JP3978050B2 - Surface treatment layer for turbo molecular pump - Google Patents

Surface treatment layer for turbo molecular pump Download PDF

Info

Publication number
JP3978050B2
JP3978050B2 JP2002053871A JP2002053871A JP3978050B2 JP 3978050 B2 JP3978050 B2 JP 3978050B2 JP 2002053871 A JP2002053871 A JP 2002053871A JP 2002053871 A JP2002053871 A JP 2002053871A JP 3978050 B2 JP3978050 B2 JP 3978050B2
Authority
JP
Japan
Prior art keywords
molecular pump
surface treatment
turbo molecular
electroless
treatment layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002053871A
Other languages
Japanese (ja)
Other versions
JP2003253460A (en
Inventor
知明 岡村
豊明 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002053871A priority Critical patent/JP3978050B2/en
Publication of JP2003253460A publication Critical patent/JP2003253460A/en
Application granted granted Critical
Publication of JP3978050B2 publication Critical patent/JP3978050B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Chemical Treatment Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体製造設備の排気ラインなどにおいて使用されるターボ分子ポンプ用表面処理層に関する。
【0002】
【従来の技術】
この種のターボ分子ポンプの概略構造を図3に示す。ターボ分子ポンプは、ケーシング1の上部に吸気口2、ケーシング1の下部に排気口3を設け、ロータ4に設けた動翼5をケーシング1に設けた静翼6間の空間内で高速回転させることにより、排気作用を発揮させて吸気口2側を高真空にするものである。7は駆動用のモータである。
【0003】
このターボ分子ポンプでは通常、翼材として、軽量、低コスト、強度などの面からアルミニウム合金が用いられている。しかし、アルミニウム合金は、半導体製造工程で排出される塩素ガスなど腐食性ガス環境下では著しく腐食するため、優れた耐食処理を表面に施す必要がある。また、翼材に不可欠なもう一つの条件として、熱放射性(放射率)が高いことが挙げられる。その理由は、通常の対流による熱放散を期待できない高真空下で、ロータの高速回転により発生する大量の熱を放射で逃がす必要があるからである。
【0004】
従来、アルミニウム合金よりなるターボ分子ポンプ用の内部部品の表面処理技術として、以下に示すような種々のものが知られている。
【0005】
(1)基材表面に陽極酸化処理により酸化皮膜を形成するもの。
(2)基材表面に無電解Niめっき層を形成するもの。
(3)基材表面に無電解Niめっき層を形成し、その上にエポキシ層を形成するもの。
(4)基材表面にセラミック等の微粒子を分散させた無電解Ni分散めっき層を形成するもの。
(5)基材表面に無電解黒色Niめっき層を形成するもの。
【0006】
【発明が解決しようとする課題】
しかし、上述した(1)〜(5)の技術のうち、(1)は、安価で放射率が高いものの、空孔が無数にあるため脱ガスが多く耐食性が弱い欠点がある。
(2)は、耐食性は高いものの、放射率が低い欠点がある。
(3)は、エポキシ層の付加により、放射率及び耐食性は高くできるものの、プラズマ環境に弱い欠点がある。
(4)は、放射率及び耐食性は高いものの、コストがかかる欠点がある。
(5)は、放射率は高いものの、耐食性が劣る欠点がある。
【0007】
このように、上述した従来の技術は一長一短あり、ターボ分子ポンプ用の内部部品の材料として、最適な条件を充分満足するまでには至っていなかった。
【0008】
本発明は、上記事情を考慮し、高い耐食性・熱放射性を持つと共に耐プラズマ性も高く、しかも安価に実現し得るターボ分子ポンプ用表面処理層を提供することを目的とする。
【0009】
【課題を解決するための手段】
請求項1の発明のターボ分子ポンプ用表面処理層は、ターボ分子ポンプの内部部品である動翼または静翼に形成された表面処理層であって、フッ素化合物及びケイフッ化アンモニウムを含む処理液に、アルミニウムまたはアルミニウム合金よりなる基材を浸漬して、70〜100℃の温度範囲で処理することにより、前記基材表面にフッ素化合物の皮膜を形成してなり、放射率εを0.7〜0.8程度に設定したことを特徴とする。
【0010】
ターボ分子ポンプの内部部品に形成された表面処理層には、高い耐食性と高い熱放射性を持たせることが必要であるが、アルミニウムまたはアルミニウム合金よりなる基材の表面に、上記の処理によってフッ素化合物の皮膜を形成することにより、耐食性と放射率とを共に高めたターボ分子ポンプ用表面処理層を得ることができる。因みに、放射率εは0.7〜0.8程度に設定することができる。また、上記の皮膜は、厚さを非常に薄く(約3μm)することが可能であり、部品の寸法変化を少なくできる。従って、予め皮膜厚さを考慮して基材の寸法設計をする必要がなくなる。また、上記の皮膜は、ポーラスではないので、反応性ガスに接しても脱ガスの心配がない。また、酸素プラズマに対する耐久度も高いし、前述の処理液に浸漬するだけで皮膜形成できるから、極めて簡単且つ安価に実現し得る。
【0011】
参考例に係るターボ分子ポンプ用表面処理層は、ターボ分子ポンプの内部部品に形成された表面処理層であって、アルミニウムまたはアルミニウム合金よりなる基材の表面に、無電解Niめっき層と無電解黒色Niめっき層の2層重ねの皮膜を形成してなることを特徴とする。
【0012】
ターボ分子ポンプの内部部品に形成された表面処理層には、高い耐食性と高い熱放射性を持たせることが必要であるが、アルミニウムまたはアルミニウム合金よりなる基材の表面に、無電解Niめっき層と無電解黒色Niめっき層の2層重ねの皮膜を形成することにより、耐食性と放射率とを共に高めたターボ分子ポンプ用表面処理層を得ることができる。この場合は、耐食性は主に無電解Niめっき層で受け持ち、熱放射性は無電解黒色Niめっき層で受け持つ。即ち、無電解Niめっき層の熱放射率の低さを無電解黒色Niめっき層が補い、無電解黒色Niめっき層の耐食性の低さを無電解Niめっき層が補うことになり、両者の長所を生かすことができる。また、両層とも金属めっき層であるから、従来のようにエポキシ樹脂をコーティングした場合と違い、酸素プラズマ等のプラズマ環境にも強くなる上、安価なコーティングが可能である。
【0013】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。実施形態として示す表面処理層は、半導体製造システムで使用するターボ分子ポンプの動翼あるいは静翼を構成するものである。
【0014】
本発明の実施形態として示す表面処理層は、フッ素化合物及びケイフッ化アンモニウムを含む処理液(加熱水溶液)に、アルミニウムまたはアルミニウム合金よりなる基材を浸漬して、70〜100℃の温度範囲で処理することにより、図1に示すように、アルミニウムまたはアルミニウム合金よりなる基材11の表面にフッ素化合物の皮膜12を形成してなるものである。
【0015】
ここで使用する処理液(加熱水溶液)としては、水100重量部に対し、フッ素化合物0.1〜20重量部(好ましくは0.2〜15重量部)、及び、ケイフッ化アンモニウム0.05〜15重量部(好ましくは0.1〜10重量部)を含むものを使用するのがよい。また、フッ素化合物としては、ケイフッ化アンモニウム((NHSiF)を除くフッ素化合物を使用するものとし、ケイフッ化塩、特にケイフッ化マグネシウムMgSiF・6HOを用いるのが好ましい。その他には、ケイフッ化亜鉛(ZnSiF・6HO)、ケイフッ化カリウム(KSiF),ケイフッ化ソーダ(NaSiF),ケイフッ化マンガン(MnSiF・6HO)等のケイフッ化塩、ホウフッ化塩、フッ化ジルコニウム塩またはフッ化チタン塩などが挙げられる。これらのフッ素化合物の中でも、ケイフッ化塩が好ましく用いられ、特にケイフッ化マグネシウム、ケイフッ化マンガン等が好ましく用いられる。
【0016】
このような処理液を用いることによって、アルミニウムまたはアルミニウム合金の表面に、均一な薄さの耐食性及び熱放射性に優れた皮膜を形成することができる。因みに、放射率εは0.7〜0.8程度に設定することができる。また、上記の皮膜は、厚さを非常に薄く(約3μm)することが可能であり、部品の寸法変化を少なくできる。従って、予め皮膜厚さを考慮して基材の寸法設計をする必要がなくなる。また、上記の皮膜は、ポーラスではない(空孔を持たない)ので、反応性ガスに接しても脱ガスの心配がない。また、酸素プラズマに対する耐久度も高いし、前述の処理液に浸漬するだけで皮膜形成できるから、極めて簡単且つ安価にターボ分子ポンプ用として優れた表面処理層を提供し得る。
【0017】
なお、前記処理液において、フッ素化合物が0.1重量部未満の場合、あるいはケイフッ化アンモニウムが0.05重量部未満の場合には、反応が遅くなり、処理時間が長くなってしまうので好ましくない。一方、フッ素化合物が20重量部を超える場合、あるいはケイフッ化アンモニウムが15重量部を超える場合には、溶解が困難となるため好ましくない。
【0018】
また、アルミニウムまたはアルミニウム合金よりなる基材を浸漬する際の処理液の温度は、通常70℃〜100℃の範囲内であり、好ましくは75℃〜99℃の範囲内、より好ましくは80℃〜98℃の範囲内に設定するのが望ましい。処理液の温度が70℃未満であるような温度の低い場合には、反応が遅くなり、処理時間が長くなってしまうので好ましくない。一方、処理液の温度が100℃を超えてしまうような高い温度の場合には、処理液の蒸発が多くなってしまうので好ましくない。処理時間については、成膜反応は約1分間程度で終了するため、2分間程度の浸漬を行えば、表面処理としては十分である。但し、この皮膜は保護作用があるので、一旦成膜した後は30分以上浸漬しておいても何ら問題は生じない。
【0019】
参考例として示す表面処理層は、図2に示すように、アルミニウムまたはアルミニウム合金よりなる基材21の表面に、無電解Niめっき層22と無電解黒色Niめっき層23の2層重ねの皮膜24を形成してなるものである。この表面処理層においては、下地に無電解Niめっき層22を形成し、その上に無電解黒色Niめっき層23を形成する。
【0020】
このようにアルミニウム基材21の表面に、無電解Niめっき層22と無電解黒色Niめっき層23の2層重ねの皮膜24を形成することにより、耐食性と放射率とを共に高めた表面処理層を提供することができる。この場合、無電解Niめっき層22の熱放射率の低さを無電解黒色Niめっき層23が補い、無電解黒色Niめっき層23の耐食性の低さを無電解Niめっき層22が補うことができるので、両者の長所を生かした、耐食性と放射率の高いターボ分子ポンプ用の材料を得ることができる。また、両層とも金属めっき層であるから、従来のようにエポキシ樹脂をコーティングした場合と違い、酸素プラズマ等のプラズマ環境にも強くなる上、安価なコーティングが可能である。
【0021】
【発明の効果】
以上説明したように、請求項1の発明のターボ分子ポンプ用表面処理層は、フッ素化合物及びケイフッ化アンモニウムを含む処理液に、アルミニウムまたはアルミニウム合金よりなる基材を浸漬して、70〜100℃の温度範囲で処理することにより、前記基材表面にフッ素化合物の皮膜を形成してなるものであるため、耐食性と放射率とを共に高めることができる。しかも、前記の皮膜を薄くできるので、部品の寸法変化を少なくでき、予め皮膜厚さを考慮して基材の寸法設計をする必要がなくなる。また、前記の皮膜はポーラスではないので、反応性ガスに接しても脱ガスの心配がない。また、酸素プラズマに対する耐久度も高いし、前述の処理液に浸漬するだけで皮膜形成できるから、極めて簡単且つ安価に実現し得る利点がある。
【0022】
参考例のターボ分子ポンプ用表面処理層は、アルミニウムまたはアルミニウム合金よりなる基材の表面に、無電解Niめっき層と無電解黒色Niめっき層の2層重ねの皮膜を形成してなるものであるため、耐食性と放射率とを共に高めることができる。また、両層とも金属めっき層であるから、酸素プラズマ等のプラズマ環境にも強くなる上、安価なコーティングが可能である。
【図面の簡単な説明】
【図1】 本発明の実施形態の表面処理層の拡大断面図である。
【図2】 参考例の表面処理層の拡大断面図である。
【図3】 ターボ分子ポンプの概略構成図である。
【符号の説明】
11,21 アルミニウムまたはアルミニウム合金よりなる基材
12 フッ素化合物の皮膜
22 無電解Niめっき層
23 無電解黒色Niめっき層
24 2層重ねの皮膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a surface treatment layer for a turbo molecular pump used in an exhaust line of a semiconductor manufacturing facility.
[0002]
[Prior art]
A schematic structure of this type of turbomolecular pump is shown in FIG. The turbo molecular pump is provided with an intake port 2 in the upper part of the casing 1 and an exhaust port 3 in the lower part of the casing 1, and the rotor blade 5 provided in the rotor 4 is rotated at high speed in the space between the stationary blades 6 provided in the casing 1. As a result, the exhaust action is exerted to make the intake port 2 side into a high vacuum. Reference numeral 7 denotes a driving motor.
[0003]
In this turbo molecular pump, an aluminum alloy is usually used as a blade material from the viewpoints of light weight, low cost, strength, and the like. However, since aluminum alloys corrode significantly in a corrosive gas environment such as chlorine gas discharged in the semiconductor manufacturing process, it is necessary to perform excellent corrosion resistance treatment on the surface. In addition, another requirement indispensable for the wing material is high thermal radiation (emissivity). The reason is that a large amount of heat generated by high-speed rotation of the rotor needs to be released by radiation under a high vacuum where heat dissipation due to normal convection cannot be expected.
[0004]
Conventionally, various types of surface treatment techniques for internal parts of turbomolecular pumps made of an aluminum alloy are known as shown below.
[0005]
(1) An oxide film is formed on the surface of a base material by anodization.
(2) An electroless Ni plating layer is formed on the substrate surface.
(3) An electroless Ni plating layer is formed on the substrate surface, and an epoxy layer is formed thereon.
(4) Forming an electroless Ni-dispersed plating layer in which fine particles such as ceramic are dispersed on the surface of a substrate.
(5) An electroless black Ni plating layer is formed on the substrate surface.
[0006]
[Problems to be solved by the invention]
However, among the above-described techniques (1) to (5), although (1) is inexpensive and has high emissivity, there are a number of voids, and therefore there is a drawback in that degassing is large and corrosion resistance is weak.
Although (2) has high corrosion resistance, it has a drawback of low emissivity.
Although (3) can increase emissivity and corrosion resistance by adding an epoxy layer, it has a disadvantage that it is weak in the plasma environment.
Although (4) has high emissivity and corrosion resistance, it has a drawback of cost.
Although (5) has a high emissivity, it has a drawback of poor corrosion resistance.
[0007]
As described above, the above-described conventional technique has advantages and disadvantages, and has not yet fully satisfied the optimum conditions as a material for internal parts for a turbo molecular pump.
[0008]
In view of the above circumstances, an object of the present invention is to provide a surface treatment layer for a turbo molecular pump that has high corrosion resistance and thermal radiation, high plasma resistance, and can be realized at low cost.
[0009]
[Means for Solving the Problems]
The surface treatment layer for a turbo molecular pump according to the invention of claim 1 is a surface treatment layer formed on a moving blade or a stationary blade that is an internal component of the turbo molecular pump, and is a treatment liquid containing a fluorine compound and ammonium silicofluoride. , by immersing the aluminum or made of an aluminum alloy substrate, by treatment in a temperature range of 70 to 100 ° C., Ri Na to form a film of the fluorine compound to the substrate surface, the emissivity epsilon 0.7 It is set to about 0.8 .
[0010]
The surface treatment layer formed on the internal part of the turbo molecular pump needs to have high corrosion resistance and high heat radiation. By forming this film, it is possible to obtain a surface treatment layer for a turbo molecular pump that has both improved corrosion resistance and emissivity. Incidentally, the emissivity ε can be set to about 0.7 to 0.8. Further, the above-mentioned film can be made very thin (about 3 μm), and the dimensional change of the parts can be reduced. Therefore, it is not necessary to design the dimensions of the substrate in consideration of the film thickness in advance. Further, since the above film is not porous, there is no fear of degassing even when it comes into contact with the reactive gas. Moreover, since the durability against oxygen plasma is high, and a film can be formed only by immersing in the above-mentioned treatment solution, it can be realized extremely easily and inexpensively.
[0011]
A surface treatment layer for a turbo molecular pump according to a reference example is a surface treatment layer formed on an internal part of a turbo molecular pump, and an electroless Ni plating layer and an electroless layer are formed on the surface of a substrate made of aluminum or an aluminum alloy. It is characterized by forming a two-layered film of black Ni plating layers.
[0012]
The surface treatment layer formed on the internal parts of the turbo molecular pump needs to have high corrosion resistance and high heat radiation, but the electroless Ni plating layer is formed on the surface of the substrate made of aluminum or aluminum alloy. By forming a two-layered film of the electroless black Ni plating layer, a surface treatment layer for a turbo molecular pump with improved corrosion resistance and emissivity can be obtained. In this case, corrosion resistance is mainly handled by the electroless Ni plating layer, and thermal radiation is handled by the electroless black Ni plating layer. That is, the electroless Ni plating layer compensates for the low thermal emissivity of the electroless Ni plating layer, and the electroless Ni plating layer compensates for the low corrosion resistance of the electroless black Ni plating layer. Can be used. In addition, since both layers are metal plating layers, unlike the conventional case of coating with an epoxy resin, it is resistant to a plasma environment such as oxygen plasma and inexpensive coating is possible.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The surface treatment layer shown as an embodiment constitutes a moving blade or a stationary blade of a turbo molecular pump used in a semiconductor manufacturing system.
[0014]
The surface treatment layer shown as an embodiment of the present invention is a treatment in a temperature range of 70 to 100 ° C. by immersing a base material made of aluminum or an aluminum alloy in a treatment liquid (heating aqueous solution) containing a fluorine compound and ammonium silicofluoride. By doing so, as shown in FIG. 1, the film | membrane 12 of a fluorine compound is formed in the surface of the base material 11 which consists of aluminum or an aluminum alloy.
[0015]
As the treatment liquid (heating aqueous solution) used here, 0.1 to 20 parts by weight (preferably 0.2 to 15 parts by weight) of a fluorine compound and 0.05 to 0.05 part of ammonium silicofluoride with respect to 100 parts by weight of water. It is good to use what contains 15 weight part (preferably 0.1-10 weight part). Further, as the fluorine compound, a fluorine compound other than ammonium silicofluoride ((NH 4 ) 2 SiF 6 ) is used, and it is preferable to use a silicofluoride salt, particularly magnesium fluorosilicate MgSiF 6 · 6H 2 O. Other examples include silicon fluoride such as zinc silicofluoride (ZnSiF 6 .6H 2 O), potassium silicofluoride (K 2 SiF 6 ), sodium silicofluoride (Na 2 SiF 6 ), manganese silicofluoride (MnSiF 6 · 6H 2 O), and the like. Salt, borofluoride, zirconium fluoride, titanium fluoride, and the like. Among these fluorine compounds, silicofluoride salts are preferably used, and magnesium silicofluoride, manganese silicofluoride, and the like are particularly preferably used.
[0016]
By using such a treatment liquid, a uniform thin film having excellent corrosion resistance and thermal radiation can be formed on the surface of aluminum or an aluminum alloy. Incidentally, the emissivity ε can be set to about 0.7 to 0.8. Further, the above-mentioned film can be made very thin (about 3 μm), and the dimensional change of the parts can be reduced. Therefore, it is not necessary to design the dimensions of the substrate in consideration of the film thickness in advance. Further, since the above film is not porous (has no pores), there is no fear of degassing even when it comes into contact with the reactive gas. Moreover, since the durability against oxygen plasma is high, and a film can be formed just by immersing in the above-mentioned treatment solution, an excellent surface treatment layer for a turbo molecular pump can be provided very easily and inexpensively.
[0017]
In the treatment liquid, when the fluorine compound is less than 0.1 parts by weight, or when the ammonium silicofluoride is less than 0.05 parts by weight, the reaction becomes slow and the treatment time becomes long. . On the other hand, when the fluorine compound exceeds 20 parts by weight, or when the ammonium silicofluoride exceeds 15 parts by weight, dissolution becomes difficult, which is not preferable.
[0018]
In addition, the temperature of the treatment liquid when dipping a substrate made of aluminum or an aluminum alloy is usually within a range of 70 ° C to 100 ° C, preferably within a range of 75 ° C to 99 ° C, more preferably 80 ° C to It is desirable to set within the range of 98 ° C. When the temperature of the treatment liquid is low such that it is less than 70 ° C., the reaction becomes slow and the treatment time becomes long. On the other hand, when the temperature of the processing liquid is high such that it exceeds 100 ° C., evaporation of the processing liquid increases, which is not preferable. Regarding the processing time, since the film formation reaction is completed in about 1 minute, soaking for about 2 minutes is sufficient for the surface treatment. However, since this film has a protective action, no problem arises even if it is immersed for 30 minutes or more after it is once formed.
[0019]
As shown in FIG. 2, the surface treatment layer shown as a reference example is a two-layer coating 24 of an electroless Ni plating layer 22 and an electroless black Ni plating layer 23 on the surface of a base 21 made of aluminum or an aluminum alloy. Is formed. In this surface treatment layer, an electroless Ni plating layer 22 is formed on the base, and an electroless black Ni plating layer 23 is formed thereon.
[0020]
Thus, by forming the two-layered film 24 of the electroless Ni plating layer 22 and the electroless black Ni plating layer 23 on the surface of the aluminum base material 21, the surface treatment layer that improves both the corrosion resistance and the emissivity. Can be provided. In this case, the electroless Ni plating layer 22 may compensate for the low thermal emissivity of the electroless Ni plating layer 22, and the electroless Ni plating layer 22 may compensate for the low corrosion resistance of the electroless black Ni plating layer 23. Therefore, it is possible to obtain a material for a turbo molecular pump that takes advantage of both and has high corrosion resistance and high emissivity. In addition, since both layers are metal plating layers, unlike the conventional case of coating with an epoxy resin, it is resistant to a plasma environment such as oxygen plasma and inexpensive coating is possible.
[0021]
【The invention's effect】
As described above, the surface treatment layer for the turbo molecular pump according to the first aspect of the present invention is obtained by immersing a base material made of aluminum or an aluminum alloy in a treatment liquid containing a fluorine compound and ammonium silicofluoride, and having a temperature of 70 to 100 ° C. By treating in the above temperature range, a film of a fluorine compound is formed on the surface of the substrate, so that both corrosion resistance and emissivity can be improved. In addition, since the film can be thinned, the dimensional change of the parts can be reduced, and it is not necessary to design the dimensions of the base material in advance by considering the film thickness. Moreover, since the said film | membrane is not porous, there is no worry of degassing even if it contacts with reactive gas. Moreover, since the durability against oxygen plasma is high and a film can be formed only by immersing in the above-described processing solution, there are advantages that can be realized extremely easily and inexpensively.
[0022]
The surface treatment layer for the turbo molecular pump of the reference example is formed by forming a two-layered film of an electroless Ni plating layer and an electroless black Ni plating layer on the surface of a substrate made of aluminum or an aluminum alloy. Therefore, both corrosion resistance and emissivity can be improved. In addition, since both layers are metal plating layers, they are resistant to a plasma environment such as oxygen plasma and can be coated inexpensively.
[Brief description of the drawings]
1 is an enlarged cross-sectional view of the surface treatment layer of the implementation of the invention.
FIG. 2 is an enlarged cross-sectional view of a surface treatment layer of a reference example .
FIG. 3 is a schematic configuration diagram of a turbo molecular pump.
[Explanation of symbols]
11, 21 Base material made of aluminum or aluminum alloy 12 Fluorine compound coating 22 Electroless Ni plating layer 23 Electroless black Ni plating layer 24 Double layer coating

Claims (1)

ターボ分子ポンプの内部部品である動翼または静翼に形成された表面処理層であって、フッ素化合物及びケイフッ化アンモニウムを含む処理液に、アルミニウムまたはアルミニウム合金よりなる基材を浸漬して、70〜100℃の温度範囲で処理することにより、前記基材表面にフッ素化合物の皮膜を形成してなり、放射率εを0.7〜0.8程度に設定したことを特徴とするターボ分子ポンプ用表面処理層。  A surface treatment layer formed on a moving blade or stationary blade that is an internal part of a turbo molecular pump, wherein a substrate made of aluminum or an aluminum alloy is immersed in a treatment liquid containing a fluorine compound and ammonium silicofluoride. A turbo molecular pump characterized in that a fluorine compound film is formed on the surface of the base material by treatment in a temperature range of ~ 100 ° C, and the emissivity ε is set to about 0.7 to 0.8. Surface treatment layer.
JP2002053871A 2002-02-28 2002-02-28 Surface treatment layer for turbo molecular pump Expired - Lifetime JP3978050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002053871A JP3978050B2 (en) 2002-02-28 2002-02-28 Surface treatment layer for turbo molecular pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002053871A JP3978050B2 (en) 2002-02-28 2002-02-28 Surface treatment layer for turbo molecular pump

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007120846A Division JP4508208B2 (en) 2007-05-01 2007-05-01 Surface treatment layer for turbo molecular pump

Publications (2)

Publication Number Publication Date
JP2003253460A JP2003253460A (en) 2003-09-10
JP3978050B2 true JP3978050B2 (en) 2007-09-19

Family

ID=28665184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002053871A Expired - Lifetime JP3978050B2 (en) 2002-02-28 2002-02-28 Surface treatment layer for turbo molecular pump

Country Status (1)

Country Link
JP (1) JP3978050B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112710406B (en) * 2021-01-19 2022-07-08 核工业理化工程研究院 Method for measuring temperature of inner surface of molecular pump

Also Published As

Publication number Publication date
JP2003253460A (en) 2003-09-10

Similar Documents

Publication Publication Date Title
KR101133902B1 (en) Coating
JP4796464B2 (en) Aluminum alloy member with excellent corrosion resistance
US4588480A (en) Method of producing wear-protection layers on surfaces of structural parts of titanium or titanium-base alloys
US8668447B2 (en) Steam turbine blade and method for manufacturing the same
Wu et al. Sol–gel-based coatings for oxidation protection of TiAl alloys
US3904789A (en) Masking method for use in aluminizing selected portions of metal substrates
JP4508208B2 (en) Surface treatment layer for turbo molecular pump
JP2015134958A (en) heat-resistant mirror surface coating
WO2014122667A1 (en) A hybrid multilayer solar selective coating for high temperature solar thermal applications and a process for the preparation thereof
CN103966615B (en) A kind of PtNiAl tack coat of 1200 DEG C of complete antioxidative binary Active trace elements doping and preparation method thereof
JP3978050B2 (en) Surface treatment layer for turbo molecular pump
JP2004501051A (en) Protective coating containing porous silicon nitride matrix and precious metal
GB2188942A (en) Protective coating
TWI461139B (en) Method for manufacturing housing for electronic device
JP2563541B2 (en) Corrosion resistant material for turbo molecular pump
JP2000018254A (en) Bush treated by chemical conversion and manufacture of the same
JP3220012B2 (en) Hard plating film coated member and method of manufacturing the same
JP2006233978A (en) Turbo-molecular pump
CN1985027A (en) Coating
JP2007033600A (en) High corrosion resistant reflection mirror and method for manufacturing the same
CN114585769B (en) Aircraft component made of a superalloy containing rhenium and/or ruthenium and method for producing the same
JPS62205275A (en) Abrasion resistant article having tungsten carbide layer and its production
JPH01132796A (en) Corrosion-resistant material for turbo molecular pump
US20220127745A1 (en) Sealing for anodized metal
TWI477648B (en) Anticorrosion surface treatment for al and al-alloy and articles treated by same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061211

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 3978050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140629

Year of fee payment: 7

EXPY Cancellation because of completion of term