JP3975388B2 - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device Download PDF

Info

Publication number
JP3975388B2
JP3975388B2 JP2000106397A JP2000106397A JP3975388B2 JP 3975388 B2 JP3975388 B2 JP 3975388B2 JP 2000106397 A JP2000106397 A JP 2000106397A JP 2000106397 A JP2000106397 A JP 2000106397A JP 3975388 B2 JP3975388 B2 JP 3975388B2
Authority
JP
Japan
Prior art keywords
schottky barrier
semiconductor region
semiconductor
electrode layer
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000106397A
Other languages
Japanese (ja)
Other versions
JP2001291899A (en
Inventor
康二 大塚
哲次 杢
将貴 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2000106397A priority Critical patent/JP3975388B2/en
Publication of JP2001291899A publication Critical patent/JP2001291899A/en
Application granted granted Critical
Publication of JP3975388B2 publication Critical patent/JP3975388B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、窒化ガリウム系化合物の半導体領域を備え且つ高外部量子効率を有する半導体発光素子に関する。
【0002】
【従来の技術】
GaN、GaAlN、InGaN、InGaAlN等の窒化ガリウム系化合物半導体から成る発光層を備えた青色系の発光素子は、青色発光ダイオードとして公知である。この発光素子では、シリコン、GaAs、GaP又はSiC等から成る低抵抗性基板の上に窒化ガリウム系化合物半導体層が形成され、発光素子の上面と下面には一対の電極が設けられる。この発光素子では発光素子の厚み方向に電流を流すことができる為、サファイア等から成る絶縁性基板の上に窒化ガリウム系化合物半導体層を形成した構造に比べて、電流経路の抵抗値を下げて消費電力及び動作電圧を低減することができる。
【0003】
【発明が解決しようとする課題】
しかし低抵抗性基板を使用した青色系発光素子では、発光素子の上面に配置されるボンディング用電極の直下で発光し、発生する光のうち発光素子の下面に向かう光は低抵抗性基板によって吸収され、上面に向かう光は電極によって吸収されこのように、低抵抗性基板は光吸収層となるので、吸収した光子数と放出された光子数との比である外部量子効率を増加できない欠点があった。またボンディング用電極の直下に流れる電流は実質的に無効電流となり、外部量子効率を高めることができなかった。
【0004】
この問題点を解決するため、例えば、特開平8−250768号公報には、発光素子の光取り出し側又は光検出側の電極パッドの下部にシリコン酸化膜から構成された抵抗率の高い高抵抗化領域を形成した半導体素子が開示されている。光透過性を有するサファイア製の絶縁性基板の上に窒化ガリウム系化合物半導体領域を形成する発光素子では、光が絶縁性基板を透過するので、外部量子効率を増加することができる。しかしながら、光吸収性を有する低抵抗性基板を備えた発光素子構造では、絶縁破壊電膜が比較的低いシリコン酸化膜により高抵抗化領域を構成するとき、シリコン酸化膜を薄く形成すると絶縁破壊が生じて電流をブロックする効果が得られず、十分な改善は図れない。従って、外部量子効率を増加するには高抵抗化領域を厚く形成しなければならないが、高抵抗化領域を厚く形成し且つ透明電極により高抵抗化領域の上に電流を素子周囲に広げると、透明電極に大きな段差が生じてカバレッジが悪くなる。透明電極に亀裂が生じると、発光素子の周囲に電流を良好に広げることができず、外部量子効率が低下する難点がある。
【0005】
そこで本発明の目的は、高水準の外部量子効率を有する半導体発光素子を提供することにある。
【0006】
【課題を解決するための手段】
本発明による半導体発光素子は、低抵抗性基板(2)と、低抵抗性基板(2)の一方の主面に形成された窒化ガリウム系化合物半導体から成る第一の導電形の第一の半導体領域(3)と、活性層(4)と、窒化ガリウム系化合物半導体から成る第一の導電形と反対の第二の導電形の第二の半導体領域(5)とが積層されて成る半導体基体(1)とを有する。半導体基体(1)の一方の主面の一部に第二の半導体領域との界面にショットキ障壁を形成するショットキバリア電極層(6)が形成され、ショットキバリア電極層(6)と半導体基体(1)の一方の主面が光透過性及び導電性を有する電極(7)によって被覆される。ショットキバリア電極層(6)は、傾斜面を有する円錐台形状に形成される。
【0007】
電圧を印加して半導体発光素子を順方向にバイアスした場合、透明の電極(7)と第二の半導体領域(5)との界面に電流が流れるが、ショットキバリア電極層(6)と第二の半導体領域(5)との界面には実質的に電流が流れない。このため、平面的に見てショットキバリア電極層(6)の外側の素子周辺側に電流が流れ、その部分でキャリアの再結合による発光が生じるので、ボンディング用電極の直下に流れる無効電流を減少させ、透明の電極(7)を介してショットキバリア電極層(6)の周辺側に電流を良好に拡散させて、外部量子効率を高めることができる。また、ショットキバリア電極層(6)により電流の集中を緩和し、半導体基体(1)の電気的劣化を防止することができる。
【0008】
本発明の実施の形態では、ショットキバリア電極層(6)は、第二の半導体領域がp形半導体領域の場合には、Ti、Al、Cr、Ta、Cuから選択された1種又は2種以上の金属により形成され、第二の半導体領域がn形半導体領域の場合には、Pt、Pd、Auから選択された1種又は2種以上の金属により形成される。光透過性を有する電極(7)は、Ni、Au、ITO(インジウム錫酸化物)から選択された1種又は2種以上の物質により形成される。
【0009】
【発明の実施の形態】
次に、青色発光ダイオード素子に適用した本発明による半導体発光素子の実施の形態を図1について説明する。
【0010】
図1に示すように、本発明による青色発光ダイオード素子は、シリコン基板から成る低抵抗性基板(2)、GaN(窒化ガリウム)から成る第一の半導体領域としてのn形半導体領域(3)、p形のInGaN(窒化ガリウムインジウム)から成る活性層(4)、第二の半導体領域としてのGaNから成るp形半導体領域(5)を順次積層して形成された半導体基体(1)と、半導体基体(1)の一方の主面を構成するp形半導体領域(5)上に形成されたショットキバリア電極層(6)と、ショットキバリア電極(6)上及びp形半導体領域(5)上に形成された透明電極(7)と、半導体基体(1)の下面に形成された接続用電極(8)とを備えている。透明電極(7)はアノード電極として機能し、接続用電極(8)はカソード電極として機能する。本実施の形態による青色発光ダイオード素子が従来の発光ダイオード素子と相違する点は、本実施の形態ではp形半導体領域(5)と透明電極(7)と間にショットキバリア電極層(6)を形成する点にある。
【0011】
低抵抗性基板(2)は、n形の不純物として例えば砒素(As)が比較的高濃度で導入された(111)面のn+形シリコン単結晶基板から成る。低抵抗性基板(2)は、0.0001〜0.01Ωcm程度の抵抗率を有する実質的な導電体である。本実施の形態では、低抵抗性基板(2)を約350μmの厚みで形成し、十分な機械的強度を有する低抵抗性基板(2)の上面に形成される半導体領域(3〜5)を良好に支持できる。n形半導体領域(3)、活性層(4)、p形半導体領域(5)は周知のMOCVD方法によって低抵抗性基板(2)の上面に順次連続して形成される。
【0012】
半導体基体(1)を製造する際に、低抵抗性基板(2)の表面に予めバッファ層を形成した後、低抵抗性基板(2)をMOCVD(有機金属化学気相成長)装置の反応室内に配置して、バッファ層(2a)が形成された低抵抗性基板(2)を1040℃の温度に加熱した後、反応室内にTMGガス(トリメチルガリウムガス)、NH3(アンモニア)ガス、SiH4(シラン)ガスを供給する。例えば、Gaを供給するTMGガスの流量は約4.3μmol/分、NH3を供給するNH3ガスの流量は約53.6mmol/分、Siを供給するシランガスの流量は約1.5nmol/分である。シランガスが反応室に供給されるので、形成される膜中にn形不純物としてSiが導入され、低抵抗性基板(2)のバッファ層の上面に約2.0〜5.0μmの厚みを有するn形半導体領域(3)が形成される。
【0013】
また、n形半導体領域(3)の不純物濃度は約3×1018cm-3であり、低抵抗性基板(2)の不純物濃度よりかなり低い。本実施の形態では、n形半導体領域(3)を低抵抗性基板(2)の一方の主面に直接形成するが、実際には低抵抗性基板(2)とn形半導体領域(3)との間にバッファ層(衝撃緩和層)を介在させて、シリコン半導体から成る低抵抗性基板(2)の結晶方位を良好に引き継いでその上面にGaN系化合物半導体領域を良好に形成するのが望ましい。
【0014】
続いて、低抵抗性基板(2)を800℃の温度に加熱し、SiH4ガスの供給を停止し、反応室内にTMGガス、NH3ガスに加えてTMIガス(トリメチルインジウムガス)とCp2Mgガス(ビシクロペンタジェニルマグネシウムガス)を供給してn形半導体領域(3)の上面にp形InGaNから成る約20Åの厚みを有する活性層(4)を形成する。Cp2Mgガスが反応室に供給されるので、形成される膜中にp形導電形の不純物としてMgが導入される。例えば、TMGガスの流量は1.1μmol/分、NH3ガスの流量は67mmol/分、Inを供給するTMIガスの流量は約4.5μmol/分、Mgを供給するGp2Mgガスの流量は約12nmol/分である。活性層(4)の不純物濃度は約3×1017cm-3である。
【0015】
続いて、低抵抗性基板(2)を1040℃の温度に加熱し、反応室内にTMGガス、NH3ガス及びCp2Mgガスを供給して活性層(4)の上面にp形GaNから成るp約0.5μmの厚みを有するp形半導体領域(5)を形成して半導体基体(1)を製造する。例えば、TMGガスの流量は約4.3μmol/分、アンモニアガスの流量は約53.6μmol/分、Cp2Mgガスの流量は約0.12μmol/分である。また、p形半導体領域(5)の不純物濃度は約3×1018cm-3である。上記のように形成されたn形半導体領域(3)、活性層(4)及びp形半導体領域(5)は、低抵抗性基板(2)の上面にその結晶方位を揃えて形成することができる。
【0016】
半導体基体(1)の一方の主面に形成されたショットキバリア電極層(6)は、p形半導体領域(5)と接触して、その界面にショットキバリア(ショットキ障壁)を形成する。本実施の形態では、ショットキバリア電極層(6)はTi膜(6a)とAl膜(6b)とが積層されて成る積層電極として構成され、且つその側面には図示のように半導体基体(1)から離間した側から半導体基体(1)の一方の主面に向かって末広がりとなる傾斜面(6c)が形成される。即ち、ショットキバリア電極層(6)は、半導体基体(1)の一方の主面上の略中央に円錐台形状に形成される。円錐台形構造のショットキバリア電極層(6)を形成する際に、円錐台形と相補的な形状で周囲が傾斜する開口部を有するシャドーマスクを半導体基体の一方の主面に配置して、開口部を通じてTiとAlを順次真空蒸着すれば、末広がりとなる傾斜面を備えたショットキバリア電極層(6)を形成することができる。Ti膜とAl膜は、いずれもそれら単独でGaN半導体から成るp形半導体領域(5)との界面にショットキ障壁を形成できる金属膜である。本実施の形態では、Ti膜(6a)の厚みを約200Å、Al膜(6b)の厚みを約5000Åとした。また、ショットキバリア電極層(6)の直径は、その上面で約120μm、下面で約140μmである。
【0017】
透明電極(7)は、半導体基体(1)の上面を構成するp形半導体領域(5)の上面とショットキバリア電極層(6)の上面に形成され、両者に対して低抵抗性接触する。本実施の形態では、透明電極(7)はNi膜(7a)とAu膜(7b)とが積層されて成る積層電極として構成される。即ち、Ni膜(7a)は窒化ガリウム系化合物半導体領域に対して良好に低抵抗性接触し、Au膜(7b)はNi層(7a)に比べて窒化ガリウム系化合物半導体領域(3〜5)に対する低抵抗性接触は良好に得られないが導電性に優れている。このため、透明電極(7)は、窒化ガリウム系化合物半導体領域(3〜5)に対して良好に低抵抗性接触が得られると共に、半導体発光素子の周辺に電流を良好に広げることができる。透明電極(7)は例えば、周知の真空蒸着方法によって半導体基体(1)の上面とショットキバリア電極層(6)の上面の全体にNiとAuを連続して蒸着した後、半導体基体(1)の上面の外縁側に蒸着されたNi膜(7a)とAu膜(7b)を選択的にエッチング除去することによって形成することができるが、透明電極(7)はスパッタリング等で形成することもできる。本実施の形態では、ショットキバリア電極層(6)の側面に傾斜面(6c)が形成されるので、透明電極(7)をショットキバリア電極層(6)の側面に対してカバレッジ良く被覆することができる。このため、ショットキバリア電極層(6)の立ち上がり部分近傍において、透明電極(7)にクラック及び亀裂の発生を抑制して、信頼性が高く発光効率の高い発光素子を歩留まり良く生産することができる。また、p形半導体領域(5)とショットキバリア電極層(6)とに対するショットキバリア電極層(6)の低抵抗性接触が良好に得られるように、真空蒸着した後に窒素雰囲気中で、400℃、10分間程度の熱処理を施すと良い。透明電極(7)は、半導体基体(7)の外縁側にも電流を良好に流すことができるように、シート抵抗が十分に小さい導電膜である。本実施の形態では、ショットキバリア電極層(6)と透明電極(7)とはボンディング用電極を構成する。透明電極(7)は可視光線に対し透明であるが、導電性を有する材料により形成される。
【0018】
接続用電極(8)は、例えばチタンとニッケルを半導体基体(1)の下面に順次真空蒸着して形成され、低抵抗性基板(2)に対して低抵抗性接触する。図1に示す青色発光ダイオードの接続用電極(8)は、例えば半田又は導電性ペーストを介して図示しない支持板に固着され、ショットキバリア電極層(6)と透明電極(7)から構成されるボンディング用電極に周知のワイヤボンディング方法によってワイヤ(リード細線)の一端が接続され、ワイヤの他端は図示しない外部電極に電気的に接続される。
【0019】
図1の青色発光ダイオードでは、ショットキバリア電極層(6)と透明電極(7)から構成されるボンディング用電極と接続用電極(8)との間にボンディング用電極側の電位を高くする電圧を印加すると、p形半導体領域(5)からホールが活性層(4)に流れ込み、n形半導体領域(3)から活性層(4)に電子が注入されて、キャリアの再結合によって波長440nm付近の光が活性層(4)から放出される。このとき、ショットキバリア電極層(6)はp形半導体領域(5)との界面にショットキ障壁を形成し、透明電極(7)はp形半導体領域(5)との界面に低抵抗性接触する。このため、電圧を印加して半導体発光素子を順方向にバイアスした場合、透明電極(7)とp形半導体領域(5)との界面に電流が流れるが、ショットキバリア電極層(6)とp形半導体領域(5)との界面には実質的に電流が流れない。このため、平面的に見てショットキバリア電極層(6)の外側の素子周辺側に電流が流れ、その部分でキャリアの再結合による発光が生じるので、ボンディング用電極の直下に流れる無効電流を減少させ、透明電極(7)を介してショットキバリア電極層(6)の周辺側に電流を良好に拡散することができ、外部量子効率を高めることができる。また、ショットキバリア電極層(6)により電流の集中を緩和し、半導体基体(1)の電気的劣化を防止することができる。従来の半導体発光素子の外部量子効率は0.2〜0.3%であるのに対し、本発明による半導体発光素子では6%と優れた外部量子効率が得られた。
【0020】
本発明の実施の形態は変更が可能である。例えば、ショットキバリア電極層(6)は、Ti、Al以外にCr、Ta、Cu等他の金属によっても形成できる。透明電極(7)は、ITO(インジウム錫酸化物)、Ni単独膜でも形成できる。ショットキバリア電極層(6)の側面に傾斜面(6c)を形成しなくても良い。ショットキバリア電極層(6)の上面に、透明電極(7)を介して更にボンディング用電極形成用の金属膜を更に設けても良い。ショットキバリア電極層(6)の側面に形成される傾斜面(6c)は、シャドーマスクを使用しなくても形成できる。たとえば、ショットキバリア電極層(6)をp形半導体領域(5)の全面に蒸着した後に、フォトリソグラフィーとウェットエッチングでサイドエッチングによるエッチバックを見込んで形成しても良い。n形半導体領域(3)とp形半導体領域(5)の導電形を反対にしてもよい。この場合、ショットキバリア電極層(6)は、例えばPt、Pd、Auを使用でき、透明電極(7)は例えばITO(インジウム錫酸化物)、Niで形成することができる。低抵抗性基板(2)をGaAs、GaPまたはシリコンカーバイド等で形成しても良い。透明電極(7)の光透過性が十分に得られるように、100Å以下、望ましくは80Å以下に透明電極(7)を形成してもよい。Ni層(7a)又はAu層(7b)の一層で透明電極(7)を形成しても良いが、実施例のように窒化ガリウム系化合物半導体領域に対して良好に低抵抗性接触する相対的に肉薄の第一の層(例えばNi)と導電性の良好な相対的に肉厚の第二の層(例えばAu)とから構成される膜とするのが望ましい。ショットキバリア電極層(6)の厚みは1000Å以上とし、ボンディング電極として良好に機能させるとよい。
【0021】
【発明の効果】
本発明では、半導体発光素子の外部量子効率を改善して、信頼性を向上することができる。
【図面の簡単な説明】
【図1】 青色発光ダイオード素子に適用した本発明による半導体発光素子の断面図
【符号の説明】
(1)・・半導体基体、 (2)・・低抵抗性基板、 (3)・・第一の半導体領域(n形半導体領域)、 (4)・・活性層、 (5)・・第二の半導体領域(p形半導体領域)、 (6)・・ショットキバリア電極層、 (6a)・・Ti層、 (6b)・・Al層、 (7)・・透明電極、 (7a)・・Ni層、 (7b)・・Au層、 (8)・・接続用電極、
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor light emitting device having a semiconductor region of a gallium nitride compound and having a high external quantum efficiency.
[0002]
[Prior art]
A blue light-emitting element including a light-emitting layer made of a gallium nitride-based compound semiconductor such as GaN, GaAlN, InGaN, or InGaAlN is known as a blue light-emitting diode. In this light-emitting element, a gallium nitride compound semiconductor layer is formed on a low-resistance substrate made of silicon, GaAs, GaP, SiC, or the like, and a pair of electrodes is provided on the upper and lower surfaces of the light-emitting element. In this light emitting device, since the current can flow in the thickness direction of the light emitting device, the resistance value of the current path is lowered as compared with the structure in which the gallium nitride compound semiconductor layer is formed on the insulating substrate made of sapphire or the like. Power consumption and operating voltage can be reduced.
[0003]
[Problems to be solved by the invention]
However, in a blue light emitting device using a low-resistance substrate, light is emitted directly below the bonding electrode disposed on the upper surface of the light-emitting device, and light directed toward the lower surface of the light-emitting device is absorbed by the low-resistance substrate. In this way, the light directed toward the upper surface is absorbed by the electrode, and thus the low-resistance substrate becomes a light absorption layer, so that the external quantum efficiency, which is the ratio between the number of absorbed photons and the number of emitted photons, cannot be increased. there were. In addition, the current that flows directly under the bonding electrode is substantially a reactive current, and the external quantum efficiency cannot be increased.
[0004]
In order to solve this problem, for example, Japanese Patent Laid-Open No. 8-250768 discloses a high resistivity high resistance composed of a silicon oxide film under a light extraction side or light detection side electrode pad of a light emitting element. A semiconductor element in which a region is formed is disclosed. In a light-emitting element in which a gallium nitride-based compound semiconductor region is formed on a light-transmitting sapphire insulating substrate, light passes through the insulating substrate, so that external quantum efficiency can be increased. However, in a light emitting device structure including a light-absorbing low-resistance substrate, when a high-resistance region is formed by a silicon oxide film having a relatively low dielectric breakdown film, dielectric breakdown may occur if the silicon oxide film is formed thin. The effect of blocking the current cannot be obtained, and sufficient improvement cannot be achieved. Therefore, in order to increase the external quantum efficiency, the high resistance region must be formed thick, but when the high resistance region is formed thick and the current is spread around the high resistance region by the transparent electrode, A large level difference occurs in the transparent electrode, resulting in poor coverage. If the transparent electrode is cracked, the current cannot be spread well around the light emitting element, and the external quantum efficiency is lowered.
[0005]
Accordingly, an object of the present invention is to provide a semiconductor light emitting device having a high level of external quantum efficiency.
[0006]
[Means for Solving the Problems]
A semiconductor light-emitting device according to the present invention includes a low-resistance substrate (2) and a first semiconductor of the first conductivity type comprising a gallium nitride-based compound semiconductor formed on one main surface of the low-resistance substrate (2). A semiconductor substrate formed by laminating a region (3), an active layer (4), and a second semiconductor region (5) of the second conductivity type opposite to the first conductivity type made of a gallium nitride compound semiconductor (1) A Schottky barrier electrode layer (6) for forming a Schottky barrier at the interface with the second semiconductor region is formed on a part of one main surface of the semiconductor substrate (1), and the Schottky barrier electrode layer (6) and the semiconductor substrate ( One main surface of 1) is covered with an electrode (7) having optical transparency and conductivity. The Schottky barrier electrode layer (6) is formed in a truncated cone shape having an inclined surface.
[0007]
When a voltage is applied to bias the semiconductor light emitting element in the forward direction, a current flows through the interface between the transparent electrode (7) and the second semiconductor region (5), but the Schottky barrier electrode layer (6) and the second No current substantially flows at the interface with the semiconductor region (5). For this reason, a current flows to the device peripheral side outside the Schottky barrier electrode layer (6) in plan view, and light emission occurs due to carrier recombination at that portion, so the reactive current flowing directly under the bonding electrode is reduced. Thus, it is possible to improve the external quantum efficiency by favorably diffusing current to the peripheral side of the Schottky barrier electrode layer (6) through the transparent electrode (7). In addition, the Schottky barrier electrode layer (6) can alleviate current concentration and prevent electrical degradation of the semiconductor substrate (1).
[0008]
In the embodiment of the present invention, the Schottky barrier electrode layer (6) is one or two selected from Ti, Al, Cr, Ta, and Cu when the second semiconductor region is a p-type semiconductor region. When the second semiconductor region is an n-type semiconductor region, it is formed of one or more metals selected from Pt, Pd, and Au. The light-transmitting electrode (7) is formed of one or more materials selected from Ni, Au, and ITO (indium tin oxide).
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of a semiconductor light emitting device according to the present invention applied to a blue light emitting diode device will be described with reference to FIG.
[0010]
As shown in FIG. 1, a blue light emitting diode device according to the present invention includes a low-resistance substrate (2) made of a silicon substrate, an n-type semiconductor region (3) as a first semiconductor region made of GaN (gallium nitride), a semiconductor substrate (1) formed by sequentially stacking an active layer (4) made of p-type InGaN (gallium indium nitride) and a p-type semiconductor region (5) made of GaN as a second semiconductor region; and a semiconductor A Schottky barrier electrode layer (6) formed on the p-type semiconductor region (5) constituting one main surface of the base (1), and on the Schottky barrier electrode (6) and the p-type semiconductor region (5) A transparent electrode (7) formed and a connection electrode (8) formed on the lower surface of the semiconductor substrate (1) are provided. The transparent electrode (7) functions as an anode electrode, and the connection electrode (8) functions as a cathode electrode. The blue light emitting diode element according to the present embodiment is different from the conventional light emitting diode element in that the Schottky barrier electrode layer (6) is provided between the p-type semiconductor region (5) and the transparent electrode (7) in the present embodiment. The point is to form.
[0011]
The low-resistance substrate (2) is composed of a (111) plane n + type silicon single crystal substrate into which, for example, arsenic (As) is introduced as a n-type impurity at a relatively high concentration. The low resistance substrate (2) is a substantial conductor having a resistivity of about 0.0001 to 0.01 Ωcm. In the present embodiment, the low resistance substrate (2) is formed with a thickness of about 350 μm, and the semiconductor region (3-5) formed on the upper surface of the low resistance substrate (2) having sufficient mechanical strength is formed. Good support. The n-type semiconductor region (3), the active layer (4), and the p-type semiconductor region (5) are successively formed on the upper surface of the low-resistance substrate (2) by a known MOCVD method.
[0012]
When manufacturing the semiconductor substrate (1), a buffer layer is formed in advance on the surface of the low-resistance substrate (2), and then the low-resistance substrate (2) is placed in the reaction chamber of the MOCVD (metal organic chemical vapor deposition) apparatus. The low resistance substrate (2) on which the buffer layer (2a) is formed is heated to a temperature of 1040 ° C., and then TMG gas (trimethylgallium gas), NH 3 (ammonia) gas, SiH is placed in the reaction chamber. 4 Supply the (silane) gas. For example, the flow rate of the TMG gas supplying Ga about 4.3Myumol / min, the flow rate of NH 3 gas supplying NH 3 is about 53.6 mmol / min, the flow rate of the silane gas supplying Si is about 1.5 nmol / min It is. Since silane gas is supplied to the reaction chamber, Si is introduced as an n-type impurity into the formed film, and the upper surface of the buffer layer of the low-resistance substrate (2) has a thickness of about 2.0 to 5.0 μm. An n-type semiconductor region (3) is formed.
[0013]
Further, the impurity concentration of the n-type semiconductor region (3) is about 3 × 10 18 cm −3, which is considerably lower than the impurity concentration of the low resistance substrate (2). In the present embodiment, the n-type semiconductor region (3) is formed directly on one main surface of the low-resistance substrate (2). In practice, however, the low-resistance substrate (2) and the n-type semiconductor region (3) are formed. A buffer layer (impact mitigation layer) is interposed between the two and the crystal orientation of the low-resistance substrate (2) made of a silicon semiconductor is successfully taken over to form a GaN-based compound semiconductor region on the upper surface. desirable.
[0014]
Subsequently, the low-resistance substrate (2) is heated to a temperature of 800 ° C., the supply of SiH 4 gas is stopped, and TMI gas (trimethylindium gas) and Cp 2 are added to the reaction chamber in addition to TMG gas and NH 3 gas. An active layer (4) having a thickness of about 20 mm made of p-type InGaN is formed on the upper surface of the n-type semiconductor region (3) by supplying Mg gas (bicyclopentaenyl magnesium gas). Since Cp 2 Mg gas is supplied to the reaction chamber, Mg is introduced as a p-type conductivity impurity into the formed film. For example, the flow rate of TMG gas is 1.1 μmol / min, the flow rate of NH 3 gas is 67 mmol / min, the flow rate of TMI gas supplying In is about 4.5 μmol / min, and the flow rate of Gp 2 Mg gas supplying Mg is About 12 nmol / min. The impurity concentration of the active layer (4) is about 3 × 10 17 cm −3 .
[0015]
Subsequently, the low-resistance substrate (2) is heated to a temperature of 1040 ° C., TMG gas, NH 3 gas and Cp 2 Mg gas are supplied into the reaction chamber, and the upper surface of the active layer (4) is made of p-type GaN. A semiconductor substrate (1) is manufactured by forming a p-type semiconductor region (5) having a thickness of about 0.5 μm. For example, the flow rate of TMG gas is about 4.3 μmol / min, the flow rate of ammonia gas is about 53.6 μmol / min, and the flow rate of Cp 2 Mg gas is about 0.12 μmol / min. The impurity concentration of the p-type semiconductor region (5) is about 3 × 10 18 cm −3 . The n-type semiconductor region (3), the active layer (4) and the p-type semiconductor region (5) formed as described above can be formed on the upper surface of the low-resistance substrate (2) with the crystal orientation aligned. it can.
[0016]
The Schottky barrier electrode layer (6) formed on one main surface of the semiconductor substrate (1) is in contact with the p-type semiconductor region (5) and forms a Schottky barrier (Schottky barrier) at the interface. In the present embodiment, the Schottky barrier electrode layer (6) is configured as a laminated electrode formed by laminating a Ti film (6a) and an Al film (6b), and a side surface of the semiconductor substrate (1 An inclined surface (6c) is formed which extends from the side away from the semiconductor substrate (1) toward one main surface of the semiconductor substrate (1). That is, the Schottky barrier electrode layer (6) is formed in a truncated cone shape at substantially the center on one main surface of the semiconductor substrate (1). When forming the frustoconical Schottky barrier electrode layer (6), a shadow mask having a shape complementary to the frustoconical shape and having an opening inclined at the periphery is disposed on one main surface of the semiconductor substrate, If Ti and Al are sequentially vacuum-deposited through, a Schottky barrier electrode layer (6) having an inclined surface spreading toward the end can be formed. Each of the Ti film and the Al film is a metal film that can form a Schottky barrier at the interface with the p-type semiconductor region (5) made of a GaN semiconductor alone. In this embodiment, the thickness of the Ti film (6a) is about 200 mm, and the thickness of the Al film (6b) is about 5000 mm. The diameter of the Schottky barrier electrode layer (6) is about 120 μm on the upper surface and about 140 μm on the lower surface.
[0017]
The transparent electrode (7) is formed on the upper surface of the p-type semiconductor region (5) constituting the upper surface of the semiconductor substrate (1) and the upper surface of the Schottky barrier electrode layer (6), and makes low resistance contact with both. In the present embodiment, the transparent electrode (7) is configured as a laminated electrode formed by laminating a Ni film (7a) and an Au film (7b). That is, the Ni film (7a) has good low-resistance contact with the gallium nitride compound semiconductor region, and the Au film (7b) has a gallium nitride compound semiconductor region (3-5) compared to the Ni layer (7a). The low resistance contact with respect to is not obtained well, but the conductivity is excellent. For this reason, the transparent electrode (7) can obtain good low-resistance contact with the gallium nitride-based compound semiconductor region (3-5), and can spread the current well around the semiconductor light emitting device. The transparent electrode (7) is formed by, for example, continuously depositing Ni and Au on the entire upper surface of the semiconductor substrate (1) and the upper surface of the Schottky barrier electrode layer (6) by a known vacuum deposition method, and then the semiconductor substrate (1). The Ni film (7a) and the Au film (7b) deposited on the outer edge side of the upper surface can be selectively removed by etching, but the transparent electrode (7) can also be formed by sputtering or the like. . In the present embodiment, since the inclined surface (6c) is formed on the side surface of the Schottky barrier electrode layer (6), the transparent electrode (7) is covered with good coverage on the side surface of the Schottky barrier electrode layer (6). Can do. Therefore, in the vicinity of the rising portion of the Schottky barrier electrode layer (6), it is possible to suppress the generation of cracks and cracks in the transparent electrode (7), and to produce a light emitting element with high reliability and high light emission efficiency with a high yield. . Further, in order to obtain a low resistance contact of the Schottky barrier electrode layer (6) to the p-type semiconductor region (5) and the Schottky barrier electrode layer (6) in a nitrogen atmosphere after vacuum deposition, Heat treatment for about 10 minutes is good. The transparent electrode (7) is a conductive film having a sufficiently low sheet resistance so that a current can be satisfactorily passed also to the outer edge side of the semiconductor substrate (7). In the present embodiment, the Schottky barrier electrode layer (6) and the transparent electrode (7) constitute a bonding electrode. The transparent electrode (7) is transparent to visible light, but is formed of a conductive material.
[0018]
The connection electrode (8) is formed by sequentially vacuum-depositing titanium and nickel on the lower surface of the semiconductor substrate (1), for example, and makes low resistance contact with the low resistance substrate (2). The connection electrode (8) of the blue light emitting diode shown in FIG. 1 is fixed to a support plate (not shown) via, for example, solder or conductive paste, and is composed of a Schottky barrier electrode layer (6) and a transparent electrode (7). One end of a wire (lead fine wire) is connected to the bonding electrode by a known wire bonding method, and the other end of the wire is electrically connected to an external electrode (not shown).
[0019]
In the blue light emitting diode of FIG. 1, a voltage for increasing the potential on the bonding electrode side is provided between the bonding electrode composed of the Schottky barrier electrode layer (6) and the transparent electrode (7) and the connection electrode (8). When applied, holes flow from the p-type semiconductor region (5) into the active layer (4), electrons are injected from the n-type semiconductor region (3) into the active layer (4), and recombination of carriers causes a wavelength around 440 nm. Light is emitted from the active layer (4). At this time, the Schottky barrier electrode layer (6) forms a Schottky barrier at the interface with the p-type semiconductor region (5), and the transparent electrode (7) makes a low-resistance contact with the interface with the p-type semiconductor region (5). . For this reason, when a voltage is applied to bias the semiconductor light emitting element in the forward direction, a current flows through the interface between the transparent electrode (7) and the p-type semiconductor region (5), but the Schottky barrier electrode layer (6) and p No current substantially flows at the interface with the semiconductor region (5). For this reason, a current flows to the device peripheral side outside the Schottky barrier electrode layer (6) in plan view, and light emission occurs due to carrier recombination at that portion, so the reactive current flowing directly under the bonding electrode is reduced. Thus, the current can be diffused favorably to the peripheral side of the Schottky barrier electrode layer (6) via the transparent electrode (7), and the external quantum efficiency can be increased. In addition, the Schottky barrier electrode layer (6) can alleviate current concentration and prevent electrical degradation of the semiconductor substrate (1). The external quantum efficiency of the conventional semiconductor light emitting device is 0.2 to 0.3%, whereas the semiconductor light emitting device according to the present invention has an excellent external quantum efficiency of 6%.
[0020]
The embodiment of the present invention can be modified. For example, the Schottky barrier electrode layer (6) can be formed of other metals such as Cr, Ta and Cu in addition to Ti and Al. The transparent electrode (7) can be formed of ITO (indium tin oxide) or Ni single film. It is not necessary to form the inclined surface (6c) on the side surface of the Schottky barrier electrode layer (6). A metal film for forming a bonding electrode may be further provided on the upper surface of the Schottky barrier electrode layer (6) via the transparent electrode (7). The inclined surface (6c) formed on the side surface of the Schottky barrier electrode layer (6) can be formed without using a shadow mask. For example, after the Schottky barrier electrode layer (6) is deposited on the entire surface of the p-type semiconductor region (5), the Schottky barrier electrode layer (6) may be formed in anticipation of side etching by photolithography and wet etching. The conductivity types of the n-type semiconductor region (3) and the p-type semiconductor region (5) may be reversed. In this case, the Schottky barrier electrode layer (6) can use, for example, Pt, Pd, or Au, and the transparent electrode (7) can be formed of, for example, ITO (indium tin oxide) or Ni. The low resistance substrate (2) may be formed of GaAs, GaP, silicon carbide or the like. The transparent electrode (7) may be formed at a thickness of 100 mm or less, preferably 80 mm or less so that the light transmittance of the transparent electrode (7) can be sufficiently obtained. The transparent electrode (7) may be formed by one layer of the Ni layer (7a) or the Au layer (7b), but the relative contact with the gallium nitride-based compound semiconductor region is good as in the embodiment. It is desirable that the film is composed of a thin first layer (for example, Ni) and a relatively thick second layer (for example, Au) having good conductivity. The thickness of the Schottky barrier electrode layer (6) is preferably 1000 mm or more, and preferably functions as a bonding electrode.
[0021]
【The invention's effect】
In the present invention, the external quantum efficiency of the semiconductor light emitting device can be improved and the reliability can be improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a semiconductor light emitting device according to the present invention applied to a blue light emitting diode device.
(1) ... Semiconductor substrate, (2) ... Low resistance substrate, (3) ... First semiconductor region (n-type semiconductor region), (4) ... Active layer, (5) ... Second (6) ·· Schottky barrier electrode layer, (6a) · · Ti layer, (6b) · · Al layer, (7) · · transparent electrode, (7a) · · Ni Layer, (7b) ... Au layer, (8) ... connecting electrode,

Claims (4)

低抵抗性基板と、該低抵抗性基板の一方の主面に形成された窒化ガリウム系化合物半導体から成る第一の導電形の第一の半導体領域と、活性層と、窒化ガリウム系化合物半導体から成る第一の導電形と反対の第二の導電形の第二の半導体領域とが積層されて成る半導体基体とを有し、
該半導体基体の一方の主面の一部に前記第二の半導体領域との界面にショットキ障壁を形成するショットキバリア電極層が形成され、
該ショットキバリア電極層と前記半導体基体の一方の主面が光透過性及び導電性を有する電極によって被覆され、
前記ショットキバリア電極層は、傾斜面を有する円錐台形状に形成されることを特徴とする半導体発光素子。
A low-resistance substrate, a first semiconductor region of a first conductivity type formed of a gallium nitride-based compound semiconductor formed on one main surface of the low-resistance substrate, an active layer, and a gallium nitride-based compound semiconductor And a semiconductor substrate formed by laminating a second semiconductor region of the second conductivity type opposite to the first conductivity type,
A Schottky barrier electrode layer that forms a Schottky barrier at the interface with the second semiconductor region is formed on a part of one main surface of the semiconductor substrate,
One main surface of the Schottky barrier electrode layer and the semiconductor substrate is covered with an electrode having optical transparency and conductivity,
The semiconductor light emitting device, wherein the Schottky barrier electrode layer is formed in a truncated cone shape having an inclined surface.
前記ショットキバリア電極層は、Ti、Al、Cr、Ta、Cu、Pt、Pd、Auから選択された1種又は2種以上の金属により形成される請求項1に記載の半導体発光素子。  2. The semiconductor light emitting element according to claim 1, wherein the Schottky barrier electrode layer is formed of one or more metals selected from Ti, Al, Cr, Ta, Cu, Pt, Pd, and Au. 光透過性を有する前記電極は、Ni、Au、ITO(インジウム錫酸化物)から選択された1種又は2種以上の物質により形成される請求項1又は2に記載の半導体発光素子。  3. The semiconductor light emitting element according to claim 1, wherein the electrode having optical transparency is formed of one or more substances selected from Ni, Au, and ITO (indium tin oxide). 電圧を印加して前記半導体発光素子を順方向にバイアスした場合、透明の前記電極と前記第二の半導体領域との界面に電流が流れ、前記ショットキバリア電極層と前記第二の半導体領域との界面には実質的に電流が流れない請求項1〜3のいずれか1項に記載の半導体発光素子。  When a voltage is applied to bias the semiconductor light emitting element in the forward direction, a current flows through the interface between the transparent electrode and the second semiconductor region, and the Schottky barrier electrode layer and the second semiconductor region The semiconductor light-emitting device according to claim 1, wherein substantially no current flows through the interface.
JP2000106397A 2000-04-07 2000-04-07 Semiconductor light emitting device Expired - Fee Related JP3975388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000106397A JP3975388B2 (en) 2000-04-07 2000-04-07 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000106397A JP3975388B2 (en) 2000-04-07 2000-04-07 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2001291899A JP2001291899A (en) 2001-10-19
JP3975388B2 true JP3975388B2 (en) 2007-09-12

Family

ID=18619570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000106397A Expired - Fee Related JP3975388B2 (en) 2000-04-07 2000-04-07 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3975388B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6791119B2 (en) 2001-02-01 2004-09-14 Cree, Inc. Light emitting diodes including modifications for light extraction
US6740906B2 (en) 2001-07-23 2004-05-25 Cree, Inc. Light emitting diodes including modifications for submount bonding
US7211833B2 (en) 2001-07-23 2007-05-01 Cree, Inc. Light emitting diodes including barrier layers/sublayers
JP4602079B2 (en) * 2002-07-22 2010-12-22 クリー・インコーポレーテッド LIGHT EMITTING DIODE INCLUDING BARRIER LAYER AND METHOD FOR MANUFACTURING SAME
US7795623B2 (en) 2004-06-30 2010-09-14 Cree, Inc. Light emitting devices having current reducing structures and methods of forming light emitting devices having current reducing structures
US20060002442A1 (en) * 2004-06-30 2006-01-05 Kevin Haberern Light emitting devices having current blocking structures and methods of fabricating light emitting devices having current blocking structures
US7335920B2 (en) 2005-01-24 2008-02-26 Cree, Inc. LED with current confinement structure and surface roughening
JP5350833B2 (en) * 2009-02-20 2013-11-27 株式会社東芝 Semiconductor light emitting device, semiconductor light emitting device, and method for manufacturing semiconductor light emitting device
JP2010267797A (en) * 2009-05-14 2010-11-25 Showa Denko Kk Semiconductor light emitting element, lamp, illuminating apparatus, electronic apparatus, and electrode
US8643046B2 (en) 2009-05-14 2014-02-04 Toyoda Gosei Co., Ltd. Semiconductor light-emitting element, method for producing the same, lamp, lighting device, electronic equipment, mechanical device and electrode
JP5281536B2 (en) * 2009-10-09 2013-09-04 スタンレー電気株式会社 Manufacturing method of semiconductor light emitting device
JP2012124306A (en) 2010-12-08 2012-06-28 Toyoda Gosei Co Ltd Semiconductor light-emitting element

Also Published As

Publication number Publication date
JP2001291899A (en) 2001-10-19

Similar Documents

Publication Publication Date Title
US5369289A (en) Gallium nitride-based compound semiconductor light-emitting device and method for making the same
US8436368B2 (en) Methods of forming light emitting devices having current reducing structures
EP1278249B1 (en) Group-iii nitride compound semiconductor device
US20100213481A1 (en) Light emitting device
JP5628615B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP2014179654A (en) GaN-BASED COMPOUND SEMICONDUCTOR LIGHT EMITTING ELEMENT, AND METHOD OF MANUFACTURING THE SAME
KR20150139630A (en) Contact for a semiconductor light emitting device
JP3975388B2 (en) Semiconductor light emitting device
US20180366613A1 (en) Ultraviolet light-emitting device
TW200935626A (en) Light emitting diode and method for manufactring the same
US7095059B2 (en) Group III nitride compound semiconductor device
KR20100122998A (en) Light emitting device and method for fabricating the same
WO2018147320A1 (en) Semiconductor light emitting element
EP2257998B1 (en) Semiconductor light-emitting device with a highly reflective ohmic-electrode and method for fabrication thereof
KR20060035424A (en) Gan compound semiconductor light emitting element and method of manufacturing the same
JP5620846B2 (en) Semiconductor light emitting device and manufacturing method thereof
KR101032987B1 (en) Semiconductor light emitting device
CN112652689B (en) Light emitting diode and manufacturing method thereof
JP3214367B2 (en) Method for manufacturing semiconductor light emitting device
JP3987956B2 (en) Semiconductor light emitting device
JP2661009B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2001291898A (en) Semiconductor light-emitting element
TW201517312A (en) Semiconductor light emitting device and its manufacturing method
KR101018227B1 (en) Vertically structured nitridetype light emitting diode and method of the same
KR20200129079A (en) Semiconductor light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070606

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees