JPS6341772A - Cryogenic refrigerator - Google Patents

Cryogenic refrigerator

Info

Publication number
JPS6341772A
JPS6341772A JP18656586A JP18656586A JPS6341772A JP S6341772 A JPS6341772 A JP S6341772A JP 18656586 A JP18656586 A JP 18656586A JP 18656586 A JP18656586 A JP 18656586A JP S6341772 A JPS6341772 A JP S6341772A
Authority
JP
Japan
Prior art keywords
pressure
valve
closed circuit
working medium
cryogenic refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18656586A
Other languages
Japanese (ja)
Inventor
裕 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18656586A priority Critical patent/JPS6341772A/en
Publication of JPS6341772A publication Critical patent/JPS6341772A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、主に液体ヘリウム混食(V!4^ば4°に近
傍)や液体窒索温爪(77°に近傍)以下のような極低
温領域までの冷却を目的とする極低温冷凍機に関し、特
に冷却の進行に伴なう冷凍能力の低下を防止した極低温
冷?I1機に閏する。
Detailed Description of the Invention [Objective of the Invention] (Industrial Application Field) The present invention is mainly applicable to liquid helium mixed food (V! Regarding cryogenic refrigerators that aim to cool down to extremely low temperatures, such as those listed below, especially cryogenic refrigerators that prevent a decrease in refrigerating capacity as cooling progresses? Leap into I1 machine.

(従来の技術) コールドヘッドに膨張蛮を有する極低温冷凍機、例えば
ギフオード・マクマホン冷凍Bl’SにJ3いては、糧
低温を発生Jる能力tよ次式r示される。
(Prior Art) In a cryogenic refrigerator having an expansion bar in the cold head, for example, a Gifford-McMahon refrigerator Bl'S, the ability to generate low temperature t is expressed by the following equation.

W=η・■・△]〕・n ・・・・・・・・・・・・・
・・ (1)なお、Wは冷凍能力 ηは効率 ■は膨張室の容積(膨張容積) △Pは膨張前後の圧力差 nは膨張リイクル数 である。
W=η・■・△]]・n ・・・・・・・・・・・・・・・
... (1) In addition, W is the refrigerating capacity η is the efficiency (■) is the volume of the expansion chamber (expansion volume), ΔP is the pressure difference before and after the expansion n is the expansion recycle number.

ここで、第3図に上記ギフオード・マクマホン式冷凍機
の従来の構成を示す。
Here, FIG. 3 shows the conventional configuration of the Gifford-McMahon type refrigerator.

電動機1により駆動される圧縮機(例えば、U−クリ式
、スフ1」−ル式、レシプロ式、スラリl一式などの容
積膨圧縮機)2と、この圧llif機2により背圧され
た作動媒体たるヘリウムガスを膨張さけて低温を発生づ
゛るコールドヘッド3とが、高圧側管路4及び低圧側管
路5により開回路に接続されている。コールドヘッド3
内では、微細な流通孔を有する蓄冷器6が、図示されな
い°電動機により駆vJ装置7を介して、薄肉シリンダ
3a内を上下に往復運動している。このコールドヘッド
3の内部空間をn圧側管路4及び低圧側管路5にそれぞ
れ連通さける高圧側入口弁8および低圧側出口弁9は、
蓄冷器6の運動方向と位置に同調して開閉を繰り返して
いる。
A compressor 2 (e.g., a positive displacement compressor such as a U-type, a Suffle type, a reciprocating type, or a slurry set) driven by an electric motor 1 and an operation under back pressure from the compressor 2. A cold head 3 that generates low temperature by avoiding expansion of helium gas as a medium is connected to an open circuit by a high-pressure side pipe 4 and a low-pressure side pipe 5. cold head 3
Inside, a regenerator 6 having minute circulation holes is reciprocated up and down within the thin-walled cylinder 3a by an electric motor (not shown) via a drive unit 7. A high-pressure side inlet valve 8 and a low-pressure side outlet valve 9 that communicate the internal space of this cold head 3 with the n-pressure side pipe line 4 and the low-pressure side pipe line 5, respectively, are
It repeats opening and closing in synchronization with the movement direction and position of the regenerator 6.

即ち、蓄冷器6が下死点を通過し上昇を始めた時に、高
圧側入口弁8が開く。これにより、^圧ヘリウムガスが
、コールドヘッド3内に流入し、蓄冷器6内部の微細な
流通孔を通過して冷却されつつ下部膨張室10内へ流入
りる。高圧ガスの流入は蓄冷器6が上昇し上死点近傍に
到達1Jるまで継続される。
That is, when the regenerator 6 passes the bottom dead center and begins to rise, the high pressure side inlet valve 8 opens. As a result, the ^-pressure helium gas flows into the cold head 3, passes through the fine circulation holes inside the regenerator 6, and flows into the lower expansion chamber 10 while being cooled. The inflow of high pressure gas continues until the regenerator 6 rises and reaches the vicinity of top dead center by 1J.

蓄冷*6が上死点近傍にヱっだ時点で高圧側人口弁8が
閉じ、上死点を通過した直後に低圧側出口弁9が開く。
The high-pressure side artificial valve 8 closes when the cold storage *6 reaches near the top dead center, and the low-pressure side outlet valve 9 opens immediately after passing the top dead center.

これにより、蓄冷器6及び膨張室10内の高圧ガスは膨
張し低圧側出口弁9を介して流出する。低圧側出口弁9
は蓄冷器6が下降する間開いており、下死点近傍で開じ
る。
As a result, the high pressure gas in the regenerator 6 and the expansion chamber 10 expands and flows out via the low pressure side outlet valve 9. Low pressure side outlet valve 9
is open while the regenerator 6 is descending, and opens near the bottom dead center.

尚、図中11は冷w器、12はクフイオスタット、13
はクフイオスタット内の真空部、14は異常高圧防止用
のバイパス弁である。
In addition, in the figure, 11 is a cooler, 12 is Kufuiostat, and 13
14 is a vacuum section within the Kuhuiostat, and 14 is a bypass valve for preventing abnormally high pressure.

(発明が解決しようとする問題点) このような従来機において、膨張室10内の圧力は、圧
縮機2の吐出圧及び吸気圧にほぼ準じた圧力幅で変動す
る。そして、圧縮機2の吐出圧及び吸気圧は、閉ループ
内への初期ヘリウム充填圧力と、次式にて示される理論
圧縮比εとの関係から決定される。
(Problems to be Solved by the Invention) In such a conventional machine, the pressure within the expansion chamber 10 fluctuates in a pressure range that is approximately the same as the discharge pressure and intake pressure of the compressor 2. The discharge pressure and intake pressure of the compressor 2 are determined from the relationship between the initial helium filling pressure into the closed loop and the theoretical compression ratio ε expressed by the following equation.

・・・・・・・・・ (2) なお、Vcは圧縮機排除容積 Eはコールドヘッド膨張室容積 Ncは圧縮m回転数 NEはコールドヘッド回転数 ηCは圧縮機ガス効率 ηEはコールドヘッドガス効率 TOは圧縮機吸気ガス温度 TEはコールドヘッド膨張室内ガス温度である。・・・・・・・・・(2) In addition, Vc is compressor displacement volume E is the cold head expansion chamber volume Nc is compression m rotation speed NE is cold head rotation speed ηC is compressor gas efficiency ηE is cold head gas efficiency TO is compressor intake gas temperature TE is the cold head expansion chamber gas temperature.

