isolator FIG. 5 is a plan view of the liquid-filled vibration isolator of the second embodiment. FIG. 6 is a longitudinal front view of the liquid-filled vibration isolator of the second embodiment. 7] Side view of the liquid filled type vibration isolator according to the second embodiment [FIG. 8] A longitudinal front view showing the prior art [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 1st fixture 2 2nd fixture 3 Anti-vibration base | substrate 4 Liquid chamber 5 Diaphragm 6 1st liquid chamber part 7 2nd liquid chamber part 8 Partition part 10 Stopper part 11 Stopper member 16 Dynamic damper 22 Orifice 23 Overhang piece 24 Reinforcing bracket 25 Anti-vibration base portion 31 Support bracket 32 Damper body 33 Mounting bolt 34 Inner cylinder 35 Outer cylinder 36 Rubber elastic body 40 Mass damper 41 Metal plate

Claims (2)

振動体側に取り付けられる第1取付け具と、車体側に取り付けられる筒状の第2取付け具とを備えてなり、前記第1取付け具と第2取付け具をゴム状弾性材から成る防振基体を介して連結し、前記第2取付け具に、前記防振基体との間に液室を形成するダイヤフラムを設け、前記液室を第1液室部と第2液室部に仕切る仕切り部を設け、前記第1液室部と第2液室部を連通させるオリフィスを形成した液封入式防振装置であって、
前記第2取付け具の径方向外方側に張り出す被ストッパ部を前記第2取付け具側に形成するとともに、前記被ストッパ部を前記第2取付け具の軸心方向で受止めるストッパ部材を前記第1取付け具側に設け、
前記ストッパ部材は、前記第1取付け具に重合する重合部を有し、前記振動体側の取付け部への前記第1取付け具の取付け状態で前記重合部が前記第1取付け具と前記振動体側の取付け部とに挟持されて前記第1取付け具側に片持ち支持されるよう構成し、
前記ストッパ部材にダイナミックダンパを設け、該ダイナミックダンパは、前記重合部に立設した支持ブラケットにダンパ本体を支持連結することで、前記ダンパ本体を前記重合部から横外方側に張り出す状態に片持ち支持されるよう構成し、前記ストッパ部材の振動を前記ダイナミックダンパで吸収して、前記ストッパ部材が共振するのを回避した液封入式防振装置。
A vibration- proof base made of a rubber-like elastic material is provided , which includes a first attachment attached to the vibrating body side and a cylindrical second attachment attached to the vehicle body side. And a diaphragm for forming a liquid chamber between the second anti-vibration base and a partition for partitioning the liquid chamber into a first liquid chamber and a second liquid chamber. A liquid-filled vibration isolator having an orifice for communicating the first liquid chamber portion and the second liquid chamber portion ,
A stopper member projecting outwardly in the radial direction of the second fixture is formed on the second fixture side, and a stopper member for receiving the stopper portion in the axial direction of the second fixture is Provided on the first fixture side,
The stopper member includes an overlapping portion that overlaps with the first attachment, and the overlapping portion is attached to the first attachment and the vibration body in the attachment state of the first attachment to the attachment on the vibration body. Configured to be sandwiched between the mounting portion and cantilevered to the first fixture side,
The stopper member is provided with a dynamic damper, and the dynamic damper is connected to a support bracket erected on the overlapping portion so that the damper body protrudes laterally outward from the overlapping portion. A liquid-filled vibration isolator configured to be cantilevered and absorbing vibrations of the stopper member by the dynamic damper to avoid resonance of the stopper member .
前記ダイナミックダンパは、前記ダンパ本体を取付けボルトを介して前記支持ブラケットに支持連結して構成し、前記ダンパ本体は、前記取付けボルトを挿通させる内筒と、この内筒を囲む外筒とをこれらの間に介在させたゴム状弾性体で連結して構成してある請求項記載の液封入式防振装置。The dynamic damper, through the mounting bolts the damper body and configured to support connected to said support bracket, said damper body, an inner cylinder for inserting the mounting bolt, and an outer tube surrounding the inner tube thereof The liquid-filled vibration isolator according to claim 1 , wherein the liquid-filled vibration isolator is connected by a rubber-like elastic body interposed between the two.
JP2002230115A 2002-08-07 2002-08-07 Liquid-filled vibration isolator Expired - Fee Related JP3978539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002230115A JP3978539B2 (en) 2002-08-07 2002-08-07 Liquid-filled vibration isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002230115A JP3978539B2 (en) 2002-08-07 2002-08-07 Liquid-filled vibration isolator

Publications (2)

Publication Number Publication Date
JP2004068950A JP2004068950A (en) 2004-03-04
JP3978539B2 true JP3978539B2 (en) 2007-09-19

Family

ID=32016291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002230115A Expired - Fee Related JP3978539B2 (en) 2002-08-07 2002-08-07 Liquid-filled vibration isolator

Country Status (1)

Country Link
JP (1) JP3978539B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019130979A (en) * 2018-01-30 2019-08-08 Ntn株式会社 Suspension structure for in-wheel motor drive device

Also Published As

Publication number Publication date
JP2004068950A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
US7296650B2 (en) Vibration isolating proof device
JP3846208B2 (en) Vibration control device for vehicle
JP2005023973A (en) Vibration damper with stopper mechanism
JP5210558B2 (en) Vibration isolator
JP2009210061A (en) Liquid sealed vibration absorbing device
JP3978539B2 (en) Liquid-filled vibration isolator
JP2013117259A (en) Vibration damping device
JP4001230B2 (en) Liquid-filled vibration isolator
JP2018114886A (en) Mounting member structure
KR100472246B1 (en) Engine mounting member
JP2002081494A (en) Vehicular vibration damper
JP4790550B2 (en) Liquid filled vibration isolator
JP4066153B2 (en) Dynamic damper
JP4328589B2 (en) Vibration isolator
JP2003322197A (en) Vibration isolation device
JP3507928B2 (en) Liquid filled type vibration damping device
JP4767091B2 (en) Liquid filled anti-vibration mount
JP2005188725A (en) Liquid sealed vibration control device
JP2004044641A (en) Bracket for attaching vibration isolation body and vibration isolation device equipped with the same
JP2016138610A (en) Engine mount assembly
JP2020063751A (en) Vibration isolator
JP2020045021A (en) Engine mount structure
JPS6131737A (en) Vibro-isolator containing liquid
JP2004028184A (en) Bracket for mounting vibration isolator and vibration isolator with bracket
JPH10252813A (en) Liquid sealed vibration proofing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040712

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070611

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees