JP3976294B2 - Method for manufacturing nitride-based compound semiconductor light-emitting device - Google Patents
Method for manufacturing nitride-based compound semiconductor light-emitting device Download PDFInfo
- Publication number
- JP3976294B2 JP3976294B2 JP17929899A JP17929899A JP3976294B2 JP 3976294 B2 JP3976294 B2 JP 3976294B2 JP 17929899 A JP17929899 A JP 17929899A JP 17929899 A JP17929899 A JP 17929899A JP 3976294 B2 JP3976294 B2 JP 3976294B2
- Authority
- JP
- Japan
- Prior art keywords
- growth
- layer
- substrate
- active layer
- compound semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Led Devices (AREA)
- Semiconductor Lasers (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は基板上に窒化物系化合物半導体結晶を作成する方法と、当該方法を用いて作成した窒化物系化合物半導体発光素子に関する。
【0002】
【従来の技術】
従来、窒化物系化合物半導体は、発光素子やハイパワーデバイスとして、利用または研究されており、その構成する組成を調節することにより、例えば、発光素子の場合、技術的には青色から橙色までの幅の広い発光素子として利用することができる。近年、その特性を利用して青色発光ダイオードや緑色発光ダイオードが実用化され、また、半導体レーザー素子として青紫色半導体レーザが開発されつつある。
【0003】
窒化物系化合物半導体を上記発光素子として作製する場合、通常、鏡面研磨サファイア(0001)基板等、窒化物系化合物半導体がエピタキシャル成長する基板上に、n型の特性を示す電流注入層を形成し、その上に発光層及びp型の特性を示す電流注入層を形成する。発光層は厚みが10nm以下の量子井戸を使用すると発光強度が大きくなることが知られており、発光波長は例えばInGaNからなる発光層のIn組成比を調整することにより可変である。エピタキシャル成長の方法としては、MOCVD、MBE等の気相成長技術が用いられている。例えば、MOCVD法では、サファイア(0001)面基板を1000℃程度の還元雰囲気で処理し、アンモニアを供給して基板表面の初期窒化を行い、500℃程度の低温でGaNあるいはAlNバッファ層を形成し、1000℃程度に昇温して窒化物系化合物半導体結晶を作製している。
【0004】
一般に、量子井戸は1層のみから形成されている場合もあるが、井戸層と障壁層を有する多重量子井戸構造(MQW)を利用する方が発光効率を高くできる事が知られている。ところが、Inを含む窒化物系化合物半導体(例えばInGaN)よりなる量子井戸構造を用いて発光素子を作製する場合、サファイア基板との格子不整合が13%と非常に大きく、基板界面から量子井戸を経て表面に達する貫通転位が高密度に存在している。このため、転位を介して流れる電流は発光に寄与しない成分となり、駆動電流密度の増大と発熱の原因となっている。また、Inを含む窒化物系化合物半導体の結晶成長時の化学的熱平衡状態が非常に不安定なため、転位を中心にInが凝集あるいは離散し、目的とする均一なIn組成の量子井戸構造を形成することが困難である。仮に目的とするIn組成の量子井戸構造を形成できたとしても、結晶性の良い量子井戸層の形成は困難であり、高い発光効率を実現することが難しい。また、前記の理由によって、基板内において、量子井戸構造を形成するInを有する窒化物系化合物半導体膜のIn組成や、膜厚の均一性が損なわれ、基板全面で均一に目的の発光波長と発光強度を持つ発光素子を作製することが困難である。
【0005】
上述する問題点に対して、特開平9−23026号公報では、サファイア基板面とC面((0001)面)のなす角を5゜以内として、バッファ層を介した2段階成長により発光特性を向上させる技術が開示されている。上記公報では、発光素子(LED)における輝度向上に関する技術が示されているのみであって、素子化プロセスおよび発光素子の特性に影響する結晶最表面の平坦性向上および結晶転位密度の低減に関する技術は開示されていない。
【0006】
【発明が解決しようとする課題】
前記MOCVD法では初期窒化および低温バッファ層を介して結晶成長を行っているが、この方法では転位密度が高く結晶品質が不十分であり、高電流密度で駆動するレーザー素子において特に問題となる。また、基板表面の傾斜角を単純に5°以内とした場合でも基板表面のステップ密度が十分に規定されないため、言い換えると表面の平坦性が十分でないため、基板傾斜角のばらつきによって窒化物系化合物半導体の結晶品質および表面状態が敏感に変動する。
【0007】
従来例に開示されている0.2°から5°程度の傾斜角の場合は(0001)面サファイア基板上に成長された窒化物系化合物半導体、例えばGaNは基板との界面から発生した転位が高密度に存在している。これは、サファイア基板とGaNの格子定数差によって三次元成長し易いことおよび、<0001>方向からの傾斜角が0.2゜から5゜の範囲のサファイア基板を使用しているために不均一に分布する基板表面のステップが整然としたステップフロー成長を阻害しているためであると考えられる。
【0008】
ヘテロエピタキシャル成長において、低温で形成されるバッファ層は、アモルファスあるいは多結晶であったものが昇温過程で原子の再配列により基板の情報を受けつつ単結晶化し、高温ではホモエピタキシャル成長に近い条件で結晶成長を可能にする作用を持つ。しかし、サファイアとGaNのように大きな格子不整合を有する系ではバッファ層の効果が不十分であり、<0001>方向からの傾斜角による基板表面のステップ差を吸収するためのバッファ層形成条件が狭い範囲に限定される。
【0009】
基板表面の初期窒化もバッファ層と同様にホモエピタキシャル成長に近づける働きをするが、窒化過程はサファイア表面近傍の酸素原子離脱と気相からの窒素原子の拡散により支配されるため初期の基板表面形状を保った状態で進行する。したがって、不適切な傾斜角を有するサファイア基板表面のステップは窒化による影響をそれほど受けずに残留する。このような基板のミクロに見た表面を図1に模式的に示す。基板101上に原子層オーダーのステップ102が不均一に分布している。基板表面に到達した原料種はマイグレーションと再離脱を繰り返しつつ基板表面の安定なサイト、すなわち原子層のステップ102に到達し成長核103を形成するが、ステップ分布を反映して成長核形成も不均一となる。したがって、傾斜角を規定しない基板上の成長では2次元成長(一層ずつ面で積層されるモード)は阻害され、局所的に結晶の成長が進む3次元核成長モードが主となり、成長した結晶同士が隣接して連結する場所から貫通転位を発生させる。
【0010】
また、Inを含む層の組成均一性および結晶性が不十分であって、より高効率の発光ダイオードまたは、低閾値の半導体レーザを作製しようとすると、従来の技術だけでは目的とする低駆動電流、高発光効率の発光素子が得られない。そのため、より良い電気特性と発光特性を持つ発光素子の作製が求められていた。
【0011】
【課題を解決するための手段】
【0012】
【0013】
【0014】
【0015】
【0016】
本願記載の窒化物系化合物半導体発光素子の製造方法は、サファイア基板上に、互いに導電型が異なる層に挟まれた活性層を有する積層体を気相成長させる窒化物系化合物半導体発光素子の製造方法において、上記サファイア基板表面の結晶方位が<0001>方向より<11−20>方向または<1−100>方向に0.05°以上0.2°以下の範囲で傾斜していることを特徴とする。
【0017】
【0018】
本願記載の窒化物系化合物半導体発光素子の製造方法は、上記活性層は単数または複数層の井戸層と障壁層から形成され、該井戸層あるいは該障壁層のどちらか一方あるいは両方の形成後、一定時間の成長中断を設ける過程を有することを特徴とする。
【0019】
本願記載の窒化物系化合物半導体発光素子の製造方法は、上記障壁層成長後の上記成長中断時間は1秒以上60分以下であることを特徴とする。
【0020】
本願記載の窒化物系化合物半導体発光素子の製造方法は、上記井戸層成長後の上記成長中断時間は1秒以上60分以下であることを特徴とする。
【0021】
本願記載の窒化物系化合物半導体発光素子の製造方法は、上記成長中断時には、窒素を主体とするキャリアガスを流していることを特徴とする。
【0022】
本願記載の窒化物系化合物半導体発光素子の製造方法は、上記成長中断時には、窒素を主体とするキャリアガスと、V族原料ガスを流していることを特徴とする。
【0023】
本発明においては、上記課題を解決する手段として、Inを含有する複数層よりなる窒化物系化合物半導体を発光層とする発光素子を製造する際に、まず、結晶方位を<0001>方向から極僅かに傾斜させたサファイアやGaN等の基板を用いて貫通転位を低減させ、発光に寄与しない電流経路を減少させ、活性層下地層の表面平坦性を向上させる。さらに、その後、複数層の井戸層と障壁層からなる発光層を成長し、井戸層となる窒化物系化合物半導体層の形成後、一定期間の成長中断を設ける過程と、井戸層に接し、井戸層よりもバンドギャップエネルギーが大きい障壁層となる窒化物系化合物半導体を形成後、一定期間の成長中断を設ける過程をおいて、さらなる表面状態の改善と活性層の組成を均一化させることを特徴とする。
【0024】
先に示したように従来例で見た表面は図1のようになるが、本発明では図2のようになる。基板201を<0001>方向から<11−20>方向或いは<1−100>方向に角度を規定して傾斜させることによりステップ202を均一に分布させ、かつステップ密度を最適に制御する。その結果、基板全面で成長核203が均一に形成され、整然としたステップフロー成長となる。この状態では安定した二次元成長が実現される。
【0025】
従来例に開示されている0.2°から5°程度の傾斜角の場合は(0001)面サファイア基板上に成長された窒化物系化合物半導体、例えばGaNは基板との界面から発生した転位が高密度(1×1011cm-2以上)に存在している。これは、サファイア基板とGaNの格子定数差によって三次元成長し易いことおよび、<0001>方向からの傾斜角が規定されていないために不均一に分布する基板表面のステップが整然としたステップフロー成長を阻害しているためであると考えられる。
【0026】
ヘテロエピタキシャル成長において、低温で形成されるバッファ層は、アモルファスあるいは多結晶であったものが昇温過程で原子の再配列により基板の情報を受けつつ単結晶化し、高温ではホモエピタキシャル成長に近い条件で結晶成長を可能にする作用を持つ。しかし、サファイアとGaNのように大きな格子不整合を有する系ではバッファ層の効果が不十分であり、<0001>方向からの傾斜角による基板表面のステップ差を吸収するためのバッファ層形成条件が狭い範囲に限定される。また、GaN基板上へのホモエピタキシャル成長の場合でも、表面エネルギーを低下させ、面内で一様な成長を実現するためにある程度の厚さにバッファ層を形成することが望ましく、その際に基板表面ステップを最適な状態に設定することが重要である。
【0027】
基板表面の初期窒化もバッファ層と同様にホモエピタキシャル成長に近づける働きをするが、窒化過程はサファイア表面近傍の酸素原子離脱と気相からの窒素原子の拡散により支配されるため初期の基板表面形状を保った状態で進行する。したがって、傾斜角を規定されていない基板表面のステップは窒化による影響をそれほど受けずに残留し、ステップフロー成長を阻害して、転位を発生させる。
【0028】
本発明では、サファイア基板を<0001>方向から<11−20>方向あるいは<1−100>方向に傾斜させることにより最表面のステップ密度を最適な状態に規定し、安定して二次元成長を促進させる。<0001>方向から<11−20>方向あるいは<1−100>方向に0.05°から0.2°傾斜角させた基板を用いて作製したレーザーあるいは発光ダイオードは、積層する窒化物系化合物半導体の高品質化によって、発光効率が向上し、特にレーザーにおいては長寿命化が実現される。
【0029】
さらに、障壁層となる窒化物系化合物半導体を形成後に成長中断を設けることによって、固相に取り込まれた原料種の凝集を防止して組成を均一にすることができ、組成不均一が解消されることで、さらに表面平坦性が向上する。その際、成長中断時間を、1秒以上60分以下とすることにより、顕著な効果が得られる。同様に、井戸層となる窒化物系化合物半導体形成後に設ける成長中断時間を、1秒以上60分以下にすることによって、更なる効果が現われる。また、成長中断時には、窒素を主体とするキャリアガスあるいは、窒素を主体とするキャリアガスとV族原料ガスを混合して流すことにより、より顕著な効果が現われる。
【0030】
発光素子を作製する際に、微傾斜基板と成長中断を併用すれば、より高い効果が得られる。すなわち、通常基板を用いて成長した結晶において貫通転位が存在すると、転位周辺で凝集したInが層内で拡散しない。そこで、微傾斜基板を用いて貫通転位密度を減少させた上で、成長中断により転位周辺でのIn凝集を解消することが効果的である。
【0031】
【発明の実施の形態】
まず、本発明を詳細に説明する。一般的に、窒化物系化合物半導体を結晶成長する際は、サファイア、SiC、GaN、GaAs、スピネル(MgAl2O4)等が基板として用いられる。また、結晶成長を行う方法としては、有機金属気相成長法(MOCVD)、分子線エピタキシー法(MBE)、ハイドライド気相成長法(HVPE)で行うのが通例である。
【0032】
中でも、作製する窒化物系化合物半導体の結晶性や、生産性を考慮すると、基板としては、サファイアまたはGaNを使用し、成長方法としてはMOCVD法を使用するのが最も一般的な方法である。
【0033】
図3に本願実施例の製造に使用したMOCVD装置の概略図を示す。図中、301は<0001>方向から<11−20>あるいは<1−100>方向に0.05°から0.2°傾斜した(0001)面サファイア基板であり、カーボンサセプタ(302)上に配置されている。サセプタの中には、やはりカーボン製抵抗加熱用ヒーターが配置されており、熱電対により基板温度をモニターし、制御することができる。303は二重の石英でできた水冷反応管である。V族原料としては、アンモニア(306)を使用し、III族原料としては、トリメチルガリウム(以下、TMGと言う)、トリメチルアルミニウム(以下、TMAと言う)、トリメチルインジウム(以下、TMIと言う)(307a〜307c)を窒素ガスまたは水素ガスでバブリングして使用した。また、n型のドーピング原料としてはSiH4(309)を使用し、p型のドーピング原料としては、ビスシクロペンタジエニルマグネシウム(以下、Cp2Mgと言う)(307d)を使用した。各原料は、マスフローコントローラ(308)で正確に流量を制御して原料入り口(304)より反応管に導入されて、排気ガス出口(305)より排出される。
【0034】
次に、窒化物系化合物半導体レーザ/発光ダイオードを形成する結晶成長手順について、代表的な例を図4を参照しながら説明する。まず、基板(401)を洗浄して、結晶成長装置内に設置する。基板は、水素雰囲気中1100℃程度の温度で約10分程度熱処理を施し、その後温度を500℃〜600℃程度に降温する。温度が一定になれば、キャリアガスを窒素に替え、窒素ガスの全流量を10l/min、アンモニアを約3l/min流し、数秒後、TMGを約20μmol/min流し、約1分間低温でのバッファ層としてのGaN膜(402)の成長を行った。成長した膜の厚さは約20nmである。
【0035】
その後、TMGの供給を停止し、温度を1050℃まで昇温し、再びTMGを約50μmol/minとSiH4ガスを約10nmol/min供給してn型のGaN膜(403)を約4μm成長する。次に、TMAを10μmol/min供給し、0.5μmの厚さのn型Al0.15Ga0.85N膜(404)を成長する。この層は光閉じ込め層であり、発光ダイオードを製造する際には不要である。
【0036】
次に、TMAの供給を停止し、約0.1μm厚さのGaN膜(405)を成長する。この層は、光ガイド層であり、発光ダイオードを製造する際には不要である。その後、SiH4とTMGの供給を停止し、基板の温度を850℃〜700℃程度まで低下させる。この温度は、発光素子の発光波長を決定する一つのパラメータとなり、低温ほど発光波長が長くなる傾向を示す。上述した基板温度は、紫〜緑の発光素子を作製するための温度であり、必要な波長帯が紫〜緑の波長帯になければ、基板温度をかえても問題はない。温度が安定すると、TMGを10μmol/min、TMIを10μmol/minで供給し、In0.05Ga0.95Nからなる活性層(406)を形成する障壁層を約5nmの厚さになるように成長する。活性層成長時には、SiH4を10nmol/min程度流しても良い。
【0037】
障壁層の成長終了後、一旦TMGとTMIの供給を停止し、キャリアガスとNH3ガスを流しながら、1秒〜60分間の成長中断を行う。その後、再び、TMGを10μmol/min、TMIを50μmol/min供給し、In0.2Ga0.8Nからなる活性層の井戸層を約3nmの厚さになるように成長する。井戸層成長後、再びTMGとTMIの供給を停止し、キャリアガスとNH3ガスを流しながら、1秒〜60分間の成長中断を行う。この活性層となる井戸層と障壁層の成長を繰り返し、必要な層数の多重量子井戸を成長した後、最後に障壁層を成長して活性層(406)の成長を終了する。通常の場合、井戸層の層数は、2層から5層にするのが最も発光効率の良い素子ができることがわかっている。
【0038】
活性層成長後に、InGaN膜の昇華を防止する目的で、TMGを10μmol/min、TMAを5μmol/min、及びCp2Mgを供給し、約30nmの厚さのAlGaN層(407)を成長する。その後、TMG、TMA、Cp2Mgの供給を停止し、基板温度を再び1050℃に昇温する。昇温後、TMGを50μmol/minとCp2Mgを供給し、p型のGaNよりなる光ガイド層(408)を0.1μm成長する。本層は発光ダイオードを製造する際には不要である。次に、TMAを10μmol/min供給し、0.5μmの厚さのp型Al0.15Ga0.85N膜(409)を成長する。この層は光閉じ込め層であり、発光ダイオードを製造する際には不要である。成長終了後、TMAの供給を停止し、p型のGaNよりなるコンタクト層(410)を約0.5μm成長し、終了後、TMGとCp2Mgの供給を停止して基板加熱を終了する。
【0039】
図5に活性層近傍の成長温度と各原料の供給量を示す。図中、501、502、503、504、505及び506は各々、成長中断、障壁層の成長、井戸層の成長、n型GaN膜の成長、p型GaNの成長、及びAlGaN昇華防止層の成長を行っている期間を示す。
【0040】
温度が室温になれば、結晶成長装置より基板を取りだし、反応性イオンエッチングを用いて、一部のn型GaNを露出し、必要な形状の絶縁膜(411)とp型電極(412a)とn型電極(412b)を蒸着法により形成する。また、光を取り出す端面は、基板を劈開することで形成する。
【0041】
発光ダイオードを作製する場合は、劈開による端面は必要なく、p型電極側またはn型電極側から光を透過させて使用する。
【0042】
上記の例では微傾斜基板を用いた上で成長中断を行っているが、成長中断を行わなくても、従来と比較して結晶性は十分によくなった。
【0043】
さらに、微傾斜基板上に発光素子を作製し、活性層成長時に成長中断を行うことによって、発光素子の発光強度が増加する原因について、詳細は解らないが、Inを含む窒化物系化合物半導体は高温では化学的に不安定な状態で成長しており、さらに膜中を貫通する転位がInを凝集させる作用を持ち、Inを含む窒化物系化合物半導体層成長直後は結晶が良好な状態で存在していない。そのため、まず、微傾斜基板を用いて貫通転位密度を減少させ、さらに窒素雰囲気中で熱にさらされることにより、Inを含む窒化物系化合物半導体中のIn凝集が解消されて安定な相状態に自然に落ち着き、結晶の状態が良好なものに移行するのではないかと思われる。特に発光に寄与する井戸層に隣接している障壁層の結晶状態が井戸層の結晶質の向上に大きく影響を与えているのではないかと推測している。
【0044】
また、本例では、低温バッファ層としてGaN膜を成長した場合について記述したが、低温バッファ層としてはAlxGa1-xN(0≦x≦1)を使用しても発光素子を作製する上で何ら問題がない。
【0045】
また、基板としてGaNを使用する場合には、水素雰囲気中の熱処理と低温でのバッファ層の成長は行う必要がなく、昇温は、不活性ガスを主とするキャリアガスとNH3雰囲気中で行い、TMG及び/またはSiH4の導入と同時に下層のGaN膜の成長から行うことができる。
【0046】
(実施例1)
<0001>方向から<1−100>方向に0.05°傾斜させて鏡面研磨したサファイア(0001)基板を通常の横形MOCVD装置反応炉にセットして、水素を供給しつつ1100℃まで昇温し10分間サーマルクリーニングを行う。その後600℃まで降温してGaNバッファ層を50nm堆積させ、アンモニアを供給しつつ1000℃まで昇温し、アンドープGaN層を5μm厚成長した。このGaN膜は、段差計による測定で平均表面粗さが1.0nm、二結晶X線回折ピークの半値幅2.5arcmin、電子濃度4×1015cm-3、移動度500cm2/V・secであり、良好な結晶特性が得られた。
【0047】
また、上記と同じ基板を用いて、上記実施形態で用いたGaNバッファ層の代わりに、基板温度600℃で50nm厚堆積したAlNバッファ層を適用した場合でも、バッファ層上に成長されたGaN層では上述と同等の良好な結晶特性が得られた。また、上記工程のサーマルクリーニング後に引き続き、アンモニア雰囲気中でサファイア基板表面を1100℃で10分間初期窒化をした後に上記と同様の方法でバッファ層とGaN層を成長させても、形成されたGaN層の結晶特性は上記と同等の良好な特性であった。
【0048】
(比較例1)
比較のため、<0001>から<1−100>方向へ2.1°傾斜したサファイア基板を用いて実施例1と全く同様の工程でアンドープGaN層を成長したところ、二次元成長が阻害されたことによる凹凸が発生し、平均表面粗さ2.0nm、二結晶X線回折ピークの半値幅4arcmin、電子濃度1016cm-3、移動度90cm2/V・secと結晶としての特性が劣化した。
【0049】
そこで、さらに上述の工程において、バッファ層の堆積温度を550℃、厚さを40nmに変更したとしても、平均表面粗さが2.0nmと変化せず、結晶特性は3.5arcmin、8×1015cm-3、200cm2/V・secであり、実施例1で示した0.05°の傾斜角を有するサファイア基板を用いてGaN層を形成した場合の結晶の特性には及ばない。
【0050】
ここで、サファイア基板の表面方位を<0001>方向から<1−100>方向への傾斜角を0.02°から0.5°まで変化させ、実施例1および従来例1と同様の工程により形成したGaN層の表面粗さ(平坦性)および貫通転位密度を調べた結果を図6の●で示す。0.02°から0.045°および0.21°から0.5°の範囲では、サファイア基板表面の傾斜角によって引き起こされる結晶成長不良により表面に凹凸が発生した。
【0051】
また、表面粗さと貫通転位密度はほぼ一対一に対応しており、表面粗さが1.5nm以下のGaN層では貫通転位密度は109cm-2台に抑制できるが、表面粗さが1.5nmを超える層においては5×1010cm-2以上と大きくなることも分かった。すなわち、サファイア基板の表面の面方位の傾きが0.05°から0.2°の範囲の場合には、表面粗さも小さく、かつ、貫通転位も比較的小さく抑制することができた。
【0052】
これは、この傾斜角度範囲内においては、GaN層成長時に良好な2次元成長が実現され(GaN層が一原子層ずつ積層される状況が実現され)、3次元核成長時に見られる局所的に進行する成長はなく、かつ、3次元核成長時特有の局所的成長領域のGaN結晶同士が隣接して接する領域での貫通転位の発生も抑制できた効果であると考えられる。
【0053】
(実施例2)
次に実施例1とは傾斜方向が90°異なる方向に傾斜させたサファイア基板を用いた場合の本発明の実施形態について説明する。本実施例では、<0001>方向から<11−20>方向に0.15°傾斜させて鏡面研磨したサファイア(0001)基板を通常の横形MOCVD装置反応炉にセットして、実施例1と同様の工程によりアンドープGaN層を成長した。本実施例で作製されたGaN層の結晶特性は、平均表面粗さ1.1nm、二結晶X線回折半値幅2.6arcmin、電子濃度4×1015cm-3、移動度500cm2/V・secと良好であった。
【0054】
また、本実施例において上述と同じ基板を用いて、GaNまたはAlNまたはAlGaNバッファ層の堆積温度を500℃〜650℃、厚さを40nm〜70nmの範囲で変化させても、形成されたGaN層の特性にほとんど変化が見られず、良好なGaN層を得ることができた。また、バッファ層形成前にサファイア基板表面をアンモニア雰囲気中で初期窒化する工程を追加しても、GaN層の結晶特性は同様であった。
【0055】
(比較例2)
実施例2との比較のために、<11−20>方向に1.8°傾斜したサファイア(0001)基板を用いて実施例2と同様の工程でGaN層の成長を行ったが、GaN層の結晶特性が実施例2の場合より著しく劣化して、表面に2.0nm以上の平均粗さを有する凹凸が発生した。さらに、実施例2と同様にGaNまたはAlNまたはAlGaNバッファ層の堆積温度を500℃〜650℃、厚さを40nm〜70nmの範囲で変化させたが、GaN層の結晶特性に大きな改善は見られなかった。
【0056】
ここで、表面方位を<0001>から<11−20>方向への0.02°から0.5°の範囲で傾斜角を変化させたサファイア基板を用いて実施例2と同様の工程によりGaN層を成長させた場合のGaN層の表面粗さと貫通転位密度の測定結果を図6の○に示す。<1−100>方向への傾斜の時と同様に<11−20>方向へ傾斜させた場合も、傾斜角を0.045°以下、及び0.21°以上の場合には、平均表面粗さが1.5nm以上と大きくなった。
【0057】
また、この場合の貫通転位密度も5×1010cm-2以上と多くなることが分かった。一方、サファイア基板の面方位を(0001)面から<11−20>方向に0.05°から0.2°範囲内で傾けた場合には、GaN層の平均表面粗さは顕著に低減され約0.8nmまで平坦化が実現できた。また、このような平均表面粗さの小さなGaN層の貫通転位密度は3×109cm-2と比較的少なく抑制することができた。
【0058】
以上のように、サファイア基板の表面方位が、その上に形成するGaN結晶層の平均表面粗さ、および貫通転位密度に大きな影響を及ぼすことが分かった。この結晶性の改善は、バッファ層の成長条件(基板温度や厚さ)、さらにはGaN層自体の成長温度を上記実施例の1100℃から950℃、1000℃、1150℃、1200℃と変化させた場合にも確認でき、サファイア基板の面方位の傾斜角を0.05°から0.2°の範囲内とすることが最も肝要であることが確かめられた。
【0059】
(実施例3)
図7に本願の窒化物系化合物半導体を用いて作製したLEDの例を示す。図において、701はサファイア(0001)基板、702はGaNバッファ層、703はn型GaNコンタクト層、704はIn0.2Ga0.8N単一量子井戸層からなるInGaN活性層、705はp型AlGaN保護層、706はp型GaNコンタクト層、707はp型電極、708はn型電極である。<0001>方向から<1−100>方向に0.05°傾斜させて鏡面研磨したサファイア(0001)基板701を用いて、基板温度600℃でGaNバッファ層702を50nm厚堆積させ、続いて基板温度を1000℃に上昇させアンモニア、TMGおよびSiH4を用いてn型GaNコンタクト層703を5μm厚成長した。この時のn型GaNコンタクト層703はn型不純物が1×1018cm-3の密度で含まれるようにした。
【0060】
続いて、750℃まで基板温度を降温し、アンモニア、TMG、TMI、を用いてIn0.2Ga0.8N単一量子井戸層のInGaN活性層704を3.5nm厚、Mg添加のp型Al0.1Ga0.9N保護層705を30nm厚成長した後、再度1000℃まで基板温度を昇温し、アンモニア、TMGおよびCp2Mgを用いて0.5μm厚のp型GaNコンタクト層706を成長した。成長終了後、ウェハー基板を取り出して窒素雰囲気中で800℃、20分間の熱処理を行い、常法に従ってエッチング、電極形成の工程を用いてLEDを作製した。n型電極708はAl、p型電極707はAu/Niである。
【0061】
完成したLEDに20mAの順方向電流を流したところ、発光ピーク波長450nm、発光スペクトルの半値幅13nm、輝度は2cdであった。また、本実施例のLED素子での発光パターンを観測したところ、InGaN活性層704のほぼ全面で均一に発光しており、微細な発光強度の分布は見られなかった。この場合の、発光強度のばらつきは±20%以下に抑えられていた。
【0062】
本実施例においても、InGaN活性層704を成長する直前の状態であるところのn型GaNコンタクト層703の表面の結晶性を評価した。実施例1および2とは異なり、InGaN活性層704の下地となるn型GaNコンタクト層703にはSiが不純物として添加されているが、平均表面粗さと貫通転位密度を評価したところ、実施例1とほぼ同様の良好な特性が確認できた。ただし、この場合Siを添加しない実施例1の状態に比べて多少の表面粗さの悪化が見られたが、高々1.1nmから1.3nmの範囲であり、InGaN活性層704の厚さ3.5nmより小さく制御できていることを確認した。またこの時の貫通転位密度も5×109cm-2と比較的低レベルに抑制されていた。
【0063】
また、本実施例と同様の方法を用いて、基板の傾斜角のみ変更したLED素子を評価した結果、0.05°から0.2°の傾斜角の範囲にある素子では、本実施例と同様の発光スペクトルの半値幅の狭帯域化と、発光強度分布の均一化、発光効率の向上が観測できた。この場合の傾斜角の方向としては<1−100><11−20>のいずれの場合も、同様の効果が確認できた。この効果は、図6で示したように、成長された窒化物半導体層の表面粗さが低減され、非常に平坦な膜上に活性層を形成できた結果であると考えられる。
【0064】
(比較例3)
比較のため、<0001>方向から<1−100>方向に0.25°傾斜させたサファイア基板を用いて実施例3と同様の方法で作製したLEDに20mAの順方向電流を流したところ、発光波長450nmと実施例3と同じであったが、発光スペクトルの半値幅は35nmと実施例3より広がっており、輝度は900mcdと発光効率が低下していることが分かった。さらに、発光パターン評価においても、発光強度の素子面内での分布が±70%と非常に大きいことが分かった。よって、本発明により発光スペクトルの半値幅が大幅に狭帯域化し、色純度と発光強度の著しい向上が実現できた。また、発光強度の素子面内での分布も均一にすることが可能となった。
【0065】
これは、InGaN活性層704の下地であるn型GaNコンタクト層703の表面が、量子井戸704の厚さより十分小さな平均粗さになるように平坦化された結果、InGaN活性層704の厚さが面内で均一化された結果である。このような、発光スペクトルの半値幅を狭くする効果は、n型GaNコンタクト層703の平均表面粗さがInGaN活性層704の厚さより小さい時に確認でき、特に、InGaN活性層704の厚さの半分以下になった場合に顕著であった。
【0066】
上記実施例3では、n型GaNコンタクト層表面の平均粗さは1.1nmから1.2nmであり、InGaN活性層704の厚さ(3.5nm)の30〜40%程度の粗さとなっていることが分かる。さらに、発光パターンの均一性に関しても、同様に、n型GaNコンタクト層703の表面粗さをInGaN活性層704の厚さより小さくすることにより、発光強度の素子面内での分布が±50%より小さくすることが可能であり、望ましくはこの粗さをInGaN活性層704厚の半分以下にすることにより、発光強度分布を±25%以下に均一化することができた。
【0067】
上記のような量子井戸活性層を有する窒化物系化合物半導体発光素子において、活性層の厚さは3.5nm以上に設定する方が発光効率が高く望ましい。したがって、その下地となるn型GaNコンタクト層703の表面粗さは活性層の厚さのおよそ半分である1.8nm以下の場合に発光均一化の効果が顕著となった。すなわち、図6に示したように<0001>方向からのサファイア基板表面の傾斜角度を0.05゜以上0.2゜以下であればこの条件を満たし、均一性が高く、かつ高い発光効率を実現できることがわかった。
【0068】
(実施例4)
図8に本発明を適用した窒化物系化合物半導体を用いて作製した半導体レーザの例を示す。図において、801はサファイア基板、802はGaNバッファ層、803はn型コンタクト層、804はn型クラッド層、805は活性層、806はp型蒸発防止層、807はp型クラッド層、808はp型コンタクト層、809は電流狭窄層、810はp型電極、811はn型電極である。
【0069】
<0001>方向から<1−100>方向に0.05°傾斜させて鏡面研磨したサファイア(0001)基板をMOCVD装置の反応炉にセットし、基板温度500℃でアンモニアおよびTMGを用いて50nm厚のGaNバッファ層802を成長させた。
【0070】
次に基板温度を1000℃に昇温し、アンモニア、TMGおよびSiH4を用いて0.4μm厚のGaNからなるn型コンタクト層803を成長させた後、アンモニア、TMG、TMAおよびSiH4により0.2μm厚のn型Al0.15Ga0.85Nからなるn型クラッド層804を成長させた。この層の電子濃度は2×1018cm-3である。TMG、TMA、SiH4を止めて基板温度を700℃まで降温し、アンモニア、TMG、TMIにより1.5nm厚のIn0.25Ga0.75N井戸層2層と3.0nm厚のIn0.05Ga0.95Nバリア層3層からなる活性層805を成長させた。
【0071】
続いて、アンモニア、TMG、TMA、Cp2Mgを用いて6nm厚のp型Al0.1Ga0.9Nからなるp型蒸発防止層806を成長させる。p型蒸発防止層806成長後、基板温度を1050℃まで上昇させ、アンモニア、TMG、TMAおよびCp2Mgを用いて0.2μmのp型Al0.15Ga0.85Nからなるp型クラッド層807を成長させ、TMA供給を停止し、0.5μmのp型GaNからなるp型コンタクト層808を成長させる。
【0072】
以上の工程終了後、基板をMOCVD装置反応炉より取り出して、窒素雰囲気中で800℃にて20分間の熱処理によりp型Al0.15Ga0.85Nからなるp型クラッド層807、p型コンタクト層808のp型化を行う。続いて常法に従ってエッチング、電極形成を行いスクライビングまたはダイシングにより分割してレーザ素子を作製した。n型電極811はTi/Al、p型電極810はAu/Niである。
【0073】
完成した素子に室温で電流を流したところ、40mAの閾値電流で432nm波長でのレーザ発振が観測され、このときの立ち上がり電圧は4Vであった。また、5mW出力時の駆動電流は47mA、駆動電圧は4.6Vであった。また、室温における素子寿命は10000時間以上であることが確認できた。
【0074】
このように、低発振閾値電流が実現でき、信頼性が改善されるのは、多重量子井戸の活性層805の下地となるn型クラッド層804の表面の平均粗さが小さくできたことによるものである。この場合、実施例3の場合と比べ、活性層805直下の層がAl0.15Ga0.85NとAlを15%含んでいる点、およびサファイア基板801と活性層805の間にGaNバッファ層802を含め3層が挿入されている点が異なる。しかし、実際に本実施例素子の活性層805成長直前の状態であるところのn型クラッド層804の表面を評価した結果、図6の●で示したアンドープGaN層の場合とほぼ同様の結果が得られた。
【0075】
すなわち、実施例4でのn型クラッド804の表面の平均粗さは1.1〜1.3nmと小さく、貫通転位密度も5×109cm-2と少なかった。このときのn型クラッド層804の平均表面粗さは、多重量子井戸の活性層805を構成する個々の量子井戸層の厚さ(1.5nm)よりも小さくできている。このことが、発光パターンの均一化(すなわち半導体レーザにおける光導波路方向のゲインの均一化と吸収損失の低減)、および発光スペクトルの半値幅(すなわち半導体レーザでのゲインの半値幅)の狭帯域化を実現する。
【0076】
よって、半導体レーザで効率良くレーザ発振を実現することが可能となった。このように、本発明はGaN層の高品質化に留まらず、AlGaNの場合にも同様の効果を有することが確認できた。
【0077】
さらに、本実施例において、サファイア基板の傾斜角度のみを上記の0.05°から0.15°、0.20°に変更し、同様の素子を作製して評価した場合にも、それぞれの素子の発振閾値電流45mA、50mA、室温での素子寿命が12000時間、7000時間であり、いずれも良好な特性の半導体レーザが実現できた。
【0078】
(比較例4)
比較のために<0001>方向から<1−100>方向に0.25°傾斜させたサファイア基板を用いて上記手法で作製したレーザ素子に電流を流したところ、閾値電流250mAで432nmのレーザー発振が観測された。立ち上がり電圧は4Vであった。また、5mW出力時の駆動電流は280mA、駆動電圧は4.9Vであった。室温における素子寿命は100時間以下であった。
【0079】
さらに、同様に傾斜角を0.03°のサファイア基板を適用して実施例4と同様の半導体レーザを作製した場合にも、発振閾値電流が100mA以上、室温での素子寿命が300時間未満と、実施例4に比べて著しく素子特性の悪化が観測された。
【0080】
(実施例5)
本実施例では、微傾斜基板を用いて作製した発光ダイオードについて、基板微傾斜角と素子中に存在する貫通転位密度、表面粗さおよび電流注入時の発光強度の関係を示す。
【0081】
基板として<0001>方向から<11−20>および<1−100>方向に0.02°から0.5°傾斜角をつけて鏡面研磨した(0001)面サファイア基板を用い、実施形態で示した方法で順次、窒化物系化合物半導体層を成長する。
【0082】
活性層の成長条件は、まず、n型GaN層を成長後、NH3を流しながら基板温度を一定の温度になるように調整する。基板温度が安定した時点で、TMG、TMI及びSiH4を各々10μmol/min、10μmol/min及び5nmol/min導入し、活性層の障壁層となるIn0.05Ga0.95Nを約5nmの厚さで成長した。続いて、TMG、TMI及びSiH4を各々10μmol/min、50μmol/min及び5nmol/min導入し、活性層の井戸層となるIn0.2Ga0.8Nを約3nmの厚さで成長した。井戸層成長後、TMGの供給量を10μmol/minに減少し、再び活性層の障壁層を成長した。障壁層成長後、井戸層を成長する過程を繰り返し、最後に障壁層を成長して実施の形態に記した方法にてInGaNの昇華を防止する目的のAlGaN膜を30nm程度成長した。本実施例では、活性層を形成する井戸層の層数は3層で素子を作製した。AlGaN成長後は、実施の形態に示す方法でp型層を成長したもの及び、電極形成等の過程を経て発光ダイオードとした試料を作製した。
【0083】
この方法で作製し、電極形成していない試料を断面TEM観察して貫通転位密度を評価し、段差計にて表面粗さを測定したところ、図6と同様の結果が得られた。いずれの場合も、基板傾斜角が0.02°から0.045°および0.21°から0.5°の範囲では基板表面の傾斜によって引き起こされる結晶成長不良により高密度の貫通転位と表面荒れが発生している。また、活性層中にInの凝集による数nm径のドット状領域が多数見られた。0.05°から0.2°の傾斜では貫通転位が著しく減少し、表面荒れが個々の量子井戸層厚より十分小さい1.8nm以下に改善された。断面TEM観察より、下地層のn型GaNの成長段階から表面平坦性が向上していることがわかった。貫通転位の減少によって、活性層中のIn凝集が解消された結果、ドット状領域がほとんど見られなくなり、下地層の平坦性向上によって、量子井戸活性層の層厚揺らぎが改善された。
【0084】
電極を形成して素子化した試料に20mAの電流を流した場合の発光強度を<0001>方向から<11−20>および<1−100>方向への基板傾斜角に対して調査した結果を図9に示す。●は<0001>から、<1−100>への傾斜、○は<0001>から<11−20>への傾斜角をあらわしている。図9からわかるように傾斜角度が0.05°から0.2°の範囲で、発光強度が増大している。
【0085】
また、図10は<0001>から<1−100>への傾斜において、多重量子井戸活性層の成長温度の影響を調べた結果である。●は成長温度が700℃の時、○は750℃の時、△は800℃の時である。図10に示すように、基板微傾斜角の発光強度への影響は、成長温度により若干変化するが、いずれも0.05°から0.2°の基板傾斜で発光強度が増加している。図6と図9及び図10の比較から、貫通転位と発光強度の相関が明らかであり、本発明により、従来技術で作製した場合に比べてより低い駆動電流で同等以上の発光強度が得られることがわかる。これは、本発明によって、発光に寄与しない電流経路が減少した事を意味する。
【0086】
本実施例では、活性層の井戸層の層数が3層の例について記述したが、2層、及び4層から10層までの多重量子井戸についての効果は本実施例と同様であった。
【0087】
また、同様の方法でレーザを作製した場合、0.05°から0.2°の微傾斜基板上に作製したレーザは、同一電流値に対する発光強度が高く、発光強度に応じて発振を開始する閾値電流密度が低くなる傾向を示した。
【0088】
(実施例6)
本実施例では、微傾斜基板上に成長中断を用いて作製した障壁層と活性層を持つ発光ダイオードについて電流注入時の発光強度と、活性層及び障壁層成長後の成長中断時間との関係を示す。
【0089】
基板として<0001>方向から<1−100>方向に0.15°傾斜角をつけて鏡面研磨した(0001)面サファイア基板を用い、実施形態で示した方法で順次、窒化物系化合物半導体層を成長した。
【0090】
活性層は、まず、n型GaN層を成長後、NH3を流しながら基板温度を一定の温度になるように調整して、基板温度が安定した時点で、TMG、TMI及びSiH4を各々10μmol/min、10μmol/min及び5nmol/min導入し、活性層を形成する障壁層であるIn0.05Ga0.95Nを約5nmの厚さで成長した。その後、TMG、TMI及びSiH4の供給を一旦停止し、キャリアガス及びNH3ガスを供給したまま一定の成長中断を行う。その後、再びTMG、TMI及びSiH4を各々10μmol/min、50μmol/min及び5nmol/min導入し、活性層の井戸層となるIn0.2Ga0.8Nを約3nmの厚さで成長した。井戸層成長後、TMGの供給量を10μmol/minに減少し、再び活性層の障壁層を成長した。障壁層成長後、一定期間の成長中断を介し井戸層を成長する過程を繰り返し、最後に障壁層を成長して実施の形態に記した方法にてInGaNの昇華を防止する目的のAlGaN膜を30nm程度成長した。本AlGaN膜と活性層が終端するInGaN障壁層の間には成長中断を設けても構わないし、設けなくても構わない。但し、井戸層の層数が2層以下の場合には、終端する障壁層成長後にも成長中断を設けたほうが発光素子の電流注入による発光強度が高くなることがわかっている。本実施例では、活性層を形成する井戸層の層数は3層で素子を作製した。
【0091】
AlGaN成長後は、実施の形態に示す方法でp型層を成長し、電極形成等の過程を経て発光ダイオードを作製した。
【0092】
この方法で作製した発光ダイオードに20mAの電流を流した際の発光強度を、障壁層成長後の成長中断時間をパラメータとして調査した結果を図11に示す。図中、●は多重量子井戸活性層の成長温度が700℃の時、○は750℃の時、△は800℃の時であり、また、強度10の所に引いてある破線は、各々の成長温度での成長中断時間が0秒の場合の発光強度であり、丸または三角で示した強度が発光強度の平均値である。
【0093】
図9及び図11との比較で明らかなように、微傾斜基板に加えて、成長中断を用いることにより、さらに発光強度が増大することがわかる。
【0094】
図10に示すように、成長中断による発光強度への影響は、成長温度により若干変化するが、いずれも1秒以上の成長中断により発光強度は増加している。活性層の成長温度が高い場合、成長中断期間は短く、逆に成長温度が低い場合には成長中断期間が長い方が効果が大きい。図に示されているように、成長温度が700℃の場合においては、成長中断時間は1秒から約60分程度で効果があり、特に効果が現われる期間は、1秒以上10分以下である。また、成長温度が750℃の場合においては、成長中断時間は1秒から約15分程度で効果があり、特に効果が現われる期間は、1秒以上5分以下であった。
【0095】
また、成長温度が800℃の場合においては、成長中断時間は1秒から約5分程度で効果があり、特に効果が現われる期間は、1秒以上2分以下であった。
【0096】
本実施例では、<0001>方向から<1−100>方向に0.15°傾斜角をつけて鏡面研磨した(0001)面サファイア基板を使用した例について記述したが、傾斜角が0.05°から0.2°の範囲であれば、他の方向への傾斜でも同様の効果を発揮することを確認した。
【0097】
また、本実施例では、活性層の井戸層の層数が3層の例について記述したが、2層、及び4層から10層までの多重量子井戸についての効果は本実施例と同様傾向であり、同様の方法でレーザを作製した場合、障壁層の成長中断をいれて活性層を作製したレーザは、同一電流値に対する発光強度が高く、発光強度に応じて発振を開始するしきい値電流密度が低くなる傾向を示した。
【0098】
(実施例7)
本実施例では、<0001>方向から<1−100>方向に0.15°傾斜角をつけて鏡面研磨した(0001)面サファイア基板を用いて、活性層の障壁層成長後に一定の成長中断時間をおいて成長し、その後、活性層の井戸層成長後にも同様に、一定の成長中断期間を設けて成長した場合の発光ダイオードの電流注入に於ける発光強度と井戸層成長後の成長中断時間との関係を調査した例について報告する。発光ダイオードを形成する各層の成長方法は実施例2に示した方法と同様である。以下、活性層を成長する条件について記述する。
【0099】
まず、n型GaNを成長後、NH3を流しながら基板温度を一定の温度になるように調整する。基板温度が安定した時点で、TMG、TMI及びSiH4を各々10μmol/min、10μmol/min及び5nmol/min導入し、活性層の障壁層となるIn0.05Ga0.95Nを約5μmの厚さで成長した。その後、TMG、TMI及びSiH4の供給を一旦停止し、キャリアガス及びNH3ガスを供給したまま一定の成長中断を行う。その後、再びTMG、TMI及びSiH4ガスを各々10μmol/min、15μmol/min及び5nmol/min導入し、活性層の井戸層となるIn0.2Ga0.8Nを約5μmの厚さで成長した。その後、TMG、TMI及びSiH4の供給を一旦停止し、キャリアガス及びNH3ガスを供給したまま一定の成長中断を行う。障壁層成長後及び井戸層成長後、各々一定期間の成長中断を介し、各々の層が隣接するように成長する過程を繰り返し、最後に障壁層を成長して実施の形態に記した方法にてInGaNの昇華を防止する目的のAlGaN膜を30nm程度成長した。本AlGaN膜と、活性層が終端するInGaN障壁層の間には、成長中断を設けても構わないし、設けなくても構わない。但し、井戸層の層数が2層以下の場合には、終端する障壁層成長後にも成長中断を設けたほうが、発光素子への電流注入による発光強度が強くなることがわかっている。本実施例では、活性層を形成する井戸層の層数は3層で素子を作製した。また、障壁層成長後の成長中断時間は、60秒とした。
【0100】
この方法で作製した発光ダイオードに20mAの電流を流した際の発光強度を、井戸層成長後の成長中断時間をパラメータとして調査した結果を図12に示す。図中、●は多重量子井戸活性層の成長温度が700℃の時、○は750℃の時、△は800℃の時、強度10の所に引いてある破線は、各々の成長温度での成長中断時間が0秒の場合の発光強度であり、丸または三角で示した強度が発光強度の平均値である。
【0101】
図9と図12との比較で明らかなように、微傾斜基板に加えて、成長中断を用いることにより、さらに発光強度が増大することがわかる。
【0102】
図12に示されているように、井戸層成長後の成長中断による発光強度への影響は成長温度により若干変化するが、いずれも1秒以上の成長中断により発光強度は増加している。活性層の成長温度が高い場合、成長中断時間は短く、逆に成長温度が低い場合、成長中断時間は長い方が効果的である。
【0103】
図12に示されているように、成長温度が700℃の場合においては、成長中断時間は1秒から約60分程度で効果があり、特に効果が現われる期間は1秒以上10分以下である。また、成長温度が750℃の場合においては、成長中断時間は1秒から約15分程度で効果があり、特に効果が現われる期間は1秒以上5分以下であった。
【0104】
成長温度が800℃の場合においては、成長中断時間は1秒から約5分程度で効果があり、特に効果が現われる期間は1秒以上2分以下であった。
【0105】
また、障壁層を成長後、成長中断を行わずに井戸層を成長後のみ成長中断を行った場合には、発光強度への若干の効果はあったものの、図10に示した程の大きな効果は確認できず、最大で3倍程度の発光強度の増加に止まるのみであった。
【0106】
(実施例8)
本実施例では、基板として<0001>方向から<1−100>方向に0.15°傾斜角をつけて鏡面研磨した(0001)面サファイアを用いて、実施例5に示す方法で、発光ダイオードを作製した際、活性層を形成する障壁層成長後の成長中断を行う期間に流すキャリアガスの水素ガスと窒素ガスの混合比を変化させた場合の発光ダイオードの発光特性を調査した結果について記述する。
【0107】
図13に、活性層の成長温度を750℃に固定し、障壁層成長後の成長中断時間を60秒とし、成長中断中に流すキャリアガスの総量を変えずに窒素ガスと水素ガスの比率を変えて供給し作製した発光ダイオードの発光波長と強度の関係を示す。●は発光強度を、○は発光波長を示す。図13に示すように、キャリアガスのN2比率が減少するに従って、発光波長は短波長化する傾向にあり、また、発光強度も減少する傾向にある。本傾向は、活性層の成長温度が800℃程度の高温や700℃程度の低温でも同様の傾向を示す。また、障壁層成長後の成長中断だけでなく、井戸層成長後に成長中断を設ける場合においても、成長中断中のキャリアガスとしてN2を使用する方が、発光素子の発光強度が強く、波長も長波長になる傾向を示した。
【0108】
(実施例9)
本実施例では、基板として<0001>方向から<1−100>方向に0.15°傾斜角をつけて鏡面研磨した(0001)面サファイアを用いて、実施例1に示す方法で、発光ダイオードを作製した際、活性層を形成する障壁層成長後の成長中断を行う期間に流すNH3ガスの導入量を変化させた場合の成長中断時間と発光強度の関係を調査した結果について記述する。
【0109】
図14に、活性層の成長温度を750℃に固定し、NH3導入量と成長中断時間を変化させた場合の発光ダイオードの発光強度を測定した結果について示す。●はNH3=5l/minの時、○はNH3=3l/minの時、△はNH3=0l/minの時である。
【0110】
図14に示すように、NH3導入量がゼロの場合においても、発光強度が増加する事が確認されたが、NH3の導入により、発光強度増加の効果がより顕著に現われており、また、成長中断時間も長く設定できるため製造が容易となる。本傾向は、活性層の成長温度が800℃程度の高温や700℃程度の低温でも同様の傾向を示す。また、障壁層成長後の成長中断だけでなく、井戸層成長後に成長中断を設ける場合においても同様の傾向を示した。
【0111】
(実施例10)
本実施例では、GaN微傾斜基板を用いて作製した発光ダイオードについて、GaN基板の微傾斜角と素子中に存在する貫通転位密度、表面粗さおよび電流注入時の発光強度の関係を示す。
【0112】
基板として<0001>方向から<11−20>および<1−100>方向に0.02°から0.5°傾斜角をつけて鏡面研磨した(0001)面GaN基板を用い、実施形態で示した方法で順次、窒化物系化合物半導体層を成長し、実施例5で説明した手順で各層間の成長中断を入れずに活性層を成長した。活性層を形成する井戸層の層数は3層である。素子構造成長後、実施の形態に示す方法でp型層を成長したもの及び、電極形成等の過程を経て発光ダイオードとした試料を作製した。
【0113】
前記方法で作製し、電極形成していない試料を断面TEM観察して貫通転位密度を評価し、段差計にて表面粗さを測定した。結果を図15に示す。図中、●は<1−100>方向への傾斜を表し、○は<11−20>方向への傾斜を表す。いずれの場合も、基板傾斜角が0.02°から0.045°および0.21°から0.5°の範囲では基板表面の傾斜によって引き起こされる結晶成長不良により高密度の貫通転位と表面荒れが発生している。一方、0.05°から0.2°の傾斜では貫通転位が著しく減少し、表面荒れが個々の量子井戸層厚より十分小さく、微傾斜サファイア基板上の素子よりもさらに改善され、4nm以下であった。断面TEM観察より、下地層のn型GaNの成長段階から表面平坦性が向上していることがわかった。貫通転位の減少によって、活性層中のIn凝集が解消され、下地層の平坦性向上によって、量子井戸活性層の層厚揺らぎが改善された。
【0114】
次に、前記試料に電極を形成して素子化した試料に20mAの電流を流した場合の発光強度を<0001>方向から<11−20>および<1−100>方向への基板傾斜角に対して調査した結果を図16に示す。●は<0001>から<1−100>への傾斜、○は<11−20>への傾斜である。0.05°から0.2°の傾斜で発光強度が増大していることがわかる。
【0115】
図17に<0001>から<1−100>への傾斜基板において、多重量子井戸活性層の成長温度の影響を示す。図に示すように、基板微傾斜角の発光強度への影響は成長温度により若干変化するが、いずれも0.05°から0.2°の基板傾斜で発光強度が増加している。この傾向は微傾斜サファイア基板と同じであるが、改善効果はより大きいことがわかる。図6と図9、図10、図15、図16および図17の比較から、微傾斜GaN基板上に作製した素子においても貫通転位と発光強度の相関が明らかであり、本発明により、従来技術で作製した場合に比べてより低い駆動電流で同等以上の発光強度が得られることがわかる。これは、本発明によって、発光に寄与しない電流経路が減少した事を意味するものである。
【0116】
本実施例では、活性層の井戸層の層数が3層の例について記述したが、2層、及び4層から10層までの多重量子井戸についての効果は本実施例と同様であった。
【0117】
また、同様の方法でレーザを作製した場合、0.05°から0.2°の微傾斜基板上に作製したレーザは、同一電流値に対する発光強度が高く、発光強度に応じて発振を開始するしきい値電流密度が低くなる傾向を示し、低下の度合は微傾斜サファイア基板上に作製した場合に比べてより顕著であった。
【0118】
(実施例11)
本実施例では、微傾斜GaN基板上に成長中断を用いて作製した障壁層と活性層を持つ発光ダイオードについて電流注入時の発光強度と、活性層及び障壁層成長後の成長中断時間との関係を示す。
【0119】
基板として<0001>方向から<1−100>方向に0.15°傾斜角をつけて鏡面研磨した(0001)面GaN基板を用い、実施形態で示した方法で順次、窒化物系化合物半導体層を成長した。
【0120】
活性層は、まず、n型GaN層を成長後、NH3を流しながら基板温度を一定の温度になるように調整して、基板温度が安定した時点で、TMG、TMI及びSiH4を各々10μmol/min、10μmol/min及び5nmol/min導入し、活性層を形成する障壁層であるIn0.05Ga0.95Nを約5nmの厚さで成長した。その後、TMG、TMI及びSiH4の供給を一旦停止し、キャリアガス及びNH3ガスを供給したまま一定の成長中断を行う。その後、再びTMG、TMI及びSiH4を各々10μmol/min、50μmol/min及び5nmol/min導入し、活性層の井戸層となるIn0.2Ga0.8Nを約3nmの厚さで成長した。井戸層成長後、TMGの供給量を10μmol/minに減少し、再び活性層の障壁層を成長した。障壁層成長後、一定期間の成長中断を介し井戸層を成長する過程を繰り返し、最後に障壁層を成長して実施の形態に記した方法にてInGaNの昇華を防止する目的のAlGaN膜を30nm程度成長した。本AlGaN膜と活性層が終端するInGaN障壁層の間には成長中断を設けても構わないし、設けなくても構わない。但し、井戸層の層数が2層以下の場合には、終端する障壁層成長後にも成長中断を設けたほうが発光素子の電流注入による発光強度が高くなることがわかっている。本実施例では、活性層を形成する井戸層の層数は3層で素子を作製した。
【0121】
AlGaN成長後は、実施の形態に示す方法でp型層を成長し、電極形成等の過程を経て発光ダイオードを作製した。
【0122】
この方法で作製した発光ダイオードに20mAの電流を流した際の発光強度を、障壁層成長後の成長中断時間をパラメータとして調査した結果を図18に示す。●は多重量子井戸活性層の成長温度が700℃の時、○は750℃の時、△は800℃の時である。図中、強度400の位置に引いてある破線は、各々の成長温度での成長中断時間が0秒の場合の発光強度であり、丸または三角で示した強度が発光強度の平均値である。
【0123】
図16と図18との比較で明らかなように、微傾斜GaN基板に加えて、成長中断を用いることにより、さらに発光強度が増大することがわかる。
【0124】
図18に示すように、成長中断による発光強度への影響は、成長温度により若干変化するが、いずれも1秒以上の成長中断により発光強度は増加している。活性層の成長温度が高い場合、成長中断期間は短く、逆に成長温度が低い場合には成長中断期間が長いほど効果が大きい。図に示されているように、成長温度が700℃の場合においては、成長中断時間は1秒から約60分程度で効果があり、特に効果が現われる期間は、1秒以上10分以下である。また、成長温度が750℃の場合においては、成長中断時間は1秒から約15分程度で効果があり、特に効果が現われる期間は、1秒以上5分以下であった。また、成長温度が800℃の場合においては、成長中断時間は1秒から約5分程度で効果があり、特に効果が現われる期間は、1秒以上2分以下であった。
【0125】
本実施例では、<0001>方向から<1−100>方向に0.15°傾斜角をつけて鏡面研磨した(0001)面GaN基板を使用した例について記述したが、傾斜角が0.05°から0.2°の範囲であれば、他の方向への傾斜でも同様の効果を発揮することを確認した。
【0126】
また、本実施例では、活性層の井戸層の層数が3層の例について記述したが、2層、及び4層から10層までの多重量子井戸についての効果は本実施例と同様傾向であり、同様の方法でレーザを作製した場合、障壁層の成長中断を入れて活性層を作製したレーザは、同一電流値に対する発光強度が高く、発光強度に応じて発振を開始するしきい値電流密度が低くなる傾向を示した。
【0127】
(実施例12)
本実施例では、<0001>方向から<1−100>方向に0.15°傾斜角をつけて鏡面研磨した(0001)面GaN基板を用いて、活性層の障壁層成長後に一定の成長中断時間をおいて成長し、その後、活性層の井戸層成長後にも同様に、一定の成長中断期間を設けて成長した場合の発光ダイオードの電流注入に於ける発光強度と井戸層成長後の成長中断時間との関係を調査した例について報告する。発光ダイオードを形成する各層の成長方法は実施例6に示した方法と同様である。以下、活性層を成長する条件について記述する。
【0128】
まず、n型GaNを成長後、NH3を流しながら基板温度を一定の温度になるように調整する。基板温度が安定した時点で、TMG、TMI及びSiH4を各々10μmol/min、10μmol/min及び5nmol/min導入し、活性層の障壁層となるIn0.05Ga0.95Nを約5μmの厚さで成長した。その後、TMG、TMI及びSiH4の供給を一旦停止し、キャリアガス及びNH3ガスを供給したまま一定の成長中断を行う。その後、再びTMG、TMI及びSiH4ガスを各々10μmol/min、15μmol/min及び5nmol/min導入し、活性層の井戸層となるIn0.2Ga0.8Nを約5μmの厚さで成長した。その後、TMG、TMI及びSiH4の供給を一旦停止し、キャリアガス及びNH3ガスを供給したまま一定の成長中断を行う。障壁層成長後及び井戸層成長後、各々一定期間の成長中断を介し、各々の層が隣接するように成長する過程を繰り返し、最後に障壁層を成長して実施の形態に記した方法にてInGaNの昇華を防止する目的のAlGaN膜を30nm程度成長した。本AlGaN膜と、活性層が終端するInGaN障壁層の間には、成長中断を設けても構わないし、設けなくても構わない。但し、井戸層の層数が2層以下の場合には、終端する障壁層成長後にも成長中断を設けたほうが、発光素子の電流注入による発光強度が高くなることがわかっている。本実施例では、活性層を形成する井戸層の層数は3層で素子を作製した。また、障壁層成長後の成長中断時間は、60秒とした。
【0129】
この方法で作製した発光ダイオードに20mAの電流を流した際の発光強度を、井戸層成長後の成長中断時間をパラメータとして調査した結果を図19に示す。●は多重量子井戸活性層の成長温度が700℃の時、○は750℃の時、△は800℃の時である。図中、強度400の位置に引いてある破線は、各々の成長温度での成長中断時間が0秒の場合の発光強度であり、丸または三角で示した強度が発光強度の平均値である。
【0130】
図16と図19との比較で明らかなように、微傾斜GaN基板に加えて、成長中断を用いることにより、さらに発光強度が増大することがわかる。
【0131】
図19に示されているように、井戸層成長後の成長中断による発光強度への影響は成長温度により若干変化するが、いずれも1秒以上の成長中断により発光強度は増加している。活性層の成長温度が高い場合、成長中断時間は短く、逆に成長温度が低い場合、成長中断時間は長い方が効果的である。また、成長温度が700℃の場合においては、成長中断時間は1秒から約60分程度で効果があり、特に効果が現われる期間は1秒以上10分以下であり、成長温度が750℃の場合においては、成長中断時間は1秒から約15分程度で効果があり、特に効果が現われる期間は1秒以上5分以下であった。
【0132】
成長温度が800℃の場合においては、成長中断時間は1秒から約5分程度で効果があり、特に効果が現われる期間は1秒以上2分以下であった。一方、障壁層を成長後、成長中断を行わずに井戸層を成長後のみ成長中断を行った場合には、発光強度への若干の効果はあったものの、図17に示した程の大きな効果は確認できず、最大で3倍程度の発光強度の増加に止まるのみであった。
【0133】
以上、実施例を用いて説明したが、本発明は上記本実施例で示した材料、層構造の組み合わせに限らず、GaN活性層/AlGaNクラッド層等の組み合わせで構成されるダブルヘテロ構造および、窒化物系化合物半導体で構成される単一量子井戸および多重量子井戸を活性層として有する半導体レーザー装置においても同様の効果が得られる。中でも量子井戸活性層を用いた場合の効果が顕著であり、特に量子井戸活性層厚よりも小さな平均表面粗さを有する下地層の適用による発光素子の特性改善は顕著である。
【0134】
【発明の効果】
本発明により、従来に比べて平均表面粗さおよび結晶品質の向上した窒化物系化合物半導体結晶をエピタキシャル成長することができる。すなわち、<0001>方向から<1−100>方向あるいは<11−20>方向に0.05°から0.2°の傾斜角をつけて鏡面研磨した(0001)面サファイア基板を用いることによって、二次元成長を促進し結晶中の転位を減少させる。さらに、Inを含有する窒化物系化合物半導体からなる多層膜を活性層とする窒化物系化合物半導体発光素子において、活性層成長後に一定期間の成長中断を設けることにより、発光強度が高い窒化物系化合物半導体発光素子を提供するものである。よって、本発明の手法を用いて作製した発光素子および電子素子は特性および寿命を向上させることができる。
【図面の簡単な説明】
【図1】 傾斜角を規定されていない基板の表面および三次元成長を示す断面模式図である。
【図2】 本発明により<0001>方向からの傾斜角を規定した基板の表面および二次元成長を示す断面模式図である。
【図3】 本実施例で使用した結晶成長装置の概略図である。
【図4】 窒化物系化合物半導体を用いて作製した発光素子の概略図である。
【図5】 活性層近傍の成長温度と各原料の供給量を表した図である。
【図6】 基板表面の傾斜角と貫通転位密度及び、平均表面粗さの関係を示した図である。
【図7】 実施例3に示すLEDの断面図である。
【図8】 実施例4に示すレーザの断面図である。
【図9】 サファイア基板表面の傾斜角と発光素子の発光強度の関係を示した図である。
【図10】 発光層の成長温度を変えた時の基板傾斜角と発光素子の発光強度の関係を示した図である。
【図11】 障壁層成長後の成長中断時間と発光素子の発光強度の関係を示した図である。
【図12】 井戸層成長後の成長中断時間と発光素子の発光強度の関係を示した図である。
【図13】 キャリアガスの窒素分圧と発光素子の発光強度および発光波長の関係を示した図である。
【図14】 成長中断中のNH3量と発光素子の発光強度の関係を示した図である。
【図15】 GaN基板表面の傾斜角と貫通転位密度及び平均表面粗さの関係を示した図である。
【図16】 GaN基板表面の傾斜角と発光素子の発光強度の関係を示した図である。
【図17】 発光層の成長温度を変えた時のGaN基板傾斜角と素子の発光強度の関係を示した図である。
【図18】 障壁層成長後の成長中断時間と素子の発光強度の関係を示した図である。
【図19】 井戸層成長後の成長中断時間と素子の発光強度の関係を示した図である。
【符号の説明】
101…基板
102…ステップ
103…成長核
201…基板
202…ステップ
203…成長核
401…基板
402…バッファ層としてのGaN膜
403…n型GaN
404…n型Al0.15Ga0.85N膜
405…GaN膜
406…活性層
407…AlGaN膜
408…p型GaN膜
409…p型Al0.15Ga0.85N膜
410…p型GaNコンタクト層
411…絶縁膜
412a…p型電極
412b…n型電極
501…成長中断期間
502…障壁層の成長期間
503…井戸層の成長期間
504…n型GaNの成長期間
505…p型GaNの成長期間
506…昇華防止層の成長期間
701…サファイア(0001)基板
702…GaNバッファ層
703…n型GaNコンタクト層
704…InGaN活性層
705…p型AlGaN保護層
706…p型GaNコンタクト層
707…p型電極
708…n型電極
801…サファイア基板
802…GaNバッフア層
803…n型コンタクト層
804…n型クラッド層
805…活性層
806…p型蒸発防止層
807…p型クラッド層
808…p型コンタクト層
809…電流狭窄層
810…p型電極
811…n型電極[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a nitride compound semiconductor crystal on a substrate and a nitride compound semiconductor light emitting device produced by using the method.
[0002]
[Prior art]
Conventionally, nitride-based compound semiconductors have been used or studied as light-emitting elements and high-power devices. For example, in the case of light-emitting elements, technically from blue to orange by adjusting the composition of the light-emitting elements. It can be used as a wide light-emitting element. In recent years, blue light emitting diodes and green light emitting diodes have been put to practical use by utilizing the characteristics, and blue-violet semiconductor lasers are being developed as semiconductor laser elements.
[0003]
When a nitride-based compound semiconductor is manufactured as the light emitting element, a current injection layer having n-type characteristics is usually formed on a substrate on which a nitride-based compound semiconductor is epitaxially grown, such as a mirror-polished sapphire (0001) substrate, A light emitting layer and a current injection layer exhibiting p-type characteristics are formed thereon. It is known that the emission intensity increases when a quantum well having a thickness of 10 nm or less is used for the light emitting layer, and the emission wavelength can be varied by adjusting the In composition ratio of the light emitting layer made of InGaN, for example. As an epitaxial growth method, vapor phase growth techniques such as MOCVD and MBE are used. For example, in the MOCVD method, a sapphire (0001) surface substrate is treated in a reducing atmosphere of about 1000 ° C., ammonia is supplied to perform initial nitriding of the substrate surface, and a GaN or AlN buffer layer is formed at a low temperature of about 500 ° C. The temperature is raised to about 1000 ° C. to produce a nitride compound semiconductor crystal.
[0004]
In general, the quantum well may be formed of only one layer, but it is known that the light emission efficiency can be increased by using a multiple quantum well structure (MQW) having a well layer and a barrier layer. However, when a light-emitting device is manufactured using a quantum well structure made of a nitride-based compound semiconductor (eg, InGaN) containing In, the lattice mismatch with the sapphire substrate is as large as 13%, and the quantum well is formed from the substrate interface. There are high density of threading dislocations that reach the surface. For this reason, the current flowing through the dislocation is a component that does not contribute to light emission, which causes an increase in drive current density and heat generation. In addition, since the chemical thermal equilibrium state during crystal growth of nitride-based compound semiconductors containing In is very unstable, In aggregates or disperses around dislocations, resulting in a desired quantum well structure with a uniform In composition. It is difficult to form. Even if a desired quantum well structure having an In composition can be formed, it is difficult to form a quantum well layer with good crystallinity, and it is difficult to realize high light emission efficiency. In addition, for the reasons described above, the In composition of the nitride-based compound semiconductor film having In forming the quantum well structure and the uniformity of the film thickness are impaired in the substrate, and the target emission wavelength is uniformly distributed over the entire surface of the substrate. It is difficult to manufacture a light-emitting element having light emission intensity.
[0005]
In order to solve the above-mentioned problems, Japanese Patent Laid-Open No. 9-23026 discloses that the emission characteristic is improved by two-stage growth through a buffer layer with the angle formed by the sapphire substrate surface and the C-plane ((0001) plane) within 5 °. Techniques for improving are disclosed. In the above publication, only the technology related to the brightness improvement in the light emitting device (LED) is shown, and the technology related to the improvement of the flatness of the outermost surface of the crystal and the reduction of the crystal dislocation density which affect the element formation process and the characteristics of the light emitting device Is not disclosed.
[0006]
[Problems to be solved by the invention]
In the MOCVD method, crystal growth is performed through initial nitriding and a low-temperature buffer layer. However, this method has a high dislocation density and insufficient crystal quality, which is particularly problematic in a laser device driven at a high current density. Further, even when the substrate surface tilt angle is simply within 5 °, the step density on the substrate surface is not sufficiently defined, in other words, the surface flatness is not sufficient. The crystal quality and surface state of semiconductors vary sensitively.
[0007]
In the case of an inclination angle of about 0.2 ° to 5 ° disclosed in the conventional example, a nitride compound semiconductor grown on a (0001) plane sapphire substrate, for example, GaN has dislocations generated from the interface with the substrate. It exists in high density. This is because the sapphire substrate and GaN have a lattice constant difference that facilitates three-dimensional growth and the use of a sapphire substrate with an inclination angle from the <0001> direction in the range of 0.2 ° to 5 ° is not uniform. This is thought to be because the steps on the substrate surface distributed in the hinder the orderly step flow growth.
[0008]
In heteroepitaxial growth, the buffer layer formed at low temperature is amorphous or polycrystalline, but is crystallized under the conditions close to homoepitaxial growth at high temperature, while receiving information from the substrate by the rearrangement of atoms. Has the effect of allowing growth. However, in a system having a large lattice mismatch such as sapphire and GaN, the effect of the buffer layer is insufficient, and the buffer layer forming conditions for absorbing the step difference on the substrate surface due to the inclination angle from the <0001> direction are Limited to a narrow range.
[0009]
Similar to the buffer layer, the initial nitridation of the substrate surface also works closer to homoepitaxial growth, but the nitriding process is governed by oxygen atom desorption near the sapphire surface and diffusion of nitrogen atoms from the gas phase, so the initial substrate surface shape is Proceed while keeping. Therefore, a step on the surface of the sapphire substrate having an inappropriate inclination angle remains less affected by nitriding. A microscopic surface of such a substrate is schematically shown in FIG.
[0010]
In addition, if the composition uniformity and crystallinity of the layer containing In are insufficient and a higher efficiency light-emitting diode or a low-threshold semiconductor laser is to be manufactured, the conventional low-current driving current can be achieved only with conventional technology. Therefore, a light emitting element with high luminous efficiency cannot be obtained. Therefore, there has been a demand for manufacturing a light-emitting element having better electrical characteristics and light-emitting characteristics.
[0011]
[Means for Solving the Problems]
[0012]
[0013]
[0014]
[0015]
[0016]
The method of manufacturing a nitride-based compound semiconductor light-emitting device described in the present application is a manufacturing method of a nitride-based compound semiconductor light-emitting device in which a stacked body having an active layer sandwiched between layers having different conductivity types is vapor-phase grown on a sapphire substrate. In the method, the crystal orientation of the surface of the sapphire substrate is inclined in the range of 0.05 ° or more and 0.2 ° or less in the <11-20> direction or <1-100> direction from the <0001> direction. And
[0017]
[0018]
In the method of manufacturing a nitride-based compound semiconductor light-emitting device described in the present application, the active layer is formed of one or a plurality of well layers and a barrier layer, and after formation of one or both of the well layer and the barrier layer, It has the process of providing the growth interruption for a fixed time.
[0019]
The method for producing a nitride-based compound semiconductor light-emitting device described in this application is characterized in that the growth interruption time after the growth of the barrier layer is not less than 1 second and not more than 60 minutes.
[0020]
The method for producing a nitride-based compound semiconductor light-emitting device described in this application is characterized in that the growth interruption time after the growth of the well layer is not less than 1 second and not more than 60 minutes.
[0021]
The method for manufacturing a nitride-based compound semiconductor light-emitting device described in the present application is characterized in that a carrier gas mainly containing nitrogen is allowed to flow when the growth is interrupted.
[0022]
The method for manufacturing a nitride-based compound semiconductor light-emitting device described in the present application is characterized in that a carrier gas mainly containing nitrogen and a group V source gas are allowed to flow when the growth is interrupted.
[0023]
In the present invention, as a means for solving the above-described problems, when manufacturing a light-emitting element using a nitride-based compound semiconductor composed of a plurality of In-containing layers as a light-emitting layer, first, the crystal orientation is changed from the <0001> direction to the extreme. Using a slightly inclined substrate such as sapphire or GaN, threading dislocations are reduced, current paths that do not contribute to light emission are reduced, and surface flatness of the active layer base layer is improved. Further, after that, a light emitting layer composed of a plurality of well layers and a barrier layer is grown, and after the formation of the nitride-based compound semiconductor layer that becomes the well layer, a growth interruption for a certain period is provided, and the well layer is in contact with the well layer. After the formation of a nitride compound semiconductor that becomes a barrier layer with a larger band gap energy than the layer, a process of providing a growth interruption for a certain period is followed by further improving the surface state and making the composition of the active layer uniform. And
[0024]
As shown above, the surface seen in the conventional example is as shown in FIG. 1, but in the present invention, it is as shown in FIG. By stepping the
[0025]
In the case of an inclination angle of about 0.2 ° to 5 ° disclosed in the conventional example, a nitride compound semiconductor grown on a (0001) plane sapphire substrate, for example, GaN has dislocations generated from the interface with the substrate. It exists at a high density (1 × 10 11 cm −2 or more). This is because the three-dimensional growth is easy due to the difference in the lattice constant between the sapphire substrate and GaN, and the step flow growth with orderly steps on the substrate surface that is unevenly distributed because the tilt angle from the <0001> direction is not specified. It is thought that this is because of the inhibition.
[0026]
In heteroepitaxial growth, the buffer layer formed at low temperature is amorphous or polycrystalline, but is crystallized under the conditions close to homoepitaxial growth at high temperature, while receiving information from the substrate by the rearrangement of atoms. Has the effect of allowing growth. However, in a system having a large lattice mismatch such as sapphire and GaN, the effect of the buffer layer is insufficient, and the buffer layer forming conditions for absorbing the step difference on the substrate surface due to the inclination angle from the <0001> direction are Limited to a narrow range. Even in the case of homoepitaxial growth on a GaN substrate, it is desirable to form a buffer layer with a certain thickness in order to reduce the surface energy and achieve uniform growth in the plane. It is important to set the steps to the optimum state.
[0027]
Similar to the buffer layer, the initial nitridation of the substrate surface also works closer to homoepitaxial growth, but the nitriding process is governed by oxygen atom desorption near the sapphire surface and diffusion of nitrogen atoms from the gas phase, so the initial substrate surface shape is Proceed while keeping. Therefore, the step on the substrate surface where the tilt angle is not defined remains without being affected by nitriding so much that it inhibits step flow growth and generates dislocations.
[0028]
In the present invention, the step density on the outermost surface is regulated to an optimum state by tilting the sapphire substrate from the <0001> direction to the <11-20> direction or the <1-100> direction, and stable two-dimensional growth is achieved. Promote. A laser or a light-emitting diode manufactured using a substrate inclined from 0.05 ° to 0.2 ° in the <11-20> direction or the <1-100> direction from the <0001> direction is a nitride compound to be laminated. Increasing the quality of semiconductors improves the light emission efficiency, and in particular, extends the life of lasers.
[0029]
Furthermore, by providing a growth interruption after the formation of the nitride-based compound semiconductor serving as a barrier layer, the composition of the raw material species incorporated into the solid phase can be prevented from agglomerating and the composition non-uniformity can be eliminated. As a result, the surface flatness is further improved. At that time, a remarkable effect can be obtained by setting the growth interruption time to 1 second or more and 60 minutes or less. Similarly, when the growth interruption time provided after the formation of the nitride compound semiconductor to be the well layer is set to 1 second or more and 60 minutes or less, a further effect appears. Further, when the growth is interrupted, a more remarkable effect appears by flowing a carrier gas mainly containing nitrogen or a carrier gas mainly containing nitrogen and a group V source gas.
[0030]
When a light-emitting element is manufactured, a higher effect can be obtained by using a slightly inclined substrate and growth interruption together. That is, when threading dislocations exist in a crystal grown using a normal substrate, In aggregated around the dislocations does not diffuse in the layer. Therefore, it is effective to reduce the threading dislocation density using a slightly tilted substrate and eliminate In aggregation around the dislocations by interrupting the growth.
[0031]
DETAILED DESCRIPTION OF THE INVENTION
First, the present invention will be described in detail. Generally, when a nitride compound semiconductor is crystal-grown, sapphire, SiC, GaN, GaAs, spinel (MgAl2O4), or the like is used as a substrate. As a method for crystal growth, metal organic vapor phase epitaxy (MOCVD), molecular beam epitaxy (MBE), and hydride vapor phase epitaxy (HVPE) are usually used.
[0032]
Among these, considering the crystallinity and productivity of the nitride compound semiconductor to be produced, the most common method is to use sapphire or GaN as the substrate and the MOCVD method as the growth method.
[0033]
FIG. 3 shows a schematic diagram of the MOCVD apparatus used for manufacturing the embodiment of the present application. In the figure, 301 is a (0001) plane sapphire substrate inclined from 0.05 ° to 0.2 ° in the <11-20> or <1-100> direction from the <0001> direction on the carbon susceptor (302). Has been placed. A carbon resistance heater is also disposed in the susceptor, and the substrate temperature can be monitored and controlled by a thermocouple. 303 is a water-cooled reaction tube made of double quartz. As the group V source, ammonia (306) is used, and as the group III source, trimethylgallium (hereinafter referred to as TMG), trimethylaluminum (hereinafter referred to as TMA), trimethylindium (hereinafter referred to as TMI) ( 307a to 307c) were used by bubbling with nitrogen gas or hydrogen gas. Further, SiH4 (309) was used as an n-type doping material, and biscyclopentadienylmagnesium (hereinafter referred to as Cp2Mg) (307d) was used as a p-type doping material. Each raw material is accurately controlled by the mass flow controller (308), introduced into the reaction tube from the raw material inlet (304), and discharged from the exhaust gas outlet (305).
[0034]
Next, a typical example of a crystal growth procedure for forming a nitride compound semiconductor laser / light emitting diode will be described with reference to FIG. First, the substrate (401) is cleaned and placed in a crystal growth apparatus. The substrate is heat-treated at a temperature of about 1100 ° C. for about 10 minutes in a hydrogen atmosphere, and then the temperature is lowered to about 500 ° C. to 600 ° C. When the temperature becomes constant, the carrier gas is changed to nitrogen, the total flow rate of nitrogen gas is 10 l / min, ammonia is flowed at about 3 l / min, and after a few seconds, TMG is flowed at about 20 μmol / min, and the buffer is kept at a low temperature for about 1 minute. A GaN film (402) as a layer was grown. The thickness of the grown film is about 20 nm.
[0035]
Thereafter, the supply of TMG is stopped, the temperature is raised to 1050 ° C., and about 50 μmol / min of TMG and about 10 nmol / min of SiH 4 gas are supplied again to grow an n-type GaN film (403) by about 4 μm. Next, 10 μmol / min of TMA is supplied to grow an n-type Al 0.15 Ga 0.85 N film (404) having a thickness of 0.5 μm. This layer is an optical confinement layer and is not necessary when manufacturing a light emitting diode.
[0036]
Next, the supply of TMA is stopped, and a GaN film (405) having a thickness of about 0.1 μm is grown. This layer is a light guide layer and is not necessary when manufacturing a light emitting diode. Thereafter, the supply of SiH4 and TMG is stopped, and the temperature of the substrate is lowered to about 850 ° C. to 700 ° C. This temperature is one parameter that determines the emission wavelength of the light emitting element, and the emission wavelength tends to be longer as the temperature is lower. The substrate temperature described above is a temperature for producing a purple-green light emitting element, and if the necessary wavelength band is not in the purple-green wavelength band, there is no problem even if the substrate temperature is changed. When the temperature is stabilized, TMG is supplied at 10 μmol / min and TMI is supplied at 10 μmol / min, and a barrier layer for forming an active layer (406) made of In0.05Ga0.95N is grown to a thickness of about 5 nm. During the growth of the active layer, SiH4 may be flowed at about 10 nmol / min.
[0037]
After the growth of the barrier layer, the supply of TMG and TMI is once stopped, and the growth is interrupted for 1 second to 60 minutes while the carrier gas and the NH3 gas are supplied. Thereafter, TMG is supplied again at 10 μmol / min and TMI is supplied at 50 μmol / min, and the well layer of the active layer made of In0.2Ga0.8N is grown to a thickness of about 3 nm. After the well layer growth, the supply of TMG and TMI is stopped again, and the growth is interrupted for 1 second to 60 minutes while supplying the carrier gas and NH3 gas. The growth of the well layer and the barrier layer as the active layer is repeated to grow the multiple quantum wells with the required number of layers, and finally the barrier layer is grown to finish the growth of the active layer (406). In a normal case, it has been found that an element having the highest luminous efficiency can be obtained by changing the number of well layers from two to five.
[0038]
After the active layer growth, for the purpose of preventing sublimation of the InGaN film, 10 μmol / min of TMG, 5 μmol / min of TMA, and
[0039]
FIG. 5 shows the growth temperature in the vicinity of the active layer and the supply amount of each raw material. In the figure,
[0040]
When the temperature reaches room temperature, the substrate is taken out from the crystal growth apparatus, and a part of the n-type GaN is exposed by reactive ion etching, and the necessary shape of the insulating film (411) and the p-type electrode (412a) An n-type electrode (412b) is formed by a vapor deposition method. The end face from which light is extracted is formed by cleaving the substrate.
[0041]
When a light emitting diode is manufactured, an end face by cleavage is not necessary, and light is transmitted from the p-type electrode side or the n-type electrode side.
[0042]
In the above example, the growth is interrupted after using the slightly tilted substrate. However, the crystallinity is sufficiently improved as compared with the prior art even without interrupting the growth.
[0043]
Furthermore, although the details of the cause of the increase in the light emission intensity of the light-emitting element by producing the light-emitting element on the slightly tilted substrate and performing the growth interruption during the growth of the active layer, the nitride-based compound semiconductor containing In is not known. It grows in a chemically unstable state at high temperatures, and dislocations penetrating through the film have the effect of aggregating In, and crystals exist in good condition immediately after the growth of the nitride-based compound semiconductor layer containing In. Not done. Therefore, first, by reducing the threading dislocation density using a vicinal substrate, and further being exposed to heat in a nitrogen atmosphere, the In aggregation in the nitride-based compound semiconductor containing In is eliminated and a stable phase state is obtained. It seems that it will naturally settle down and shift to a good crystalline state. In particular, it is speculated that the crystal state of the barrier layer adjacent to the well layer that contributes to light emission has a great influence on the improvement of the crystal quality of the well layer.
[0044]
In this example, the case where a GaN film is grown as the low-temperature buffer layer has been described. However, even if AlxGa1-xN (0.ltoreq.x.ltoreq.1) is used as the low-temperature buffer layer, there is no problem in manufacturing a light emitting device. There is no.
[0045]
In addition, when GaN is used as a substrate, it is not necessary to perform heat treatment in a hydrogen atmosphere and growth of a buffer layer at a low temperature, and raise the temperature in a carrier gas mainly composed of an inert gas and an NH3 atmosphere. , TMG and / or SiH4 can be introduced simultaneously with the growth of the underlying GaN film.
[0046]
Example 1
A sapphire (0001) substrate that is mirror-polished by tilting 0.05 ° from the <0001> direction to the <1-100> direction is set in a normal horizontal MOCVD reactor and heated to 1100 ° C. while supplying hydrogen. And perform thermal cleaning for 10 minutes. Thereafter, the temperature was lowered to 600 ° C., a 50 nm GaN buffer layer was deposited, the temperature was raised to 1000 ° C. while supplying ammonia, and an undoped GaN layer was grown to a thickness of 5 μm. This GaN film has an average surface roughness of 1.0 nm, a half-width of a double crystal X-ray diffraction peak of 2.5 arcmin, an electron concentration of 4 × 10 15 cm −3, and a mobility of 500
[0047]
Even when an AlN buffer layer deposited with a thickness of 50 nm at a substrate temperature of 600 ° C. is used instead of the GaN buffer layer used in the above embodiment using the same substrate as described above, a GaN layer grown on the buffer layer Then, good crystal characteristics equivalent to those described above were obtained. Further, after the thermal cleaning in the above process, the GaN layer formed even if the buffer layer and the GaN layer are grown by the same method as described above after initial nitriding of the surface of the sapphire substrate at 1100 ° C. for 10 minutes in an ammonia atmosphere. The crystal characteristics were as good as those described above.
[0048]
(Comparative Example 1)
For comparison, when an undoped GaN layer was grown in the same process as in Example 1 using a sapphire substrate tilted 2.1 ° from <0001> to the <1-100> direction, two-dimensional growth was inhibited. As a result, unevenness was generated, and the average surface roughness was 2.0 nm, the half width of the double crystal X-ray diffraction peak was 4 arcmin, the electron concentration was 10 16 cm −3, and the mobility was 90
[0049]
Therefore, in the above process, even if the deposition temperature of the buffer layer is changed to 550 ° C. and the thickness is changed to 40 nm, the average surface roughness does not change to 2.0 nm, and the crystal characteristics are 3.5 armin and 8 × 10 15 cm. −3, 200
[0050]
Here, the surface orientation of the sapphire substrate is changed from 0.02 ° to 0.5 ° from the <0001> direction to the <1-100> direction, and the same process as in Example 1 and Conventional Example 1 is performed. The results of investigating the surface roughness (flatness) and threading dislocation density of the formed GaN layer are shown by ● in FIG. In the range of 0.02 ° to 0.045 ° and 0.21 ° to 0.5 °, irregularities were generated on the surface due to poor crystal growth caused by the inclination angle of the sapphire substrate surface.
[0051]
Further, the surface roughness and threading dislocation density correspond to each other almost one-on-one, and in the case of a GaN layer having a surface roughness of 1.5 nm or less, the threading dislocation density can be suppressed to 10 9 cm −2, but the surface roughness is 1.5 nm. It was also found that the thickness exceeding 5 × 10 10 cm −2 is larger in the layer exceeding 1. That is, when the inclination of the surface orientation of the surface of the sapphire substrate is in the range of 0.05 ° to 0.2 °, the surface roughness is small and the threading dislocation can be suppressed to a relatively small value.
[0052]
This is because, within this tilt angle range, good two-dimensional growth is realized during the growth of the GaN layer (a situation where a GaN layer is stacked by one atomic layer is realized), which is locally observed during three-dimensional nucleus growth. It is considered that the effect is that there is no progressing growth, and the generation of threading dislocations in the region where the GaN crystals in the local growth region peculiar to the three-dimensional nucleus growth are adjacently in contact with each other can be suppressed.
[0053]
(Example 2)
Next, an embodiment of the present invention in the case where a sapphire substrate inclined in a direction different from that of Example 1 by 90 ° will be described. In this example, a mirror-polished sapphire (0001) substrate tilted by 0.15 ° in the <11-20> direction from the <0001> direction was set in a normal horizontal MOCVD apparatus reactor, and the same as in Example 1. An undoped GaN layer was grown by this process. The crystal characteristics of the GaN layer produced in this example are as good as an average surface roughness of 1.1 nm, a double crystal X-ray diffraction half width of 2.6 arcmin, an electron concentration of 4 × 10 15 cm −3, and a mobility of 500
[0054]
Further, using the same substrate as described above in the present example, even when the deposition temperature of the GaN or AlN or AlGaN buffer layer is changed in the range of 500 ° C. to 650 ° C. and the thickness is changed in the range of 40 nm to 70 nm, the formed GaN layer As a result, almost no change was observed in the characteristics, and a good GaN layer could be obtained. Further, even if a step of initial nitriding the surface of the sapphire substrate in an ammonia atmosphere before the buffer layer was formed, the crystal characteristics of the GaN layer were the same.
[0055]
(Comparative Example 2)
For comparison with Example 2, a GaN layer was grown in the same process as Example 2 using a sapphire (0001) substrate tilted by 1.8 ° in the <11-20> direction. The crystal characteristics of the film were significantly deteriorated as compared with the case of Example 2, and irregularities having an average roughness of 2.0 nm or more were generated on the surface. Further, as in Example 2, the deposition temperature of the GaN, AlN, or AlGaN buffer layer was changed in the range of 500 ° C. to 650 ° C. and the thickness was changed in the range of 40 nm to 70 nm. However, the crystal characteristics of the GaN layer were greatly improved. There wasn't.
[0056]
Here, GaN was formed by the same process as in Example 2 using a sapphire substrate whose surface orientation was changed from 0.02 ° to 0.5 ° in the <0001> to <11-20> direction. The results of measurement of the surface roughness and threading dislocation density of the GaN layer when the layer is grown are shown in FIG. Similarly to the case of tilting in the <1-100> direction, even when tilted in the <11-20> direction, when the tilt angle is 0.045 ° or less and 0.21 ° or more, the average surface roughness Increased to 1.5 nm or more.
[0057]
It was also found that the threading dislocation density in this case increased to 5 × 10 10 cm −2 or more. On the other hand, when the surface orientation of the sapphire substrate is tilted from the (0001) plane in the <11-20> direction within a range of 0.05 ° to 0.2 °, the average surface roughness of the GaN layer is significantly reduced. Planarization was achieved up to about 0.8 nm. In addition, the threading dislocation density of the GaN layer having a small average surface roughness can be suppressed to a relatively small value of 3 × 10 9 cm −2.
[0058]
As described above, it has been found that the surface orientation of the sapphire substrate has a great influence on the average surface roughness and threading dislocation density of the GaN crystal layer formed thereon. This improvement in crystallinity is achieved by changing the growth conditions (substrate temperature and thickness) of the buffer layer, and also the growth temperature of the GaN layer itself from 1100 ° C. to 950 ° C., 1000 ° C., 1150 ° C., and 1200 ° C. It was confirmed that it was most important to set the inclination angle of the surface orientation of the sapphire substrate within the range of 0.05 ° to 0.2 °.
[0059]
(Example 3)
FIG. 7 shows an example of an LED manufactured using the nitride compound semiconductor of the present application. In the figure, 701 is a sapphire (0001) substrate, 702 is a GaN buffer layer, 703 is an n-type GaN contact layer, 704 is an InGaN active layer made of an In0.2Ga0.8N single quantum well layer, and 705 is a p-type AlGaN protective layer. 706 are p-type GaN contact layers, 707 is a p-type electrode, and 708 is an n-type electrode. Using a sapphire (0001)
[0060]
Subsequently, the substrate temperature is decreased to 750 ° C., and the InGaN
[0061]
When a forward current of 20 mA was passed through the completed LED, the emission peak wavelength was 450 nm, the half width of the emission spectrum was 13 nm, and the luminance was 2 cd. Further, when the light emission pattern of the LED element of this example was observed, light was emitted uniformly over almost the entire surface of the InGaN
[0062]
Also in this example, the crystallinity of the surface of the n-type
[0063]
In addition, as a result of evaluating an LED element in which only the inclination angle of the substrate was changed using the same method as in this example, in an element in the inclination angle range of 0.05 ° to 0.2 °, Similar narrowing of the half-value width of the emission spectrum, uniform emission intensity distribution, and improvement in emission efficiency were observed. In this case, the same effect could be confirmed in any case of <1-100><11-20> as the direction of the inclination angle. As shown in FIG. 6, this effect is considered to be a result of reducing the surface roughness of the grown nitride semiconductor layer and forming an active layer on a very flat film.
[0064]
(Comparative Example 3)
For comparison, when a forward current of 20 mA was passed through an LED produced by the same method as in Example 3 using a sapphire substrate inclined by 0.25 ° from the <0001> direction to the <1-100> direction, The emission wavelength was 450 nm, which was the same as that in Example 3. However, it was found that the half-value width of the emission spectrum was 35 nm, which was wider than that in Example 3, and the luminance was 900 mcd, indicating that the emission efficiency was lowered. Further, in the evaluation of the light emission pattern, it was found that the distribution of the light emission intensity within the element surface was as large as ± 70%. Therefore, according to the present invention, the full width at half maximum of the emission spectrum is narrowed, and the color purity and the emission intensity are significantly improved. In addition, the distribution of the emission intensity within the element surface can be made uniform.
[0065]
This is because the surface of the n-type
[0066]
In Example 3 above, the average roughness of the n-type GaN contact layer surface is 1.1 nm to 1.2 nm, which is about 30 to 40% of the thickness of the InGaN active layer 704 (3.5 nm). I understand that. Further, regarding the uniformity of the light emission pattern, similarly, by making the surface roughness of the n-type
[0067]
In the nitride-based compound semiconductor light-emitting device having the quantum well active layer as described above, it is desirable that the thickness of the active layer is set to 3.5 nm or more because the luminous efficiency is high. Therefore, when the surface roughness of the underlying n-type
[0068]
Example 4
FIG. 8 shows an example of a semiconductor laser manufactured using a nitride compound semiconductor to which the present invention is applied. In the figure, 801 is a sapphire substrate, 802 is a GaN buffer layer, 803 is an n-type contact layer, 804 is an n-type cladding layer, 805 is an active layer, 806 is a p-type evaporation prevention layer, 807 is a p-type cladding layer, and 808 is A p-type contact layer, 809 is a current confinement layer, 810 is a p-type electrode, and 811 is an n-type electrode.
[0069]
A sapphire (0001) substrate that is mirror-polished by tilting 0.05 ° from the <0001> direction to the <1-100> direction is set in a reactor of a MOCVD apparatus, and is 50 nm thick using ammonia and TMG at a substrate temperature of 500 ° C. The
[0070]
Next, the substrate temperature is raised to 1000 ° C., and an n-
[0071]
Subsequently, a p-type
[0072]
After completion of the above steps, the substrate is taken out from the reactor of the MOCVD apparatus, and the p-
[0073]
When a current was passed through the completed device at room temperature, laser oscillation at a wavelength of 432 nm was observed with a threshold current of 40 mA, and the rising voltage at this time was 4V. Further, the drive current at the time of 5 mW output was 47 mA, and the drive voltage was 4.6V. Further, it was confirmed that the device lifetime at room temperature was 10,000 hours or more.
[0074]
As described above, the low oscillation threshold current can be realized and the reliability is improved because the average roughness of the surface of the n-
[0075]
That is, the average roughness of the surface of the n-
[0076]
Therefore, it has become possible to efficiently realize laser oscillation with a semiconductor laser. Thus, it was confirmed that the present invention has the same effect not only in improving the quality of the GaN layer but also in the case of AlGaN.
[0077]
Further, in this example, when only the inclination angle of the sapphire substrate was changed from the above 0.05 ° to 0.15 °, 0.20 °, and the same device was produced and evaluated, The oscillation threshold currents of 45 mA and 50 mA and the device lifetime at room temperature were 12000 hours and 7000 hours, respectively, and a semiconductor laser with good characteristics could be realized.
[0078]
(Comparative Example 4)
For comparison, when a current was passed through the laser element manufactured by the above method using a sapphire substrate inclined by 0.25 ° from the <0001> direction to the <1-100> direction, a laser oscillation of 432 nm was obtained at a threshold current of 250 mA. Was observed. The rising voltage was 4V. The driving current at the time of 5 mW output was 280 mA, and the driving voltage was 4.9V. The device lifetime at room temperature was 100 hours or less.
[0079]
Similarly, when a sapphire substrate having an inclination angle of 0.03 ° is applied and a semiconductor laser similar to that of Example 4 is manufactured, the oscillation threshold current is 100 mA or more, and the device lifetime at room temperature is less than 300 hours. As compared with Example 4, the device characteristics were remarkably deteriorated.
[0080]
(Example 5)
In this example, regarding a light-emitting diode manufactured using a slightly inclined substrate, the relationship between the substrate slight inclination angle, the threading dislocation density present in the element, the surface roughness, and the emission intensity at the time of current injection is shown.
[0081]
As a substrate, a (0001) plane sapphire substrate is used which is mirror-polished with an inclination angle of 0.02 ° to 0.5 ° in the <11-20> and <1-100> directions from the <0001> direction. A nitride-based compound semiconductor layer is sequentially grown by the above-described method.
[0082]
The growth conditions of the active layer are first adjusted after the n-type GaN layer is grown so that the substrate temperature becomes a constant temperature while flowing NH3. When the substrate temperature was stabilized, TMG, TMI, and SiH4 were introduced at 10 μmol / min, 10 μmol / min, and 5 nmol / min, respectively, and In0.05Ga0.95N serving as a barrier layer of the active layer was grown to a thickness of about 5 nm. . Subsequently, TMG, TMI, and SiH4 were introduced at 10 μmol / min, 50 μmol / min, and 5 nmol / min, respectively, and In0.2Ga0.8N serving as a well layer of the active layer was grown to a thickness of about 3 nm. After the well layer growth, the supply amount of TMG was reduced to 10 μmol / min, and the barrier layer of the active layer was grown again. After the growth of the barrier layer, the process of growing the well layer was repeated. Finally, the barrier layer was grown and an AlGaN film for the purpose of preventing sublimation of InGaN was grown to about 30 nm by the method described in the embodiment. In this example, the element was fabricated with three well layers forming the active layer. After the growth of AlGaN, a sample in which a p-type layer was grown by the method described in the embodiment and a sample as a light emitting diode were produced through processes such as electrode formation.
[0083]
A sample prepared by this method and having no electrode formed was observed by a cross-sectional TEM to evaluate the threading dislocation density, and the surface roughness was measured with a step gauge. The same result as in FIG. 6 was obtained. In any case, when the substrate tilt angle is in the range of 0.02 ° to 0.045 ° and 0.21 ° to 0.5 °, high-density threading dislocations and surface roughness are caused by crystal growth failure caused by the tilt of the substrate surface. Has occurred. In addition, a large number of dot-like regions having a diameter of several nm due to In aggregation were observed in the active layer. When the inclination is 0.05 ° to 0.2 °, threading dislocations are remarkably reduced, and the surface roughness is improved to 1.8 nm or less, which is sufficiently smaller than the thickness of each quantum well layer. From cross-sectional TEM observation, it was found that the surface flatness was improved from the growth stage of the n-type GaN of the underlayer. As a result of elimination of In aggregation in the active layer due to the reduction of threading dislocations, almost no dot-like region was observed, and the layer thickness fluctuation of the quantum well active layer was improved by improving the flatness of the underlayer.
[0084]
The result of investigating the luminescence intensity when a current of 20 mA was passed through a sample formed into an element by forming an electrode with respect to the substrate tilt angle from the <0001> direction to the <11-20> and <1-100> directions was shown. As shown in FIG. ● represents an inclination from <0001> to <1-100>, and ◯ represents an inclination angle from <0001> to <11-20>. As can be seen from FIG. 9, the emission intensity increases in the range of the inclination angle from 0.05 ° to 0.2 °.
[0085]
FIG. 10 shows the results of investigating the influence of the growth temperature of the multiple quantum well active layer in the inclination from <0001> to <1-100>. ● is when the growth temperature is 700 ° C., ○ is when the temperature is 750 ° C., and Δ is when the temperature is 800 ° C. As shown in FIG. 10, the influence of the fine substrate tilt angle on the light emission intensity varies slightly depending on the growth temperature, but in any case, the light emission intensity increases with the substrate tilt of 0.05 ° to 0.2 °. From the comparison between FIG. 6, FIG. 9, and FIG. 10, the correlation between threading dislocation and light emission intensity is clear, and the present invention can provide light emission intensity equal to or higher than that produced by the prior art with a lower driving current. I understand that. This means that the current path that does not contribute to light emission is reduced by the present invention.
[0086]
In this example, an example in which the number of well layers in the active layer is three was described. However, the effects of the multiple quantum wells of two layers and four to ten layers were the same as in this example.
[0087]
Further, when a laser is manufactured by the same method, the laser manufactured on a slightly inclined substrate of 0.05 ° to 0.2 ° has high emission intensity for the same current value, and starts oscillation according to the emission intensity. The threshold current density tended to decrease.
[0088]
(Example 6)
In this example, the relationship between the light emission intensity at the time of current injection and the growth interruption time after growth of the active layer and the barrier layer was determined for a light emitting diode having a barrier layer and an active layer produced on a vicinal substrate using growth interruption. Show.
[0089]
Using a (0001) plane sapphire substrate that is mirror-polished with an inclination angle of 0.15 ° from the <0001> direction to the <1-100> direction as the substrate, the nitride-based compound semiconductor layers are sequentially formed by the method described in the embodiment. Grew up.
[0090]
First, after growing the n-type GaN layer, the active layer is adjusted so that the substrate temperature becomes a constant temperature while flowing NH3, and when the substrate temperature is stabilized, TMG, TMI and SiH4 are each 10 μmol / min. 10 μmol / min and 5 nmol / min were introduced, and In0.05Ga0.95N, which is a barrier layer forming an active layer, was grown to a thickness of about 5 nm. Thereafter, the supply of TMG, TMI, and SiH4 is temporarily stopped, and a certain growth interruption is performed while the carrier gas and the NH3 gas are supplied. Thereafter, TMG, TMI, and SiH4 were introduced again at 10 μmol / min, 50 μmol / min, and 5 nmol / min, respectively, and In0.2Ga0.8N serving as a well layer of the active layer was grown to a thickness of about 3 nm. After the well layer growth, the supply amount of TMG was reduced to 10 μmol / min, and the barrier layer of the active layer was grown again. After the growth of the barrier layer, the process of growing the well layer through interruption of growth for a certain period is repeated. Finally, the barrier layer is grown and an AlGaN film for the purpose of preventing sublimation of InGaN by the method described in the embodiment is formed to 30 nm. Growing up. A growth interruption may or may not be provided between the AlGaN film and the InGaN barrier layer where the active layer is terminated. However, it has been found that when the number of well layers is two or less, the emission intensity due to current injection of the light emitting element is higher when the growth interruption is provided even after the terminating barrier layer is grown. In this example, the element was fabricated with three well layers forming the active layer.
[0091]
After the growth of AlGaN, a p-type layer was grown by the method shown in the embodiment, and a light emitting diode was manufactured through processes such as electrode formation.
[0092]
FIG. 11 shows the results of investigating the light emission intensity when a current of 20 mA was passed through the light emitting diode manufactured by this method, using the growth interruption time after growth of the barrier layer as a parameter. In the figure, ● indicates when the growth temperature of the multi-quantum well active layer is 700 ° C., ○ indicates when the temperature is 750 ° C., Δ indicates when the temperature is 800 ° C. The light emission intensity is when the growth interruption time at the growth temperature is 0 seconds, and the intensity indicated by a circle or a triangle is the average value of the light emission intensity.
[0093]
As is clear from comparison with FIGS. 9 and 11, it is understood that the emission intensity is further increased by using the growth interruption in addition to the slightly inclined substrate.
[0094]
As shown in FIG. 10, the influence on the light emission intensity due to the growth interruption slightly changes depending on the growth temperature, but in any case, the light emission intensity increases due to the growth interruption for 1 second or more. When the growth temperature of the active layer is high, the growth interruption period is short. Conversely, when the growth temperature is low, a longer growth interruption period is more effective. As shown in the figure, when the growth temperature is 700 ° C., the growth interruption time is effective from about 1 second to about 60 minutes, and the period during which the effect is particularly effective is from 1 second to 10 minutes. . When the growth temperature was 750 ° C., the growth interruption time was effective from about 1 second to about 15 minutes, and the period during which the effect was particularly effective was from 1 second to 5 minutes.
[0095]
When the growth temperature was 800 ° C., the growth interruption time was effective from about 1 second to about 5 minutes, and the period during which the effect was particularly effective was from 1 second to 2 minutes.
[0096]
In the present embodiment, an example using a (0001) plane sapphire substrate that is mirror-polished with an inclination angle of 0.15 ° from the <0001> direction to the <1-100> direction has been described. It was confirmed that the same effect was exhibited even when tilted in the other direction within the range of 0 ° to 0.2 °.
[0097]
In the present embodiment, an example in which the number of well layers in the active layer is 3 has been described. However, the effect of the multi-quantum well from 2 layers and from 4 layers to 10 layers has the same tendency as in this embodiment. Yes, when a laser is manufactured by the same method, a laser in which an active layer is formed by interrupting the growth of the barrier layer has a high emission intensity for the same current value, and a threshold current that starts oscillation according to the emission intensity. The density tended to be low.
[0098]
(Example 7)
In this example, a constant growth interruption was performed after the growth of the barrier layer of the active layer using a (0001) plane sapphire substrate that was mirror-polished with an inclination angle of 0.15 ° from the <0001> direction to the <1-100> direction. Similarly, after the growth of the well layer of the active layer, the light emission intensity in the current injection of the light emitting diode and the growth interruption after the well layer growth are also observed after the well layer growth of the active layer. We report an example of investigating the relationship with time. The growth method of each layer forming the light emitting diode is the same as the method shown in the second embodiment. Hereinafter, conditions for growing the active layer will be described.
[0099]
First, after growing n-type GaN, the substrate temperature is adjusted to a constant temperature while NH3 is allowed to flow. When the substrate temperature was stabilized, TMG, TMI, and SiH4 were introduced at 10 μmol / min, 10 μmol / min, and 5 nmol / min, respectively, and In0.05Ga0.95N serving as a barrier layer of the active layer was grown to a thickness of about 5 μm. . Thereafter, the supply of TMG, TMI, and SiH4 is temporarily stopped, and a certain growth interruption is performed while the carrier gas and the NH3 gas are supplied. Thereafter, TMG, TMI, and SiH4 gas were again introduced at 10 μmol / min, 15 μmol / min, and 5 nmol / min, respectively, and In0.2Ga0.8N serving as a well layer of the active layer was grown to a thickness of about 5 μm. Thereafter, the supply of TMG, TMI, and SiH4 is temporarily stopped, and a certain growth interruption is performed while the carrier gas and the NH3 gas are supplied. After the barrier layer growth and the well layer growth, the process of growing the respective layers adjacent to each other through the growth interruption for a certain period is repeated, and finally the barrier layer is grown by the method described in the embodiment. An AlGaN film for the purpose of preventing the sublimation of InGaN was grown to about 30 nm. A growth interruption may or may not be provided between the present AlGaN film and the InGaN barrier layer where the active layer terminates. However, it has been found that when the number of well layers is two or less, the emission intensity due to current injection into the light emitting element is stronger when the growth interruption is provided even after the terminating barrier layer is grown. In this example, the element was fabricated with three well layers forming the active layer. The growth interruption time after the barrier layer growth was 60 seconds.
[0100]
FIG. 12 shows the result of investigating the light emission intensity when a current of 20 mA is passed through the light emitting diode manufactured by this method, using the growth interruption time after the well layer growth as a parameter. In the figure, ● indicates when the growth temperature of the multi-quantum well active layer is 700 ° C., ○ indicates when the temperature is 750 ° C., Δ indicates when the temperature is 800 ° C., and the broken line drawn at the
[0101]
As is clear from a comparison between FIG. 9 and FIG. 12, it is understood that the emission intensity is further increased by using the growth interruption in addition to the slightly inclined substrate.
[0102]
As shown in FIG. 12, the influence on the emission intensity due to the growth interruption after the well layer growth slightly changes depending on the growth temperature, but in any case, the emission intensity increases due to the growth interruption for 1 second or more. When the growth temperature of the active layer is high, the growth interruption time is short. Conversely, when the growth temperature is low, it is effective that the growth interruption time is long.
[0103]
As shown in FIG. 12, when the growth temperature is 700 ° C., the growth interruption time is effective from about 1 second to about 60 minutes, and the period in which the effect is particularly effective is from 1 second to 10 minutes. . When the growth temperature was 750 ° C., the growth interruption time was effective from about 1 second to about 15 minutes, and the period during which the effect was particularly effective was 1 second to 5 minutes.
[0104]
In the case where the growth temperature is 800 ° C., the growth interruption time is effective from about 1 second to about 5 minutes, and the period in which the effect particularly appears is from 1 second to 2 minutes.
[0105]
Further, when the growth is interrupted only after growing the well layer without growing the barrier layer after growing the barrier layer, the effect is as great as shown in FIG. Was not confirmed, and the increase in the emission intensity was only about 3 times at the maximum.
[0106]
(Example 8)
In this example, a light-emitting diode was manufactured by the method shown in Example 5 using (0001) plane sapphire mirror-polished with an inclination angle of 0.15 ° from the <0001> direction to the <1-100> direction as the substrate. Describes the results of investigating the light-emitting characteristics of light-emitting diodes when the mixing ratio of the carrier gas hydrogen gas and nitrogen gas is changed during the growth interruption period after growth of the barrier layer that forms the active layer. To do.
[0107]
In FIG. 13, the growth temperature of the active layer is fixed at 750 ° C., the growth interruption time after the growth of the barrier layer is 60 seconds, and the ratio of nitrogen gas to hydrogen gas is changed without changing the total amount of carrier gas flowing during the growth interruption. The relationship between the light emission wavelength and the intensity of the light-emitting diode manufactured by supplying differently is shown. ● indicates the emission intensity, and ○ indicates the emission wavelength. As shown in FIG. 13, as the N2 ratio of the carrier gas decreases, the emission wavelength tends to be shorter and the emission intensity also tends to decrease. This tendency shows the same tendency even when the growth temperature of the active layer is as high as about 800 ° C. or as low as about 700 ° C. Further, in the case where not only the growth interruption after the barrier layer growth but also the growth interruption is provided after the growth of the well layer, the use of N2 as the carrier gas during the growth interruption has a stronger emission intensity and longer wavelength. It showed a trend toward wavelength.
[0108]
Example 9
In this example, a light-emitting diode was manufactured by the method shown in Example 1 using (0001) plane sapphire that was mirror-polished with an inclination angle of 0.15 ° from the <0001> direction to the <1-100> direction as the substrate. The results of investigating the relationship between the growth interruption time and the emission intensity when the amount of
[0109]
FIG. 14 shows the result of measuring the light emission intensity of the light emitting diode when the growth temperature of the active layer is fixed at 750 ° C. and the
[0110]
As shown in FIG. 14, it was confirmed that the emission intensity increased even when the amount of NH3 introduced was zero. However, the effect of increasing the emission intensity was more noticeable by the introduction of NH3. Since the interruption time can be set long, the manufacturing becomes easy. This tendency shows the same tendency even when the growth temperature of the active layer is as high as about 800 ° C. or as low as about 700 ° C. In addition to the growth interruption after the barrier layer growth, the same tendency was shown when the growth interruption was provided after the well layer growth.
[0111]
(Example 10)
In this example, regarding a light-emitting diode manufactured using a GaN finely inclined substrate, the relationship between the finely inclined angle of the GaN substrate, the threading dislocation density present in the element, the surface roughness, and the emission intensity at the time of current injection is shown.
[0112]
As a substrate, a (0001) plane GaN substrate that is mirror-polished with an inclination angle of 0.02 ° to 0.5 ° in the <11-20> and <1-100> directions from the <0001> direction is shown in the embodiment. The nitride-based compound semiconductor layers were sequentially grown by the above-described method, and the active layer was grown by the procedure described in Example 5 without interrupting the growth between the respective layers. The number of well layers forming the active layer is three. After the device structure growth, a sample in which a p-type layer was grown by the method shown in the embodiment and a sample as a light emitting diode were manufactured through processes such as electrode formation.
[0113]
A sample prepared by the above method and having no electrode formed was observed by a cross-sectional TEM to evaluate the threading dislocation density, and the surface roughness was measured with a step gauge. The results are shown in FIG. In the figure, ● represents inclination in the <1-100> direction, and ○ represents inclination in the <11-20> direction. In any case, when the substrate tilt angle is in the range of 0.02 ° to 0.045 ° and 0.21 ° to 0.5 °, high-density threading dislocations and surface roughness are caused by crystal growth failure caused by the tilt of the substrate surface. Has occurred. On the other hand, when the inclination is 0.05 ° to 0.2 °, threading dislocations are remarkably reduced, and the surface roughness is sufficiently smaller than the thickness of each quantum well layer, which is further improved over the element on the slightly inclined sapphire substrate, and is less than 4 nm. there were. From cross-sectional TEM observation, it was found that the surface flatness was improved from the growth stage of the n-type GaN of the underlayer. By reducing threading dislocations, In aggregation in the active layer was eliminated, and by improving the flatness of the underlying layer, fluctuations in the thickness of the quantum well active layer were improved.
[0114]
Next, the emission intensity when a current of 20 mA is passed through the sample formed into an element by forming an electrode on the sample is the substrate tilt angle from the <0001> direction to the <11-20> and <1-100> directions. The results of the investigation are shown in FIG. ● is an inclination from <0001> to <1-100>, and ◯ is an inclination from <11-20>. It can be seen that the emission intensity increases at an inclination of 0.05 ° to 0.2 °.
[0115]
FIG. 17 shows the influence of the growth temperature of the multiple quantum well active layer in the tilted substrate from <0001> to <1-100>. As shown in the figure, the influence of the fine substrate tilt angle on the light emission intensity varies slightly depending on the growth temperature, but in any case, the light emission intensity increases with a substrate tilt of 0.05 ° to 0.2 °. Although this tendency is the same as that of the slightly inclined sapphire substrate, it can be seen that the improvement effect is larger. From the comparison between FIG. 6 and FIG. 9, FIG. 10, FIG. 15, FIG. 16, and FIG. 17, the correlation between threading dislocations and emission intensity is clear even in the device fabricated on the slightly tilted GaN substrate. It can be seen that the same or higher emission intensity can be obtained with a lower driving current as compared with the case of the above. This means that the current path that does not contribute to light emission is reduced by the present invention.
[0116]
In this example, an example in which the number of well layers in the active layer is three was described. However, the effects of the multiple quantum wells of two layers and four to ten layers were the same as in this example.
[0117]
Further, when a laser is manufactured by the same method, the laser manufactured on a slightly inclined substrate of 0.05 ° to 0.2 ° has high emission intensity for the same current value, and starts oscillation according to the emission intensity. The threshold current density tended to be lower, and the degree of decrease was more remarkable than when fabricated on a slightly inclined sapphire substrate.
[0118]
(Example 11)
In this example, the relationship between the emission intensity at the time of current injection and the growth interruption time after growth of the active layer and the barrier layer for a light-emitting diode having a barrier layer and an active layer produced on a vicinal GaN substrate using growth interruption. Indicates.
[0119]
Using a (0001) plane GaN substrate mirror-polished with an inclination angle of 0.15 ° from the <0001> direction to the <1-100> direction as the substrate, the nitride-based compound semiconductor layers are sequentially formed by the method described in the embodiment. Grew up.
[0120]
First, after growing the n-type GaN layer, the active layer is adjusted so that the substrate temperature becomes a constant temperature while flowing NH3, and when the substrate temperature is stabilized, TMG, TMI and SiH4 are each 10 μmol / min. 10 μmol / min and 5 nmol / min were introduced, and In0.05Ga0.95N, which is a barrier layer forming an active layer, was grown to a thickness of about 5 nm. Thereafter, the supply of TMG, TMI, and SiH4 is temporarily stopped, and a certain growth interruption is performed while the carrier gas and the NH3 gas are supplied. Thereafter, TMG, TMI, and SiH4 were introduced again at 10 μmol / min, 50 μmol / min, and 5 nmol / min, respectively, and In0.2Ga0.8N serving as a well layer of the active layer was grown to a thickness of about 3 nm. After the well layer growth, the supply amount of TMG was reduced to 10 μmol / min, and the barrier layer of the active layer was grown again. After the growth of the barrier layer, the process of growing the well layer through interruption of growth for a certain period is repeated. Finally, the barrier layer is grown and an AlGaN film for the purpose of preventing sublimation of InGaN by the method described in the embodiment is formed to 30 nm. Growing up. A growth interruption may or may not be provided between the AlGaN film and the InGaN barrier layer where the active layer is terminated. However, it has been found that when the number of well layers is two or less, the emission intensity due to current injection of the light emitting element is higher when the growth interruption is provided even after the terminating barrier layer is grown. In this example, the element was fabricated with three well layers forming the active layer.
[0121]
After the growth of AlGaN, a p-type layer was grown by the method shown in the embodiment, and a light emitting diode was manufactured through processes such as electrode formation.
[0122]
FIG. 18 shows the results of investigating the light emission intensity when a current of 20 mA was passed through a light emitting diode manufactured by this method, using the growth interruption time after growth of the barrier layer as a parameter. ● is when the growth temperature of the multi-quantum well active layer is 700 ° C., ◯ is when it is 750 ° C., and Δ is when it is 800 ° C. In the figure, the broken line drawn at the position of
[0123]
As is clear from comparison between FIG. 16 and FIG. 18, it is understood that the emission intensity is further increased by using the growth interruption in addition to the slightly inclined GaN substrate.
[0124]
As shown in FIG. 18, the influence on the light emission intensity due to the growth interruption slightly changes depending on the growth temperature, but in any case, the light emission intensity increases due to the growth interruption for 1 second or more. When the growth temperature of the active layer is high, the growth interruption period is short. Conversely, when the growth temperature is low, the longer the growth interruption period, the greater the effect. As shown in the figure, when the growth temperature is 700 ° C., the growth interruption time is effective from about 1 second to about 60 minutes, and the period during which the effect is particularly effective is from 1 second to 10 minutes. . When the growth temperature was 750 ° C., the growth interruption time was effective from about 1 second to about 15 minutes, and the period during which the effect was particularly effective was from 1 second to 5 minutes. When the growth temperature was 800 ° C., the growth interruption time was effective from about 1 second to about 5 minutes, and the period during which the effect was particularly effective was from 1 second to 2 minutes.
[0125]
In the present embodiment, an example using a (0001) plane GaN substrate that is mirror-polished with an inclination angle of 0.15 ° from the <0001> direction to the <1-100> direction has been described. It was confirmed that the same effect was exhibited even when tilted in the other direction within the range of 0 ° to 0.2 °.
[0126]
In the present embodiment, an example in which the number of well layers in the active layer is 3 has been described. However, the effect of the multi-quantum well from 2 layers and from 4 layers to 10 layers has the same tendency as in this embodiment. Yes, when a laser is manufactured by the same method, a laser in which an active layer is manufactured by interrupting the growth of the barrier layer has a high emission intensity for the same current value, and a threshold current at which oscillation starts according to the emission intensity The density tended to be low.
[0127]
(Example 12)
In this example, a constant growth interruption was performed after the growth of the barrier layer of the active layer using a (0001) plane GaN substrate mirror-polished with an inclination angle of 0.15 ° from the <0001> direction to the <1-100> direction. Similarly, after the growth of the well layer of the active layer, the light emission intensity in the current injection of the light emitting diode and the growth interruption after the well layer growth are also observed after the well layer growth of the active layer. We report an example of investigating the relationship with time. The growth method of each layer forming the light emitting diode is the same as the method shown in the sixth embodiment. Hereinafter, conditions for growing the active layer will be described.
[0128]
First, after growing n-type GaN, the substrate temperature is adjusted to a constant temperature while NH3 is allowed to flow. When the substrate temperature was stabilized, TMG, TMI, and SiH4 were introduced at 10 μmol / min, 10 μmol / min, and 5 nmol / min, respectively, and In0.05Ga0.95N serving as a barrier layer of the active layer was grown to a thickness of about 5 μm. . Thereafter, the supply of TMG, TMI, and SiH4 is temporarily stopped, and a certain growth interruption is performed while the carrier gas and the NH3 gas are supplied. Thereafter, TMG, TMI, and SiH4 gas were again introduced at 10 μmol / min, 15 μmol / min, and 5 nmol / min, respectively, and In0.2Ga0.8N serving as a well layer of the active layer was grown to a thickness of about 5 μm. Thereafter, the supply of TMG, TMI, and SiH4 is temporarily stopped, and a certain growth interruption is performed while the carrier gas and the NH3 gas are supplied. After the barrier layer growth and the well layer growth, the process of growing the respective layers adjacent to each other through the growth interruption for a certain period is repeated, and finally the barrier layer is grown by the method described in the embodiment. An AlGaN film for the purpose of preventing the sublimation of InGaN was grown to about 30 nm. A growth interruption may or may not be provided between the present AlGaN film and the InGaN barrier layer where the active layer terminates. However, it has been found that when the number of well layers is two or less, the emission intensity due to current injection of the light emitting element is higher when the growth interruption is provided even after the terminating barrier layer is grown. In this example, the element was fabricated with three well layers forming the active layer. The growth interruption time after the barrier layer growth was 60 seconds.
[0129]
FIG. 19 shows the result of investigating the light emission intensity when a current of 20 mA was passed through the light emitting diode manufactured by this method, using the growth interruption time after the well layer growth as a parameter. ● is when the growth temperature of the multi-quantum well active layer is 700 ° C., ◯ is when it is 750 ° C., and Δ is when it is 800 ° C. In the figure, the broken line drawn at the position of
[0130]
As is clear from comparison between FIG. 16 and FIG. 19, it can be seen that the emission intensity is further increased by using the growth interruption in addition to the slightly inclined GaN substrate.
[0131]
As shown in FIG. 19, the influence on the emission intensity due to the growth interruption after the well layer growth slightly changes depending on the growth temperature, but in any case, the emission intensity increases due to the growth interruption for 1 second or more. When the growth temperature of the active layer is high, the growth interruption time is short. Conversely, when the growth temperature is low, it is effective that the growth interruption time is long. In the case where the growth temperature is 700 ° C., the growth interruption time is effective from about 1 second to about 60 minutes. Particularly, the period in which the effect appears is from 1 second to 10 minutes, and the growth temperature is 750 ° C. In this case, the growth interruption time is effective from about 1 second to about 15 minutes, and the period in which the effect is particularly effective is from 1 second to 5 minutes.
[0132]
In the case where the growth temperature is 800 ° C., the growth interruption time is effective from about 1 second to about 5 minutes, and the period in which the effect particularly appears is from 1 second to 2 minutes. On the other hand, when the growth is interrupted only after growing the well layer without growing the barrier layer after growing the barrier layer, the effect is as great as shown in FIG. Was not confirmed, and the increase in the emission intensity was only about 3 times at the maximum.
[0133]
As described above, the embodiment has been described. The present invention is not limited to the combination of the material and the layer structure shown in the above embodiment, but includes a double heterostructure composed of a combination of a GaN active layer / AlGaN cladding layer, and the like. The same effect can be obtained in a semiconductor laser device having a single quantum well and multiple quantum wells made of a nitride compound semiconductor as active layers. In particular, the effect in the case of using the quantum well active layer is remarkable, and the improvement of the characteristics of the light emitting device by the application of the base layer having an average surface roughness smaller than the thickness of the quantum well active layer is remarkable.
[0134]
【The invention's effect】
According to the present invention, a nitride-based compound semiconductor crystal having an improved average surface roughness and crystal quality as compared with the prior art can be epitaxially grown. That is, by using a (0001) plane sapphire substrate that is mirror-polished with an inclination angle of 0.05 ° to 0.2 ° from the <0001> direction to the <1-100> direction or the <11-20> direction, Promotes two-dimensional growth and reduces dislocations in the crystal. Further, in a nitride compound semiconductor light emitting device having a multilayer film made of a nitride compound semiconductor containing In as an active layer, a nitride system having high emission intensity by providing a growth interruption for a certain period after the active layer is grown. A compound semiconductor light emitting device is provided. Thus, the light-emitting element and the electronic element manufactured using the method of the present invention can have improved characteristics and lifetime.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing the surface of a substrate whose tilt angle is not defined and three-dimensional growth.
FIG. 2 is a schematic cross-sectional view showing a substrate surface and a two-dimensional growth in which a tilt angle from a <0001> direction is defined according to the present invention.
FIG. 3 is a schematic view of a crystal growth apparatus used in this example.
FIG. 4 is a schematic view of a light-emitting element manufactured using a nitride-based compound semiconductor.
FIG. 5 is a diagram showing a growth temperature in the vicinity of an active layer and a supply amount of each raw material.
FIG. 6 is a graph showing the relationship between the tilt angle of the substrate surface, the threading dislocation density, and the average surface roughness.
7 is a cross-sectional view of an LED shown in Example 3. FIG.
8 is a sectional view of a laser shown in Example 4. FIG.
FIG. 9 is a graph showing the relationship between the tilt angle of the sapphire substrate surface and the light emission intensity of the light emitting element.
FIG. 10 is a graph showing the relationship between the substrate tilt angle and the light emission intensity of the light emitting element when the growth temperature of the light emitting layer is changed.
FIG. 11 is a graph showing the relationship between the growth interruption time after growth of the barrier layer and the light emission intensity of the light emitting device.
FIG. 12 is a graph showing the relationship between the growth interruption time after the well layer growth and the light emission intensity of the light emitting element.
FIG. 13 is a graph showing the relationship between the nitrogen partial pressure of the carrier gas, the emission intensity of the light emitting element, and the emission wavelength.
FIG. 14 is a graph showing the relationship between the amount of
FIG. 15 is a graph showing the relationship between the inclination angle of the GaN substrate surface, the threading dislocation density, and the average surface roughness.
FIG. 16 is a graph showing the relationship between the tilt angle of the GaN substrate surface and the light emission intensity of the light emitting element.
FIG. 17 is a graph showing the relationship between the GaN substrate tilt angle and the light emission intensity of the device when the growth temperature of the light emitting layer is changed.
FIG. 18 is a graph showing the relationship between the growth interruption time after growth of the barrier layer and the light emission intensity of the device.
FIG. 19 is a diagram showing the relationship between the growth interruption time after the well layer growth and the light emission intensity of the device.
[Explanation of symbols]
101 ... Board
102 ... Step
103 ... Growth nucleus
201 ... substrate
202 ... step
203 ... Growth nucleus
401 ... Board
402: GaN film as a buffer layer
403 ... n-type GaN
404: n-type Al0.15Ga0.85N film
405 ... GaN film
406 ... active layer
407 ... AlGaN film
408 ... p-type GaN film
409 ... p-type Al0.15Ga0.85N film
410 ... p-type GaN contact layer
411 ... Insulating film
412a ... p-type electrode
412b ... n-type electrode
501: Growth interruption period
502 ... Growth period of the barrier layer
503 ... well layer growth period
504 ... Growth period of n-type GaN
505 ... Growth period of p-type GaN
506: Growth period of the sublimation preventing layer
701: Sapphire (0001) substrate
702 ... GaN buffer layer
703 ... n-type GaN contact layer
704 ... InGaN active layer
705 ... p-type AlGaN protective layer
706... P-type GaN contact layer
707 ... p-type electrode
708 ... n-type electrode
801: Sapphire substrate
802 ... GaN buffer layer
803 ... n-type contact layer
804 ... n-type cladding layer
805 ... Active layer
806 ... p-type evaporation prevention layer
807 ... p-type cladding layer
808 ... p-type contact layer
809 ... Current confinement layer
810 ... p-type electrode
811 ... n-type electrode
Claims (6)
上記サファイア基板表面の結晶方位が<0001>方向より<11−20>方向または<1−100>方向に0.05°以上0.2°以下の範囲で傾斜していることを特徴とする窒化物系化合物半導体発光素子の製造方法。In a method for manufacturing a nitride-based compound semiconductor light-emitting element, in which a nitride-based compound semiconductor laminate having an active layer sandwiched between layers having different conductivity types is vapor-phase grown on a sapphire substrate,
Nitriding characterized in that the crystal orientation of the sapphire substrate surface is inclined in the range of 0.05 ° or more and 0.2 ° or less in the <11-20> direction or <1-100> direction from the <0001> direction. Manufacturing method of physical compound semiconductor light emitting device.
該井戸層あるいは該障壁層のどちらか一方あるいは両方の形成後、一定時間の成長中断を設ける過程を有することを特徴とする請求項1に記載の窒化物系化合物半導体発光素子の製造方法。The active layer is formed of one or more well layers and barrier layers,
2. The method of manufacturing a nitride-based compound semiconductor light-emitting element according to claim 1, further comprising a step of providing a growth interruption for a predetermined time after formation of one or both of the well layer and the barrier layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17929899A JP3976294B2 (en) | 1998-06-26 | 1999-06-25 | Method for manufacturing nitride-based compound semiconductor light-emitting device |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17989998 | 1998-06-26 | ||
JP10-179899 | 1998-06-26 | ||
JP17929899A JP3976294B2 (en) | 1998-06-26 | 1999-06-25 | Method for manufacturing nitride-based compound semiconductor light-emitting device |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006297870A Division JP3965203B2 (en) | 1998-06-26 | 2006-11-01 | Nitride compound semiconductor light emitting device |
JP2007054063A Division JP4653768B2 (en) | 1998-06-26 | 2007-03-05 | Nitride-based compound semiconductor device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000082676A JP2000082676A (en) | 2000-03-21 |
JP3976294B2 true JP3976294B2 (en) | 2007-09-12 |
Family
ID=26499201
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17929899A Expired - Lifetime JP3976294B2 (en) | 1998-06-26 | 1999-06-25 | Method for manufacturing nitride-based compound semiconductor light-emitting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3976294B2 (en) |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000252591A (en) * | 1999-02-26 | 2000-09-14 | Sanyo Electric Co Ltd | Nitride system semiconductor element and its manufacturing method |
JP4691631B2 (en) * | 1999-11-29 | 2011-06-01 | 並木精密宝石株式会社 | Sapphire substrate |
JP3929008B2 (en) | 2000-01-14 | 2007-06-13 | シャープ株式会社 | Nitride-based compound semiconductor light-emitting device and method for manufacturing the same |
US6447604B1 (en) * | 2000-03-13 | 2002-09-10 | Advanced Technology Materials, Inc. | Method for achieving improved epitaxy quality (surface texture and defect density) on free-standing (aluminum, indium, gallium) nitride ((al,in,ga)n) substrates for opto-electronic and electronic devices |
JP2002100839A (en) * | 2000-07-18 | 2002-04-05 | Rohm Co Ltd | Semiconductor light-emitting element and semiconductor laser |
JP4291527B2 (en) * | 2000-10-13 | 2009-07-08 | 日本碍子株式会社 | Method of using group III nitride epitaxial substrate |
JP4567896B2 (en) * | 2001-02-09 | 2010-10-20 | シャープ株式会社 | Manufacturing method of semiconductor light emitting device |
US6488767B1 (en) * | 2001-06-08 | 2002-12-03 | Advanced Technology Materials, Inc. | High surface quality GaN wafer and method of fabricating same |
JP3768943B2 (en) * | 2001-09-28 | 2006-04-19 | 日本碍子株式会社 | Group III nitride epitaxial substrate, group III nitride device epitaxial substrate, and group III nitride device |
TWI234915B (en) * | 2002-11-18 | 2005-06-21 | Pioneer Corp | Semiconductor light-emitting element and method of manufacturing the same |
US7462882B2 (en) | 2003-04-24 | 2008-12-09 | Sharp Kabushiki Kaisha | Nitride semiconductor light-emitting device, method of fabricating it, and semiconductor optical apparatus |
JP2004327655A (en) * | 2003-04-24 | 2004-11-18 | Sharp Corp | Nitride semiconductor laser device, its manufacturing method, and semiconductor optical device |
JP2004349590A (en) * | 2003-05-26 | 2004-12-09 | Sharp Corp | Nitride-based compound semiconductor element and method of manufacturing the same |
JP4276020B2 (en) | 2003-08-01 | 2009-06-10 | 豊田合成株式会社 | Method for producing group III nitride compound semiconductor |
US7276779B2 (en) | 2003-11-04 | 2007-10-02 | Hitachi Cable, Ltd. | III-V group nitride system semiconductor substrate |
TWI252599B (en) * | 2004-04-27 | 2006-04-01 | Showa Denko Kk | N-type group III nitride semiconductor layered structure |
JP3816942B2 (en) | 2004-10-27 | 2006-08-30 | 三菱電機株式会社 | Manufacturing method of semiconductor device |
JP2006210795A (en) * | 2005-01-31 | 2006-08-10 | Sanyo Electric Co Ltd | Compound semiconductor light emitting device |
JP4780993B2 (en) * | 2005-03-31 | 2011-09-28 | 三洋電機株式会社 | Semiconductor laser device and manufacturing method thereof |
JP4765751B2 (en) * | 2006-04-26 | 2011-09-07 | 三菱化学株式会社 | Method of manufacturing nitride semiconductor device |
JP4770580B2 (en) * | 2006-05-15 | 2011-09-14 | 三菱化学株式会社 | Method of manufacturing nitride semiconductor device |
JP2006229253A (en) * | 2006-05-19 | 2006-08-31 | Sharp Corp | Nitride-based compound semiconductor light-emitting device and its manufacturing method |
JP4714087B2 (en) | 2006-06-14 | 2011-06-29 | 住友電気工業株式会社 | GaN substrate storage method and semiconductor device manufacturing method |
US8476158B2 (en) | 2006-06-14 | 2013-07-02 | Sumitomo Electric Industries, Ltd. | Method of preparing and storing GaN substrate, prepared and stored GaN substrate, and semiconductor device and method of its manufacture |
CA2669228C (en) * | 2006-11-15 | 2014-12-16 | The Regents Of The University Of California | Method for heteroepitaxial growth of high-quality n-face gan, inn, and ain and their alloys by metal organic chemical vapor deposition |
JP2009064978A (en) * | 2007-09-06 | 2009-03-26 | Sharp Corp | GaN-BASED COMPOUND SEMICONDUCTOR LIGHT-EMITTING DEVICE AND MANUFACTURING METHOD THEREFOR |
JP4908453B2 (en) * | 2008-04-25 | 2012-04-04 | 住友電気工業株式会社 | Method for fabricating a nitride semiconductor laser |
JP2010199236A (en) * | 2009-02-24 | 2010-09-09 | Sumitomo Electric Ind Ltd | Light emitting element producing method and light emitting element |
JP2012119429A (en) * | 2010-11-30 | 2012-06-21 | Sanken Electric Co Ltd | Method of manufacturing semiconductor device, and semiconductor device |
US9236530B2 (en) | 2011-04-01 | 2016-01-12 | Soraa, Inc. | Miscut bulk substrates |
US9646827B1 (en) | 2011-08-23 | 2017-05-09 | Soraa, Inc. | Method for smoothing surface of a substrate containing gallium and nitrogen |
KR20140019635A (en) * | 2012-08-06 | 2014-02-17 | 엘지이노텍 주식회사 | Light emitting device and light emitting device package |
-
1999
- 1999-06-25 JP JP17929899A patent/JP3976294B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2000082676A (en) | 2000-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3976294B2 (en) | Method for manufacturing nitride-based compound semiconductor light-emitting device | |
JP3929008B2 (en) | Nitride-based compound semiconductor light-emitting device and method for manufacturing the same | |
US6252255B1 (en) | Crystal growth method for nitride semiconductor, nitride light emitting device, and method for producing the same | |
US6852161B2 (en) | Method of fabricating group-iii nitride semiconductor crystal, method of fabricating gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor light-emitting device, and light source using the semiconductor light-emitting device | |
US7550368B2 (en) | Group-III nitride semiconductor stack, method of manufacturing the same, and group-III nitride semiconductor device | |
US7951617B2 (en) | Group III nitride semiconductor stacked structure and production method thereof | |
JP3656606B2 (en) | Method for producing group III nitride semiconductor crystal | |
US7727873B2 (en) | Production method of gallium nitride-based compound semiconductor multilayer structure | |
JP2000232238A (en) | Nitride semiconductor light-emitting element and manufacture thereof | |
JP2001077476A (en) | Nitorgen compound semiconductor light-emitting element and manufacture thereof | |
JP2008078186A (en) | Method of growing crystal of nitride compound semiconductor | |
US7521777B2 (en) | Gallium nitride-based compound semiconductor multilayer structure and production method thereof | |
JP3940673B2 (en) | Method for producing group III nitride semiconductor crystal and method for producing gallium nitride compound semiconductor | |
JP3710339B2 (en) | GaN compound semiconductor light emitting device manufacturing method | |
JP4653768B2 (en) | Nitride-based compound semiconductor device and manufacturing method thereof | |
US7005685B2 (en) | Gallium-nitride-based compound semiconductor device | |
JP3322179B2 (en) | Gallium nitride based semiconductor light emitting device | |
JP3965203B2 (en) | Nitride compound semiconductor light emitting device | |
JP2001077417A (en) | Manufacture of nitride compound semiconductor light- emitting element | |
JP2002100837A (en) | Nitride semiconductor light-emitting element and manufacturing method therefor | |
JP4222287B2 (en) | Group III nitride semiconductor crystal manufacturing method | |
JP2006229253A (en) | Nitride-based compound semiconductor light-emitting device and its manufacturing method | |
JP2001015808A (en) | Nitrogen compound semiconductor light emitting device and manufacture thereof | |
JP2001085735A (en) | Nitride compound semiconductor light emitting element and its manufacturing method | |
JP2001077416A (en) | Nitride compound semiconductor light-emitting element and manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060308 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060502 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20060502 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070122 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070302 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070618 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070618 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100629 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3976294 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100629 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110629 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120629 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120629 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130629 Year of fee payment: 6 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D04 |
|
EXPY | Cancellation because of completion of term |