即ち、圧縮比εは、圧縮機とコールドヘッドの内部形状
、回転数及び温度により決定され、運転条件が同じなら
ば、起動直後から冷[41が進行するにつれて減少して
行く。例えば、従来機の設計例を参考にして、システム
内の初期充填圧力を8〔Kg/cIi〕、圧縮1排除容
積Vcを30(d/rev〕、圧縮機回転数TOを30
00 (r+oa ) 、圧縮機ガス効率ηCを0.6
、コールドヘッド膨張室容積VEを300(7/rev
〕、コールドヘッド回転数NEを60〔「pI〕、コー
ルドヘッドガス効率ηEを0.85とした場合、起動直
後(’r c−’r E−300°K)の圧縮比εは4
.5程度である。これに対し、冷却が進行し例えば膨張
室内ガスtS!r!iT Eが50″に程度にまで低下
り゛ると(圧縮機吸収ガス温度Tc=300″K)、圧
縮機ガス効率ηCが若干回復して0.9ON度になり、
コールドヘッドガス効率ηEが0.35程度まで低下し
てくるものの、最終的に圧縮比εは2.3程度にまで減
少する。
That is, the compression ratio ε is determined by the internal shape, rotation speed, and temperature of the compressor and the cold head, and if the operating conditions are the same, it decreases as the cooling progresses from immediately after startup. For example, referring to the design example of a conventional machine, the initial filling pressure in the system is 8 [Kg/cIi], the compression 1 displacement volume Vc is 30 (d/rev), and the compressor rotation speed TO is 30.
00 (r+oa), compressor gas efficiency ηC is 0.6
, the cold head expansion chamber volume VE is 300 (7/rev
], the cold head rotational speed NE is 60 [pI], and the cold head gas efficiency ηE is 0.85, the compression ratio ε immediately after startup ('r c-'r E-300°K) is 4.
.. It is about 5. On the other hand, cooling progresses and, for example, the expansion chamber gas tS! r! When iTE decreases to about 50'' (compressor absorbed gas temperature Tc = 300''K), compressor gas efficiency ηC slightly recovers to 0.9 ON degree,
Although the cold head gas efficiency ηE decreases to about 0.35, the compression ratio ε eventually decreases to about 2.3.

つまり、コールドヘッド内部の蓄冷器の低温側が冷却さ
れるにつれ、この部分で作動媒体のガスヘリウムが低温
故にその密度を増し1勺イクル当りのコールドヘッドの
通過流;dが増大する為、圧縮機前後の圧力差が減少し
てしまうのである。
In other words, as the low-temperature side of the regenerator inside the cold head is cooled, the working medium gas helium in this part increases its density due to its low temperature, and the flow through the cold head per cycle; d increases. The pressure difference between the front and rear ends up decreasing.

このことは即ち、冷凍機の冷凍能力W11)式)を決め
る圧力差ΔPの減少を意味し、初期運転開始時の半分以
下の冷凍能力で定常時運転を行なっていることになり、
極めて損失の大きい状態である。
This means that the pressure difference ΔP that determines the refrigerating capacity W11) of the refrigerator decreases, and the steady state operation is performed with less than half the refrigerating capacity at the start of initial operation.
This is an extremely costly situation.

第4図は、上記従来の極低温冷m機のIIi張呈10の
圧力変化を、運転開始時から定常状態に至るまで経時的
に示したものである。
FIG. 4 shows the pressure change in the IIi tensioner 10 of the conventional cryogenic refrigerator mentioned above over time from the start of operation to a steady state.

fi1図からも理解されるように、膨張前後の圧力差Δ
Pが運転初期には約11 、5 (Kff/alりであ
ったらのが、定常状態では約7(Kg/7)にまで落ち
込み、基本冷凍能力は270(W)程度から約160 
(W)にまで40%程度低下することになる。
As can be understood from the fi1 diagram, the pressure difference Δ before and after expansion
P was about 11.5 (Kff/al) at the beginning of operation, but it dropped to about 7 (Kg/7) in steady state, and the basic refrigeration capacity decreased from about 270 (W) to about 160 (Kg/7).
(W), resulting in a decrease of about 40%.

このように、コールドヘッドが膨張室を持つ極低温冷凍
機は、その圧縮比が冷却の進行と共に低下してしまい、
可能冷凍能力を大幅に下回ることになる。
In this way, in a cryogenic refrigerator whose cold head has an expansion chamber, its compression ratio decreases as cooling progresses.
This will be significantly lower than the possible refrigeration capacity.

また、圧縮機の駆動電動機の消費1カム圧縮比εの低下
により20〜30%程度低下し、電@機の能力を100
%活用していないことになる。
In addition, the consumption of the drive electric motor of the compressor decreases by about 20 to 30% due to a decrease in the compression ratio ε, reducing the capacity of the electric machine to 100%.
% is not being utilized.

以上のことは、極低温冷凍機の実質的冷凍能力は極低温
状態となった時の圧力により決定されるのに6かかわら
ず、システム設計はシステム内圧力が最も高い起動直後
の状態によりなされていることに起因している。
The above shows that although the actual cooling capacity of a cryogenic refrigerator is determined by the pressure when it reaches a cryogenic state6, the system design is based on the state immediately after startup, where the system internal pressure is highest. This is due to the fact that

そこで従来は、冷却の進行に伴ない圧縮比が減少し膨張
室内の膨張前後の圧力差が低下することを見込んで、コ
ールドヘッドの膨張室の容積の拡大あるいは圧力の増大
を行なって、予め冷凍能力を大きく設定しておくように
している。しかしその為には、圧力容器となる薄肉シリ
ンダ3 aの肉厚を増大せざるを得す、伝導による熱侵
入の増加を招くなどの併置を伴なう。また、運転初期に
は高圧側は非常に高い圧力となるので、異常高[Eを防
止するためにバイパス弁14を所定間電量いた状態とし
ておく為、不経済であるという問題もある。
Conventionally, the compression ratio decreases with the progress of cooling, and the pressure difference between before and after expansion in the expansion chamber decreases, so in advance, the volume or pressure of the expansion chamber of the cold head is expanded or the pressure is increased. I try to set my abilities high. However, this requires an increase in the wall thickness of the thin-walled cylinder 3a, which serves as a pressure vessel, and increases heat intrusion due to conduction. In addition, since the pressure on the high pressure side becomes very high at the beginning of operation, there is also the problem that it is uneconomical to keep the bypass valve 14 in a state where the amount of electricity is applied for a predetermined period of time to prevent abnormal high pressure [E].

本発明は以上のような事情に鑑みなされたもので、冷却
の進行に伴なう圧縮比の減少に起因する冷凍能力の低下
を防止して、定常状態においても運転開始時と同様な冷
凍能力を発揮することができる極低温冷凍機を提供する
ことを目的とする。
The present invention was developed in view of the above-mentioned circumstances, and is designed to prevent a decrease in refrigerating capacity due to a decrease in compression ratio as cooling progresses, and to maintain the same refrigerating capacity even in a steady state as at the start of operation. The purpose of the present invention is to provide a cryogenic refrigerator that can demonstrate the following.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は、圧縮機と膨張室を有するコールドヘッドとを
閉回路に接続してなる極低温冷凍機において、開回路の
所定箇所を流れる作動媒体の圧力を検出する圧力検出器
と、閉回路に弁を介して接続された、高圧の作1ij+
 114体を貯留した高圧ボンベと、前記圧力検出器に
より検出された圧力値と規定値との比較に基づいて前記
弁を開閉制御する制御装研とを設けたものである。
(Means for Solving the Problems) The present invention provides a cryogenic refrigerator in which a compressor and a cold head having an expansion chamber are connected in a closed circuit, in which the pressure of a working medium flowing through a predetermined part of the open circuit is controlled. A high pressure sensor connected to a closed circuit via a valve and a pressure detector to detect it.
The system is equipped with a high-pressure cylinder storing 114 bodies, and a control device that controls opening and closing of the valve based on a comparison between the pressure value detected by the pressure detector and a specified value.

(作 用) コールドヘッド内の極低温部の低温化に伴ない、圧縮機
の1モ縮比が低下し、膨張前後の圧力差が減少し、この
為に閉回路内の圧ノJが変化する。
(Function) As the temperature of the cryogenic part in the cold head decreases, the 1Mo compression ratio of the compressor decreases, the pressure difference before and after expansion decreases, and as a result, the pressure no. J in the closed circuit changes. do.

そこで、111回路内の所定箇所の圧力を検出して、こ
の圧力が規定値に保たれるように、この開回路に接続し
た高圧ボンベの弁を開閉制御して、必要に応じて閉回路
内へ作動媒体を補填して亡る。
Therefore, the pressure at a predetermined point in the 111 circuit is detected, and the valve of the high-pressure cylinder connected to this open circuit is controlled to open and close so that the pressure is maintained at a specified value. Replenish the working medium and die.

これにより、冷凍機運転による圧縮比の低下に伴なう冷
凍能力の低下を速やかに検出し防止することが可1止と
なる。
This makes it possible to promptly detect and prevent a decrease in refrigerating capacity due to a decrease in compression ratio due to refrigerator operation.

(実施例) 以下、実施例により本発明を説明する。(Example) The present invention will be explained below with reference to Examples.

第1図は本発明の一実施例の構成を示す。尚、前掲第3
図と同一物には同一符号を付し説明を省略する。圧縮機
2の吐出口とコールドヘッド3の吸気口とを結ぶ高圧側
管路4には、この管路内のヘリウムガス圧力を検出する
圧力検出器15が接続されている。この圧力検出器15
から出りされる圧力信号はi、II t11回路16に
入力される。IIIIl ’!11回路16は、上記圧
力信号の示す高圧管路4内のE[力値と、予め設定され
ている規定値とを比較し、上記圧力値が規定値を下回っ
ている場合には、電磁弁開信号を後述する電磁弁17に
出力りる。
FIG. 1 shows the configuration of an embodiment of the present invention. In addition, the above-mentioned No. 3
Components that are the same as those in the drawings are designated by the same reference numerals and their explanations will be omitted. A pressure detector 15 is connected to a high-pressure pipe line 4 connecting the discharge port of the compressor 2 and the intake port of the cold head 3 to detect the helium gas pressure within this pipe line. This pressure detector 15
The pressure signal output from the i, II t11 circuit 16 is input. III'! 11 circuit 16 compares the E[force value in the high pressure pipe 4 indicated by the pressure signal with a preset specified value, and if the pressure value is lower than the specified value, the electromagnetic valve An open signal is output to a solenoid valve 17, which will be described later.

コールドヘッド3の吐出口と圧縮R2の吸気口とを結ぶ
低圧側管路5には、電磁弁17及び減圧弁18を直列に
介して、高圧のヘリウムガスを貯留した高圧ボンベ19
が接続されている。電磁弁17は、通常は閉じており、
前記電磁弁開信号を受けた時に開く。これにより、高圧
ボンベ19内の高圧ヘリウムガスが低圧側管路5内に流
入する。
A high-pressure cylinder 19 storing high-pressure helium gas is connected to the low-pressure pipe line 5 connecting the outlet of the cold head 3 and the inlet of the compression R2 through a solenoid valve 17 and a pressure reducing valve 18 in series.
is connected. The solenoid valve 17 is normally closed,
The solenoid valve opens when it receives an opening signal. As a result, the high pressure helium gas in the high pressure cylinder 19 flows into the low pressure side pipe line 5.

減圧弁18の設定圧力は、高圧ボンベ19からのガス流
入によって閉回路内の圧力が室温状態におけるヘリウム
ガスの充填圧力を超過することのないように設定されて
いる。
The set pressure of the pressure reducing valve 18 is set so that the pressure in the closed circuit does not exceed the filling pressure of helium gas at room temperature due to the inflow of gas from the high pressure cylinder 19.

また高圧側管路4には安全弁20が設けられている。こ
の安全弁20は、高圧側管路4内の圧力が所定の安全圧
力以上になると自動的に開状態となって、閉回路内のヘ
リウムガスを外気へ放出してガス圧を下げ、安全圧力ま
で戻ると自動的に復帰して開状態となるものである。
Further, a safety valve 20 is provided in the high pressure side conduit 4. This safety valve 20 automatically opens when the pressure in the high-pressure side pipe 4 exceeds a predetermined safe pressure, releases helium gas in the closed circuit to the outside air, lowers the gas pressure, and reaches the safe pressure. When it returns, it automatically returns to the open state.

次に本実施例の作用を説明する。Next, the operation of this embodiment will be explained.

前述のように、冷n1が進f1するにつれて圧縮機2の
圧縮比が減少し、閉回路内圧力が変化して行く。この圧
力変化は、低圧側管路5にバッファタンク(図示せず)
を挿入した通常の冷凍機においては、高圧側管路4内の
圧7J低下として最も敏感に現われる。イこで、この高
圧側管路4内の圧力を検出して、これが規定伯より低下
したならば、fti磁弁磁子17き高圧ボンベ19内の
ヘリ・クムガスを低圧側管路5からシステム内へ補填し
てやる。
As described above, as the cold n1 advances f1, the compression ratio of the compressor 2 decreases, and the pressure within the closed circuit changes. This pressure change is caused by a buffer tank (not shown) in the low pressure side pipe line 5.
In a normal refrigerator into which a 100% cyclone is inserted, the most sensitive phenomenon appears as a 7J drop in pressure in the high-pressure side pipe 4. Now, the pressure in this high-pressure side pipe 4 is detected, and if it falls below the specified value, the heli-cum gas in the high-pressure cylinder 19 with the FTI magnetic valve magnet 17 is transferred from the low-pressure side pipe 5 to the system. I'll replenish it inside.

これにより、閉回路内のガス圧が上4し、圧111機2
の圧縮比が高まって行く。そして、高圧側管路5内の圧
力が上記規定値に達したところで、7ti磁弁17を閏
じてガスの補填を停止する。
As a result, the gas pressure in the closed circuit rises to 4, and the pressure increases to 111 and 2.
The compression ratio of will increase. Then, when the pressure in the high-pressure side pipe line 5 reaches the specified value, the 7ti magnetic valve 17 is operated to stop gas replenishment.

この結果、圧縮機2の吐出圧と吸気圧との圧力差はほぼ
一定となり、従ってコールドヘッド3の膨張室10内の
圧力ら第2図に示すようにほぼ一定の圧力差ΔPで変動
することになる。このように、膨張室10内の膨張前後
の圧力差△Pがほぼ一定に保たれることにより、冷凍能
力は定常状態においても初期値とほぼ同等の値に維持さ
れることになる。
As a result, the pressure difference between the discharge pressure and the intake pressure of the compressor 2 becomes almost constant, and therefore the pressure inside the expansion chamber 10 of the cold head 3 fluctuates with a nearly constant pressure difference ΔP as shown in FIG. become. In this way, by keeping the pressure difference ΔP before and after expansion in the expansion chamber 10 substantially constant, the refrigerating capacity is maintained at a value substantially equal to the initial value even in a steady state.

このことは、基本的に従来機と全く同一般h1の冷凍機
で、その冷凍能力を増大させたことに等しく、具体的に
はその冷凍能力を数10%改善したことに等しくなる。
This is basically equivalent to increasing the refrigerating capacity of a refrigerator with the same general h1 as the conventional model, and specifically, it is equivalent to improving the refrigerating capacity by several tens of percent.

また、冷凍機の運転停止時、或いは大量の入熱がコール
ドヘッド3の極低温部に発生した時などには、温度上昇
に伴なってガス容積が増大しシステム内圧力が上昇する
が、この圧力上昇は安全弁20からのガス放出によって
解放きれ、安全が維持される。
Furthermore, when the refrigerator is stopped or a large amount of heat is input into the cryogenic part of the cold head 3, the gas volume increases and the system pressure increases as the temperature rises. The pressure increase can be relieved by releasing gas from the safety valve 20, and safety is maintained.

尚、上記実施例では圧力検出器15を高圧側管路4に設
けているが、低圧側管路5の方に圧力変化が敏感に現わ
れる場合には低圧m管路5に設番ノだ方がよく、また高
圧側、低圧側両管路4,5に設けその差圧に基づいて弁
の開閉制御を行なうようにしてもよい。また^圧ボンベ
19については実施例のように低圧側管路5でなく、高
圧側管路に接続してもよい。
In the above embodiment, the pressure detector 15 is installed in the high-pressure side pipe 4, but if pressure changes appear more sensitively in the low-pressure side pipe 5, the pressure detector 15 may be installed in the low-pressure m pipe 5. Alternatively, the valve may be provided in both the high-pressure side and low-pressure side conduits 4 and 5, and the opening/closing of the valve may be controlled based on the differential pressure therebetween. Further, the pressure cylinder 19 may be connected to the high-pressure side conduit instead of the low-pressure side conduit 5 as in the embodiment.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、冷却の進行に伴
なう閉回路内の圧力の変化から圧縮比の低下を検出して
、作動媒体を補填することにより膨張前後の圧力差をほ
ぼ一定に保つようにしているので、定常状態においても
運転開始時とばば同等の冷却能力を維持することができ
る。
As explained above, according to the present invention, a decrease in the compression ratio is detected from the change in pressure in the closed circuit as cooling progresses, and by supplementing the working medium, the pressure difference before and after expansion is almost reduced. Since the cooling capacity is kept constant, it is possible to maintain a cooling capacity equivalent to that at the start of operation even in a steady state.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る極低温冷凍機の一実施例の構成を
示す図、第2図は同実施例の膨張室内圧力の経時変化を
示ず図、第3図は従来の極低温冷凍機の構成を示す図、
第4図は同従来機の膨張室内圧力の経時変化を示す図で
ある。 2・・・圧縮機、3・・・コールドヘッド、4・・・高
圧側管路、5・・・低圧側管路、6・・・蓄冷器、1o
・・・膨張室、15・・・圧力検出器、16川制m+装
置、17・・・電磁弁、18・・・減圧弁、19・・・
高圧ボンベ、20・・・安全弁。 出願人代理人  佐  腺  −男 第1図 開閉 第2図 U 第3図 旧聞 第4図
Fig. 1 is a diagram showing the configuration of an embodiment of a cryogenic refrigerator according to the present invention, Fig. 2 is a diagram showing the change in pressure in the expansion chamber over time of the same embodiment, and Fig. 3 is a diagram showing a conventional cryogenic refrigerator. A diagram showing the configuration of the machine,
FIG. 4 is a diagram showing changes over time in the pressure in the expansion chamber of the conventional machine. 2...Compressor, 3...Cold head, 4...High pressure side pipe line, 5...Low pressure side pipe line, 6...Regenerator, 1o
... Expansion chamber, 15... Pressure detector, 16 River control m+ device, 17... Solenoid valve, 18... Pressure reducing valve, 19...
High pressure cylinder, 20...safety valve. Applicant's agent: Mr. - Male Figure 1 Opening/closing Figure 2 U Figure 3 Old newspaper Figure 4

Claims (1)

【特許請求の範囲】 1、圧縮機とコールドヘッドとを閉回路に接続して成る
極低温冷凍機において、前記閉回路の所定箇所を流れる
作動媒体の圧力を検出する圧力検出器と、前記閉回路に
弁を介して接続された、高圧の前記作動媒体を貯留した
高圧ボンベと、前記圧力検出器により検出された圧力値
と規定値との比較に基づいて前記弁を開閉制御する制御
装置とを設けたことを特徴とする極低温冷凍機。 2、前記閉回路と前記高圧ボンベとの間に前記弁に直列
に減圧弁を設け、この減圧弁の設定圧力を、前記高圧ボ
ンベからの作動媒体の流入による前記閉回路内の圧力が
室温状態における充填圧力を超過しないように設定した
ことを特徴とする特許請求の範囲第1項記載の極低温冷
凍機。 3、前記閉回路の高圧側管路に接続され、この管路内の
作動媒体圧力が所定の安全圧力を超えたときに開状態と
なり前記閉回路内の作動媒体を閉回路外へ放出し、前記
高圧側管路内の作動媒体圧力が前記安全圧力まで低下し
たときに閉状態に復帰して前記放出を停止する、安全弁
を設けたことを特徴とする特許請求の範囲1項記載の極
低温冷凍機。
[Claims] 1. A cryogenic refrigerator comprising a compressor and a cold head connected to a closed circuit, comprising: a pressure detector for detecting the pressure of a working medium flowing through a predetermined portion of the closed circuit; a high-pressure cylinder connected to a circuit via a valve and storing the high-pressure working medium; and a control device that controls opening and closing of the valve based on a comparison between a pressure value detected by the pressure detector and a specified value. A cryogenic refrigerator characterized by being equipped with. 2. A pressure reducing valve is provided in series with the valve between the closed circuit and the high pressure cylinder, and the set pressure of this pressure reducing valve is set so that the pressure in the closed circuit due to the inflow of working medium from the high pressure cylinder is at room temperature. 2. The cryogenic refrigerator according to claim 1, wherein the cryogenic refrigerator is set so as not to exceed the filling pressure in . 3. Connected to the high pressure side pipe line of the closed circuit, and when the pressure of the working medium in this pipe exceeds a predetermined safe pressure, it becomes open and releases the working medium in the closed circuit to the outside of the closed circuit; The cryogenic temperature control system according to claim 1, further comprising a safety valve that returns to a closed state and stops the discharge when the pressure of the working medium in the high-pressure side pipe decreases to the safe pressure. refrigerator.
JP18656586A 1986-08-08 1986-08-08 Cryogenic refrigerator Pending JPS6341772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18656586A JPS6341772A (en) 1986-08-08 1986-08-08 Cryogenic refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18656586A JPS6341772A (en) 1986-08-08 1986-08-08 Cryogenic refrigerator

Publications (1)

Publication Number Publication Date
JPS6341772A true JPS6341772A (en) 1988-02-23

Family

ID=16190750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18656586A Pending JPS6341772A (en) 1986-08-08 1986-08-08 Cryogenic refrigerator

Country Status (1)

Country Link
JP (1) JPS6341772A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085048A (en) * 2002-08-26 2004-03-18 Sumitomo Heavy Ind Ltd Cryogenic freezing device and its operation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085048A (en) * 2002-08-26 2004-03-18 Sumitomo Heavy Ind Ltd Cryogenic freezing device and its operation method

Similar Documents

Publication Publication Date Title
US9863669B2 (en) Brayton cycle type refrigerating apparatus
EP1631773B1 (en) Supercritical pressure regulation of economized refrigeration system
JPH11193967A (en) Refrigerating cycle
JP2002195670A (en) Transcritical vapor compression system, and suction lien heat exchanger regulating pressure of high-pressure component of refrigerant circulating in the system
JP2011133205A (en) Refrigerating apparatus
KR20110074712A (en) Freezing device
JP5502460B2 (en) Refrigeration equipment
JP2011133206A (en) Refrigerating apparatus
JP2512986B2 (en) Heat pump device
JPS6341772A (en) Cryogenic refrigerator
JP2005274039A (en) Air-conditioner with defrosting function
JP2011133208A (en) Refrigerating apparatus
JP2904525B2 (en) Method of controlling refrigerant flow rate in heat pump air conditioner and heat pump air conditioner
JP4109997B2 (en) Turbo refrigerator
JP2002022337A (en) Liquid temperature controller of cooler
JPH01123966A (en) Refrigerator
JPS6346351A (en) Cryogenic refrigerator
US20230417465A1 (en) Refrigerator and operation method during precooling of refrigerator
CN216481666U (en) Air conditioning unit
JP3651370B2 (en) Refrigeration equipment
JP3505209B2 (en) Refrigeration equipment
CN109539614B (en) A kind of air-conditioning system and its energy adjustment method
CN113932466A (en) Air conditioning unit and control method thereof
JPH05223378A (en) Helium liquefying/freezing apparatus and operation thereof
JPH0350438A (en) Heating and cooling device