JP3975981B2 - Moving body - Google Patents

Moving body Download PDF

Info

Publication number
JP3975981B2
JP3975981B2 JP2003278634A JP2003278634A JP3975981B2 JP 3975981 B2 JP3975981 B2 JP 3975981B2 JP 2003278634 A JP2003278634 A JP 2003278634A JP 2003278634 A JP2003278634 A JP 2003278634A JP 3975981 B2 JP3975981 B2 JP 3975981B2
Authority
JP
Japan
Prior art keywords
moving
torque command
moving body
command value
transport vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003278634A
Other languages
Japanese (ja)
Other versions
JP2005044193A (en
Inventor
智規 森口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Machinery Ltd
Original Assignee
Murata Machinery Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Machinery Ltd filed Critical Murata Machinery Ltd
Priority to JP2003278634A priority Critical patent/JP3975981B2/en
Priority to TW093103800A priority patent/TWI282047B/en
Priority to US10/866,684 priority patent/US7529604B2/en
Priority to EP07002299A priority patent/EP1777136B1/en
Priority to EP04016736A priority patent/EP1508491B1/en
Priority to DE602004029200T priority patent/DE602004029200D1/en
Priority to DE602004021542T priority patent/DE602004021542D1/en
Publication of JP2005044193A publication Critical patent/JP2005044193A/en
Application granted granted Critical
Publication of JP3975981B2 publication Critical patent/JP3975981B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、移動方向前側と後側に駆動輪を備えた移動体に関し、詳しくは、移動体の移動速度又は移動距離を精確に計測する技術に関する。   The present invention relates to a moving body provided with drive wheels on the front side and the rear side in the moving direction, and more particularly to a technique for accurately measuring the moving speed or moving distance of the moving body.

半導体製造工場などでは、処理装置等に沿って移動経路が敷設されおり、該移動経路上に無人搬送車を自動走行させて、該搬送車によりワークを搬送する無人搬送車システムが知られている。このような技術は、例えば、特許文献1で開示されており、次のように構成されている。
図6に示すように、搬送車101は前輪119F・119Fと後輪119R・119Rを備え、駆動輪である前輪119F・119Fにエンコーダ117が取り付けられている。また、搬送車101は、移動経路に沿って貼られたマーカを検出するためのマーカ検出センサ113と、搬送車101の走行を制御するコントローラ110とを備えている。
搬送車101の移動経路に沿ってステーションなどの停止位置の手前には停止マーカが貼られており、また、移動経路の所定位置に第1検査マーカと第2検査マーカが貼られている。停止位置と停止マーカとの間は停止距離Lだけ離れており、第1検査マーカと第2検査マーカとの間は検査距離Kだけ離れている。
以上のような構成で、搬送車101のコントローラ110は、マーカ検出センサ113が第1検査マーカを検出してから第2検査マーカを検出するまでの間にエンコーダ117で出力されたパルスの数をカウントして、これを検査カウント数Nkとして記憶するとともに、マーカ検出センサ113が停止マーカを検出すると、エンコーダ117で新たにパルスのカウントを開始して、このカウント数が(L/K)・Nkになったら搬送車101を停止させている。
In a semiconductor manufacturing factory or the like, a movement route is laid along a processing apparatus or the like, and an automatic guided vehicle system is known in which an automatic guided vehicle is automatically traveled on the movement route and a workpiece is conveyed by the conveyance vehicle. . Such a technique is disclosed in Patent Document 1, for example, and is configured as follows.
As shown in FIG. 6, the transport vehicle 101 includes front wheels 119F and 119F and rear wheels 119R and 119R, and an encoder 117 is attached to the front wheels 119F and 119F that are drive wheels. In addition, the transport vehicle 101 includes a marker detection sensor 113 for detecting a marker attached along the movement route, and a controller 110 that controls the travel of the transport vehicle 101.
A stop marker is affixed in front of a stop position such as a station along the movement path of the transport vehicle 101, and a first inspection marker and a second inspection marker are affixed at predetermined positions on the movement path. The stop position and the stop marker are separated by a stop distance L, and the first inspection marker and the second inspection marker are separated by an inspection distance K.
With the configuration as described above, the controller 110 of the transport vehicle 101 determines the number of pulses output by the encoder 117 between the time when the marker detection sensor 113 detects the first inspection marker and the time when the second inspection marker is detected. Counting and storing this as the inspection count number Nk, and when the marker detection sensor 113 detects the stop marker, the encoder 117 newly starts counting pulses, and this count number is (L / K) · Nk. If it becomes, the conveyance vehicle 101 is stopped.

実開平5−87607号公報Japanese Utility Model Publication No. 5-87607

ところで、エンコーダ117を用いて移動距離を計測する場合、搬送車101が加速しているときと、減速しているときとで、搬送車101の走行特性が異なることから、次のような不具合が生じる。
搬送車101が加速しているときは、搬送車101の進行方向に対して、後側の車輪に重心が掛かって、前側の車輪が浮き上がろうとするため、該前側の車輪と移動経路との間で滑りが生じる可能性が高く、搬送車101が減速しているときは、進行方向に対して、前側の車輪に重心が掛かって、後側の車輪が浮き上がろうとするため、該後側の車輪と移動経路との間で滑りが生じる可能性が高い。
このために前輪119F・119Fに取り付けたエンコーダ117で搬送車101の移動距離を計測していたのでは、搬送車101の走行に加速/減速が伴う以上、該エンコーダ117の出力パルスから得られる移動距離と実際の移動距離とに誤差が生じることなる。
さらに、搬送車101は前後進可能に構成されていることも多く、前輪119F・119Fに取り付けたエンコーダ117での移動距離の計測は、停止位置に対して後方から接近して減速する場合は精度が高いが、停止位置に対して前方から接近して減速する場合は精度が低くなり、実際の移動距離との間に誤差が生じている可能性が高い。
By the way, when the travel distance is measured using the encoder 117, the traveling characteristics of the transport vehicle 101 differ between when the transport vehicle 101 is accelerating and when the transport vehicle 101 is decelerating. Arise.
When the transport vehicle 101 is accelerating, the center of gravity is applied to the rear wheels with respect to the traveling direction of the transport vehicle 101, and the front wheels tend to float. When the transport vehicle 101 is decelerating, the center of gravity is applied to the front wheels with respect to the traveling direction, and the rear wheels tend to float. There is a high possibility of slippage between the rear wheel and the moving path.
For this reason, if the moving distance of the transport vehicle 101 is measured by the encoder 117 attached to the front wheels 119F and 119F, the travel obtained from the output pulse of the encoder 117 as long as the travel of the transport vehicle 101 involves acceleration / deceleration. An error occurs between the distance and the actual moving distance.
Furthermore, the transport vehicle 101 is often configured to be able to move forward and backward, and the measurement of the moving distance by the encoder 117 attached to the front wheels 119F and 119F is accurate when the vehicle approaches a stop position from the rear and decelerates. However, when the vehicle approaches the stop position from the front and decelerates, the accuracy is low, and there is a high possibility that an error has occurred with the actual moving distance.

そこで、本発明では、このような点を鑑み、搬送車や、スッタカクレーンその他移動体に関し、移動速度又は移動距離の計測精度の向上を図った移動体を提供することを課題とする。   Therefore, in view of such a point, the present invention has an object to provide a moving body that improves the measurement accuracy of a moving speed or a moving distance with respect to a transport vehicle, a stutter crane, and other moving bodies.

本発明の解決しようとする課題は以上のとおりであり、次にこの課題を解決するための手段を説明する。   The problems to be solved by the present invention are as described above. Next, means for solving the problems will be described.

まず、請求項1に記載のように、
移動方向前側と後側に駆動輪を備えた移動体であって、
移動方向前側の駆動輪の回転数を検出する第1回転数検出手段と、
移動方向後側の駆動輪の回転数を検出する第2回転数検出手段と、
移動体の加速時には、移動方向後側の駆動輪のトルク指令値を、移動方向前側の駆動輪のトルク指令値よりも多くし、移動体の減速時には、移動方向前側の駆動輪のトルク指令値を、移動方向後側の駆動輪のトルク指令値よりも多くする制御手段と、
を備え、
前記制御手段は、
移動体の走行状態が加速又は減速時であるときは、第1回転数検出手段又は第2回転数検出手段のうち、トルク指令値の配分の大きい方の駆動輪の回転数を検出する回転数検出手段で検出した回転数を参照して、前記移動体の移動速度又は移動距離を計測し、
移動体の走行状態が加速時又は減速時から等速移動時に移行した際には、加速または減速時であった前の走行状態において参照していた、第1回転数検出手段又は第2回転数検出手段のいずれか一方の回転数を同じく参照して、前記移動体の移動速度又は移動距離を計測する。
First, as described in claim 1,
A moving body having driving wheels on the front side and the rear side in the moving direction,
First rotation speed detection means for detecting the rotation speed of the driving wheel on the front side in the movement direction;
Second rotational speed detection means for detecting the rotational speed of the driving wheel on the rear side in the movement direction;
When the moving body is accelerated, the torque command value of the driving wheel on the rear side in the moving direction is made larger than the torque command value on the driving wheel on the front side in the moving direction, and when the moving body is decelerated, the torque command value of the driving wheel on the front side in the moving direction Control means for increasing the torque command value of the driving wheel on the rear side in the movement direction;
With
The control means includes
When the traveling state of the moving body is at the time of acceleration or deceleration, the number of revolutions for detecting the number of revolutions of the drive wheel having the larger distribution of the torque command value in the first revolution number detecting means or the second revolution number detecting means. Referring to the number of rotations detected by the detection means, measure the moving speed or moving distance of the moving body ,
When the traveling state of the moving body shifts from the time of acceleration or deceleration to the time of constant speed movement, the first rotational speed detection means or the second rotational speed referred to in the previous traveling state that was during acceleration or deceleration. The moving speed or moving distance of the moving body is measured with reference to the rotational speed of either one of the detecting means.

また、請求項2に記載のように、
前記制御手段は、それぞれの回転数検出手段で参照していた回転数を足し合わせて移動距離を算出する。
Moreover, as described in claim 2,
The control means calculates the movement distance by adding the rotation speeds referenced by the respective rotation speed detection means.

請求項1に記載の発明では、
トルク指令値の配分により、前後の車輪に滑りが発生しにくい。
また、滑りが生じる可能性の低い車輪の回転数を参照して、移動速度又は移動距離の計測を行うので、移動速度又は移動距離の計測精度が向上する。
また、回転数検出手段の切り換え回数を少なくすることができて、制御構成が簡素化される。
In the invention according to claim 1,
Due to the distribution of the torque command value, it is difficult for the front and rear wheels to slip.
Moreover, since the moving speed or the moving distance is measured with reference to the number of rotations of the wheel that is unlikely to slip, the measuring accuracy of the moving speed or the moving distance is improved.
In addition, the number of rotations of the rotation speed detecting means can be reduced, and the control configuration is simplified.

請求項2に記載の発明では、In the invention according to claim 2,
制御手段は、それぞれの回転数検出手段で参照していた回転数を足し合わせて移動距離を算出することで、この算出した移動距離と実際の移動距離との間の誤差は小さくなり、移動距離の計測精度が向上する。The control means calculates the movement distance by adding the rotation speeds referred to by the respective rotation speed detection means, so that the error between the calculated movement distance and the actual movement distance is reduced. Improved measurement accuracy.

以下では、本発明に係る移動体システムの一例として無人搬送車システムを参照しながら説明する。
図1は無人搬送車システムの概略構成であり、半導体製造工場等のクリーンルーム内には、無人搬送車1の移動経路となる走行レール2・2が敷設され、該走行レール2・2に沿って処理装置4・4・・・等が配置されている。また、走行レール2に沿って、被検出部材20が敷設されており、走行レール2・2上を走行している搬送車1は、この被検出部材20を検出しながら、その走行位置を大まかに把握するように構成されている。
Below, it demonstrates, referring an automatic guided vehicle system as an example of the mobile body system which concerns on this invention.
FIG. 1 shows a schematic configuration of an automatic guided vehicle system. In a clean room such as a semiconductor manufacturing factory, traveling rails 2 and 2 serving as a moving path of the automatic guided vehicle 1 are laid along the traveling rails 2 and 2. Processing devices 4, 4... Are arranged. Further, a member 20 to be detected is laid along the traveling rail 2, and the transport vehicle 1 traveling on the traveling rails 2 and 2 roughly determines the traveling position while detecting the detected member 20. It is configured to keep track of.

前記被検出部材20には搬送車1の移動方向に多数の目印部材21・21・・・が設けられており、各目印部材21は搬送車1に搭載した第1検出センサ11又は第2検出センサ12(図4参照)によって検出され得る被検出部21bと、該第1検出センサ11又は第2検出センサ12によって検出されない非検出部21cとを備えている。
図2は被検出部材20の一例を示し、この被検出部材20は櫛歯状に構成されていて、櫛歯部分が被検出部21b、櫛歯と櫛歯の間の間隙が非検出部21cとなっており、搬送車1の移動方向における、被検出部21bの幅と、該非検出部21cの幅とが等しく構成されている。この構成では、搬送車1の第1検出センサ11又は第2検出センサ12で被検出部21bの一端を検出したときのON信号から被検出部21bの他端(非検出部21cの一端)を検出したときのOFF信号までと、被検出部21bの他端(非検出部21cの一端)を検出したときのOFF信号から隣りの被検出部21bの一端(非検出部21cの他端)を検出したときのON信号までとは同じ距離となって制御構成が簡単になり、単純にON信号とOFF信号の数をカウントするだけで、移動距離を大まかに把握することができる。
The detected member 20 is provided with a number of mark members 21, 21... In the moving direction of the transport vehicle 1, and each mark member 21 is a first detection sensor 11 or a second detection sensor mounted on the transport vehicle 1. A detected portion 21b that can be detected by the sensor 12 (see FIG. 4) and a non-detecting portion 21c that is not detected by the first detection sensor 11 or the second detection sensor 12 are provided.
FIG. 2 shows an example of the member 20 to be detected. The member 20 to be detected is configured in a comb-teeth shape, where the comb-tooth portion is the detected portion 21b, and the gap between the comb teeth and the comb-tooth is the non-detecting portion 21c. Thus, the width of the detected part 21b and the width of the non-detecting part 21c in the moving direction of the transport vehicle 1 are configured to be equal. In this configuration, the other end of the detected portion 21b (one end of the non-detected portion 21c) is detected from the ON signal when the first detection sensor 11 or the second detection sensor 12 of the transport vehicle 1 detects the one end of the detected portion 21b. From the OFF signal when the other end of the detected part 21b (one end of the non-detecting part 21c) is detected until the OFF signal when detected, the other end of the adjacent detected part 21b (the other end of the non-detecting part 21c) The control distance becomes simple because the distance is the same as the ON signal at the time of detection, and the movement distance can be roughly grasped by simply counting the number of ON signals and OFF signals.

次に、搬送車1について説明する。
図3は搬送車1の構成を示す平面図であり、移動体である搬送車1は、車体本体1Bが前輪19F・19Fと後輪19R・19Rとにより支持されている。この搬送車1は、スリップを減らすために四輪駆動で構成されており、前輪19F・19Fと後輪19R・19Rにそれぞれ駆動源18F、18Rが取り付けられている。これらの駆動源18F・18Rは、正逆回転可能なサーボモータなどで構成されており、搬送車1は前後進可能に構成されている。
Next, the transport vehicle 1 will be described.
FIG. 3 is a plan view showing the configuration of the transport vehicle 1. In the transport vehicle 1 which is a moving body, the vehicle body 1B is supported by front wheels 19F and 19F and rear wheels 19R and 19R. The transport vehicle 1 is configured by four-wheel drive to reduce slip, and drive sources 18F and 18R are attached to the front wheels 19F and 19F and the rear wheels 19R and 19R, respectively. These drive sources 18F and 18R are constituted by servo motors that can rotate forward and backward, and the transport vehicle 1 is configured to be able to move forward and backward.

また、図4は搬送車1の制御構成を示し、搬送車1にはその走行及び荷の移載を制御するコントローラ10が搭載されており、該コントローラ10には、前輪19F・19Fの駆動源18Fを制御する走行制御部16Fと、後輪19R・19Rの駆動源18Rを制御する走行制御部16Rとがそれぞれ通信接続されている。そして、各駆動源18F、18Rの駆動軸には搬送車1の移動距離を計測するエンコーダ17F、17Rが取り付けられおり、各エンコーダ17F、17Rはそれぞれコントローラ10に通信接続されている。搬送車1が移動中、回転数検出手段であるエンコーダ17F・17Rは、ともにその車輪19F・19F、19R・19Rの回転数を検出しており、制御手段であるコントローラ10は、搬送車1が加速するとき、及び等速走行するときには、進行方向に対して後側の車輪19R・19R(又は19F・19F)の駆動源18R(又は18F)のエンコーダ17R(又は17F)からの検出値を参照し、搬送車1が減速するときは、進行方向に対して前側の車輪19F・19F(又は19R・19R)の駆動源18F(又は18R)のエンコーダ17F(又は17R)からの検出値を参照するように構成されている。   FIG. 4 shows a control configuration of the transport vehicle 1. The transport vehicle 1 is equipped with a controller 10 for controlling the travel and transfer of the load. The controller 10 includes a drive source for the front wheels 19F and 19F. A travel control unit 16F that controls 18F and a travel control unit 16R that controls the drive source 18R of the rear wheels 19R and 19R are connected by communication. Encoders 17F and 17R for measuring the moving distance of the transport vehicle 1 are attached to the drive shafts of the drive sources 18F and 18R, and the encoders 17F and 17R are connected to the controller 10 for communication. While the transport vehicle 1 is moving, the encoders 17F and 17R serving as the rotational speed detection means both detect the rotational speeds of the wheels 19F and 19F and 19R and 19R. When accelerating and traveling at a constant speed, refer to the detection value from the encoder 17R (or 17F) of the drive source 18R (or 18F) of the rear wheels 19R and 19R (or 19F and 19F) with respect to the traveling direction. When the transport vehicle 1 decelerates, the detected value from the encoder 17F (or 17R) of the drive source 18F (or 18R) of the front wheels 19F and 19F (or 19R and 19R) with respect to the traveling direction is referred to. It is configured as follows.

この理由は、図5及び図4に示すように、加速時には、進行方向に対して、後側の車輪19R・19R(又は19F・19F)に重心が掛かって、前側の車輪19F・19F(又は19R・19R)が浮き上がろうとするため、すなわち、移動方向後側の車輪19R・19R(又は19F・19F)と走行レール2・2との間の滑りが、移動方向前側の車輪19F・19F(又は19R・19R)と走行レール2・2との間の滑りに比べて小さいため、従って、この場合は、コントローラ10は移動方向後側の車輪19R・19R(又は19F・19F)の駆動源18R(又は18F)のエンコーダ17R(又は17F)からの計測値に基づき移動速度又は移動距離を把握している。
一方、減速時には、進行方向に対して、前側の車輪19F・19F(又は19R・19R)に重心が掛かって、後側の車輪19R・19R(又は19F・19F)が浮き上がろうとするため、すなわち、移動方向前側の車輪19F・19F(又は19R・19R)と走行レール2・2との間の滑りが、移動方向後側の車輪19R・19R(又は19F・19F)と走行レール2・2との間の滑りに比べて小さいため、この場合は、コントローラ10は移動方向前側の車輪19F・19F(又は19R・19R)の駆動源18F(又は18R)のエンコーダ17F(又は17R)からの計測値に基づき移動速度又は移動距離を把握している。
The reason for this is that, as shown in FIGS. 5 and 4, during acceleration, the center of gravity is applied to the rear wheels 19R and 19R (or 19F and 19F) in the traveling direction, and the front wheels 19F and 19F (or 19R / 19R) is about to float, that is, slip between the wheels 19R / 19R (or 19F / 19F) on the rear side in the moving direction and the traveling rails 2/2 causes the wheels 19F / 19F on the front side in the moving direction. Therefore, in this case, the controller 10 is a driving source for the wheels 19R and 19R (or 19F and 19F) on the rear side in the movement direction. Based on the measurement value from the encoder 17R (or 17F) of 18R (or 18F), the moving speed or moving distance is grasped.
On the other hand, at the time of deceleration, the center of gravity is applied to the front wheels 19F and 19F (or 19R and 19R) with respect to the traveling direction, and the rear wheels 19R and 19R (or 19F and 19F) try to float. That is, the slip between the wheels 19F and 19F (or 19R and 19R) on the front side in the movement direction and the traveling rails 2 and 2 causes the wheels 19R and 19R (or 19F and 19F) on the rear side in the movement direction and the traveling rails 2 and 2 to move. In this case, the controller 10 performs measurement from the encoder 17F (or 17R) of the drive source 18F (or 18R) of the wheels 19F and 19F (or 19R and 19R) on the front side in the movement direction. The movement speed or movement distance is grasped based on the value.

なお、本実施の形態では、等速移動時には、コントローラ10は、進行方向後側の車輪19R・19R(又は19F・19F)の駆動源18R(又は18F)のエンコーダ17R(又は17F)からの計測値に基づいて移動速度又は移動距離を把握するように構成しているが、進行方向前側の車輪19F・19F(又は19R・19R)の駆動源18F(又は18R)のエンコーダ17F(又は17R)からの計測値に基づいて移動速度又は移動距離を把握するように構成してもよい。
あるいは、この等速移動時に参照する車輪のエンコーダ17F(又は17R)は固定とはせずに、適宜変更するように構成してもよい。例えば、加速又は減速へ移行したときにのみ、参照する車輪のエンコーダ17F(又は17R)を切り換えるように構成し、等速走行へ移行した場合は、その前の走行状態(加速又は減速)で参照していた車輪のエンコーダ17F(又は17R)のままとして切り換えは行わないものとする。この構成では、搬送車1は加速した後、等速走行し、再び加速するような場合や、搬送車1は減速した後、等速走行し、再び減速するような場合には、参照する車輪のエンコーダ17F(又は17R)の切り換えは行われず、エンコーダ17F(又は17R)の切り換え回数を少なくすることができて、制御構成が簡素化される。
In this embodiment, during constant speed movement, the controller 10 performs measurement from the encoder 17R (or 17F) of the drive source 18R (or 18F) of the wheels 19R and 19R (or 19F and 19F) on the rear side in the traveling direction. The moving speed or moving distance is grasped based on the value, but from the encoder 17F (or 17R) of the drive source 18F (or 18R) of the wheel 19F / 19F (or 19R / 19R) on the front side in the traveling direction. You may comprise so that a movement speed or a movement distance may be grasped | ascertained based on this measured value.
Alternatively, the wheel encoder 17F (or 17R) referred to during the constant speed movement may be appropriately changed without being fixed. For example, the configuration is such that the reference wheel encoder 17F (or 17R) is switched only when shifting to acceleration or deceleration, and when shifting to constant speed driving, reference is made in the previous driving state (acceleration or deceleration). It is assumed that the wheel encoder 17F (or 17R) is not changed. In this configuration, when the transport vehicle 1 accelerates and then travels at a constant speed and accelerates again, or when the transport vehicle 1 decelerates and then travels at a constant speed and decelerates again, the wheel to be referred to The encoder 17F (or 17R) is not switched, the number of times the encoder 17F (or 17R) is switched can be reduced, and the control configuration is simplified.

次に、エンコーダ17F/17Rの切換制御について説明する。
搬送車1のコントローラ10では目的地(処理装置4等)が指定されると、加速・減速のタイミング等が書き込まれた走行プログラムが組まれ、該走行プログラムに従って走行が制御される。
この制御手段であるコントローラ10は、前輪19F・19Fに対応する走行制御部16Fへ出力するトルク指令値と、後輪19R・19Rに対応する走行制御部16Rへ出力するトルク指令値との大きさを比較する比較手段と、該比較手段による比較結果に基づいて、計測データの参照先を、トルク指令値の配分が大きい方の走行制御部16F/16Rに対応するエンコーダ17F/17Rに切り換える切換手段と、を備えている。
Next, switching control of the encoder 17F / 17R will be described.
When a destination (the processing device 4 or the like) is designated in the controller 10 of the transport vehicle 1, a travel program in which acceleration / deceleration timings and the like are written is set, and travel is controlled according to the travel program.
The controller 10 serving as the control means has a magnitude of a torque command value output to the travel control unit 16F corresponding to the front wheels 19F and 19F and a torque command value output to the travel control unit 16R corresponding to the rear wheels 19R and 19R. And a switching means for switching the reference destination of the measurement data to the encoder 17F / 17R corresponding to the travel control unit 16F / 16R having the larger distribution of the torque command value based on the comparison result by the comparison means And.

コントローラ10から各走行制御部16F・16Rへ出力するトルク指令値の配分は、車輪19F・19F・19R・19Rと走行レール2・2との間で極力滑りが発生しないように、搬送車1が加速するときは、重心が掛かる進行方向後側の車輪19R・19R(又は19F・19F)に対応する走行制御部16R(又は16F)へのトルク指令値を、前側の車輪19F・19F(又は19R・19R)に対応する走行制御部16F(又は16R)へのトルク指令値よりも大きくし、搬送車1が減速するときには、重心が掛かる進行方向前側の車輪19F・19F(又は19R・19R)に対応する走行制御部16F(又は16R)へのトルク指令値を、後側の車輪19R・19R(又は19F・19F)に対応する走行制御部16R(又は16F)へのトルク指令値よりも大きくし、等速移動時には前輪19F・19Fに対応する走行制御部16Fへのトルク指令値と、後輪19R・19Rに対応する走行制御部16Rへのトルク指令値とは等しくしている。   The distribution of the torque command value output from the controller 10 to each of the traveling control units 16F and 16R is performed so that the transport vehicle 1 can prevent slippage between the wheels 19F, 19F, 19R, and 19R and the traveling rails 2 and 2 as much as possible. When accelerating, the torque command value to the traveling control unit 16R (or 16F) corresponding to the wheel 19R / 19R (or 19F / 19F) on the rear side in the traveling direction on which the center of gravity is applied is set to the front wheel 19F / 19F (or 19R). 19R) is larger than the torque command value to the traveling control unit 16F (or 16R), and when the transport vehicle 1 decelerates, the front wheels 19F and 19F (or 19R and 19R) where the center of gravity is applied are applied. The torque command value to the corresponding traveling control unit 16F (or 16R) is used as the traveling control unit 16R (or 19F / 19F) corresponding to the rear wheel 19R / 19R (or 19F / 19F). The torque command value to the travel control unit 16F corresponding to the front wheels 19F and 19F and the torque command to the travel control unit 16R corresponding to the rear wheels 19R and 19R when moving at a constant speed. The value is equal.

例えば、進行方向前側の車輪19F・19F(又は19R・19R)に対応する走行制御部16F(又は16R)へのトルク指令値と、後側の車輪19R・19R(又は19F・19F)に対応する走行制御部16R(又は16F)へのトルク指令値とは、加速時には4対6に、減速時には6対4、等速走行時には5対5に配分される。
なお、このトルク値の配分比は固定に限らず、エンコーダ17F又は17Rからの回転数に基づいて変動させるように構成してもよい。
For example, it corresponds to the torque command value to the traveling control unit 16F (or 16R) corresponding to the front wheels 19F / 19F (or 19R / 19R) and the rear wheels 19R / 19R (or 19F / 19F). The torque command value to the travel control unit 16R (or 16F) is distributed to 4 to 6 during acceleration, 6 to 4 during deceleration, and 5 to 5 during constant speed travel.
The distribution ratio of the torque values is not limited to a fixed value, and may be configured to vary based on the rotation speed from the encoder 17F or 17R.

走行開始前、搬送車1のコントローラ10では、目的地までの走行プログラムが作成されて、走行制御部16F・16Rへ出力するトルク指令値の配分が決定されると、前記判断手段でこの配分されたトルク指令値の大きさが比較される。比較手段では、移動方向後側の車輪19R・19R(又は19F・19F)に対応する走行制御部16R(又は16F)へのトルク指令値の方が、移動方向前側の車輪19F・19F(又は19R・19R)に対応する走行制御部16F(又は16R)へのトルク指令値よりも大きいと判断されて、前記切換手段では、計測データの参照先が、移動方向後側の車輪19R・19R(又は19F・19F)に対応したエンコーダ17R(又は17F)に切り換えられる。   Before the start of travel, the controller 10 of the transport vehicle 1 creates a travel program to the destination and determines the distribution of torque command values to be output to the travel control units 16F and 16R. The magnitudes of the torque command values are compared. In the comparison means, the torque command value to the travel control unit 16R (or 16F) corresponding to the wheel 19R / 19R (or 19F / 19F) on the rear side in the movement direction is the wheel 19F / 19F (or 19R on the front side in the movement direction). 19R) is determined to be larger than the torque command value to the traveling control unit 16F (or 16R) corresponding to 19R), and in the switching means, the reference destination of the measurement data is the wheels 19R and 19R on the rear side in the movement direction (or The encoder 17R (or 17F) corresponding to 19F / 19F) is switched.

搬送車1は走行を開始して、被検出部材20上の所定の目印部材21(第1の目印部材21)まで加速が行われ、搬送車1の検出センサ11又は12で該第1の目印部材21が検出されると、前輪19F・19Fに対応する走行制御部16Fへのトルク指令値と、後輪19R・19Rに対応する走行制御部16Rへのトルク指令値とが等しく配分されて、搬送車1の走行が等速走行に切り換えられる。この等速走行は被検出部材20上の所定の目印部材21(第2の目印部材21)まで行われ、搬送車1のコントローラ10は、加速時と等速走行時には、移動方向後側の車輪19R・19R(又は19F・19F)に対応したエンコーダ17R(又は17F)を参照しながら、移動速度又は移動距離を計測している。そして、検出センサ11又は12で該第2の目印部材21が検出されると、走行制御部16F・16Rへ出力するトルク指令値の配分が変更され、前記比較手段では、移動方向前側の車輪19F・19F(又は19R・19R)に対応する走行制御部16F(又は16R)へのトルク指令値の方が、移動方向後側の車輪19R・19R(又は19F・19F)に対応する走行制御部16R(又は16F)へのトルク指令値よりも大きいと判断されて、前記切換手段では、計測データの参照先が、移動方向前側の車輪19F・19F(又は19R・19R)に対応したエンコーダ17F(又は17R)に切り換えられる。こうして、搬送車1のコントローラ10は、減速時には、移動方向前側の車輪19F・19F(又は19R・19R)に対応したエンコーダ17F(又は17R)を参照しながら、移動速度又は移動距離を計測している。この搬送車1の減速制御は、検出センサ11又は12で目印部材21・21・・・を数えながら、停止目標位置の直手前の目印部材21にちょうど合わせて停止寸前速度になっているように制御されている。この停止直前速度は、搬送車1がいつでも直ぐに停止可能な速度であり、搬送車1は該停止目標位置の直手前の目印部材21上の目印位置から該停止目標位置までは、移動方向前側の車輪19F・19F(又は19R・19R)に対応したエンコーダ17F(又は17R)により該目印位置からの移動距離を小刻み(例えば、0.01〔mm〕単位)に計測しながら該停止目標位置で精確に停止するように制御されている。   The transport vehicle 1 starts traveling and is accelerated to a predetermined mark member 21 (first mark member 21) on the detected member 20, and the first mark is detected by the detection sensor 11 or 12 of the transport vehicle 1. When the member 21 is detected, the torque command value to the travel control unit 16F corresponding to the front wheels 19F and 19F and the torque command value to the travel control unit 16R corresponding to the rear wheels 19R and 19R are equally distributed, Travel of the transport vehicle 1 is switched to constant speed travel. This constant speed travel is performed up to a predetermined mark member 21 (second mark member 21) on the member 20 to be detected, and the controller 10 of the transport vehicle 1 moves the wheel on the rear side in the movement direction during acceleration and constant speed travel. The moving speed or moving distance is measured while referring to the encoder 17R (or 17F) corresponding to 19R / 19R (or 19F / 19F). When the second mark member 21 is detected by the detection sensor 11 or 12, the distribution of the torque command value to be output to the travel control units 16F and 16R is changed. The torque command value to the travel control unit 16F (or 16R) corresponding to 19F (or 19R / 19R) is the travel control unit 16R corresponding to the wheel 19R / 19R (or 19F / 19F) on the rear side in the movement direction. (Or 16F) is determined to be larger than the torque command value, and in the switching means, the reference destination of the measurement data is the encoder 17F (or 19R / 19R) corresponding to the wheel 19F / 19F (or 19R / 19R) on the front side in the movement direction. 17R). Thus, at the time of deceleration, the controller 10 of the transport vehicle 1 measures the moving speed or the moving distance while referring to the encoder 17F (or 17R) corresponding to the wheels 19F and 19F (or 19R and 19R) on the front side in the moving direction. Yes. The deceleration control of the transport vehicle 1 is performed so that the detection sensor 11 or 12 counts the mark members 21, 21... And the stop speed is just in line with the mark member 21 immediately before the stop target position. It is controlled. The speed immediately before the stop is a speed at which the transport vehicle 1 can stop immediately at any time. The transport vehicle 1 is located on the front side in the movement direction from the mark position on the mark member 21 immediately before the stop target position to the stop target position. The encoder 17F (or 17R) corresponding to the wheels 19F and 19F (or 19R and 19R) is accurately measured at the target stop position while measuring the moving distance from the mark position in small increments (for example, 0.01 [mm] units). Is controlled to stop.

以上の構成では、コントローラ10から走行制御部16F・16Rへ出力されるトルク指令値の大小に基づいて、計測データの参照先を、トルク指令値の配分が大きい方の走行制御部16F/16Rに対応するエンコーダ17F/17Rに切り換えるように構成しているが、エンコーダ17F/17Rの切換制御はこの構成に限定するものではなく、制御手段であるコントローラ10に、エンコーダ17F又は17Rで参照している回転数の単位時間当たりの時間変化が正である場合、加速と判定し、該回転数の単位時間当たりの時間変化が負である場合、減速と判定する判定手段を設けて、該判定手段により加速と判定された場合は、計測データの参照先を、移動方向後側の車輪19R・19R(又は19F・19F)に対応したエンコーダ17R(又は17F)に切り換え、減速と判断された場合は、計測データの参照先を、移動方向前側の車輪19F・19F(又は19R・19R)に対応したエンコーダ17F(又は17R)に切り換える構成などとしてもよい。   In the above configuration, based on the magnitude of the torque command value output from the controller 10 to the travel control units 16F and 16R, the measurement data is referred to the travel control unit 16F / 16R having a larger distribution of torque command values. The encoder 17F / 17R is configured to switch to the corresponding encoder 17F / 17R. However, the switching control of the encoder 17F / 17R is not limited to this configuration, and the controller 10 serving as a control unit is referred to by the encoder 17F or 17R. When the time change per unit time of the rotation speed is positive, it is determined as acceleration, and when the time change per unit time of the rotation speed is negative, a determination means for determining deceleration is provided, and the determination means If the acceleration is determined, the reference destination of the measurement data is the encoder corresponding to the wheel 19R / 19R (or 19F / 19F) on the rear side in the moving direction. When switching to 17R (or 17F) and it is determined that the vehicle is decelerating, the reference destination of the measurement data is switched to the encoder 17F (or 17R) corresponding to the wheel 19F / 19F (or 19R / 19R) on the front side in the moving direction, etc. It is good.

以上のような構成で、搬送車1のコントローラ10は、搬送車1の加速/減速に応じて、滑りが生じる可能性の少ない車輪19F・19F又は19R・19Rに対応するエンコーダ17F/17Rに切り換えて、より精確に移動速度又は移動距離を計測するように構成されており、信頼性の向上が図られている。   With the configuration as described above, the controller 10 of the transport vehicle 1 switches to the encoder 17F / 17R corresponding to the wheel 19F / 19F or 19R / 19R with less possibility of slipping according to the acceleration / deceleration of the transport vehicle 1. Thus, the moving speed or moving distance is measured more accurately, and the reliability is improved.

本実施の形態では、搬送車1は、検出センサ11又は12で被検出部材20の目印部材21・21・・・を検出することで、起動距離を大まかに計測することができるように構成されているが、コントローラ10の方でも、走行中、それぞれのエンコーダ17F・17Rで参照していた回転数を足し合わせることで、移動距離を算出することできる。この算出した移動距離と実際の移動距離との間の誤差はかなり小さくなり、コントローラ10の方でも精度良く移動距離を計測することができる。   In the present embodiment, the transport vehicle 1 is configured to be able to roughly measure the starting distance by detecting the mark members 21, 21... Of the detected member 20 with the detection sensor 11 or 12. However, the controller 10 can also calculate the movement distance by adding the rotation speeds referred to by the encoders 17F and 17R during traveling. The error between the calculated moving distance and the actual moving distance is considerably small, and the controller 10 can measure the moving distance with high accuracy.

以上、無人搬送車システムを一例に取って、移動体が水平方向に移動する移動体システムについて説明したが、本発明は移動体が斜面などに沿って斜上方又は斜下方へ移動する移動体システムなどにも適用することができ、移動体の移動方向については特に限定はしないものとする。
また、移動体の移動経路は直線経路に限らず、曲線部分を含む経路であってもよいものとする。
In the above, taking the automatic guided vehicle system as an example, the mobile body system in which the mobile body moves in the horizontal direction has been described. However, the present invention is a mobile body system in which the mobile body moves obliquely upward or obliquely downward along a slope or the like. The moving direction of the moving body is not particularly limited.
Further, the moving path of the moving body is not limited to a straight path, and may be a path including a curved portion.

無人搬送車システムの概略構成を示す平面図。The top view which shows schematic structure of an automatic guided vehicle system. 被検出部材20の側面図。The side view of the to-be-detected member 20. FIG. 搬送車1の平面図。The top view of the conveyance vehicle 1. FIG. 搬送車1の制御構成を示すブロック図。The block diagram which shows the control structure of the conveyance vehicle. 搬送車1の加速・減速の様子を説明する図。The figure explaining the mode of acceleration / deceleration of the conveyance vehicle. 従来の搬送車101の制御構成を示すブロック図。The block diagram which shows the control structure of the conventional conveyance vehicle 101. FIG.

符号の説明Explanation of symbols

1 無人搬送車
2 走行レール
4 処理装置
10 コントローラ
11 第1検出センサ
12 第2検出センサ
16F 走行制御部
16R 走行制御部
17F エンコーダ
17R エンコーダ
18F 駆動源
18R 駆動源
19F 前輪
19R 後輪
20 被検出部材
21 目印部材
21b 被検出部
21c 非検出部
DESCRIPTION OF SYMBOLS 1 Automatic guided vehicle 2 Traveling rail 4 Processing apparatus 10 Controller 11 1st detection sensor 12 2nd detection sensor 16F Travel control part 16R Travel control part 17F Encoder 17R Encoder 18F Drive source 18R Drive source 19F Front wheel 19R Rear wheel 20 Detected member 21 Mark member 21b Detected part 21c Non-detection part

Claims (2)

移動方向前側と後側に駆動輪を備えた移動体であって、
移動方向前側の駆動輪の回転数を検出する第1回転数検出手段と、
移動方向後側の駆動輪の回転数を検出する第2回転数検出手段と、
移動体の加速時には、移動方向後側の駆動輪のトルク指令値を、移動方向前側の駆動輪のトルク指令値よりも多くし、移動体の減速時には、移動方向前側の駆動輪のトルク指令値を、移動方向後側の駆動輪のトルク指令値よりも多くする制御手段と、
を備え、
前記制御手段は、
移動体の走行状態が加速又は減速時であるときは、第1回転数検出手段又は第2回転数検出手段のうち、トルク指令値の配分の大きい方の駆動輪の回転数を検出する回転数検出手段で検出した回転数を参照して、前記移動体の移動速度又は移動距離を計測し、
移動体の走行状態が加速時又は減速時から等速移動時に移行した際には、加速または減速時であった前の走行状態において参照していた、第1回転数検出手段又は第2回転数検出手段のいずれか一方の回転数を同じく参照して、前記移動体の移動速度又は移動距離を計測する、
ことを特徴とする移動体。
A moving body having driving wheels on the front side and the rear side in the moving direction,
First rotation speed detection means for detecting the rotation speed of the driving wheel on the front side in the movement direction;
Second rotational speed detection means for detecting the rotational speed of the driving wheel on the rear side in the movement direction;
When the moving body is accelerated, the torque command value of the driving wheel on the rear side in the moving direction is made larger than the torque command value on the driving wheel on the front side in the moving direction, and when the moving body is decelerated, the torque command value of the driving wheel on the front side in the moving direction Control means for increasing the torque command value of the driving wheel on the rear side in the movement direction;
With
The control means includes
When the traveling state of the moving body is at the time of acceleration or deceleration, the number of revolutions for detecting the number of revolutions of the drive wheel having the larger distribution of the torque command value in the first revolution number detecting means or the second revolution number detecting means. Referring to the number of rotations detected by the detection means, measure the moving speed or moving distance of the moving body ,
When the traveling state of the moving body shifts from the time of acceleration or deceleration to the time of constant speed movement, the first rotational speed detection means or the second rotational speed referred to in the previous traveling state that was during acceleration or deceleration. Referring to the rotational speed of either one of the detection means, the moving speed or moving distance of the moving body is measured.
A moving object characterized by that.
前記制御手段は、それぞれの回転数検出手段で参照していた回転数を足し合わせて移動距離を算出する、
ことを特徴とする請求項1に記載の移動体。
The control means calculates the movement distance by adding the rotation speeds referenced by the respective rotation speed detection means.
The moving body according to claim 1 .
JP2003278634A 2003-07-23 2003-07-23 Moving body Expired - Fee Related JP3975981B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2003278634A JP3975981B2 (en) 2003-07-23 2003-07-23 Moving body
TW093103800A TWI282047B (en) 2003-07-23 2004-02-17 Carrying vehicle system and carrying vehicle
US10/866,684 US7529604B2 (en) 2003-07-23 2004-06-15 Moving body system and moving body
EP04016736A EP1508491B1 (en) 2003-07-23 2004-07-15 Moving body system and moving body
EP07002299A EP1777136B1 (en) 2003-07-23 2004-07-15 Moving body system and moving body
DE602004029200T DE602004029200D1 (en) 2003-07-23 2004-07-15 Device with moving body and moving body
DE602004021542T DE602004021542D1 (en) 2003-07-23 2004-07-15 DEVICE WITH MOVABLE BODY AND MOBILE BODY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003278634A JP3975981B2 (en) 2003-07-23 2003-07-23 Moving body

Publications (2)

Publication Number Publication Date
JP2005044193A JP2005044193A (en) 2005-02-17
JP3975981B2 true JP3975981B2 (en) 2007-09-12

Family

ID=34264986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003278634A Expired - Fee Related JP3975981B2 (en) 2003-07-23 2003-07-23 Moving body

Country Status (1)

Country Link
JP (1) JP3975981B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5921759B2 (en) * 2013-03-05 2016-05-24 三菱電機株式会社 Odometer device and vehicle measurement method

Also Published As

Publication number Publication date
JP2005044193A (en) 2005-02-17

Similar Documents

Publication Publication Date Title
TW200825645A (en) Running carriage, method of controlling the same, and running carriage system
TWI282047B (en) Carrying vehicle system and carrying vehicle
CN110789606A (en) Automatic guiding method for controlling driving direction and position based on all-wheel speed detection and forklift system thereof
JP3975981B2 (en) Moving body
US4718621A (en) Automatic transportation system
JP4254581B2 (en) Mobile system
JP2005041383A (en) Movable body
JP2001005525A (en) Unmanned carriage system
JP2000351414A (en) Position detecting device
JP4168895B2 (en) Travel control device for mobile body and mobile body
JP4345546B2 (en) Mobile control system
JP2007097279A (en) Stop control method of linear motor
JPH09121402A (en) Controller for unmanned vehicle
JPS62288909A (en) Distance measuring instrument for unattended carriage
JP2005330076A (en) Combined system of moving shelf and unmanned forklift
KR100222958B1 (en) Unmanned vehicle and velocity control of unmanned vehicle
KR0161044B1 (en) Control system and method of mobile robot
EP0265570A1 (en) Automatic transportation system
JPH07264722A (en) Travel controller for conveying electric railcar
JPH06156626A (en) Positioning method for carrier and its device
JPH0635282B2 (en) Stacker crane movement speed control method
JP2001153878A (en) Speed detector for vehicle, and method of detecting speed of vehicle
JPH08292813A (en) Travel control method for rail truck
JPH07322418A (en) Travelling controller of carrier truck
JP2001141739A (en) Speed detector for vehicle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3975981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140629

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees