JP3976649B2 - Cryogenic refrigerator and operation method thereof - Google Patents

Cryogenic refrigerator and operation method thereof Download PDF

Info

Publication number
JP3976649B2
JP3976649B2 JP2002245498A JP2002245498A JP3976649B2 JP 3976649 B2 JP3976649 B2 JP 3976649B2 JP 2002245498 A JP2002245498 A JP 2002245498A JP 2002245498 A JP2002245498 A JP 2002245498A JP 3976649 B2 JP3976649 B2 JP 3976649B2
Authority
JP
Japan
Prior art keywords
pressure
control
compressor
pressure side
differential pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002245498A
Other languages
Japanese (ja)
Other versions
JP2004085048A (en
Inventor
正道 安東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2002245498A priority Critical patent/JP3976649B2/en
Publication of JP2004085048A publication Critical patent/JP2004085048A/en
Application granted granted Critical
Publication of JP3976649B2 publication Critical patent/JP3976649B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/002Gas cycle refrigeration machines with parallel working cold producing expansion devices in one circuit

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、極低温冷凍装置、及び、その運転方法に係り、特に、圧縮機から複数の冷凍機へ供給される差圧をインバータにより制御するようにした極低温冷凍装置、及び、その運転方法に関する。
【0002】
【従来の技術】
動作ガスの圧力変化と体積変化との位相差を利用して極低温を発生するギフォード・マクマホン(GM)式やパルス管式の冷凍機が知られている。このような冷凍機を、半導体製造装置のスパッタリング装置等のような大型の装置の複数箇所に設置する場合、各冷凍機毎に、該冷凍機に高圧及び低圧を供給する圧縮機を設けるのではなく、コスト低減及び省エネルギーを目的として、図1に示す如く、1台の圧縮機10で圧縮され、高圧ライン12及び低圧ライン14を介して供給されるガス(例えばヘリウムガス)を、多数の冷凍機21−25に供給することが考えられている。
【0003】
この際、圧縮機10をインバータにより供給差圧ΔPが一定になるよう制御することが考えられており、そのような圧縮機をインバータ圧縮機と称する。
【0004】
【発明が解決しようとする課題】
しかしながら、インバータ圧縮機には、機械的共振や焼付き防止のため、運転周波数に下限値がある。そこで、圧縮機の容量や運転周波数を、冷凍機の最大同時運転台数に合わせて設定すると、少数台運転の場合、圧縮機の運転周波数が下限値となり、差圧制御ができなくなる。すると、供給差圧ΔPの上昇を招き、冷凍装置の適正運転ができない恐れがある。そのため、最低運転台数を設ける必要が生じ、任意の台数による運転ができないという問題点を有していた。
【0005】
本発明は、前記従来の問題点を解決するべくなされたもので、インバータ圧縮機を用いた場合でも、冷凍機の少数台運転を可能とすることを課題とする。
【0006】
【課題を解決するための手段】
本発明は、インバータにより供給差圧が一定になるよう制御される圧縮機と、該圧縮機から圧力が供給される複数の冷凍機とを備えた極低温冷凍装置であって、前記圧縮機と冷凍機の間に設けられた、高圧側と低圧側を連通し、バイパス量を制御して供給差圧を一定に制御可能なバイパス弁と、高圧側の圧力を監視する高圧側圧力計と低圧側の圧力を監視する低圧側圧力計、あるいは、高圧側と低圧側との間に設けた差圧計と、該高圧側圧力計から得られた圧力と低圧側圧力計から得られた圧力との差圧、あるいは、該差圧計から得られた差圧が設定値以上に上昇した時は、圧縮機の運転周波数を下限値で固定して、前記バイパス弁による制御に切換え、差圧が設定値以下に下降した時は、前記バイパス弁による制御を停止して、前記インバータによる制御に切換える手段と、を備え、該バイパス弁と該インバータによる制御により、該供給差圧を設定範囲内に制御することにより、前記課題を解決したものである。
【0007】
又、前記の極低温冷凍装置を備えたことを特徴とするクライオポンプ、超伝導マグネット、核磁気共鳴イメージング(MRI)装置、計測装置を提供するものである。
【0008】
本発明は、又、圧縮機から複数の冷凍機へ供給される差圧をインバータにより制御するようにした極低温冷凍装置の運転方法であって、高圧側圧力計から得られた圧力と低圧側圧力計から得られた圧力との差圧、あるいは、差圧計から得られた差圧が設定値以上に上昇した時は、圧縮機の運転周波数を下限値で固定して、圧縮機と冷凍機の間に設けた、高圧側と低圧側を連通し、バイパス量を制御して供給差圧を一定に制御可能なバイパス弁による制御に切換え、差圧が設定値以下に下降した時は、前記バイパス弁による制御を停止して、前記インバータによる制御に切換えて、該バイパス弁と該インバータによる制御により、該供給差圧を設定範囲内に制御するようにして、前記課題を解決したものである。
【0009】
【発明の実施の形態】
以下図面を参照して、本発明の実施形態を詳細に説明する。
【0010】
本実施形態は、図1に示したような極低温冷凍装置において、図2に示す如く、圧縮機10と冷凍機21〜25の間に、高圧ライン12と低圧ライン14とを連通するバイパス弁30と、高圧ライン12の圧力P1を監視する高圧側圧力計32と、低圧ライン14の圧力P2を監視する低圧側圧力計34とを設けたものである。
【0012】
又、前記バイパス弁30として、前記高圧側圧力計32と低圧側圧力計34の出力P1、P2に応じて圧力を調整する圧力調整弁を用いることもできる。この場合には、コストはかかるが、制御は確実である。なお、高圧側圧力計32と低圧側圧力計34を独立して設けるのではなく、差圧ΔPを直接測定可能な差圧計を設けて、圧力計の数を減らしても良い。
【0013】
このようにして、高圧ライン12と低圧ライン14の供給差圧ΔPを監視し、圧縮機10の運転周波数が下限値となり、差圧がある一定値B以上に上昇した場合は、圧縮機10の運転周波数を下限値で固定とし、バイパス弁30による差圧制御(バイパス制御と称する)に切換える。又、圧縮機10が固定周波数に切換えられていた場合、冷凍機の運転台数が増えると差圧ΔPが減少することがあるが、差圧がある一定値C以下となった場合は、バイパス弁30を閉じ、再びインバータ圧縮機10による差圧制御(インバータ(INV)制御と称する)に切換える。
【0014】
図3に運転状態の例を示す。時刻t0〜t1間は、運転台数が従来の最低運転台数(例えば2台)以上なので、従来と同様にインバータ圧縮機10により差圧ΔPを目標値Aとする差圧制御(INV制御)を行う。時刻t1で最低運転台数未満の1台となると、差圧ΔPが上昇してくるので、設定値Bになった時刻t2で、圧縮機の運転周波数を最低回転数に固定して、バイパス弁30による差圧制御(バイパス制御)に切換える。時刻t2で運転台数が増えて最低運転台数以上になると、差圧ΔPが低下してくるので、設定値Cになった時刻t4で、バイパス弁30を閉じて、INV制御を再開する。
【0015】
このようにして、インバータ圧縮機10の運転周波数が下限値となった場合においても、バイパス弁30で差圧を一定に制御できるので、極低温冷凍装置が少数台運転の場合でも、極低温冷凍装置から安定した性能を得ることができる。
【0016】
なお、前記バイパス弁30の種類はインラインリリーフバルブや圧力調整弁に限定されず、図4に示す如く、オリフィス40(41)と開閉弁42(43)の組合せを用いてもよい。この際、図4に示したように、口径の異なるオリフィス40、41を、それぞれ開閉弁42、43で開閉することによって、バイパス量を変えることもできる。
【0017】
本発明の適用対象は、クライオポンプを用いたスパッタリング装置に限定されず、超伝導マグネット(例えばMCZ等)、MRI装置、計測装置(例えばX線回折測定装置、光透過測定装置、フォトルミネッセンス測定装置、超伝導体測定装置、ホール効果測定装置)等にも適用できることは明らかである。
【0018】
【発明の効果】
本発明によれば、インバータ差圧制御とバイパスによる差圧制御を切換えることによって、極低温冷凍装置の少数台運転時に安定した性能を得ることが可能となる。
【図面の簡単な説明】
【図1】1台のインバータ圧縮機で複数の冷凍機を運転するようにした冷凍装置の構成を示すブロック線図
【図2】本発明の実施形態の構成を示すブロック線図
【図3】前記実施形態の作用を説明するためのタイムチャート
【図4】前記実施形態の変形例で用いられるバイパス弁を示す構成図
【符号の説明】
10…インバータ圧縮機
12…高圧ライン
14…低圧ライン
21〜25…冷凍機
30…バイパス弁
32…高圧側圧力計
34…低圧側圧力計
40、41…オリフィス
42、43…開閉弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cryogenic refrigeration apparatus and an operation method thereof, and in particular, a cryogenic refrigeration apparatus in which a differential pressure supplied from a compressor to a plurality of refrigerators is controlled by an inverter, and an operation method thereof. About.
[0002]
[Prior art]
There are known Gifford McMahon (GM) type and pulse tube type refrigerators that generate a cryogenic temperature using a phase difference between a pressure change and a volume change of an operating gas. When installing such a refrigerator in a plurality of locations of a large apparatus such as a sputtering apparatus of a semiconductor manufacturing apparatus, a compressor that supplies high pressure and low pressure to the refrigerator is provided for each refrigerator. For the purpose of cost reduction and energy saving, as shown in FIG. 1, a gas (for example, helium gas) compressed by a single compressor 10 and supplied through a high pressure line 12 and a low pressure line 14 is supplied to a number of refrigeration units. It is considered to supply the machine 21-25.
[0003]
At this time, it is considered that the compressor 10 is controlled by the inverter so that the supply differential pressure ΔP becomes constant, and such a compressor is referred to as an inverter compressor.
[0004]
[Problems to be solved by the invention]
However, the inverter compressor has a lower limit for the operating frequency in order to prevent mechanical resonance and seizure. Therefore, if the capacity and operating frequency of the compressor are set in accordance with the maximum number of simultaneously operated refrigerators, the operating frequency of the compressor becomes a lower limit value in the case of operation with a small number of units, and differential pressure control cannot be performed. Then, the supply differential pressure ΔP is increased, and there is a possibility that proper operation of the refrigeration apparatus cannot be performed. For this reason, it is necessary to provide a minimum number of units to be operated, and there is a problem that it is impossible to operate with an arbitrary number of units.
[0005]
The present invention has been made to solve the above-described conventional problems, and an object of the present invention is to enable operation of a small number of refrigerators even when an inverter compressor is used.
[0006]
[Means for Solving the Problems]
The present invention is a cryogenic refrigeration apparatus comprising a compressor controlled to have a constant supply differential pressure by an inverter, and a plurality of refrigerators to which pressure is supplied from the compressor, the compressor A bypass valve that is connected between the high-pressure side and communicates the high-pressure side and the low-pressure side, and can control the amount of bypass to keep the supply differential pressure constant, a high-pressure side pressure gauge that monitors the high-pressure side pressure, and the low- pressure side A low pressure side pressure gauge for monitoring the pressure on the side, or a differential pressure gauge provided between the high pressure side and the low pressure side, and a pressure obtained from the high pressure side pressure gauge and a pressure obtained from the low pressure side pressure gauge . differential pressure, or when the differential pressure obtained from the difference pressure gauge rises above the set value, the operation frequency of the compressor by fixing lower limit value, switching to control by the bypass valve, the differential pressure setting When the value falls below the value, control by the bypass valve is stopped and the And means for switching the control by over data, and by control of the bypass valve and the inverter, the Rukoto be controlled within a set range of the feed pressure difference is obtained by solving the above problems.
[0007]
Further, the present invention provides a cryopump, a superconducting magnet, a nuclear magnetic resonance imaging (MRI) apparatus, and a measuring apparatus characterized by including the cryogenic refrigeration apparatus.
[0008]
The present invention is also a method for operating a cryogenic refrigeration apparatus in which a differential pressure supplied from a compressor to a plurality of refrigerators is controlled by an inverter, the pressure obtained from a high-pressure side pressure gauge and a low-pressure side. When the pressure difference from the pressure gauge or the pressure difference obtained from the pressure gauge rises above the set value, the compressor operating frequency is fixed at the lower limit, and the compressor and refrigerator provided between communicates the high pressure side and low pressure side to control the bypass quantity of the supply pressure difference switched to control by the controllable bypass valve in constant, when said differential pressure is lowered below a set value, which stops the control of the bypass valve is switched to the control by the inverter, the control of the bypass valve and the inverter, in the so that to control within a set range the supply differential pressure, it has solved the problems It is.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0010]
In this embodiment, in the cryogenic refrigeration apparatus as shown in FIG. 1, as shown in FIG. 2, a bypass valve that connects the high pressure line 12 and the low pressure line 14 between the compressor 10 and the refrigerators 21-25. 30, a high pressure side pressure gauge 32 that monitors the pressure P <b> 1 of the high pressure line 12, and a low pressure side pressure gauge 34 that monitors the pressure P <b> 2 of the low pressure line 14.
[0012]
The bypass valve 30 may be a pressure adjusting valve that adjusts the pressure according to the outputs P1 and P2 of the high-pressure side pressure gauge 32 and the low-pressure side pressure gauge 34. In this case, the cost is high, but the control is reliable. Instead of providing the high-pressure side pressure gauge 32 and the low-pressure side pressure gauge 34 independently, a differential pressure gauge that can directly measure the differential pressure ΔP may be provided to reduce the number of pressure gauges.
[0013]
In this way, the supply differential pressure ΔP of the high pressure line 12 and the low pressure line 14 is monitored, and when the operating frequency of the compressor 10 becomes the lower limit value and the differential pressure rises above a certain value B, the compressor 10 The operating frequency is fixed at the lower limit value, and the control is switched to differential pressure control (referred to as bypass control) by the bypass valve 30. Further, when the compressor 10 is switched to a fixed frequency, the differential pressure ΔP may decrease as the number of operating refrigerators increases, but when the differential pressure becomes a certain value C or less, the bypass valve 30 is closed and the control is again switched to the differential pressure control (referred to as inverter (INV) control) by the inverter compressor 10.
[0014]
FIG. 3 shows an example of the operating state. Between times t0 and t1, the number of operating units is equal to or more than the conventional minimum operating number (for example, 2 units), so that the differential pressure control (INV control) with the differential pressure ΔP as the target value A is performed by the inverter compressor 10 as in the conventional case. . When the number becomes less than the minimum number of operating units at time t1, the differential pressure ΔP increases. At time t2 when the set value B is reached, the operating frequency of the compressor is fixed at the minimum number of revolutions, and the bypass valve 30 Switch to differential pressure control (bypass control). When the number of operating units increases at time t2 and exceeds the minimum number of operating units, the differential pressure ΔP decreases. Therefore, at time t4 when the set value C is reached, the bypass valve 30 is closed and INV control is resumed.
[0015]
Thus, even when the operating frequency of the inverter compressor 10 reaches the lower limit value, the differential pressure can be controlled to be constant by the bypass valve 30. Therefore, even when the cryogenic refrigeration apparatus is operated in a few units, the cryogenic refrigeration is performed. Stable performance can be obtained from the apparatus.
[0016]
The type of the bypass valve 30 is not limited to an inline relief valve or a pressure regulating valve, and a combination of an orifice 40 (41) and an on-off valve 42 (43) may be used as shown in FIG. At this time, as shown in FIG. 4, the bypass amount can be changed by opening and closing the orifices 40 and 41 having different diameters by the opening and closing valves 42 and 43, respectively.
[0017]
The application target of the present invention is not limited to a sputtering apparatus using a cryopump, but is a superconducting magnet (for example, MCZ), an MRI apparatus, a measuring apparatus (for example, an X-ray diffraction measuring apparatus, a light transmission measuring apparatus, a photoluminescence measuring apparatus). It is obvious that the present invention can also be applied to a superconductor measuring device, a Hall effect measuring device, and the like.
[0018]
【The invention's effect】
According to the present invention, by switching between the inverter differential pressure control and the differential pressure control by bypass, it is possible to obtain stable performance during operation of a few cryogenic refrigeration apparatuses.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a refrigeration apparatus in which a plurality of refrigerators are operated by one inverter compressor. FIG. 2 is a block diagram showing a configuration of an embodiment of the present invention. FIG. 4 is a time chart for explaining the operation of the embodiment. FIG. 4 is a block diagram showing a bypass valve used in a modification of the embodiment.
DESCRIPTION OF SYMBOLS 10 ... Inverter compressor 12 ... High pressure line 14 ... Low pressure line 21-25 ... Refrigerator 30 ... Bypass valve 32 ... High pressure side pressure gauge 34 ... Low pressure side pressure gauge 40, 41 ... Orifice 42, 43 ... On-off valve

Claims (6)

インバータにより供給差圧が一定になるよう制御される圧縮機と、
該圧縮機から圧力が供給される複数の冷凍機とを備えた極低温冷凍装置であって、
前記圧縮機と冷凍機の間に設けられた、高圧側と低圧側を連通し、バイパス量を制御して供給差圧を一定に制御可能なバイパス弁と、
高圧側の圧力を監視する高圧側圧力計と低圧側の圧力を監視する低圧側圧力計、あるいは、高圧側と低圧側との間に設けた差圧計と、
該高圧側圧力計から得られた圧力と低圧側圧力計から得られた圧力との差圧、あるいは、該差圧計から得られた差圧が設定値以上に上昇した時は、圧縮機の運転周波数を下限値で固定して、前記バイパス弁による制御に切換え、差圧が設定値以下に下降した時は、前記バイパス弁による制御を停止して、前記インバータによる制御に切換える手段と、
を備え
該バイパス弁と該インバータによる制御により、該供給差圧を設定範囲内に制御することを特徴とする極低温冷凍装置。
A compressor controlled by an inverter so that the supply differential pressure becomes constant;
A cryogenic refrigeration apparatus comprising a plurality of refrigerators to which pressure is supplied from the compressor,
A bypass valve that is provided between the compressor and the refrigerator, communicates the high pressure side and the low pressure side, and can control the amount of bypass to control the supply differential pressure constant ;
A high pressure side pressure gauge for monitoring the pressure on the high pressure side and a low pressure side pressure gauge for monitoring the pressure on the low pressure side, or a differential pressure gauge provided between the high pressure side and the low pressure side;
When the differential pressure between the pressure obtained from the high-pressure side pressure gauge and the pressure obtained from the low-pressure side pressure gauge , or when the differential pressure obtained from the differential pressure gauge rises above a set value, the compressor is operated. fixing the frequency at the lower limit value, switching to control by the bypass valve, when said differential pressure is lowered below a set value, and stops the control of the bypass valve, and means for switching the control by the inverter,
Equipped with a,
The control of the bypass valve and the inverter, the cryogenic refrigeration system, characterized that you control within a set range the supply pressure difference.
請求項1に記載の極低温冷凍装置を備えたことを特徴とするクライオポンプ。  A cryopump comprising the cryogenic refrigeration apparatus according to claim 1. 請求項1に記載の極低温冷凍装置を備えたことを特徴とする超伝導マグネット。  A superconducting magnet comprising the cryogenic refrigeration apparatus according to claim 1. 請求項1に記載の極低温冷凍装置を備えたことを特徴とする核磁気共鳴イメージング装置。  A nuclear magnetic resonance imaging apparatus comprising the cryogenic refrigeration apparatus according to claim 1. 請求項1に記載の極低温冷凍装置を備えたことを特徴とする計測装置。  A measuring apparatus comprising the cryogenic refrigeration apparatus according to claim 1. 圧縮機から複数の冷凍機へ供給される差圧をインバータにより制御するようにした極低温冷凍装置の運転方法であって、
高圧側圧力計から得られた圧力と低圧側圧力計から得られた圧力との差圧、あるいは、差圧計から得られた差圧が設定値以上に上昇した時は、圧縮機の運転周波数を下限値で固定して、圧縮機と冷凍機の間に設けた、高圧側と低圧側を連通し、バイパス量を制御して供給差圧を一定に制御可能なバイパス弁による制御に切換え、
差圧が設定値以下に下降した時は、前記バイパス弁による制御を停止して、前記インバータによる制御に切換えて、
該バイパス弁と該インバータによる制御により、該供給差圧を設定範囲内に制御することを特徴とする極低温冷凍装置の運転方法。
An operation method of a cryogenic refrigeration apparatus in which a differential pressure supplied from a compressor to a plurality of refrigerators is controlled by an inverter,
When the differential pressure between the pressure obtained from the high-pressure side pressure gauge and the pressure obtained from the low-pressure side pressure gauge , or when the differential pressure obtained from the differential pressure gauge rises above the set value, the operating frequency of the compressor is Fixed at the lower limit, communicated between the high pressure side and the low pressure side provided between the compressor and the refrigerator, and switched to control by a bypass valve that can control the supply pressure differential by controlling the bypass amount.
When the pressure difference is lowered below a set value, and stops the control of the bypass valve is switched to the control by the inverter,
The control of the bypass valve and the inverter, operating method of the cryogenic refrigeration system, characterized that you control within a set range The supply differential pressure.
JP2002245498A 2002-08-26 2002-08-26 Cryogenic refrigerator and operation method thereof Expired - Fee Related JP3976649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002245498A JP3976649B2 (en) 2002-08-26 2002-08-26 Cryogenic refrigerator and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002245498A JP3976649B2 (en) 2002-08-26 2002-08-26 Cryogenic refrigerator and operation method thereof

Publications (2)

Publication Number Publication Date
JP2004085048A JP2004085048A (en) 2004-03-18
JP3976649B2 true JP3976649B2 (en) 2007-09-19

Family

ID=32053673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002245498A Expired - Fee Related JP3976649B2 (en) 2002-08-26 2002-08-26 Cryogenic refrigerator and operation method thereof

Country Status (1)

Country Link
JP (1) JP3976649B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI410260B (en) 2006-09-22 2013-10-01 Teijin Pharma Ltd Oxygen enrichment device
TWI359252B (en) * 2008-12-04 2012-03-01 Ind Tech Res Inst Temperature control of inverter refrigeration appa
TWI646264B (en) * 2011-03-04 2019-01-01 美商布魯克機械公司 Low temperature refrigeration system and method for controlling supply of helium refrigerant
FR2985805B1 (en) * 2012-01-12 2016-12-23 Commissariat Energie Atomique METHOD FOR CONTROLLING A COMPRESSION DEVICE OF A COOLANT FLUID OF A REFRIGERATING MACHINE
JP6067423B2 (en) * 2013-03-04 2017-01-25 住友重機械工業株式会社 Cryogenic refrigerator, cryopump, nuclear magnetic resonance imaging apparatus, and control method for cryogenic refrigerator
JP5943865B2 (en) * 2013-03-12 2016-07-05 住友重機械工業株式会社 Cryopump system, operation method of cryopump system, and compressor unit
JP2018127929A (en) * 2017-02-07 2018-08-16 住友重機械工業株式会社 Compressor unit for cryogenic refrigerator, and cryopump system
JP6975066B2 (en) * 2018-02-20 2021-12-01 住友重機械工業株式会社 Cryogenic freezer
JP2020008180A (en) * 2018-07-03 2020-01-16 住友重機械工業株式会社 Compressor of cryogenic refrigerator
JP2022059486A (en) * 2020-10-01 2022-04-13 住友重機械工業株式会社 Cryogenic refrigerator and control method for cryogenic refrigerator
CN115371313B (en) * 2022-08-08 2024-03-01 中船重工鹏力(南京)超低温技术有限公司 Refrigerator control method and refrigerator

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62106261A (en) * 1985-11-05 1987-05-16 三洋電機株式会社 Refrigerator
JPS6341772A (en) * 1986-08-08 1988-02-23 株式会社東芝 Cryogenic refrigerator
JPS6346351A (en) * 1986-08-12 1988-02-27 株式会社東芝 Cryogenic refrigerator
JPH03217763A (en) * 1990-01-22 1991-09-25 Sanyo Electric Co Ltd Cryogenic refrigerator
JP2994862B2 (en) * 1992-06-30 1999-12-27 三洋電機株式会社 Cryogenic refrigeration equipment
JP3573384B2 (en) * 1996-02-20 2004-10-06 住友重機械工業株式会社 Cryogenic refrigeration equipment
JP2000121192A (en) * 1998-10-21 2000-04-28 Daikin Ind Ltd Cryogenic chiller
JP2002106991A (en) * 2000-09-29 2002-04-10 Sanyo Electric Co Ltd Helium compressor unit

Also Published As

Publication number Publication date
JP2004085048A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
JP3976649B2 (en) Cryogenic refrigerator and operation method thereof
US7555911B2 (en) Cryogenic refrigerator
KR101990519B1 (en) Extremely low temperature refrigerative apparatus and method for controlling the same
US20090158752A1 (en) Variable power cryogenic refrigerator
US20080196420A1 (en) Flashgas Removal From a Receiver in a Refrigeration Circuit
US6655154B2 (en) Operation method and operation apparatus for multi-system refrigerators, and refrigerating apparatus
US7152426B1 (en) Thermal control systems for process tools requiring operation over wide temperature ranges
JP4445187B2 (en) Cryogenic refrigerator
JP2014173819A (en) Cryopump system, operation method of cryopump system and compressor unit
US6530237B2 (en) Refrigeration system pressure control using a gas volume
WO2019163742A1 (en) Cryogenic refrigerator
JP5595680B2 (en) Pressure adjusting apparatus and magnetic resonance imaging apparatus
JPH03217761A (en) Water cooler
US6560969B1 (en) Pulse tube refrigeration system having ride-through
US7337625B1 (en) Thermal control systems for process tools requiring operation over wide temperature ranges
WO2021215168A1 (en) Superconducting magnet device, cryogenic freezing machine, and cooling method for superconducting magnet device
GB2463033A (en) Method of operating a cryogenic refrigerator with multiple refrigeration stages
JPH109147A (en) Reciprocating compressor control method
CN213691631U (en) Cooling system for use in manufacturing dry magnets in a magnetic resonance imaging apparatus
JP2870389B2 (en) Refrigeration equipment
US20120227824A1 (en) Methods And Apparatus For Gas Compression With Gas Flow Rate And Pressure Regulation
JPH05189651A (en) Cooling device for automatic vending machine
JPS60245285A (en) Superconductive magnet apparatus
JPH01200155A (en) Method of controlling quantity of coolant and device used therefor
JPH01142367A (en) Cryogenic cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070322

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070619

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3976649

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees