JP3975663B2 - Gene polymorphism analysis method - Google Patents

Gene polymorphism analysis method Download PDF

Info

Publication number
JP3975663B2
JP3975663B2 JP2000273533A JP2000273533A JP3975663B2 JP 3975663 B2 JP3975663 B2 JP 3975663B2 JP 2000273533 A JP2000273533 A JP 2000273533A JP 2000273533 A JP2000273533 A JP 2000273533A JP 3975663 B2 JP3975663 B2 JP 3975663B2
Authority
JP
Japan
Prior art keywords
dna fragment
electrophoresis
cells
fragment
derived
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000273533A
Other languages
Japanese (ja)
Other versions
JP2002078500A5 (en
JP2002078500A (en
Inventor
理 小澤
剛志 曽根原
隆史 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000273533A priority Critical patent/JP3975663B2/en
Publication of JP2002078500A publication Critical patent/JP2002078500A/en
Publication of JP2002078500A5 publication Critical patent/JP2002078500A5/ja
Application granted granted Critical
Publication of JP3975663B2 publication Critical patent/JP3975663B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は,キャピラリ電気泳動を用いるSSCP法による遺伝子(核酸)多型解析方法に係り,特に遺伝子の欠失やヘテロ接合性の消失等,癌等の疾病と関連のある遺伝子異常を,遺伝子多型マーカーを用いて検出する方法に関する。
【0002】
【従来の技術】
ヒト正常細胞には父母由来の1対の染色体が含まれ,特定の遺伝子座について,例えば,片方のアリルが野生型,もう片方のアリルが変異型である場合のごとく,両者の遺伝子型が異なる場合はヘテロ接合体と呼ばれる。一方,両者の遺伝子型が同じ場合はホモ接合体と呼ばれる。健常なヘテロ接合体の場合,それぞれのアリルの存在量の比は理論的に1:1である。ヘテロ接合体をSSCP法で解析すると,野生型と変異型等,それぞれのアリルに対応する2つのピークが観測され,2つのピークの信号強度比は1:1となる。
【0003】
一方,殆どの悪性の癌細胞では遺伝子の欠失や増幅等の異常が生じる。ヘテロ接合体で片方の対立遺伝子が欠失や増幅を起こすと,いわゆるヘテロ接合性の消失(ロス オブ ヘテロツァイゴシティ,LOH)が生じる。SSCP法ではLOHはヘテロ接合体の各アリルに対応する2つのピークの信号強度比が1:1から外れる現象として観測される。
【0004】
遺伝子の多型性,即ち,塩基配列の個人差をマーカーとして利用し,癌の診断を行なう方法(特開平9−201199号公報,以下,従来技術−1という)。の概略を以下に説明する。遺伝子の塩基配列中の特定の領域を標識プライマーを用いてPCR法により増幅した後,3’→5’エクソヌクレアーゼ活性を持つ酵素(Klenowフラグメント等)により3’末端を平滑化する。このPCR産物をスラブゲル型電気泳動装置を用いて一本鎖高次構造多型解析(SSCP)法による解析を行ない,1塩基多型を持つ対立遺伝子(アリル)を分離検出する。
【0005】
正常組織由来のDNA断片と癌組織由来のDNA断片とを同一の蛍光色素で標識し,複数レーンを持つスラブゲル型電気泳動装置を用いてそれぞれ別のレーンで測定している。正常組織由来の2つのピークA1,A2の信号強度比と,癌組織由来の2つのピークB1,B2の信号強度比とから,癌細胞の割合を推定している。p53遺伝子での1塩基多型を指標とする膀胱癌のLOH検出の例では,癌細胞の割合が10%を越えた場合,異常(LOH+,陽性)としている。
【0006】
【発明が解決しようとする課題】
従来技術−1ではスラブゲル型電気泳動装置を使用しているが,ルーチンの臨床検査に適用するためには自動化,省力化,高速化が求められる。本発明では,従来技術−1に於いてスラブゲル型電気泳動装置に代えて,ゲルの自動充填機構やサンプルの自動注入機構を持つキャピラリ電気泳動装置を使用し,自動化,省力化,高速化を図る検討を行った。しかし,キャピラリ電気泳動装置を用いたSSCPは研究段階であり,多くの課題が残されている。キャピラリ電気泳動装置を従来技術−1に適用することを試みたが,正常組織と癌組織とを同一の蛍光色素で標識して別々のキャピラリで電気泳動すると,又は,1本キャピラリで2回に分けて電気泳動すると,測定条件の変動等によりピークの信号強度が変動しLOHを正しく判定できないという問題が見出された。
【0007】
本発明の目的は,キャピラリ電気泳動装置を用いてSSCP法による解析を行ないLOHを検出する遺伝子多型解析方法に於いて,泳動ピークの信号が泳動条件等により変動しても,LOH判定を正確に行ない,診断のための信頼性の高いデータを得ることができる遺伝子多型解析方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明は,キャピラリ電気泳動装置によるSSCP法に於いて,健常細胞と被検細胞とに由来する標的DNA断片をそれぞれ異なる蛍光色素で標識し,同一のキャピラリで同時に電気泳動して泳動パターンを比較することにより,LOHの正確な判定(ヘテロ接合性の消失の有無の判定)を可能とし,癌等の診断のために信頼性の高いデータを提供する。
【0009】
本発明では,1又は複数のキャピラリ電気泳動を用いるSSCP法により遺伝子多型解析を行なう。分析対象とする分析対象DNA断片とこの分析対象DNA断片の比較基準とするヘテロ接合型の基準DNA断片とがそれぞれ異なる蛍光色素で標識されている。分析対象DNA断片と基準DNA断片とが同一のキャピラリで同時に電気泳動分離される。得られた泳動パターンに出現する2つの基準DNA断片のピークの信号強度を用いて,泳動パターンに出現する分析対象DNA断片のピークの信号強度を補正して,分析対象DNA断片のヘテロ接合性の消失の有無の判定がなされる。分析対象DNA断片のピークの信号強度の補正は,2つの基準DNA断片のピークの信号強度比を用いて実行される。
【0010】
基準DNA断片として被験者の健常細胞由来のゲノムDNAを鋳型とするPCR産物が使用され,分析対象DNA断片として同一の被験者の被検細胞由来のゲノムDNAを鋳型とするPCR産物が使用される。また,基準DNA断片としてヘテロ接合型の健常者の健常細胞由来のゲノムDNAを鋳型とするPCR産物が使用され,分析対象DNA断片として被験者の被検細胞由来のゲノムDNAを鋳型とするPCR産物が使用される。特に,分析対象DNA断片として血液中から回収した上皮細胞由来のゲノムDNAを鋳型としたPCR産物が使用される。血液中からの上皮細胞の回収は,抗原抗体反応に基づいて上皮細胞を選択的に吸着するカラムを具備する遺伝子多型解析装置を用いて実行される。上記のPCR産物を得るPCR反応ではTspポリメラーゼが使用される。
【0011】
分析対象DNA断片,基準DNA断片がp53遺伝子のexon4に於けるcodon72の一塩基多型サイトを含む場合には,分析対象DNA断片,基準DNA断片のreverse鎖について,温度範囲,44℃ないし48℃で電気泳動を行なう。
【0012】
本発明では,注目している標的DNA断片(分析対象DNA断片,基準DNA断片)の二次構造を計算により求め,多型による二次構造の差異の拡大を指標として電気泳動に於ける断片の分離(Rs)が大となる好適な温度条件を求め,この好適な温度条件で電気泳動を行なう。
【0013】
また,本発明では,PCR増幅される注目している標的DNA断片(分析対象DNA断片,基準DNA断片)の二次構造を計算により求め,PCR反応に於けるプライミングサイトを変化させて,多型による二次構造の差異の拡大を指標として電気泳動に於ける断片の分離(Rs)が大となる好適なプライマ配列を求め,この好適なプライマ配列を用いて標的DNA断片を調製する。
【0014】
【発明の実施の形態】
〔実施例1〕
図1は,本発明の実施例1であり,LOH判定の手順の概略を表すフロー図である。以下,実施例1での手順の概略を図1を用いて説明する。
【0015】
(工程A)健常細胞からのゲノムDNA抽出と標的DNA断片のPCR増幅:
実施例1では診断対象を膀胱癌とし,被検細胞は被験者の尿中に漏洩した膀胱癌由来の癌細胞,対照実験に用いる健常細胞は同じ被験者の血液中の白血球とした。工程Aでは健常細胞のゲノムDNAを得るために,血液中の白血球からDNAを抽出した。実施例1では自動核酸抽出装置を使用し,迅速簡便かつ安全な抽出作業を実現し,ルーチンの臨床検査に好適に適用可能とした。
【0016】
次に,抽出したゲノムDNAをテンプレートとし,前記の従来技術−1と同様にTaq酵素(ABI社製,AmpliTaq Gold)を用いてPCR増幅を行ない,標的DNA断片を得た。工程Aでは従来技術−1で使用しているプライマーセットと同じ塩基配列のプライマーを使用したので,標的DNA断片の領域(癌抑制遺伝子p53のexon4の一部)や長さ(115nt(nucletide,base))は従来技術−1と同じとなる。
【0017】
但し,従来技術−1では,reverse鎖(Click鎖)に対して5’端を蛍光色素Cy5で標識したプライマーを,forward鎖(Watson鎖)に対して標識しないプライマーをPCRに使用するのに対し,実施例1では,reverse鎖に対して5’端をROXで標識したプライマー(GENSET社製)を,forward鎖に対して5’端をFAMで標識したプライマー(GENSET社製)をPCRに使用して,PCR産物として標的DNAを得た。
【0018】
最後に,従来技術−1に記載の方法と同様にして,PCR産物の3'末端の平滑化処理をで行った。即ち,Klenow fragment(Klenow酵素)を加えて37℃,30分間反応させ,3'末端の突出端のdNTPを除去し,目的とする115ntの標的DNA断片を得た。
【0019】
(工程B)被検細胞からのゲノムDNA抽出と標的DNA断片のPCR増幅:
基本的に工程Aと同様の手順により,同一の被験者から被検細胞を得て,ゲノムDNA抽出を行ない,PCR増幅を行った。
【0020】
工程Bが工程Aと異なるのは被検細胞が尿中に漏れ出た膀胱由来の細胞である点であり,被験者の尿から細胞を回収しDNA抽出と増幅を行った。回収した細胞からのゲノムDNAの抽出では工程Aと同様に自動核酸抽出装置を使用した。また,工程Bではこの被検細胞から得たゲノムDNAに基づくPCR増幅の際,reverse鎖に対して5’端をFAMで標識したプライマーを,forward鎖に対して5’端をROXで標識したプライマーを用いて標的DNA断片を得た。
【0021】
(工程C)健常細胞に基づく増幅DNA断片の電気泳動と多型分離検出:
実施例1では電気泳動装置として1本のキャピラリを有するDNAシーケンサ(ABI社)を使用し,基本的にABI社推奨のSSCP条件に基づき泳動を行ない,1塩基多型を有するPCR増幅産物の分離検出を行った。この装置は泳動ポリマをキャピラリに自動充填する機構と,オートサンプラ上の試料をキャピラリに自動注入する機構を備えるため,全自動の連続測定が可能であり,ルーチンの臨床検査に好適に使用可能である。この装置は,複数の異なる発光波長を検出できる機能(以下,多波長検出という)を有し,標準蛍光色素を用いた蛍光の相互干渉を事前評価して補正マトリクスを予め作製し,実試料での干渉の影響をマトリクス変換により除去し,複数の蛍光色素を独立に検出可能である。
【0022】
試料調製条件は下記の通り。PCRの反応液を水で1/20ないし1/50に希釈した溶液1μL,サイズスタンダード(ABI社製GeneScan 500 TAMRA)0.5μL,ホルムアミド12μLを混合,94℃で2分間熱変性,室温まで放冷する。但し,工程Dで説明する通り,実際には工程C,工程Dの電気泳動は同時に同一のキャピラリで実施した。従って,PCR反応液は,工程Cによる健常細胞由来のもの0.5μLと,工程Dによる被検細胞由来のもの0.5μLの,合計1μLを用いた。
【0023】
実施例1でのSSCP法による泳動条件は下記の通り。キャピラリ寸法は,有効長30cm,全長41cm,内径50μm,外径375μmである。試料注入条件は,15kV,5秒で行った。泳動電圧は,15kVである。泳動バッファは,グリセロール10重量%を含む1xTBE緩衝溶液である。泳動ポリマは,泳動バッファをベースとし,ABI社製GeneScan Polymerを9重量%となるよう添加した。
【0024】
図2は,本発明の実施例1であり,上記の試料について,SSCP法による電気泳動を行って得られた電気泳動パターンの例を示す図である。図2(a)の横軸は時間(t)に相当し,左から右にむけてtは大となる。縦軸は特定の発光波長での蛍光信号強度を示し,ピークの高さは発光波長で蛍光を発する蛍光色素で標識されたDNA断片の濃度に比例する。図2(a)の縦軸は,蛍光色素FAMの蛍光波長の信号強度を示す。
【0025】
事前の検討で,標的DNA断片(p53exon4の一部)のforward鎖の一塩基多型に関し野生型のホモ接合型の試料は,図2(a)のピーク12と同じ位置に単一のピークを示し,また変異型の試料の場合は,図2(a)のピーク13と同じ位置に単一のピークを示すことを確認した。
【0026】
従って,図2(a)のピークはそれぞれ,標的DNA断片のforward鎖の野生型と変異型の断片に由来する。一方,FAMで標識されているforward鎖は工程Aで説明した健常細胞由来の試料であるため,この健常細胞由来の標的DNA断片は,exon4の一塩基多型に関し,野生型と変異型とを含むヘテロ接合型であることが理解される。2つのピーク12,13が観測されたことから,この一塩基多型を有する2つの標的DNA断片が,実施例1によるSSCP法により分離検出できることが示された。なお,各ピークの泳動時間はそれぞれ23.6分,23.8分,信号強度はそれぞれ255,263(任意単位)であった。
【0027】
一方,ROXで標識したreverse鎖の信号も同様に分離検出されたが,図2の時間軸範囲の外であったため図2では省略した。reverse鎖の野生型,変異型のピークの泳動時間はそれぞれ20.3分,20.4分であった。このreverse鎖の分離特性については後述する。従来技術−1の泳動時間は約5時間であるから,実施例1は従来技術−1と比較して約15倍高速という特長を有する。これは放熱特性に優れるキャピラリ方式の採用により,約366V/cmと高い電場の採用が可能となり,泳動が高速化したためと考えられる。
【0028】
(工程D)被検細胞に基づく標的DNA断片の電気泳動と多型分離検出:
被検細胞から工程Bにより得られた標的DNA断片について,工程Cと同じ手順でSSCP法による解析を行なうことにより,exon4の一塩基多型に関する解析を行った。なお,使用した装置が多波長検出できるので,実際には工程Cと工程Dの試料を混合し,同じキャピラリで同時に電気泳動を行ったのは前述の通りである。電気泳動の結果を図2(b)に示した。
【0029】
図2(b)の横軸と図2(a)の横軸は共通の原点と時間スケールを持つ時間軸であり,既知試料との比較から,2つのピーク14,15は標的DNA断片のforward鎖の野生型と変異型の断片に対応する。図2(b)の縦軸は蛍光色素ROXの蛍光波長の信号強度を示し,ROXで標識されているforward鎖は工程Bで説明した被検細胞由来の試料であるため,この被検細胞由来の標的DNA断片は,exon4の一塩基多型に関し,野生型と変異型とを含むヘテロ接合型である。
【0030】
マトリクス変換による干渉補正を用いた多波長検出により,同一キャピラリで被検細胞と健常細胞から得た標的DNA断片を同時に電気泳動するにもかかわらず,図2(a)に示したFAMで標識した健常細胞のforward鎖の断片に基づく信号と,図2(b)に示したROXで標識した被検細胞のforward鎖の断片に基づく信号とは互いに独立に検出できることが理解される。ピーク14,15の泳動時間はそれぞれ23.6分,23.7分,信号強度はそれぞれ255,274(任意単位)であった。
【0031】
なお,ピーク12,14はそれぞれ同一の配列を有する標的DNA断片のピークであることを,それぞれFAM,ROXで標識した野生型試料の泳動結果との比較により確認したが,両者の泳動時間は僅かに異なった。これは,蛍光色素の違いにより移動度が僅かに影響を受けるためと考えられる。ピーク13と15についても変異型である点以外は同様である。なお,FAMで標識した被検細胞由来のreverse鎖の断片に基づく信号は図2の時間軸の範囲外であったが,工程Cでのreverse鎖の断片に基づく信号の結果と類似の結果が得られた。
【0032】
(工程E)対立遺伝子が互いに異なるヘテロ接合型か否かの判定:
工程Cに関する説明の通り,健常細胞から得たDNAはSSCP法で2つのピーク12,13が得られたことから,標的DNA断片(p53exon4)のcodon72について野生型と変異型とを含み,換言すると対立遺伝子が互いに異なるヘテロ接合型であった。従って,この被験者の被検細胞について,この遺伝子座に関するLOH判定を行なうことが可能である。
【0033】
一方,SSCP法でピーク12又は13どちらか一方のピークしか観測されなかった場合は,この被験者はこの遺伝子座に関してホモ接合型であり,被検細胞のDNAを調べてもLOHに関する情報が得られず,この遺伝子座に関するLOH判定を行なうことができない。従って,別の遺伝子座について検査を行なう必要がある。
【0034】
(工程F)健常細胞の対立遺伝子に由来する断片の信号強度からの補正係数の算出:
以下の説明では,X=S,P,Cとして,変数X1(S1,P1,C1),X2(S2,P2,C2)を使用するが,Xに続く1,2はそれぞれ,野生型,変異型に対応することを示す。工程Cに関する説明の通り,健常細胞のforward鎖の野生型,変異型に対応する標的DNA断片の信号強度S1,S2は,それぞれ255,263であった。補正係数Fは(数1)によって定義され,補正係数Fの値は263/255=1.031である。
【0035】
【数1】
F=S2/S1 …(数1)
(工程G):被検細胞の対立遺伝子に由来する断片の信号強度と,補正係数とから,被検細胞での対立遺伝子の存在量の比を求める:
工程Dの説明の通り,被検細胞のforward鎖の野生型,変異型に対応する標的DNA断片の信号強度P1,P2はそれぞれ255,274であった。被検細胞での対立遺伝子の存在量の比Tは(数2)によって定義され,T=274/255/1.031=1.042である。
【0036】
【数2】
T=P2/P1/F …(数2)
(工程H)Tの1からの乖離(ずれ)の判定:
工程Gで求めた通りT=1.042であり,Tの1からの乖離は+4.2%である。Tの1からの乖離が±10%以上をLOHあり(異常有り)と判定する基準を設けて,このケースは被検細胞にLOHなし(異常なし)と判断した。このケースではTの1からの乖離が10%未満であったが,T≦0.9の場合や,T≧1.1の場合はTの1からの乖離が±10%以上となるため,LOHあり(異常有り)と判断する。この結果を,膀胱癌の診断を行なうためのデータとして医師に提供することができる。
【0037】
なお,実施例1で用いた被検細胞は健常者のものであったため,上記の異常無しの判定は正しい結果であった。実施例1ではそれぞれの標的DNA断片を異なる蛍光色素で標識したにもかかわらず,工程Cと工程Dで同一のキャピラリで同時に電気泳動を行ったために,健常細胞由来の断片の強度比を基準とする被検細胞由来の断片の強度比の補正が有効に機能したと考えられる。注意すべき点は,蛍光色素の違いによる両者の挙動の違いが事実上無関係であったことである。これは従来当業者の予見が困難であった事実であり,本発明の進歩性のポイントの一つである。
【0038】
実施例1では,SSCP法による解析を行なうためのキャピラリ電気泳動装置として,例えば,光源としてAr+レーザとHe−Neレーザ,検出器として回折格子とCCDカメラを用いて,多波長の蛍光検出が可能な装置も使用できる。本発明の適用範囲はこれら装置に限定されるものではなく,広く一般の多波長の蛍光検出が可能なキャピラリ電気泳動装置が適用できる。実施例1では,簡単のために2種の蛍光色素からの蛍光検出を行なう場合について例示し,被検細胞由来の標的DNA断片を1種のみ用いる方法を例示した。n種の蛍光色素からの蛍光検出が可能な装置を使用して,各標的DNA断片をn種の異なる蛍光色素で標識すれば,当然(n−1)種までの被検細胞由来の標的DNA断片を同時に測定可能である。
【0039】
本発明の適用範囲は,実施例1で示した試料,PCR領域,適用用途等についても,上記の血液や尿から採取した細胞から抽出したゲノムDNA試料のp53exon4領域,膀胱癌の診断に限定されない。本発明は,その他の生体に由来する細胞から得た試料に適用可能であり,他の遺伝子領域での一塩基多型,マイクロサテライト多型,ショートタンデムリピート多型等をマーカーとして使用可能である。また,LOHが指標となる他の疾病の遺伝子診断にも適用可能である。他のキャピラリ電気泳動装置応用の分析試験に対しても,信号強度比を高精度に評価する必要がある場合には,同様に適用可能である。
【0040】
実施例1の特有の効果は,健常細胞由来の断片と,被検細胞由来の断片とを,同時に同じキャピラリで電気泳動することにより,蛍光色素の違い以外の全ての泳動条件を統一できることである。LOHの判断基準となる対立遺伝子由来の断片の信号強度比に影響を及ぼすような電気泳動条件の変動があったとしても,変動要因の影響を相殺でき高精度の測定が可能になるという効果がある。
【0041】
〔実施例2〕
実施例2は実施例1と同様であるが,PCR増幅に用いた酵素並びにPCR後の工程が異なる。実施例1の工程A,工程Bでは,PCR酵素としてTaqポリメラーゼを使用した。この場合3'末端にdNTP(N=A,T,G,C)が一つ付加したPCR産物が生じ,それによるゴーストピークがSSCP法での定量的解析を妨害する不具合がある。この不具合を避けるためにPCR産物をKlenow酵素で処理して3'末端を平滑化して,3'末端の突出端部のdNTPを除去した。
【0042】
実施例2では,PCR酵素としてPlatinum Genotype Tspポリメラーゼ(Life Technologies/GibcoBRL社)を使用することにより,3’末端に対するdNTPの付加を抑制しKlenow酵素処理を省略した。実施例2により,時間,手間,コストがかかるKlenow酵素反応を省略した。また,酵素反応ステップを1段省略することにより,その酵素の失活による再現性不良等の誤差要因を排除した。従って,実施例2は,迅速,簡便,安価かつ信頼性の高い臨床検査を行えるという特有の効果がある。なお,3’末端に対するdNTP付加が起こりにくいとされるPCR酵素は各種報告されているが,各種酵素を比較検討した結果,上記のTspが最も好適であった。
【0043】
図3は,本発明の実施例2であり,各種ポリメラーゼを用いてp53遺伝子のexon4領域をPCR増幅した産物について,変性ゲルPOP4(ABI社製)を充填したキャピラリ電気泳動装置を用いてフラグメント長の解析を行った結果の一例である。図3(a)ではAmpliTaq Gold(ABI社製)を,図3(b)ではPlatinum Genotype Tspを,図3(c)ではPyrobest(宝酒造社製)を,図3(d)ではPfx(Life Technologies/GibcoBRL社製)をそれぞれ,ポリメラーゼとして用いて得られたPCR産物の電気泳動パターンの例である。
【0044】
図3(a),図3(c)の泳動パターンでは,PCR産物として目的とする115ntの断片16の他に,それより塩基数の多い断片17,18が副産物として生成している。図3(d)の泳動パターンでは,PCR産物として115ntの断片16より塩基数の短い断片19が生成している。図3(b)に示すように,Tspポリメラーゼを使用したPCR産物の泳動パターンでは,目的とする115ntの断片16以外の長さの副産物が殆ど含まれていない。従って,PCR反応でTspをポリメラーゼとして用いることにより,3’末端が平滑なDNA断片が得られKlenow酵素反応を省略できるという効果がある。
【0045】
〔実施例3〕
図4は,本発明の実施例3であり,LOH判定の手順の概略を表すフロー図である。実施例3の手順は実施例2の手順と類似であるが補正係数Fの算出方法が異なる。
【0046】
(工程I):実施例2では,補正係数Fは被験者の健常細胞から得たゲノムDNAのPCR増幅により得られた標的DNA断片を標準試料として補正係数Fを求めた。実施例3では必ずしも被験者自身の健常細胞からではなく,他の個人や他の生物の細胞等から得たゲノムDNAのPCR増幅により得られた標的DNA断片,又は,化学合成によって得られた標的DNA断片を単独もしくは混合して用いた。
【0047】
単独で用いる場合には,試料はヘテロ接合型の健常細胞から得られたものである必要があるが,混合して用いる場合はこの限りでなく,ホモ接合型やLOHの細胞から得られたものや,化学合成品であってもよい。勿論,ホモ接合型やLOHの細胞から,又は化学合成品によって標的DNA断片を得た場合には,野生型だけでなく変異型の試料も用意し混合することによりヘテロ接合型と類似の組成とする(この場合,下記の理由により組成比は,必ずしも厳密に1:1である必要はない)。何れにせよ,工程Iにより,実施例1,実施例2の工程Aに相当するヘテロ接合型類似の組成を有する標的DNA断片を,標準試料ストックとして準備する。
【0048】
(工程J):ヘテロ接合型類似の組成を有する標的DNA断片(標準試料ストック)の対立遺伝子に由来する断片(実施例3では野生型と変異型)の濃度C1,C2を定量する。様々な方法を用いて濃度を定量できる。実施例3では,野生型と変異型の一次標準試料(濃度検定済み)をそれぞれ準備し,標準試料ストックと各一次標準試料を使用して電気泳動装置を用いたSSCP法による解析を行ない,野生型と変異型のそれぞれに由来する断片に対応する泳動ピークの高さを比較することにより,標準試料ストックの対立遺伝子に由来する各断片の濃度C1,C2を定量した。
【0049】
濃度C1,C2決定の他の方法としては,LOHが無いことが確認されているヘテロ接合型の一次標準試料(濃度検定済み,この場合は野生型と変異型の濃度は同じ)を準備し,そのSSCPパターンを標準試料ストックのそれと比較することにより濃度C1,C2を決定する。或いは,野生型,変異型のそれぞれについて標的DNA断片を準備し,予めUV吸収測定,PicoGreen(Molecular Probes社製)等のインターカレータとの相互作用による蛍光強度測定等により,それぞれの断片の濃度を求めた後,それらを所定の割合で混合することにより濃度C1,C2を決定する。或いは,ヘテロ接合型の健常者を多数集め,彼らがLOHを有さないことを確認し,彼らから得た標的DNA断片を概ね等量ずつとなるように混合することにより,概ね1:1に近い濃度比を持つと見做すことのできる標準試料ストックを準備し,その標的DNA断片の合計濃度Cを求め(数3)により濃度C1,C2を決定する方法もある。
【0050】
【数3】
C1=C2=C/2 …(数3)
工程Iでの標準試料ストックの由来に関わらず,工程Jで標準試料ストックの対立遺伝子に由来する断片の濃度C1,C2を決定する。工程I,工程Jにより,対立遺伝子に由来する濃度既知の断片を含むヘテロ接合型(類似)の標準試料ストックが得られる。
【0051】
(工程K):標準試料ストックの電気泳動を行ない塩基配列多型性に基づき分離検出を行なう。工程Kは,実施例1,実施例2での工程Cと同様であり,その結果,対立遺伝子に由来する各断片の信号強度S1,S2を得た。異なるのは,用いる試料が標準試料ストックである点と,それが確実にヘテロ接合型かもしくはヘテロ接合型類似の組成であることが判明している点,その対立遺伝子に由来する各断片の濃度がそれぞれC1,C2である点である。
【0052】
(工程F’):断片1,断片2の信号強度S1,S2と,濃度C1,C2とから補正係数Fを求める。DNA断片1,2はそれぞれ,野生型,変異型に対応する。工程F’は,実施例1,実施例2での工程Fと類似である。異なるのは断片1,2が被験者の健常細胞由来でなく,上記の標準試料ストック由来である点,断片1,断片2の濃度が必ずしも等しくなくその濃度がC1,C2で与えられるため補正係数Fも(数4)に示すように濃度を勘案して求める点である。勿論,C1=C2の完全なヘテロ接合型の場合は,実施例3の工程F’により求めた補正係数Fは,実施例1,実施例2での工程Fにより求まる補正係数Fと一致する。
【0053】
【数4】
F=(S2/C2)/(S1/C1) …(数4)
(工程A,工程C,工程E):実施例3での工程A,工程C,工程Eは,実施例1,実施例2での工程A,工程C,工程Eとほぼ同じである。異なるのは実施例3では工程Cで健常細胞から得た断片のSSCP法解析での信号強度は補正係数Fの計算には使用せず,ただ単に工程Eでヘテロ接合型であるか否かの判定のみに使用することである。
【0054】
(工程B,工程D,工程G):実施例3での工程B,工程D,工程Gは,実施例1,実施例2での工程A,工程C,工程Eとほぼ同じである。異なるのは実施例3では工程Dで,被検細胞からのDNA断片の電気泳動を工程Kでの標準試料ストックと一緒に行なう点である。勿論,実施例1,実施例2と同様,工程Cの健常細胞からのDNA断片と一緒に電気泳動を行っても良いが必ずしも必要ではない(上述の通り,健常細胞のデータはヘテロ接合型であることの確認にのみ利用され,補正係数には反映されないため)。
【0055】
工程Cの健常細胞からのDNA断片と一緒に電気泳動を行なう場合,工程Cの健常細胞からのDNA断片を,工程Kの標準試料ストックや工程Dでの被検細胞からのDNA断片と区別するため,工程Aでの健常細胞からのDNA断片のPCR増幅では,工程I,工程Bで用いた蛍光色素と異なる第3の蛍光色素で標識する。
【0056】
(工程G,工程H):実施例3での工程G,工程Hは,実施例1,実施例2と同様である。唯一の相違点は,工程Gでの被検細胞の対立遺伝子の存在量の比Tを求める際の補正係数Fとして,工程F’の説明の通り標準試料ストックの測定により求めた値を用いる点である。実施例3では補正係数Fを求める際,被検者の健常細胞由来のDNA断片の泳動パターンを用いる代わりに,標準試料ストックの泳動パターンを用いる。以下,実施例3の特有の効果を説明する。
【0057】
第1に,健常細胞と想定して用いた被験者の細胞中の標的領域での対立遺伝子の存在量の比Tが万一1:1からずれ(乖離し)ていたとしても,被検細胞のLOHが高精度に算定可能となるという効果がある。この様なことが起こるケースとしては,例えば,健常細胞として血液中の白血球を用いる場合に,被験者が白血病に罹患している場合等がある。
【0058】
第2に,工程I,工程Jはユーザではなく,好ましくは機器メーカ或いは試薬メーカが実行し,ユーザは濃度既知の標準試料ストックを機器メーカ或いは試薬メーカから購入して使用することができる。この場合,分析結果の信頼性向上が可能となるという効果がある。更に,被験者に関する事前の検討により,その被験者が標的領域について本来ヘテロ接合型であることが確認されている場合は,工程A,工程C,工程Eは省略できる。この場合,ユーザは標準試料ストックの購入使用により基準となる試料の調製作業を省略できるため,ユーザにとって省力化が可能となるという効果もある。
【0059】
第3に,標準試料ストックはヘテロ接合型,あるいはそれに類似した組成であることが事前に確認されている。従って,工程Kでこの試料をSSCP法により分析した際に2つのピークが検出されない場合は,分析方法に何らかの問題があること意味し,この情報を用いて分析方法の品質管理が可能となるという効果がある。標準試料ストックの組成比と泳動パターンのピーク強度比とを比較して両者が大きく乖離した場合は,分析条件の大きな変動を意味する場合があるため,分析方法の品質管理が可能となるとともに,ユーザに注意を喚起して原因究明と対策を促すこともできるという効果もある。
【0060】
(実施例4)
図5は,本発明の実施例4によるLOH判定の手順の概略を表すフロー図である。実施例4の手順は,実施例3の手順と類似であるが,泳動パターンの信号強度や濃度の計算の各段階で,対立遺伝子に由来する断片について独立に計算を行なうのではなく,対立遺伝子に由来する2つの断片に関する比の値を用いて計算を行なう点が異なる。具体的には,工程J’で,断片1,断片2の濃度をそれぞれC1,C2として求める代わりに,(数5)により濃度比C1,2を求める。同様に,工程F”で,信号強度S1,S2の代わりに,(数6)により信号強度比S1,2を求め,Fを(数7)から求める。同様に,工程G’で被検細胞の断片1,断片2の信号強度P1,P2の代わりに,(数8)により信号強度比P1,2を求め,Tを(数9)から求める。
【0061】
【数5】
1,2=C2/C1 …(数5)
【0062】
【数6】
1,2=S2/S1 …(数6)
【0063】
【数7】
F=S1,2/C1,2 …(数7)
【0064】
【数8】
1,2=P2/P1 …(数8)
【0065】
【数9】
T=P1,2/F …(数9)
実施例4の特有の効果は,扱う情報量が約半分で済むため,計算機にとっては記憶容量が少なくて済み,ユーザにとっては数値入力の手間が省け,また計算の流れがより理解しやすくなることである。
【0066】
(実施例5)
実施例5は実施例2と同様であるが,工程C,工程Dで分離定量するDNA断片をforward鎖由来の断片でなく,reverse鎖由来の断片とした点が異なる。手順の変更点としては,電気泳動開始後約20分付近の泳動パターンを取得し,健常細胞由来のreverse鎖由来のROXで標識した断片,被検細胞由来のreverse鎖由来のFAMで標識した断片について解析を行った。観測したピークがreverse鎖由来の断片である点を除けば,実施例2と同様の手順により,実施例2と同等の結果が得られた。
【0067】
この時の分析条件は,ABI社推奨のSSCP条件,即ち,ポリマ濃度3%,温度30℃であった。この場合,reverse鎖の対立遺伝子に由来する2つの断片のピークの分離Rs(泳動パターンのピーク形状をガウス分布型と仮定した場合,ピーク間隔を,バンド幅,即ち,4シグマで割った値として定義される)は約0.8〜1.0であった。
【0068】
次に,ポリマ濃度について検討を行った。6%以上の泳動ポリマ調製の際は,予めGeneScan Polymer溶液(7%)(ABI社製)を遠心濃縮して約15%に濃縮した溶液に基づき,泳動ポリマを調合した。その結果,ポリマ濃度が9%までの範囲では濃度上昇とともに分離が直線的に改善することが判明した。濃度9%でのreverse鎖由来の断片の分離は約2.3という高い分離が得られた。
【0069】
10%以上のポリマ濃度では電気泳動結果の再現性が低下した。これは,ポリマ溶液の粘性が増し,キャピラリへのポリマ溶液の充填が均一にできなくなったためと考えられる。従って,高い分離を得る観点からはポリマ濃度の最適値は約9%であると考えられる。実施例1でのポリマ濃度9%の条件も,以上の検討から得られた知見に基づいて設定した。
【0070】
次に,電気泳動を行なう温度について検討した。従来技術−1ではp53 exon4の電気泳動の温度条件として20℃を採用している。また,一般にSSCP法では低温の方が高分離の傾向があるとされているため,低温での電気移動を試みた。しかし,キャピラリ電気泳動法を用いる本発明での検討では,温度20℃の条件下でも分離は殆ど改善しなかった。逆に,30℃より高温の条件での電気泳動について検討したところ,驚くべき事に,約46℃〜48℃でのreverse鎖由来の断片の分離が特異的に改善する現象が見出された。
【0071】
図6は,本発明の実施例5であり,p53exon4のreverse鎖由来の断片のSSCP法による分離(Rs)の温度依存性の例を示す図である。図6は,30℃から60℃まで温度変えた場合のp53 exon4 reverse鎖の野生型と変異型由来の断片の泳動ピークの分離のポリマ濃度による変化,即ち,ポリマ濃度3%での分離の温度変化23(○印),ポリマ濃度6%での分離の温度変化24(△印),ポリマ濃度9%での分離の温度変化25(□印)を示す。
【0072】
図6から明らかなように,30℃から40℃の範囲では分離(Rs)は温度によらずほぼ一定であったが,40℃から50℃付近の狭い温度範囲で急峻な分離(Rs)の改善が見られた。この範囲での分離(Rs)の最高値はポリマ濃度3%,6%,9%でそれぞれ,約3.3,4.8,6.0であった。これらの値は,30℃での値と比較した場合,約3倍高かった。
【0073】
実施例5では,この様な大きい分離(Rs)を与える特異的な温度である46℃〜48℃を電気泳動条件として採用したため,ピークの分離,定量が容易となり,測定精度が改善するという効果がある。また,分離(Rs)はキャピラリ有効長の(1/2)乗に比例するが,分析(泳動)時間はキャピラリ有効長に比例するため,温度の最適化により得た3倍の分離(Rs)の改善を,キャピラリ有効長短縮による分離(Rs)の低下と相殺した場合,同じ分離(Rs)をキャピラリ有効長9分の1で,従って,分析(泳動)時間も9分の1で実現できる。
【0074】
従って,温度の最適化によって得られた3倍の分離(Rs)の改善と引き替えに約1桁の高速化が可能となるという効果もある。同様に,温度の最適化により得られた大きい分離(Rs)を,ポリマ濃度の低下による分離(Rs)の低下と相殺すれば,高速化が可能である。
【0075】
なお,上記のようなSSCP法の分離(Rs)に関する特異温度,特に46℃〜48℃という高い温度での分離(Rs)の改善の報告は少なく,そのメカニズムも未解明である。そこでそのメカニズムを解析するためにDNA断片の2次構造の計算を,パブリックドメインのソフトウエア RNAfold(Monatshefte fur Chemie 125,167−188,1994)を使用して行った。計算のアルゴリズムには,分配関数(partition function)とペア確率(pair probabilities)を併用する計算方法を採用した。
【0076】
文献(SantaLucia,Proc.Natl.Acad.Sci.USA 95,1460−1465,1998)に記載のDNA用のパラメータを,エネルギー計算に使用した。勿論,DNA断片の2次構造計算のためのソフトウエアは他にも幾つか存在し,他のソフトウエアでも同様の計算が可能である。
【0077】
図7は,本発明の実施例5であり,上記の特異温度を示したp53exon4のreverse鎖の野生型,変異型のDNA断片の30℃と46℃での二次構造の計算結果を示す図である。図7では,縮尺の都合で個々の塩基配列が見にくいため,野生型と変異型との唯一の相違点である一塩基多型の位置(codon72)をアロー(←)により,またその塩基の種類をC(野生型)又はG(変異型)で示した。図7(a)は30℃での野生型の2次構造を示し,図7(b)は30℃での変異型の2次構造を示す。図7(a),図7(b)に示す2次構造はともに自己会合の多い2次構造を示し,その構造は一塩基多型の位置の近傍で僅かに異なるが,全体として良く類似した2次構造であることが理解される。
【0078】
図7(c)は46℃での野生型の2次構造を示し,図7(d)は46℃での変異型の2次構造を示す。図7(d)の2次構造は,末端が一部解離している他は基本的に図7(b)に示す2次構造と相似であった。一方,図7(c)の2次構造は,図7(a)の2次構造と大きく異なり,自己会合構造の多くが解離しており一本鎖領域が多いという結果となった。
【0079】
以上の2次構造計算結果は,30℃,46℃で,SSCP法での野生型と変異型の両断片の分離特性が大きく異なることに対応づけられると考えられる。即ち,30℃では野生型と変異型の両断片は自己会合の多い2次構造を取るが,その構造は互いに類似している。従って,SSCP法による電気泳動を行っても,構造上大きな差異がないために分離が良くない。46℃に昇温すると,野生型と変異型の両断片は互いに共通点が殆ど無いほど2次構造が異なるため,SSCP法による電気泳動で高い分離(Rs)が得られる。
【0080】
46℃での電気泳動特性は以下のような更に詳細な考察も可能と考えられる。野生型は自己会合構造の大部分が解離し,一本鎖部分の割合が多いため,禁止点が少なく柔軟となる。すると泳動ゲルの間を移動する際の動的半径が減少し,換言すると移動度が高くなる。一方,変異型は46℃に昇温しても構造変化が少ないため,移動度の変化も小さい。従って,野生型の泳動時間が変異型と比較して相対的に短縮し分離が改善すると考えられる。
【0081】
SSCP法は一塩基多型等の塩基配列変化により泳動断片の高次構造が変わることが分離のメカニズムであると提唱されてきたが,高次構造と対応づけて分離特性を解析した例は少ない。特に約46℃というSSCP法としては異例に高い温度での特異的かつ急峻な分離(Rs)の改善現象について解析し,分離改善の原因を高次構造と対応づけて解析するのに成功した例は,本発明が初めてであると考えられる。従来はSSCP法は分離が得られるか否かは試行錯誤が必要であった。即ち,あるケースでは分離が得られさもなければ断念するという勘と経験と運に依存する技法であった。実施例5の上記した検討により,核酸2次構造とSSCP分離との関係が理論的に対応付けられる可能性が示された。
【0082】
従って,SSCP法による分離を試みる前に,予め2次構造を計算により予測し,一塩基多型等を有する断片同士の分離が期待できるか否か,また最も分離(Rs)が良い温度が何度位であるか等の予測を計算により行ない,その結果を踏まえてSSCP法の条件を最適化するという方法が,実施例5で有効であることが示された。
【0083】
この方法で最適化可能なSSCP法の条件としては,泳動温度,断片の配列等がある。目的とする一塩基多型の位置が決まっていても,それを挟むプライマーの位置を変更すると,PCR増幅する断片の配列を変えることができ,その場合の分離特性を上記と同様の手順により予測,最適化することが可能である。当然,最適化の結果に基づいてプライマーを設計することも実施例5では有効である。また,プライマーの5’端に任意の配列を付加し分離改善を図るシミュレーションも可能である。
【0084】
実施例5の特有の効果は,癌抑制遺伝子として注目されているp53遺伝子上の,パピローマウイルスによる子宮頚癌のかかり易さ等との関連が報告されているexon4codon72の遺伝子座の一塩基多型を分離検出する際,従来比3倍以上の極めて高い分離(Rs)がSSCP法で得られ,理論解析によりその理由を説明でき,SSCP法の分離をシミュレートできることである。
【0085】
(実施例6)
実施例6は実施例2と同様であるが,工程Bで,尿中の膀胱由来の細胞ではなく,組織由来の上皮細胞を抹消血中から回収して使用した点が異なる。
【0086】
血液中からの上皮細胞の選別回収はセルソータを用いる文献(Racila他,Proc.Natl.Acad.Sci.USA 95,4589−4594(1998))に記載の方法を採用した。具体的には,EPCAM(上皮細胞接着分子)に対する抗体を結合した磁性粒子と抹消血とを混合した後,磁石を用いてB/F分離を行ない,磁性粒子に結合した細胞を含む分画を得た。
【0087】
この分画をフィコエリスリンを結合した抗サイトケラチン抗体と,ペリディニンクロロフィルでラベルした抗CD45抗体とを含む溶液で処理した。磁石によるB/F分離,精製の後,セルソータにより測定した。上記文献に記載されているように,CD45抗体の数が少なく,高い濃度でサイトケラチン抗体が反応した上皮細胞の分取を行った。この際,分取した細胞の数を記録した。
【0088】
この様にして抹消血中から上皮細胞を選別回収した後,実施例2の工程Bと同じ手順により,DNA抽出と増幅を行った。他の工程については実施例2と同じ工程を採用して,血液中の上皮細胞由来の核酸のLOHを求めた。
【0089】
上記の文献に記載の通り,CD45抗体の数が少なく,高い濃度でサイトケラチン抗体が反応した細胞は上皮細胞系の細胞であり,抹消血中に存在する上皮細胞の多くは癌腫の細胞であるから,セルソータで分取した細胞の多くは転移性の癌細胞と考えられる。しかし,抹消血の採取の際の穿針による上皮細胞の混入や,各種の外傷や炎症等により癌細胞以外の上皮細胞が抹消血中へ混入する場合もあるため,セルソータで記録された上皮細胞の数だけに基づいて癌の診断を行なうと偽陽性となる場合があり,精度が低いという課題があった。
【0090】
実施例6では,抹消血中の上皮細胞を分取して計数するだけでなく,その細胞のゲノムDNAのLOHを求めることにより,その細胞が癌細胞由来であるか否かを高精度に評価可能である。従って,実施例6は,偽陽性の少ない,精度の高い診断材料を提供できるという特長がある。また,膀胱癌に限らず広く転移性の癌腫一般を抹消血を用いて検出,診断できるため,適用範囲が広く,被験者に対する侵襲性も少なく,各種の癌の早期発見のためのスクリーニング法として有効であり,早期治療,生存率の改善に貢献できるという特長がある。
【0091】
(実施例7)
実施例7は実施例6と同様であるが,セルソータによる分取を行わず,免疫法のみによる細胞分離を行った点が異なる。具体的には,EPCAM(上皮細胞接着分子)に対する抗体を結合した磁性粒子と抹消血とを混合した後,磁石を用いてB/F分離を行ない,磁性粒子に結合した細胞を含む分画を得た。
【0092】
EPCAMと磁性粒子との結合を切断した後,磁石を用いてB/F分離を行ない,非結合分画と抗サイトケラチン抗体を結合した磁性粒子とを混合し,磁石を用いてB/F分離を行ない,磁性粒子に結合した細胞を含む分画を得た。この分画から,実施例2の工程Bと同じ手順により,DNA抽出と増幅を行った。他の工程については実施例2と同じ工程を採用して,血液中の上皮細胞由来の核酸のLOHを求めた。
【0093】
実施例7では,免疫反応だけでなくDNAのLOHも判断材料とするため,少量の白血球が混入しても影響が少ない。従って,簡便な装置,方法で高精度の診断が可能な判断材料を提供できるという効果がある。
【0094】
なお,以上の説明では免疫法による細胞分離法として磁気免疫法を例にとって説明したが,勿論磁気を用いない各種の免疫法による細胞分離法も適用可能である。例えば,抗体を結合した無機又は有機のビーズ等の担体を用い,遠心分離によりB/F分離を行なう免疫ビーズ法,抗体を結合した無機又は有機のビーズ状あるいは繊維状の担体を充填したカラムによりB/F分離を行なう免疫クロマトグラフィー法等も適用可能である。なお,上記の説明ではEPCAMとサイトケラチンに対する2種の免疫反応を,両方とも磁気免疫法で行なうために,途中で磁性粒子との結合を切断するステップを採用した。
【0095】
しかし,後段の免疫反応を磁気免疫法以外の方法,例えば,免疫クロマトグラフィー法で行なう場合には,この磁性粒子除去のステップは不要であり,直接第2の抗体を有するカラムによるB/F分離にかけられる。カラム内の担体に結合した細胞は,一旦結合を切断して細胞として回収してから後工程であるDNA抽出を行なうことができる。或いは,カラム内に細胞を結合したまま,細胞を溶解する試薬を加えて核酸を遊離させ,抽出することも可能である。
【0096】
次に,本発明の効果,即ち,高精度なLOH判定ができることについて説明する。ここで,本発明との対比のための対比例の方法について説明する。本発明との比較を行なうこの対比例の方法は,従来技術−1の方法の一部の条件を変更した方法である。従来技術−1と本発明の実施例1は,(1)健常細胞と被検細胞の標的DNA断片を,従来技術−1では同じ蛍光色素で,本発明では異なる蛍光色素で標識する点,(2)電気泳動で,従来技術−1ではスラブゲルを,本発明ではキャピラリを用いる点,(3)健常細胞と被検細胞の標的DNA断片を,従来技術−1では別の泳動路で,本発明では同じキャピラリで泳動する点で基本的に異なる。
【0097】
対比例の方法では,健常細胞と被検細胞の標的DNA断片を,従来技術−1と同様に同じ蛍光色素で標識し,健常細胞の標的DNA断片,被検細胞の標的DNA断片を,一本キャピラリを用いて電気泳動する。健常細胞と被検細胞の標的DNA断片は同じ蛍光色素で標識されているので,電気泳動は2回行なうことになる。対比例の方法は,従来技術−1の方法を1本キャピラリを用いる電気泳動に適用した方法である。
【0098】
図8は,本発明の実施例1の手順と比較例の手順によるLOH判定の精度比較例の結果を示す図である。図8は,4種類の異なる試料(実験番号1,2,3,4)に関して,繰り返して実験を行って得たLOH判定の結果を示す。また,実施例1の手順による,生データ(測定データ)S1,S2,P1,P2と,解析結果としてLOHの値(Tの1からのずれ(乖離)の割合を%表示)を示す。
【0099】
図8では,実施例1の手順による測定データS1,S2,P1,P2をそのまま使用して,健常細胞からの標的DNA断片のデータS1,S2として,各実験番号でのn(n=1,2,…)回目の測定データを,被検細胞からの標的DNA断片のデータP1,P2として,各実験番号での(n+1)回目の測定データをそれぞれ使用して解析することにより,比較例をシミュレートした。図8の最右欄は比較例の手順によるLOHの値を示す。
【0100】
本発明では,実験番号1から実験番号4の試料の何れついても,LOHの値が全て±10%以内となり,被検細胞にLOHなし(異常なし)と判断された。使用した試料は健常細胞,被検細胞ともに健常者の正常細胞であったためこの判断結果は全て正しい。一方,比較例では,殆どの実験番号の試料について同様の結果が得られたが,実験番号2の試料の1回目の測定,実験番号3の試料の2回目の測定では,LOHの値が−10.7%,+13.8%となり,±10%の範囲を超えたため,被検細胞にLOHあり(異常あり)と誤った結果となった。
【0101】
実験番号3の試料に関しては平均しても±10%の範囲を超えている。図8に示すように,対比例では,実験番号1から実験番号4の試料のうち,半分の試料で誤った結果となった。
【0102】
以上の結果は,シングルキャピラリ装置を使用した場合の比較結果であるが,キャピラリを複数有するマルチキャピラリ装置を使用した場合にも,同様に高精度なLOH判定ができる。本発明をマルチキャピラリに適用する場合,異なる蛍光色素で標識された,健常細胞と被検細胞の標的DNA断片を混合して試料毎に異なるキャピラリに注入して,複数の試料に関する断片を各キャピラリで同時に泳動分離する。これに対する対比例として,全ての標的DNA断片を同じ蛍光色素で標識し,あるキャピラリに健常細胞の標的DNA断片を注入し,別のキャピラリに被検細胞の標的DNA断片を注入し,各試料についてそれぞれ2本のキャピラリを使用して,複数の試料に関する断片を各キャピラリで同時に泳動分離する方法が考えられる。
【0103】
この対比例の方法では,本発明の方法と同様に経時的な測定条件の変動の影響は被らない。しかし,この比較例では,キャピラリ毎の微妙な条件の差が測定結果に影響を及ぼすが,本発明の方法では,同一のキャピラリで健常細胞と被検細胞の標的DNA断片を同一のキャピラリで泳動分離するので,キャピラリ間での条件の差の影響は受けず,本発明の方法の方が比較例,従来技術−1よりも高精度であることが理解できる。
【0104】
以上の比較から明らかなように,本発明の実施例1は対比例と比較してLOHを高精度に判定可能であり,高精度の診断に好適なデータを提供できるという効果がある。また,本発明の他の実施例も同様である。
【0105】
【発明の効果】
本発明によれば,泳動ピークの信号が電気泳動条件等により変動しても,LOHを高精度に判定可能であり,信頼性の高いデータを診断のために提供できるという効果がある。
【図面の簡単な説明】
【図1】本発明の実施例1であり,LOH判定の手順の概略を示すフロー図。
【図2】本発明の実施例1であり,SSCP法による電気泳動パターンの例を示す図。
【図3】本発明の実施例2であり,各種のポリメラーゼを用いたPCR産物の断片長の解析例を示す図。
【図4】本発明の実施例3であり,LOH判定の手順の概略を示すフロー図。
【図5】本発明の実施例4であり,LOH判定の手順の概略を示すフロー図。
【図6】本発明の実施例5であり,p53exon4のreverse鎖由来の断片のSSCP法による分離の温度依存性の例を示す図。
【図7】本発明の実施例5であり,p53exon4のreverse鎖の野生型,変異型のDNA断片の30℃と46℃での二次構造の計算結果を示す図。
【図8】本発明の実施例1の手順と比較例の手順によるLOH判定の比較結果例を示す図。
【符号の説明】
1…野生型対応するDNA断片,2…変異型に対応するDNA断片,3…工程E,4…情報なし,5…工程F,5’…工程F’,5”…工程F”,6…工程B,7…工程D,8…工程G,8’…工程G’,9…工程H,10…LOHなし(正常),11…LOHあり(異常),12…健常細胞由来の標的DNA断片のforward鎖の野生型のFAM標識された断片に対応する泳動ピーク,13…健常細胞由来の標的DNA断片のforward鎖の変異型のFAM標識された断片に対応する泳動ピーク,14…被検細胞由来の標的DNA断片のforward鎖の野生型のROX標識された断片に対応する泳動ピーク,15…被検細胞由来の標的DNA断片のforward鎖の変異型のROX標識された断片に対応する泳動ピーク,16…目的とする115ntの断片,17…115ntより1塩基長い断片,18…115ntより1塩基以上長い断片,19…115ntより短い断片,20…工程I,21…工程J,21’…工程J’,22…工程K,23…ポリマ濃度3%での分離の温度変化,24…ポリマ濃度6%での分離の温度変化,25…ポリマ濃度9%での分離の温度変化,100…工程A,200…工程C。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gene (nucleic acid) polymorphism analysis method by SSCP method using capillary electrophoresis, and in particular, gene abnormalities associated with diseases such as cancer such as gene deletion and loss of heterozygosity are detected. The present invention relates to a detection method using a type marker.
[0002]
[Prior art]
Normal human cells contain a pair of parent-derived chromosomes that differ for a particular locus, for example, when one allele is wild-type and the other allele is mutated. The case is called a heterozygote. On the other hand, when both genotypes are the same, it is called a homozygote. In the case of healthy heterozygotes, the ratio of the abundance of each allele is theoretically 1: 1. When the heterozygote is analyzed by the SSCP method, two peaks corresponding to each allele such as wild type and mutant are observed, and the signal intensity ratio of the two peaks is 1: 1.
[0003]
On the other hand, abnormalities such as gene deletion and amplification occur in most malignant cancer cells. When one allele is deleted or amplified in a heterozygote, so-called loss of heterozygosity (loss of heterozygosity, LOH) occurs. In the SSCP method, LOH is observed as a phenomenon in which the signal intensity ratio of the two peaks corresponding to each allele of the heterozygote deviates from 1: 1.
[0004]
A method of diagnosing cancer using gene polymorphism, that is, individual differences in nucleotide sequence as a marker (Japanese Patent Laid-Open No. 9-201199, hereinafter referred to as Prior Art-1). The outline of will be described below. After a specific region in the base sequence of the gene is amplified by PCR using a labeled primer, the 3 ′ end is smoothed with an enzyme having a 3 ′ → 5 ′ exonuclease activity (Klenow fragment or the like). This PCR product is analyzed by a single-strand higher-order structure polymorphism analysis (SSCP) method using a slab gel type electrophoresis apparatus, and an allele having a single nucleotide polymorphism (allyl) is separated and detected.
[0005]
A normal tissue-derived DNA fragment and a cancer tissue-derived DNA fragment are labeled with the same fluorescent dye, and are measured in separate lanes using a slab gel type electrophoresis apparatus having a plurality of lanes. The ratio of cancer cells is estimated from the signal intensity ratio of two peaks A1 and A2 derived from normal tissue and the signal intensity ratio of two peaks B1 and B2 derived from cancer tissue. In the example of LOH detection of bladder cancer using a single nucleotide polymorphism in the p53 gene as an index, when the proportion of cancer cells exceeds 10%, it is considered abnormal (LOH +, positive).
[0006]
[Problems to be solved by the invention]
In the prior art-1, a slab gel type electrophoresis apparatus is used, but automation, labor saving, and speedup are required for application to routine clinical examinations. In the present invention, a capillary electrophoresis apparatus having an automatic gel filling mechanism and an automatic sample injection mechanism is used in place of the slab gel type electrophoresis apparatus in the prior art-1 to achieve automation, labor saving, and speedup. Study was carried out. However, SSCP using a capillary electrophoresis apparatus is in the research stage, and many problems remain. Attempts were made to apply the capillary electrophoresis apparatus to Conventional Technique-1, but normal tissue and cancer tissue were labeled with the same fluorescent dye and electrophoresed on separate capillaries, or twice with a single capillary. When electrophoresis was performed separately, the problem was found that the LOH could not be correctly determined due to fluctuations in the peak signal intensity due to fluctuations in measurement conditions.
[0007]
The object of the present invention is to accurately analyze LOH even if the signal of the electrophoresis peak fluctuates in the gene polymorphism analysis method for detecting LOH by performing analysis by the SSCP method using a capillary electrophoresis apparatus. It is an object of the present invention to provide a genetic polymorphism analysis method capable of obtaining highly reliable data for diagnosis.
[0008]
[Means for Solving the Problems]
In the present invention, the SSCP method using a capillary electrophoresis apparatus is used to label target DNA fragments derived from healthy cells and test cells with different fluorescent dyes, and simultaneously perform electrophoresis on the same capillary to compare the migration patterns. By doing so, accurate determination of LOH (determination of the presence or absence of loss of heterozygosity) is possible, and highly reliable data is provided for diagnosis of cancer and the like.
[0009]
In the present invention, gene polymorphism analysis is performed by the SSCP method using one or more capillary electrophoresis. An analysis target DNA fragment to be analyzed and a heterozygous reference DNA fragment as a reference for comparison of the analysis target DNA fragment are labeled with different fluorescent dyes. The DNA fragment to be analyzed and the reference DNA fragment are electrophoretically separated simultaneously with the same capillary. Using the peak signal intensities of the two reference DNA fragments that appear in the obtained migration pattern, the peak signal intensities of the DNA fragments to be analyzed that appear in the migration pattern are corrected, and the heterozygosity of the DNA fragments to be analyzed is corrected. A determination is made as to whether or not there is a loss. The correction of the peak signal intensity of the DNA fragment to be analyzed is executed using the signal intensity ratio of the peaks of the two reference DNA fragments.
[0010]
A PCR product using a genomic DNA derived from a healthy cell of a subject as a template is used as a reference DNA fragment, and a PCR product using a genomic DNA derived from the same subject's test cell as a template is used as a DNA fragment to be analyzed. In addition, a PCR product using a genomic DNA derived from a healthy cell of a heterozygous healthy person as a template is used as a reference DNA fragment, and a PCR product using a genomic DNA derived from a subject's test cell as a template is used as a DNA fragment to be analyzed. used. In particular, a PCR product using, as a template, genomic DNA derived from epithelial cells recovered from blood as a DNA fragment to be analyzed is used. Collection of epithelial cells from blood is performed using a gene polymorphism analyzer that includes a column that selectively adsorbs epithelial cells based on antigen-antibody reaction. Tsp polymerase is used in the PCR reaction to obtain the above PCR product.
[0011]
When the DNA fragment to be analyzed and the reference DNA fragment include a single nucleotide polymorphic site of codon 72 in exon 4 of the p53 gene, the temperature range of the reverse strand of the DNA fragment to be analyzed and the reference DNA fragment is 44 ° C. to 48 ° C. Perform electrophoresis at
[0012]
In the present invention, the secondary structure of the target DNA fragment of interest (analysis target DNA fragment, reference DNA fragment) is obtained by calculation, and the fragmentation in electrophoresis is determined using the expansion of the difference in secondary structure due to polymorphism as an index. A suitable temperature condition that increases separation (Rs) is obtained, and electrophoresis is performed under this suitable temperature condition.
[0013]
In the present invention, the secondary structure of the target DNA fragment of interest (analysis target DNA fragment, reference DNA fragment) to be amplified by PCR is calculated, and the priming site in the PCR reaction is changed to obtain a polymorphism. A suitable primer sequence that increases the separation (Rs) of fragments in electrophoresis is obtained using the expansion of the difference in secondary structure due to the above as an index, and a target DNA fragment is prepared using this suitable primer sequence.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
[Example 1]
FIG. 1 is a flowchart showing an outline of the LOH determination procedure according to the first embodiment of the present invention. The outline of the procedure in the first embodiment will be described below with reference to FIG.
[0015]
(Step A) Genomic DNA extraction from healthy cells and PCR amplification of target DNA fragment:
In Example 1, the diagnosis target was bladder cancer, the test cells were cancer cells derived from bladder cancer that leaked into the urine of the subject, and the healthy cells used in the control experiment were white blood cells in the blood of the same subject. In step A, DNA was extracted from white blood cells in blood to obtain genomic DNA of healthy cells. In Example 1, an automatic nucleic acid extraction apparatus was used to realize a quick, simple and safe extraction operation, which can be suitably applied to routine clinical tests.
[0016]
Next, using the extracted genomic DNA as a template, PCR amplification was performed using Taq enzyme (ABI, AmpliTaq Gold) in the same manner as in the prior art-1 to obtain a target DNA fragment. In Step A, since the primer having the same base sequence as the primer set used in Conventional Technique-1 was used, the region of the target DNA fragment (part of exon 4 of tumor suppressor gene p53) and length (115 nt (nuclear) o tide, base)) is the same as the prior art-1.
[0017]
However, in the prior art-1, a primer whose 5 ′ end is labeled with the fluorescent dye Cy5 for the reverse chain (Click chain) and a primer that is not labeled for the forward chain (Watson chain) are used for PCR. In Example 1, a primer (manufactured by GENSET) labeled with a ROX at the 5 ′ end of the reverse strand and a primer (manufactured by GENSET) labeled with a FAM at the 5 ′ end of the forward strand are used for PCR. Thus, target DNA was obtained as a PCR product.
[0018]
Finally, the 3 ′ end of the PCR product was blunted in the same manner as in the method described in Prior Art-1. That is, Klenow fragment (Klenow enzyme) was added and allowed to react at 37 ° C. for 30 minutes. NTP And the target 115 nt target DNA fragment was obtained.
[0019]
(Step B) Genomic DNA extraction from test cells and PCR amplification of target DNA fragment:
Basically, by the same procedure as in step A, test cells were obtained from the same subject, genomic DNA extraction was performed, and PCR amplification was performed.
[0020]
Step B is different from Step A in that the test cells are cells derived from the bladder that leaked into the urine, and the cells were collected from the urine of the subject and subjected to DNA extraction and amplification. In the extraction of genomic DNA from the collected cells, an automatic nucleic acid extraction apparatus was used as in Step A. In step B, during PCR amplification based on the genomic DNA obtained from the test cells, the 5 ′ end of the reverse strand was labeled with FAM, and the 5 ′ end of the forward strand was labeled with ROX. Target DNA fragments were obtained using primers.
[0021]
(Step C) Electrophoresis and polymorphic separation detection of amplified DNA fragments based on healthy cells:
In Example 1, a DNA sequencer (ABI) having one capillary is used as an electrophoresis apparatus, and electrophoresis is basically performed based on the SSCP conditions recommended by ABI, and PCR amplification products having a single nucleotide polymorphism are separated. Detection was performed. This device is equipped with a mechanism that automatically fills the capillary with the electrophoresis polymer and a mechanism that automatically injects the sample on the autosampler into the capillary, enabling full automatic continuous measurement and suitable for routine clinical testing. is there. This device has a function that can detect a plurality of different emission wavelengths (hereinafter referred to as multi-wavelength detection), pre-evaluates the mutual interference of fluorescence using a standard fluorescent dye, prepares a correction matrix in advance, The effect of interference is removed by matrix conversion, and a plurality of fluorescent dyes can be detected independently.
[0022]
Sample preparation conditions are as follows. Mix 1 µL of PCR reaction solution diluted 1/20 to 1/50 with water, 0.5 µL of size standard (ABI GeneScan 500 TAMRA), 12 µL of formamide, heat denature at 94 ° C for 2 minutes, and release to room temperature. Cool down. However, as described in the process D, the electrophoresis of the process C and the process D was actually performed with the same capillary at the same time. Therefore, the PCR reaction solution used was 1 μL in total, 0.5 μL derived from healthy cells in Step C and 0.5 μL derived from test cells in Step D.
[0023]
The electrophoresis conditions by the SSCP method in Example 1 are as follows. The capillary dimensions are an effective length of 30 cm, a total length of 41 cm, an inner diameter of 50 μm, and an outer diameter of 375 μm. Sample injection conditions were 15 kV and 5 seconds. The electrophoresis voltage is 15 kV. The running buffer is a 1 × TBE buffer solution containing 10% by weight of glycerol. The electrophoresis polymer was based on the electrophoresis buffer, and ABI GeneScan Polymer was added at 9% by weight.
[0024]
FIG. 2 is a diagram showing an example of an electrophoresis pattern obtained by performing electrophoresis by the SSCP method on the above sample, which is Example 1 of the present invention. The horizontal axis in FIG. 2A corresponds to time (t), and t increases from left to right. The vertical axis represents the fluorescence signal intensity at a specific emission wavelength, and the peak height is proportional to the concentration of the DNA fragment labeled with a fluorescent dye that emits fluorescence at the emission wavelength. The vertical axis in FIG. 2A indicates the signal intensity of the fluorescent wavelength of the fluorescent dye FAM.
[0025]
In the previous study, the wild-type homozygous sample for the single-stranded polymorphism of the forward strand of the target DNA fragment (part of p53exon4) has a single peak at the same position as peak 12 in FIG. In the case of the mutant sample, it was confirmed that a single peak was shown at the same position as the peak 13 in FIG.
[0026]
Accordingly, the peaks in FIG. 2 (a) are derived from the wild-type and mutant fragments of the forward strand of the target DNA fragment, respectively. On the other hand, since the forward chain labeled with FAM is a sample derived from a healthy cell described in Step A, the target DNA fragment derived from the healthy cell is related to the single nucleotide polymorphism of exon4 with a wild type and a mutant type. It is understood that it is a heterojunction type. Since two peaks 12 and 13 were observed, it was shown that two target DNA fragments having this single nucleotide polymorphism can be separated and detected by the SSCP method according to Example 1. The migration time for each peak was 23.6 minutes and 23.8 minutes, and the signal intensity was 255 and 263 (arbitrary units), respectively.
[0027]
On the other hand, the signal of the reverse chain labeled with ROX was also separated and detected in the same manner, but was omitted from FIG. 2 because it was outside the time axis range of FIG. The migration times of the wild type and mutant type peaks of the reverse chain were 20.3 minutes and 20.4 minutes, respectively. The separation property of the reverse chain will be described later. Since the migration time of the prior art-1 is about 5 hours, Example 1 has a feature that it is about 15 times faster than the prior art-1. This is thought to be due to the fact that the adoption of a capillary method with excellent heat dissipation characteristics enabled the adoption of an electric field as high as about 366 V / cm, which speeded up migration.
[0028]
(Step D) Electrophoresis and polymorphic separation detection of target DNA fragment based on test cell:
About the target DNA fragment obtained from the test cell by the process B, the analysis regarding the single nucleotide polymorphism of exon4 was performed by analyzing by the SSCP method in the same procedure as the process C. Since the apparatus used can detect multiple wavelengths, the samples in Step C and Step D were actually mixed and electrophoresed simultaneously using the same capillary as described above. The result of electrophoresis is shown in FIG.
[0029]
The horizontal axis of FIG. 2B and the horizontal axis of FIG. 2A are time axes having a common origin and a time scale. From comparison with known samples, two peaks 14 and 15 indicate forward of the target DNA fragment. Corresponds to wild-type and mutant fragments of the chain. The vertical axis in FIG. 2 (b) indicates the signal intensity of the fluorescent wavelength of the fluorescent dye ROX, and the forward chain labeled with ROX is a sample derived from the test cell described in step B. The target DNA fragment is heterozygous for the single nucleotide polymorphism of exon4, including wild type and mutant type.
[0030]
Despite the simultaneous electrophoresis of target DNA fragments obtained from test cells and healthy cells using the same capillary by multi-wavelength detection using interference correction by matrix conversion, they were labeled with the FAM shown in FIG. 2 (a). It is understood that the signal based on the forward chain fragment of a healthy cell and the signal based on the forward chain fragment of the test cell labeled with ROX shown in FIG. 2B can be detected independently of each other. The migration times of peaks 14 and 15 were 23.6 minutes and 23.7 minutes, respectively, and the signal intensities were 255 and 274 (arbitrary units), respectively.
[0031]
The peaks 12 and 14 were confirmed to be peaks of target DNA fragments having the same sequence, respectively, by comparison with the results of migration of wild type samples labeled with FAM and ROX, respectively. Different. This is presumably because the mobility is slightly affected by the difference in fluorescent dyes. The peaks 13 and 15 are the same except that they are mutated. The signal based on the FAM-labeled reverse chain fragment derived from the test cell was outside the time axis range of FIG. 2, but the result similar to the signal based on the reverse chain fragment in Step C is similar to the result. Obtained.
[0032]
(Step E) Determination of whether or not alleles are heterozygous types:
As explained with respect to Step C, since the DNA obtained from healthy cells obtained two peaks 12 and 13 by the SSCP method, the codon 72 of the target DNA fragment (p53exon4) contains a wild type and a mutant type. Alleles were heterozygous different from each other. Therefore, it is possible to perform LOH determination regarding this locus with respect to the test cells of this subject.
[0033]
On the other hand, if only one of the peaks 12 or 13 is observed by the SSCP method, the subject is homozygous for this locus, and information on LOH can be obtained even by examining the DNA of the test cell. Therefore, the LOH determination for this locus cannot be performed. Therefore, it is necessary to test for different loci.
[0034]
(Step F) Calculation of correction coefficient from signal intensity of fragment derived from allele of healthy cell:
In the following description, variables X1 (S1, P1, C1) and X2 (S2, P2, C2) are used as X = S, P, C, but 1, 2 following X are wild type and mutation, respectively. Indicates that it corresponds to a type. As described with respect to Step C, the signal intensities S1 and S2 of the target DNA fragments corresponding to the wild-type and mutant types of the forward chain of healthy cells were 255 and 263, respectively. The correction coefficient F is defined by (Equation 1), and the value of the correction coefficient F is 263/255 = 1.031.
[0035]
[Expression 1]
F = S2 / S1 (Expression 1)
(Step G): From the signal intensity of the fragment derived from the allele of the test cell and the correction coefficient, the ratio of the abundance of the allele in the test cell is determined:
As described in Step D, the signal intensities P1 and P2 of the target DNA fragments corresponding to the wild type and the mutant type of the forward strand of the test cell were 255 and 274, respectively. The ratio T of the abundance of alleles in the test cell is defined by (Equation 2), and T = 274/255 / 1.031 = 1.042.
[0036]
[Expression 2]
T = P2 / P1 / F (Expression 2)
(Process H) Determination of deviation (displacement) from 1 of T:
As determined in the process G, T = 1.042, and the deviation of T from 1 is + 4.2%. A criterion for judging that the deviation from T of ± 10% or more was LOH (abnormal) was set, and in this case, the test cell was judged to have no LOH (abnormal). In this case, the deviation of T from 1 was less than 10%. However, when T ≦ 0.9 or when T ≧ 1.1, the deviation of T from 1 is ± 10% or more. It is determined that there is LOH (abnormality). This result can be provided to a doctor as data for diagnosing bladder cancer.
[0037]
In addition, since the test cell used in Example 1 was that of a healthy person, the above determination of no abnormality was a correct result. In Example 1, although each target DNA fragment was labeled with a different fluorescent dye, electrophoresis was performed simultaneously in the same capillary in Step C and Step D, so the intensity ratio of the fragments derived from healthy cells was used as a reference. It is considered that the correction of the intensity ratio of the fragments derived from the test cells functioned effectively. It should be noted that the difference in behavior between the two due to the difference in fluorescent dyes was virtually irrelevant. This is a fact that has conventionally been difficult for those skilled in the art to predict, and is one of the points of inventive step of the present invention.
[0038]
In Example 1, as a capillary electrophoresis apparatus for performing analysis by the SSCP method, for example, Ar + laser and He-Ne laser are used as a light source, and a diffraction grating and a CCD camera are used as a detector. Can also be used. The scope of application of the present invention is not limited to these apparatuses, and a wide range of general capillary electrophoresis apparatuses capable of detecting fluorescence with multiple wavelengths can be applied. In Example 1, for the sake of simplicity, the case of performing fluorescence detection from two types of fluorescent dyes is illustrated, and a method of using only one type of target DNA fragment derived from a test cell is illustrated. If each target DNA fragment is labeled with n different fluorescent dyes using an apparatus capable of detecting fluorescence from n kinds of fluorescent dyes, naturally, up to (n-1) target cell-derived target DNAs. Fragments can be measured simultaneously.
[0039]
The scope of application of the present invention is not limited to the p53exon4 region of the genomic DNA sample extracted from the cells collected from the blood and urine and the diagnosis of bladder cancer for the sample, the PCR region, and the application shown in Example 1 . The present invention can be applied to samples obtained from cells derived from other living organisms, and single nucleotide polymorphisms, microsatellite polymorphisms, short tandem repeat polymorphisms, etc. in other gene regions can be used as markers. . It can also be applied to genetic diagnosis of other diseases where LOH is an index. The present invention can be similarly applied to analysis tests using other capillary electrophoresis apparatuses when the signal intensity ratio needs to be evaluated with high accuracy.
[0040]
The unique effect of Example 1 is that it is possible to unify all the electrophoresis conditions except for the difference in fluorescent dyes by simultaneously electrophoresing a fragment derived from a healthy cell and a fragment derived from a test cell through the same capillary. . Even if there are fluctuations in electrophoresis conditions that affect the signal intensity ratio of allele-derived fragments that are the criteria for determining LOH, the effects of fluctuation factors can be offset and high-precision measurement can be achieved. is there.
[0041]
[Example 2]
Example 2 is the same as Example 1, but the enzymes used for PCR amplification and the steps after PCR are different. In Step A and Step B of Example 1, Taq polymerase was used as a PCR enzyme. In this case d at the 3 'end NTP A PCR product to which one (N = A, T, G, C) is added is generated, and a ghost peak caused by the PCR product has a problem of hindering quantitative analysis by the SSCP method. In order to avoid this defect, the PCR product was treated with Klenow enzyme to smooth the 3 ′ end, and dNTPs at the protruding end of the 3 ′ end were removed.
[0042]
In Example 2, by using Platinum Genotype Tsp polymerase (Life Technologies / GibcoBRL) as a PCR enzyme, the addition of dNTP to the 3 ′ end was suppressed and the Klenow enzyme treatment was omitted. According to Example 2, the Klenow enzyme reaction, which requires time, labor and cost, was omitted. Further, by omitting one enzyme reaction step, error factors such as poor reproducibility due to inactivation of the enzyme were eliminated. Therefore, Example 2 has a specific effect that a rapid, simple, inexpensive and highly reliable clinical test can be performed. Various PCR enzymes that are considered to be difficult to add dNTP to the 3 ′ end have been reported. As a result of comparison of various enzymes, the above Tsp was most suitable.
[0043]
FIG. 3 is Example 2 of the present invention. For products obtained by PCR amplification of the exon4 region of the p53 gene using various polymerases, the fragment length was measured using a capillary electrophoresis apparatus packed with a denaturing gel POP4 (ABI). It is an example of the result of having analyzed. 3A shows AmpliTaq Gold (ABI), FIG. 3B shows Platinum Genotype Tsp, FIG. 3C shows Pyrobest (Takara Shuzo), and FIG. 3D shows Pfx (Life Technologies). / GibcoBRL) is an example of an electrophoresis pattern of PCR products obtained using each as a polymerase.
[0044]
In the migration patterns of FIGS. 3 (a) and 3 (c), fragments 17 and 18 having a larger number of bases are generated as by-products in addition to the desired 115nt fragment 16 as a PCR product. In the electrophoresis pattern of FIG. 3D, a fragment 19 having a shorter base number than the 115nt fragment 16 is generated as a PCR product. As shown in FIG. 3 (b), the PCR product migration pattern using Tsp polymerase contains almost no by-products with a length other than the target 115nt fragment 16. Therefore, by using Tsp as a polymerase in the PCR reaction, a DNA fragment having a smooth 3 ′ end can be obtained, and the Klenow enzyme reaction can be omitted.
[0045]
Example 3
FIG. 4 is a flowchart showing an outline of the LOH determination procedure according to the third embodiment of the present invention. The procedure of the third embodiment is similar to the procedure of the second embodiment, but the calculation method of the correction coefficient F is different.
[0046]
(Step I): In Example 2, the correction coefficient F was determined using a target DNA fragment obtained by PCR amplification of genomic DNA obtained from healthy cells of a subject as a standard sample. In Example 3, target DNA fragments obtained by PCR amplification of genomic DNA obtained from cells of other individuals or other organisms, not necessarily from the subject's own healthy cells, or target DNA obtained by chemical synthesis Fragments were used alone or mixed.
[0047]
When used alone, the sample must be obtained from a heterozygous healthy cell, but this is not the case when used in a mixed manner, but obtained from a homozygous or LOH cell. Or it may be a chemically synthesized product. Of course, when the target DNA fragment is obtained from homozygous or LOH cells or by chemical synthesis, not only the wild type but also the mutant type sample is prepared and mixed to obtain a composition similar to the heterozygous type. (In this case, the composition ratio is not necessarily strictly 1: 1 for the following reason). In any case, in Step I, a target DNA fragment having a heterozygous-like composition corresponding to Step A in Example 1 and Example 2 is prepared as a standard sample stock.
[0048]
(Step J): The concentrations C1 and C2 of fragments (wild type and mutant in Example 3) derived from alleles of a target DNA fragment (standard sample stock) having a heterozygous similar composition are quantified. Various methods can be used to quantify the concentration. In Example 3, primary samples of wild type and mutant types (concentration test completed) were prepared, and the standard sample stock and each primary standard sample were used for analysis by the SSCP method using an electrophoresis apparatus. The concentrations C1 and C2 of each fragment derived from the allele of the standard sample stock were quantified by comparing the height of the migration peak corresponding to the fragment derived from each of the type and the mutant type.
[0049]
As another method for determining the concentrations C1 and C2, prepare a heterozygous primary standard sample that has been confirmed to be free of LOH (concentration tested, in this case, the concentration of wild type and mutant type is the same), The concentrations C1 and C2 are determined by comparing the SSCP pattern with that of the standard sample stock. Alternatively, target DNA fragments are prepared for each of the wild type and the mutant type, and the concentration of each fragment is determined by measuring the UV intensity in advance and measuring the fluorescence intensity by the interaction with an intercalator such as PicoGreen (manufactured by Molecular Probes). After the determination, the concentrations C1 and C2 are determined by mixing them at a predetermined ratio. Alternatively, by collecting a large number of healthy heterozygous individuals, confirming that they do not have LOH, and mixing the target DNA fragments obtained from them in approximately equal amounts, the ratio is approximately 1: 1. There is also a method in which a standard sample stock that can be regarded as having a close concentration ratio is prepared, the total concentration C of the target DNA fragments is obtained, and the concentrations C1 and C2 are determined by (Equation 3).
[0050]
[Equation 3]
C1 = C2 = C / 2 (Equation 3)
Regardless of the origin of the standard sample stock in step I, the concentrations C1 and C2 of the fragments derived from alleles of the standard sample stock are determined in step J. Step I and step J provide a heterozygous (similar) standard sample stock containing fragments of known concentrations derived from alleles.
[0051]
(Step K): Electrophoresis of a standard sample stock is performed and separation detection is performed based on the base sequence polymorphism. The process K is the same as the process C in Example 1 and Example 2, and as a result, the signal intensities S1 and S2 of each fragment derived from the allele were obtained. The difference is that the sample used is a standard sample stock and that it is known to be definitely heterozygous or heterozygous, and the concentration of each fragment derived from that allele. Are C1 and C2, respectively.
[0052]
(Step F ′): A correction coefficient F is obtained from the signal intensities S1 and S2 of the fragments 1 and 2 and the concentrations C1 and C2. DNA fragments 1 and 2 correspond to the wild type and the mutant type, respectively. Step F ′ is similar to Step F in Example 1 and Example 2. The difference is that the fragments 1 and 2 are not derived from the healthy cells of the subject, but are derived from the above-mentioned standard sample stock. The concentrations of the fragments 1 and 2 are not necessarily equal, and the concentrations are given by C1 and C2. As shown in (Equation 4), this is also a point to be obtained in consideration of the concentration. Of course, in the case of the complete heterojunction type with C1 = C2, the correction coefficient F obtained by the process F ′ in the third embodiment matches the correction coefficient F obtained by the process F in the first and second embodiments.
[0053]
[Expression 4]
F = (S2 / C2) / (S1 / C1) (Equation 4)
(Step A, Step C, Step E): Step A, Step C, Step E in Example 3 are almost the same as Step A, Step C, Step E in Example 1 and Example 2. The difference is that in Example 3, the signal intensity in the SSCP analysis of the fragment obtained from healthy cells in Step C is not used in the calculation of the correction coefficient F, but only whether it is heterozygous in Step E or not. It is used only for judgment.
[0054]
(Process B, Process D, Process G): Process B, Process D, and Process G in Example 3 are substantially the same as Process A, Process C, and Process E in Example 1 and Example 2. The difference is that in Example 3 in Step D, electrophoresis of DNA fragments from the test cells is performed together with the standard sample stock in Step K. Of course, as in Example 1 and Example 2, electrophoresis may be performed together with the DNA fragment from the healthy cells in Step C, but this is not always necessary (as described above, the data on healthy cells are heterozygous. It is used only to confirm that it is present and is not reflected in the correction factor).
[0055]
When electrophoresis is performed together with DNA fragments from the healthy cells in step C, the DNA fragments from the healthy cells in step C are distinguished from the standard sample stock in step K and DNA fragments from the test cells in step D. Therefore, in PCR amplification of DNA fragments from healthy cells in step A, labeling is performed with a third fluorescent dye different from the fluorescent dye used in steps I and B.
[0056]
(Process G, Process H): Process G and Process H in Example 3 are the same as Example 1 and Example 2. The only difference is that the value obtained by measuring the standard sample stock as described in step F ′ is used as the correction coefficient F when determining the ratio T of the abundance of alleles in the test cell in step G. It is. In Example 3, when obtaining the correction coefficient F, the migration pattern of the standard sample stock is used instead of the migration pattern of the DNA fragment derived from the healthy cells of the subject. Hereinafter, a characteristic effect of the third embodiment will be described.
[0057]
First, even if the ratio T of the abundance of alleles in the target region in the subject's cells assumed to be healthy cells deviates (divides) from 1: 1, There is an effect that LOH can be calculated with high accuracy. As a case where such a case occurs, for example, when a leukocyte in blood is used as a healthy cell, the subject has leukemia.
[0058]
Second, steps I and J are not performed by the user, but are preferably performed by the device manufacturer or reagent manufacturer, and the user can purchase and use standard sample stocks of known concentrations from the device manufacturer or reagent manufacturer. In this case, there is an effect that the reliability of the analysis result can be improved. Furthermore, when it is confirmed that the subject is originally a heterojunction type with respect to the target region by prior examination on the subject, Step A, Step C, and Step E can be omitted. In this case, since the user can omit the preparation of the reference sample by purchasing and using the standard sample stock, there is also an effect that the user can save labor.
[0059]
Third, it has been confirmed in advance that the standard sample stock has a heterozygous type or a similar composition. Therefore, if two peaks are not detected when this sample is analyzed by the SSCP method in step K, it means that there is some problem with the analysis method, and this information can be used to control the quality of the analysis method. effective. If the composition ratio of the standard sample stock and the peak intensity ratio of the migration pattern are significantly different from each other, it may mean a large change in the analysis conditions, which enables quality control of the analysis method. There is also an effect that the user can be alerted and the cause investigation and countermeasures can be promoted.
[0060]
Example 4
FIG. 5 is a flowchart showing an outline of the LOH determination procedure according to the fourth embodiment of the present invention. The procedure of Example 4 is similar to the procedure of Example 3, but at each stage of the calculation of the signal intensity and concentration of the electrophoretic pattern, the alleles are not calculated independently for the allele-derived fragments. The difference is that the calculation is performed using the ratio value for the two fragments derived from. Specifically, in step J ′, instead of obtaining the concentrations of fragments 1 and 2 as C1 and C2, respectively, the concentration ratio C 1,2 Ask for. Similarly, in step F ″, instead of the signal strengths S1 and S2, the signal strength ratio S is calculated by (Equation 6). 1,2 And F is calculated from (Equation 7). Similarly, in step G ′, instead of the signal intensities P1 and P2 of the fragment 1 and the fragment 2 of the test cell, the signal intensity ratio P 1,2 And T is obtained from (Equation 9).
[0061]
[Equation 5]
C 1,2 = C2 / C1 (Expression 5)
[0062]
[Formula 6]
S 1,2 = S2 / S1 (Expression 6)
[0063]
[Expression 7]
F = S 1,2 / C 1,2 ... (Equation 7)
[0064]
[Equation 8]
P 1,2 = P2 / P1 (Equation 8)
[0065]
[Equation 9]
T = P 1,2 / F (Equation 9)
The special effect of the fourth embodiment is that the amount of information to be handled can be reduced to about half, so that the storage capacity for the computer is small, the effort of numerical input is reduced for the user, and the calculation flow is easier to understand. It is.
[0066]
(Example 5)
Example 5 is the same as Example 2, except that the DNA fragments to be separated and quantified in Step C and Step D are not fragments derived from the forward chain, but fragments derived from the reverse chain. Changes in the procedure include obtaining a migration pattern around 20 minutes after the start of electrophoresis, a fragment labeled with a ROX derived from a reverse chain derived from a healthy cell, and a fragment labeled with a FAM derived from a reverse chain derived from a test cell Analysis was performed. Except that the observed peak was a fragment derived from the reverse chain, the same results as in Example 2 were obtained by the same procedure as in Example 2.
[0067]
The analysis conditions at this time were SBI conditions recommended by ABI, that is, a polymer concentration of 3% and a temperature of 30 ° C. In this case, the separation Rs of the peaks of the two fragments derived from the allele of the reverse chain (assuming that the peak shape of the migration pattern is a Gaussian distribution type, the peak interval is divided by the bandwidth, ie, 4 sigma. Defined) was about 0.8 to 1.0.
[0068]
Next, the polymer concentration was examined. When preparing a migration polymer of 6% or more, a migration polymer was prepared based on a solution obtained by concentrating a GeneScan Polymer solution (7%) (manufactured by ABI) to about 15% by centrifugal concentration. As a result, it was found that the separation improved linearly as the concentration increased in the polymer concentration range up to 9%. Separation of fragments derived from the reverse chain at a concentration of 9% gave a high separation of about 2.3.
[0069]
When the polymer concentration was 10% or more, the reproducibility of the electrophoresis results was lowered. This is thought to be because the viscosity of the polymer solution increased and the polymer solution could not be uniformly filled into the capillary. Therefore, from the viewpoint of obtaining high separation, the optimum value of the polymer concentration is considered to be about 9%. The condition of the polymer concentration of 9% in Example 1 was also set based on the knowledge obtained from the above examination.
[0070]
Next, the temperature at which electrophoresis was performed was examined. In the prior art-1, 20 ° C. is adopted as the temperature condition for electrophoresis of p53 exon4. In general, the SSCP method has a tendency of higher separation at lower temperatures, so electric transfer at lower temperatures was attempted. However, in the study of the present invention using capillary electrophoresis, the separation was hardly improved even under the condition of a temperature of 20 ° C. On the contrary, when electrophoresis was performed under conditions higher than 30 ° C., surprisingly, a phenomenon was found that the separation of the fragments derived from the reverse strand at about 46 ° C. to 48 ° C. was specifically improved. .
[0071]
FIG. 6 is a diagram showing an example of the temperature dependence of separation (Rs) of the fragment derived from the reverse chain of p53exon4 by the SSCP method, which is Example 5 of the present invention. FIG. 6 shows the change in separation of the migration peak of the fragment derived from the wild type and the mutant of the p53 exon 4 reverse chain when the temperature is changed from 30 ° C. to 60 ° C., that is, the separation temperature at a polymer concentration of 3%. A change 23 (◯ mark), a separation temperature change 24 (Δ mark) at a polymer concentration of 6%, and a separation temperature change 25 (□ mark) at a polymer concentration of 9% are shown.
[0072]
As is clear from FIG. 6, the separation (Rs) was almost constant regardless of the temperature in the range from 30 ° C. to 40 ° C., but the sharp separation (Rs) was observed in the narrow temperature range near 40 ° C. to 50 ° C. An improvement was seen. The highest values of separation (Rs) in this range were about 3.3, 4.8 and 6.0 at polymer concentrations of 3%, 6% and 9%, respectively. These values were about three times higher when compared to the values at 30 ° C.
[0073]
In Example 5, since 46 ° C. to 48 ° C., which is a specific temperature that gives such a large separation (Rs), was adopted as the electrophoresis condition, it is easy to separate and quantify peaks and to improve measurement accuracy. There is. The separation (Rs) is proportional to the effective length of the capillary (1/2), but the analysis (electrophoresis) time is proportional to the effective length of the capillary. Therefore, the separation (Rs) is three times that obtained by optimizing the temperature. If the improvement in the offset is offset by the decrease in separation (Rs) due to shortening of the capillary effective length, the same separation (Rs) can be achieved with a capillary effective length of 1/9, and thus the analysis (electrophoresis) time can be achieved with 1/9. .
[0074]
Therefore, there is an effect that the speed can be increased by about one digit in exchange for the improvement of the separation (Rs) three times obtained by the optimization of the temperature. Similarly, if the large separation (Rs) obtained by optimizing the temperature is offset by the decrease in separation (Rs) due to the decrease in polymer concentration, the speed can be increased.
[0075]
In addition, there are few reports of improvement of the separation temperature (Rs) at the specific temperature related to the separation (Rs) of the SSCP method as described above, particularly at a high temperature of 46 ° C. to 48 ° C., and the mechanism is still unclear. Therefore, in order to analyze the mechanism, calculation of the secondary structure of the DNA fragment was performed using public domain software RNAfold (Monatsheft for Chemie 125, 167-188, 1994). As the calculation algorithm, a calculation method using both a partition function and a pair probabilities was adopted.
[0076]
Parameters for DNA described in the literature (SantaLucia, Proc. Natl. Acad. Sci. USA 95, 1460-1465, 1998) were used for energy calculations. Of course, there are several other software for calculating the secondary structure of the DNA fragment, and the same calculation is possible with other software.
[0077]
FIG. 7 is a diagram showing the results of calculation of secondary structures at 30 ° C. and 46 ° C. of wild-type and mutant DNA fragments of the reverse strand of p53exon4 showing the above specific temperature, which is Example 5 of the present invention. It is. In FIG. 7, since the individual base sequences are difficult to see due to the scale, the position of the single nucleotide polymorphism (codon 72), which is the only difference between the wild type and the mutant type, is indicated by an arrow (←) and the type of the base. Is indicated by C (wild type) or G (mutant type). FIG. 7A shows a wild-type secondary structure at 30 ° C., and FIG. 7B shows a mutant-type secondary structure at 30 ° C. The secondary structures shown in FIGS. 7 (a) and 7 (b) both show a secondary structure with a lot of self-association, and the structures are slightly similar in the vicinity of the position of the single nucleotide polymorphism, but similar as a whole. It is understood that it is a secondary structure.
[0078]
FIG. 7C shows a wild type secondary structure at 46 ° C., and FIG. 7D shows a mutant type secondary structure at 46 ° C. The secondary structure in FIG. 7 (d) was basically similar to the secondary structure shown in FIG. 7 (b) except that the ends were partially dissociated. On the other hand, the secondary structure of FIG. 7C is greatly different from the secondary structure of FIG. 7A, and many self-association structures are dissociated, resulting in many single-stranded regions.
[0079]
The secondary structure calculation results described above are considered to correspond to the fact that the separation characteristics of both wild type and mutant fragments in the SSCP method are greatly different at 30 ° C. and 46 ° C. That is, at 30 ° C., both wild type and mutant fragments have a secondary structure with many self-associations, but their structures are similar to each other. Therefore, even if electrophoresis is performed by the SSCP method, separation is not good because there is no significant difference in structure. When the temperature is raised to 46 ° C., both the wild type and the mutant type fragments have different secondary structures so that there is almost no common point between them, so that high separation (Rs) can be obtained by electrophoresis using the SSCP method.
[0080]
The electrophoretic characteristics at 46 ° C. can be considered in further detail as follows. Wild-type dissociates most of the self-association structure and has a high proportion of single-stranded parts, so it is flexible with few forbidden points. Then, the dynamic radius when moving between electrophoresis gels decreases, in other words, the mobility increases. On the other hand, the change in mobility is small because the mutant has little structural change even when the temperature is raised to 46 ° C. Therefore, it is considered that the migration time of the wild type is relatively shortened compared with the mutant type and the separation is improved.
[0081]
The SSCP method has been proposed to be the mechanism of separation by changing the higher order structure of the electrophoretic fragment due to changes in the base sequence such as single nucleotide polymorphism, but there are few examples of analyzing the separation characteristics in association with the higher order structure. . In particular, as an SSCP method of about 46 ° C., an example of successful analysis of the phenomenon of improvement of specific and steep separation (Rs) at a high temperature and corresponding to the higher order structure The present invention is considered to be the first time. Conventionally, the SSCP method requires trial and error as to whether separation can be obtained. In other words, in some cases, it was a technique that relied on intuition, experience, and luck that separation would not be achieved or abandoned. The above examination of Example 5 shows the possibility that the relationship between the secondary structure of nucleic acid and SSCP separation can be theoretically associated.
[0082]
Therefore, before attempting separation by the SSCP method, the secondary structure is predicted by calculation in advance, whether or not fragments having single nucleotide polymorphisms can be expected, and what is the temperature with the best separation (Rs)? It was shown in Example 5 that a method of predicting whether or not the degree is appropriate by calculation and optimizing the conditions of the SSCP method based on the result is effective.
[0083]
Conditions of the SSCP method that can be optimized by this method include electrophoresis temperature, fragment arrangement, and the like. Even if the position of the target single nucleotide polymorphism has been determined, the sequence of the PCR-amplified fragment can be changed by changing the position of the primer sandwiching it, and the separation characteristics in that case are predicted by the same procedure as above. , Can be optimized. Naturally, it is also effective in Example 5 to design a primer based on the optimization result. In addition, a simulation for improving separation by adding an arbitrary sequence to the 5 ′ end of the primer is also possible.
[0084]
The peculiar effect of Example 5 is that a single nucleotide polymorphism of the gene locus of exon4codon72, which has been reported to be related to the susceptibility to cervical cancer caused by papillomavirus, on the p53 gene, which is attracting attention as a tumor suppressor gene. When separation is detected, an extremely high separation (Rs) of 3 times or more compared to the conventional method can be obtained by the SSCP method, the reason can be explained by theoretical analysis, and the separation of the SSCP method can be simulated.
[0085]
(Example 6)
Example 6 is the same as Example 2, except that in Step B, tissue-derived epithelial cells are collected and used from peripheral blood instead of urinary bladder-derived cells.
[0086]
For selection and collection of epithelial cells from blood, a method described in a literature using a cell sorter (Racila et al., Proc. Natl. Acad. Sci. USA 95, 4589-4594 (1998)) was adopted. Specifically, after mixing magnetic particles bound with an antibody against EPCAM (epithelial cell adhesion molecule) and peripheral blood, B / F separation is performed using a magnet, and a fraction containing cells bound to the magnetic particles is obtained. Obtained.
[0087]
This fraction was treated with a solution containing an anti-cytokeratin antibody conjugated with phycoerythrin and an anti-CD45 antibody labeled with peridinin chlorophyll. After B / F separation and purification with a magnet, measurement was performed with a cell sorter. As described in the above document, the number of CD45 antibodies was small, and epithelial cells reacted with cytokeratin antibodies at a high concentration were sorted. At this time, the number of sorted cells was recorded.
[0088]
After epithelial cells were selected and collected from the peripheral blood in this way, DNA extraction and amplification were performed by the same procedure as in Step B of Example 2. For the other steps, the same steps as in Example 2 were employed to determine the LOH of nucleic acid derived from epithelial cells in blood.
[0089]
As described in the above document, cells with a small number of CD45 antibodies and cytokeratin antibodies reacted at high concentrations are epithelial cell lines, and most epithelial cells present in peripheral blood are carcinoma cells. Therefore, most of the cells sorted by the cell sorter are considered metastatic cancer cells. However, epithelial cells other than cancer cells may be mixed into the peripheral blood due to contamination of epithelial cells by the needle at the time of collecting peripheral blood or various traumas and inflammations. If the diagnosis of cancer is based only on the number of cases, false positives may occur, and there is a problem that accuracy is low.
[0090]
In Example 6, in addition to sorting and counting the epithelial cells in the peripheral blood, the LOH of the genomic DNA of the cells is obtained to evaluate whether or not the cells are derived from cancer cells with high accuracy. Is possible. Therefore, Example 6 has a feature that it can provide a highly accurate diagnostic material with few false positives. In addition, it can detect and diagnose not only bladder cancer but also metastatic carcinoma in general using peripheral blood, so it has a wide range of applications, is less invasive to subjects, and is an effective screening method for early detection of various cancers. It has the feature that it can contribute to early treatment and improvement of survival rate.
[0091]
(Example 7)
Example 7 is the same as Example 6, except that cell sorting is not performed and cell separation is performed only by immunization. Specifically, after mixing magnetic particles bound with an antibody against EPCAM (epithelial cell adhesion molecule) and peripheral blood, B / F separation is performed using a magnet, and a fraction containing cells bound to the magnetic particles is obtained. Obtained.
[0092]
After breaking the bond between EPCAM and magnetic particles, B / F separation is performed using a magnet, unbound fraction and magnetic particles bound with anti-cytokeratin antibody are mixed, and B / F separation is performed using a magnet. To obtain a fraction containing cells bound to magnetic particles. From this fraction, DNA extraction and amplification were performed by the same procedure as in Step B of Example 2. For the other steps, the same steps as in Example 2 were employed to determine the LOH of nucleic acid derived from epithelial cells in blood.
[0093]
In Example 7, since not only immune reaction but also DNA LOH is used as a judgment material, even if a small amount of white blood cells are mixed, the influence is small. Therefore, there is an effect that it is possible to provide a judgment material capable of highly accurate diagnosis with a simple device and method.
[0094]
In the above description, the magnetic immunization method has been described as an example of the cell separation method by the immunization method, but of course, cell separation methods by various immunization methods not using magnetism are also applicable. For example, by using an immunobead method in which B / F separation is performed by centrifugation using a carrier such as an inorganic or organic bead bound to an antibody, or a column packed with an inorganic or organic bead or fibrous carrier bound to an antibody. An immunochromatography method for performing B / F separation is also applicable. In the above description, in order to perform two kinds of immune reactions against EPCAM and cytokeratin both by the magnetic immunization method, a step of cutting the bond with the magnetic particles in the middle is adopted.
[0095]
However, when the subsequent immune reaction is performed by a method other than magnetic immunization, such as immunochromatography, this magnetic particle removal step is unnecessary, and B / F separation is directly performed by a column having the second antibody. Be put on. Cells bound to the carrier in the column can be cleaved once and recovered as cells, followed by subsequent DNA extraction. Alternatively, it is possible to extract by extracting a nucleic acid by adding a reagent that lyses the cell while the cell is bound in the column.
[0096]
Next, the effect of the present invention, that is, the ability to perform highly accurate LOH determination will be described. Here, a comparative method for comparison with the present invention will be described. This comparative method for comparison with the present invention is a method in which some of the conditions of the prior art-1 method are changed. Prior art-1 and Example 1 of the present invention are as follows: (1) The target DNA fragments of healthy cells and test cells are labeled with the same fluorescent dye in prior art-1 and with different fluorescent dyes in the present invention; 2) In electrophoresis, the conventional technique-1 uses a slab gel, and in the present invention, a capillary is used. (3) The target DNA fragments of healthy cells and test cells are separated in the conventional technique-1 by another electrophoresis path. Then, it is basically different in that it migrates with the same capillary.
[0097]
In the comparative method, the target DNA fragment of the healthy cell and the test cell is labeled with the same fluorescent dye as in the prior art-1, and the target DNA fragment of the healthy cell and the target DNA fragment of the test cell are separated by one. Electrophoresis using a capillary. Since the target DNA fragments of healthy cells and test cells are labeled with the same fluorescent dye, electrophoresis is performed twice. The comparative method is a method in which the method of Prior Art-1 is applied to electrophoresis using a single capillary.
[0098]
FIG. 8 is a diagram illustrating the results of an accuracy comparison example of LOH determination according to the procedure of the first embodiment of the present invention and the procedure of the comparative example. FIG. 8 shows the results of LOH determination obtained by repeatedly performing experiments on four different samples (experiment numbers 1, 2, 3, and 4). In addition, raw data (measurement data) S1, S2, P1, and P2 according to the procedure of Example 1 and the LOH value (ratio of deviation (deviation) from 1 of T in%) are shown as analysis results.
[0099]
In FIG. 8, the measurement data S1, S2, P1, and P2 according to the procedure of Example 1 are used as they are, and the target DNA fragment data S1 and S2 from healthy cells are used as n (n = 1, 2, ...) The measurement data of the second time is used as the data P1, P2 of the target DNA fragment from the test cell, and the analysis data is analyzed using the (n + 1) th measurement data of each experiment number. Simulated. The rightmost column in FIG. 8 shows the LOH value according to the procedure of the comparative example.
[0100]
In the present invention, in any of the samples of Experiment No. 1 to Experiment No. 4, the LOH values were all within ± 10%, and it was determined that the test cells had no LOH (no abnormality). Since the samples used were normal cells of healthy subjects and test cells, all the judgment results are correct. On the other hand, in the comparative example, similar results were obtained for most of the samples with the experiment numbers. However, in the first measurement of the sample with the experiment number 2 and the second measurement of the sample with the experiment number 3, the LOH value was −. 10.7% and + 13.8%, which exceeded the range of ± 10%. Therefore, the test cell was erroneously found to have LOH (abnormal).
[0101]
The average of the sample of experiment number 3 exceeds the range of ± 10%. As shown in FIG. 8, in comparison, half of the samples of Experiment No. 1 to Experiment No. 4 gave erroneous results.
[0102]
The above results are comparison results when a single capillary device is used. Even when a multicapillary device having a plurality of capillaries is used, LOH determination can be similarly performed with high accuracy. When the present invention is applied to a multicapillary, target DNA fragments of healthy cells and test cells labeled with different fluorescent dyes are mixed and injected into different capillaries for each sample, and fragments relating to a plurality of samples are placed in each capillary. Simultaneously separate by electrophoresis. In contrast to this, all target DNA fragments are labeled with the same fluorescent dye, the target DNA fragment of healthy cells is injected into one capillary, the target DNA fragment of test cells is injected into another capillary, A method is conceivable in which two capillaries are used and fragments relating to a plurality of samples are electrophoresed and separated simultaneously in each capillary.
[0103]
This comparative method is not affected by fluctuations in measurement conditions over time, as in the method of the present invention. However, in this comparative example, a subtle difference in conditions between capillaries affects the measurement results. In the method of the present invention, target DNA fragments of healthy cells and test cells are migrated with the same capillary using the same capillary. Since they are separated, it is not affected by the difference in conditions between capillaries, and it can be understood that the method of the present invention is more accurate than the comparative example and the prior art-1.
[0104]
As is clear from the above comparison, the first embodiment of the present invention can determine LOH with high accuracy as compared with the comparative example, and has an effect of providing data suitable for high-accuracy diagnosis. The same applies to other embodiments of the present invention.
[0105]
【The invention's effect】
According to the present invention, LOH can be determined with high accuracy even if the signal of the electrophoresis peak fluctuates due to electrophoresis conditions and the like, and it is possible to provide highly reliable data for diagnosis.
[Brief description of the drawings]
FIG. 1 is a flowchart showing an outline of an LOH determination procedure according to the first embodiment of the present invention.
FIG. 2 is a diagram showing an example of an electrophoresis pattern according to the SSCP method, which is Embodiment 1 of the present invention.
FIG. 3 is a diagram showing an analysis example of the fragment length of PCR products using various polymerases, which is Example 2 of the present invention.
FIG. 4 is a flowchart showing an outline of an LOH determination procedure according to the third embodiment of the present invention.
FIG. 5 is a flowchart showing an outline of an LOH determination procedure according to the fourth embodiment of the present invention.
FIG. 6 is a graph showing an example of temperature dependence of separation by the SSCP method of a fragment derived from the reverse strand of p53exon4, which is Example 5 of the present invention.
FIG. 7 is a diagram showing the calculation results of the secondary structure at 30 ° C. and 46 ° C. of wild-type and mutant DNA fragments of the reverse strand of p53exon4, which is Example 5 of the present invention.
FIG. 8 is a diagram showing an example of comparison results of LOH determination according to the procedure of the first embodiment of the present invention and the procedure of the comparative example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... DNA fragment corresponding to wild type, 2 ... DNA fragment corresponding to mutant type, 3 ... Step E, 4 ... No information, 5 ... Step F, 5 '... Step F', 5 "... Step F", 6 ... Step B, 7 ... Step D, 8 ... Step G, 8 '... Step G', 9 ... Step H, 10 ... No LOH (normal), 11 ... With LOH (abnormal), 12 ... Target DNA fragment derived from healthy cells Migration peak corresponding to the wild-type FAM-labeled fragment of forward chain, 13 ... migration peak corresponding to the forward-chain mutant FAM-labeled fragment of the target DNA fragment derived from healthy cells, 14 ... test cell Migration peak corresponding to the wild-type ROX-labeled fragment of the forward strand of the target DNA fragment derived from, 15 ... migration peak corresponding to the ROX-labeled fragment of the forward-chain variant of the target DNA fragment derived from the test cell , 16 ... eyes 115 nt fragment, 17 ... 115 nt longer, 18 ... 115 nt longer, 19 ... 115 nt shorter, 20 ... 115 nt shorter, 20 ... step I, 21 ... step J, 21 '... step J', 22 ... Process K, 23 ... Separation temperature change at 3% polymer concentration, 24 ... Separation temperature change at 6% polymer concentration, 25 ... Separation temperature change at 9% polymer concentration, 100 ... Process A, 200 ... Process C.

Claims (3)

分析対象DNA断片と前記分析対象DNA断片の比較基準とするヘテロ接合型の基準DNA断片とをそれぞれ異なる蛍光色素で標識する工程と,
前記分析対象DNA断片と前記基準DNA断片とをキャピラリ電気泳動を用いるSSCP法により同一のキャピラリで同時に電気泳動で分離する工程と,
前記分離する工程で得られた泳動パターンの前記基準DNA断片のピークの信号強度を用いて,前記泳動パターンの前記分析対象DNA断片のピークの信号強度を補正する工程と,
前記補正する工程の結果から、前記分析対象DNA断片のヘテロ接合性の消失の有無を判定する工程と有
前記基準DNA断片がヘテロ接合型の健常者の健常細胞由来のゲノムDNAを鋳型とする3 ' 末端が平滑なPCR産物であり,前記分析対象DNA断片が被験者の被検細胞由来のゲノムDNAを鋳型とする3 ' 末端が平滑なPCR産物であり,前記基準 DNA 断片と前記分析対象 DNA 断片とは,同一のプライマーを用いて PCR 増幅されたものであることを特徴とする遺伝子多型解析方法。
Labeling a DNA fragment to be analyzed and a heterozygous reference DNA fragment as a reference for comparison with the DNA fragment to be analyzed with different fluorescent dyes,
Separating the DNA fragment to be analyzed and the reference DNA fragment by electrophoresis simultaneously in the same capillary by the SSCP method using capillary electrophoresis ;
Correcting the peak signal intensity of the DNA fragment to be analyzed of the electrophoresis pattern using the peak signal intensity of the reference DNA fragment of the electrophoresis pattern obtained in the separating step;
Wherein the result of the correction to process, possess the determining step whether the loss of heterozygosity of the analyte DNA fragments,
The reference DNA fragment is a 3'- end smooth PCR product using genomic DNA derived from a healthy cell of a heterozygous healthy person as a template, and the DNA fragment to be analyzed is a genomic DNA derived from a test cell of a subject. 3 'end is smooth PCR product, and the reference DNA fragment and the analyte DNA fragments, genetic polymorphism analysis method which is characterized in that which was PCR amplified using identical primers with.
前記ヘテロ接合型の基準DNA断片の野生型と変異型の各々に対応する2つのピークの信号強度比を用いて前記分析対象DNA断片のピークの信号強度を補正することを特徴とする請求項1に記載の遺伝子多型解析方法。Claims, characterized in that using the signal intensity ratio of two peaks corresponding to each of the mutant and wild-type reference DNA fragments of the heterojunction, correcting the signal strength of the peak of the analyte DNA fragments 2. The gene polymorphism analysis method according to 1. 前記PCR産物は、Tspポリメラーゼを用いて行うPCR反応の産物であることを特徴とする請求項1に記載の遺伝子多型解析方法。  The gene polymorphism analysis method according to claim 1, wherein the PCR product is a product of a PCR reaction performed using Tsp polymerase.
JP2000273533A 2000-09-05 2000-09-05 Gene polymorphism analysis method Expired - Fee Related JP3975663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000273533A JP3975663B2 (en) 2000-09-05 2000-09-05 Gene polymorphism analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000273533A JP3975663B2 (en) 2000-09-05 2000-09-05 Gene polymorphism analysis method

Publications (3)

Publication Number Publication Date
JP2002078500A JP2002078500A (en) 2002-03-19
JP2002078500A5 JP2002078500A5 (en) 2004-11-11
JP3975663B2 true JP3975663B2 (en) 2007-09-12

Family

ID=18759453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000273533A Expired - Fee Related JP3975663B2 (en) 2000-09-05 2000-09-05 Gene polymorphism analysis method

Country Status (1)

Country Link
JP (1) JP3975663B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1745500B1 (en) * 2004-04-30 2017-03-15 Micromass UK Limited Mass spectrometer
KR100825154B1 (en) 2006-09-27 2008-04-24 포항공과대학교 산학협력단 - mRNA QUANTIFICATION METHOD USING CAPILLARY ELECTROPHORESIS-BASED SINGLE STRAND CONFORMATION POLYMORPHISM
JP6348258B2 (en) * 2013-06-20 2018-06-27 大塚電子株式会社 Separation analysis method
WO2015015585A1 (en) * 2013-07-31 2015-02-05 株式会社日立製作所 Gene-mutation analysis device, gene-mutation analysis system, and gene-mutation analysis method
JP6350349B2 (en) * 2015-03-19 2018-07-04 株式会社島津製作所 Capillary electrophoresis apparatus and sample analysis method using capillary electrophoresis

Also Published As

Publication number Publication date
JP2002078500A (en) 2002-03-19

Similar Documents

Publication Publication Date Title
US5545527A (en) Method for testing for mutations in DNA from a patient sample
Anasagasti et al. Current mutation discovery approaches in Retinitis Pigmentosa
JP6203217B2 (en) How to determine glaucoma progression risk
US20110312534A1 (en) Method for prediction of human iris color
JP2011525106A (en) Markers for diffuse B large cell lymphoma and methods of use thereof
Millat et al. Development of a high resolution melting method for the detection of genetic variations in hypertrophic cardiomyopathy
Chinault et al. Application of dual-genome oligonucleotidearray-based comparative genomic hybridization to the molecular diagnosis of mitochondrial DNA deletion and depletion syndromes
JP3975663B2 (en) Gene polymorphism analysis method
Schrijver et al. Diagnostic Single Nucleotide Polymorphism Analysis of Factor V Leiden and Prothrombin 20210G> A: A Comparison of the Nanogen Electronic Microarray With Restriction Enzyme Digestion and the Roche LightCycler
Riahi et al. High-resolution melting (HRM) assay for the detection of recurrent BRCA1/BRCA2 germline mutations in Tunisian breast/ovarian cancer families
EP1798291B1 (en) Methods and compositions for assaying mutations and/or large scale alterations in nucleic acids and their uses in diagnosis of genetic diseases and cancers
JP4058508B2 (en) Genetic testing method and genetic testing device
EP1619258B1 (en) Method of detecting or quantitatively determining mitochondrial dna 3243 variation, and kit therefor
KR101849602B1 (en) PNA probe for detecting causative gene mutation of Wilson disease and the method of diagnosis using the same
O’Connell et al. Renewable standard reference material for the detection of TP53 mutations
Murphy et al. Mutation and single nucleotide polymorphism detection using temperature gradient capillary electrophoresis
Rantamäki et al. DNA diagnostics of the Marfan syndrome: application of amplifiable polymorphic markers
RU2746055C1 (en) Method for diagnosing mutation c.-23+1g>a (rs80338940) of the gjb2 gene
KR101728023B1 (en) Detection of mutations in ATP7B gene using PCR-LDR
WO2018186687A1 (en) Method for determining nucleic acid quality of biological sample
Entezam et al. Genetic analysis of Iranian autosomal dominant polycystic kidney disease: new insight to haplotype analysis
Tyagi et al. Development and validation of an allele-specific PCR assay for genotyping a promoter and exonic single nucleotide polymorphisms of MGMT gene
Kneppers et al. Duchenne and Becker muscular dystrophy
Monserrat Genetic and Genomic Technologies: Next Generation Sequencing for Inherited Cardiovascular Conditions
CN106282172A (en) The STR bit point of PKD1 gene and application thereof

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees