JP3974679B2 - Receiver with piezoelectric crystal oscillation circuit - Google Patents

Receiver with piezoelectric crystal oscillation circuit Download PDF

Info

Publication number
JP3974679B2
JP3974679B2 JP06262997A JP6262997A JP3974679B2 JP 3974679 B2 JP3974679 B2 JP 3974679B2 JP 06262997 A JP06262997 A JP 06262997A JP 6262997 A JP6262997 A JP 6262997A JP 3974679 B2 JP3974679 B2 JP 3974679B2
Authority
JP
Japan
Prior art keywords
analog
signal
voltage
input
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06262997A
Other languages
Japanese (ja)
Other versions
JPH1013278A (en
Inventor
ホルトフォエス クヌドゥ
ヴィヘルン アンドレアス
エー クノップ ヴィルフリード
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV, Koninklijke Philips Electronics NV filed Critical Koninklijke Philips NV
Publication of JPH1013278A publication Critical patent/JPH1013278A/en
Application granted granted Critical
Publication of JP3974679B2 publication Critical patent/JP3974679B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J7/00Automatic frequency control; Automatic scanning over a band of frequencies
    • H03J7/02Automatic frequency control
    • H03J7/04Automatic frequency control where the frequency control is accomplished by varying the electrical characteristics of a non-mechanically adjustable element or where the nature of the frequency controlling element is not significant
    • H03J7/08Automatic frequency control where the frequency control is accomplished by varying the electrical characteristics of a non-mechanically adjustable element or where the nature of the frequency controlling element is not significant using varactors, i.e. voltage variable reactive diodes
    • H03J7/12Combination of automatic frequency control voltage with stabilised varactor supply voltage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • H03L1/02Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only
    • H03L1/022Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature
    • H03L1/023Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature by using voltage variable capacitance diodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/16Multiple-frequency-changing
    • H03D7/165Multiple-frequency-changing at least two frequency changers being located in different paths, e.g. in two paths with carriers in quadrature

Description

【0001】
【発明の属する技術分野】
この発明は周波数がさらに自動周波数制御回路により調整され得る温度制御圧電結晶発振器(TCXO)を有する無線周波数受信機(またはトランシーバの受信部分)に関するものである。無線周波数受信機の特に、がしかし排他的ではない例は、CCIR Radiopaging Code No. 1(別名POCSAGとして知られている)のような時分割プロトコル(protocol)に従って操作されるディジタル広域ページャ(digital wide area pager) である。
【0002】
【従来の技術】
TCXOは、発振器の安定度へ温度変化の影響があってもほぼ一定となるように出力周波数を引き出したり調整したりするため、バラクタ(可変容量ダイオード)のような同調可能な要素を含んでいる。無線周波数受信機が自動周波数制御を含む時は、その出力はまたバラクタへ連結される。時分割操作で周波数の安定度を維持するためには、バラクタ制御電圧はコンデンサのような蓄積素子に保持されねばならぬし、または周波数安定度を確実にするためできるだけ速やかに発生されねばならない。いわゆるサーミスタにより発生する温度補償電圧はほぼ瞬時に有用となるが、自動周波数制御ループは時間遅延を招く自動周波数制御電圧を発生し始めねばらなぬ。
【0003】
添付図面のうちの図1は、集積化無線周波数受信回路で発生され、欧州特許出願明細書EP-B1-0401919 号に記載されているようにオフ・チップ(off・chip)TCXO10に供給される温度補償および自動周波数制御電圧を同時に印加するための1回路配置を示している。温度補償電流を表わすオン・チップ(on ・chip)電流源12は電流・電流変換器として作用する第1演算増幅器16の反転入力13へ供給される。第1演算増幅器16の出力15はピンP4へスイッチ17により接続されている。ピンP4はオフ・チップコンデンサCの一方の側へ接続され、コンデンサの他の側はTCXO10の入力へ連結されている。演算増幅器16の出力15はピンP4および入力13へ接続されるピンP3の間に接続されるオフ・チップ抵抗18により反転入力13へもどり連結されている。TCXOのバラクタ用オフ・チップバイアス設定抵抗20は、演算増幅器16の非反転入力14へピンP5により接続されている。
【0004】
オン・チップ自動周波数制御電流源22は電流・電流変換器として作用する第2演算増幅器26の反転入力23へ接続されている。演算増幅器26の非反転入力24は自動周波数制御用オフセット(offset)を提供するよう演算増幅器16の出力15へオン・チップで接続されている。演算増幅器26の出力25はオン・チップスイッチ27と、ピンP1およびP2に接続されるオフ・チップ抵抗28とにより入力23へ饋還されている。さらに別の抵抗30がピンP1およびTCXO10の入力間に接続されている。
【0005】
抵抗18は常時存在する温度補償電流を自動周波数制御電流と整合させるべく作用する。抵抗28は電圧に対する電流の割合いを調整するべく備えられる。抵抗30とコンデンサCの組合わせは、スイッチ17と27が開(すなわち非導通)で、それによりTCXO10が非同調になるのを防止する時そのバラクタバイアスを保持するよう作用する。
【0006】
【発明が解決しようとする課題】
集積回路として実施される時のこの公知の回路の欠点は、それが5つのピンも必要とし、スイッチ17および27が漏洩電流源となり、演算増幅器16および26が互換性を必要とし、演算増幅器の出力が高くなるとコンデンサCが浮遊性となって他の電源からのノイズを受け入れ易くなること等である。
【0007】
従って本発明の目的は、上記これら欠点の克服可能な圧電結晶発振回路を備えた受信機を提供せんとするものである。
【0008】
この目的を達成するため、本発明は、アナログ電圧同調信号用の入力部を有する温度制御圧電結晶発振器と、アナログ温度補償制御信号を発生する第1手段と、アナログ自動周波数制御信号を生成する第2手段と、前記アナログ温度補償信号及び前記アナログ自動周波数制御信号を加算するとともにアナログ和信号を生成する手段と、前記アナログ和信号用の入力部及び前記発振器の入力部に結合した出力部を有する電流・電圧変換手段とを具えることを特徴とする受信機を提供する。
【0009】
また、本発明は、受信信号用の第1入力部、温度制御圧電結晶発振器から供給される局部発振信号用の第2入力部及び周波数ダウン変換信号用の出力部を有する周波数ダウン変換段を具えた集積化受信機において、アナログ温度補償制御信号を発生する第1手段と、アナログ自動周波数制御信号を生成する第2手段と、前記アナログ温度補償信号及び前記アナログ自動周波数制御信号を加算するとともにアナログ和信号を生成する手段と、前記アナログ和信号用の入力部及びアナログ同調信号用の前記発振器の入力部に結合した出力部を有する電流・電圧変換手段とを具えることを特徴とする集積化受信機を提供する。
【0010】
唯1つの電流・電圧変換手段、例えば固定利得を有する1つの演算増幅器を具えた本発明に係る受信機によって、互換性の課題および第2演算増幅器用のチップ領域と余分の電流の必要性が排除される。
【0011】
オフ・チップTCXOへ集積化受信機を連結させる場合、図1に示された公知の回路に比べ必要とするピンが1個へり、それは1つの演算増幅器しか使用しないからである。集積回路設計者により実施がなされる時、1本のピンの節約は重要である。
【0012】
【発明の実施の形態】
以下添付図面を参照し実施例により実施の形態を詳細に説明する。
図面中同一の参照番号は対応する特徴を示すのに使用されている。
図2を参照するに、零IF受信機は無線周波数増幅器34へ連結されるアンテナ32を具えている。無線周波数増幅器34の出力は信号分割ノード36へ印加され、その複数の出力はクァドラチュア(quadrature)関連混合器38,40の第1入力へ印加されている。TCXO10は混合器38の第2入力へ連結され、90度移相器42によりさらに混合器40の第2入力へ連結されている。混合器38,40からの混合積はそれぞれの低域通過フィルタ44,46へ印加され零IF成分を選択する。後混合増幅器48,50はフィルタ44,46の出力へ連結されている。増幅制限器52,54の入力は増幅器48,50それぞれの出力へ連結されている。制限器52,54の出力は出力端子58にデータ信号を発生する復調器56へ連結されている。
【0013】
サーミスタのような温度感知器60はTCXO10の入力64へ連結されている。自動周波数制御回路62は制限器52,54の組合わされた出力を受信するため連結された入力と、TCXOの入力64へ連結される出力を有している。集積回路として製作できないアンテナ32およびTCXO10とは別に、受信機の他の部分は1つまたは複数の集積回路として製作されてもよい。
【0014】
以下温度補償および自動周波数制御信号を図3図示TCXO10へ印加する方法について説明する。電流源12からの温度補償信号は、電流源22により表わされる自動周波数制御電流とともに加算ノード66に印加される。バイアス電流源68は実施例に示される固定利得を有する唯1つの演算増幅器70を具えた電流・電圧変換器の入力でノード66からの出力と加算される。スイッチ72は演算増幅器70の出力をコンデンサCとTCXO10の周波数制御入力64とに順次連結するオフ・チップ抵抗30へと連結する。
【0015】
抵抗28は自動周波数制御電流源22へピンP1により連結され、自動周波数制御に起因する相対的に微細な電流変化を温度補償電流源12における相対的に粗い変化と整合させるよう作用する。抵抗76はピンP2により演算増幅器70の入力へ連結される。抵抗76は温度補償電流に関し加算ノード66の利得をセットする。温度補償電流は温度について所望の補償特性を選定するよう、例えばTCXO10をいわば4−5kHz以内に補償するよう選択され、抵抗28はTCXO周波数をいわば所望周波数の1kHz以内により微細に制御するよう選択される。
【0016】
バイアス抵抗20はピンP4によりバイアス電流源68を調整して演算増幅器70のオフセットをセットするよう連結される。
【0017】
動作中、受信機がスイッチ・オン、すなわち有効な電池保存プロトコルに従って付勢されると、スイッチ72は閉とされ、温度補償および自動周波数制御電流の加算はその周波数を制御すべくTCXO10に印加される。受信機がプロトコルにより要求されて付勢が解かれる時には、スイッチ72は開となりコンデンサCはTCXO10の周波数が維持されるよう前に印加された補償電圧を蓄積する。図1に示された回路配置と比較して、図3のそれはピンが1つ少なく、このことは集積回路設計者にとり重要で、チップ領域のみならず電流をも節約する1つの演算増幅器および1つのスイッチを使用するのみである。
【0018】
ここに開示した事実から、他の修正も当業者にとり自明であろう。かかる修正は無線周波数受信機の設計、製作および使用に際しすでに知られている他の特徴およびそれらの部品を含んでいてもよく、それらはここですでに説明してきた一部の特徴にとって代ってもまたは付加されてもよい。本出願の特許請求の範囲は複数の特徴の特定の組合わせについて規定してきたが、このことは本出願の開示の範囲が、また、ここに明白にまたは暗に開示されてきた新規な特徴またはそれらの新規な組合わせまたはそれらの一般化したものを含んでいてもよいし、それが現クレームと同じ発明に関係しようがしまいが、およびそれが現発明を実施するのと同じ技術的課題のなにかまたはすべてを解決しようがしまいが、包含していてもよいことを理解すべきである。
【0019】
出願人はこれによってこの出願またはそこから導出されるなにか別の出願の遂行の間に、新らしいクレームがかかる特徴および/またはかかる特徴の組合わせについて規定するかもしれないことを注意しておく。
【図面の簡単な説明】
【図1】TCXOへ温度補償および自動周波数制御を適用した公知の方法のブロック略線図。
【図2】零IF受信機のブロック略線図。
【図3】図2図示受信機でTCXOへ温度補償および自動周波数制御を適用する方法のブロック略線図。
【符号の説明】
10 温度制御圧電結晶発振器
12 温度補償電流源
16,26,70 演算増幅器
17,27,72 スイッチ
18,20,28,30,76 抵抗
22 自動周波数制御電流源
32 アンテナ
34 無線周波数増幅器
38,40 クァドラチュア関連混合器
42 90度移相器
44,46 低域通過フィルタ
48,50 増幅器
52,54 増幅制限器
56 復調器
60 温度感知器
62 自動周波数制御回路
68 バイアス電流源
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a radio frequency receiver (or receiver portion of a transceiver) having a temperature controlled piezoelectric crystal oscillator (TCXO) whose frequency can be further adjusted by an automatic frequency control circuit. A particularly but non-exclusive example of a radio frequency receiver is a digital wide pager operated according to a time division protocol such as CCIR Radiopaging Code No. 1 (also known as POCSAG). area pager).
[0002]
[Prior art]
The TCXO includes a tunable element such as a varactor (variable-capacitance diode) in order to extract and adjust the output frequency so that the stability of the oscillator is almost constant even if it is affected by temperature changes. . When the radio frequency receiver includes automatic frequency control, its output is also coupled to the varactor. In order to maintain frequency stability in a time-sharing operation, the varactor control voltage must be held in a storage element such as a capacitor or must be generated as quickly as possible to ensure frequency stability. Although the temperature compensation voltage generated by a so-called thermistor is useful almost instantaneously, the automatic frequency control loop must begin to generate an automatic frequency control voltage that causes a time delay.
[0003]
FIG. 1 of the accompanying drawings is generated by an integrated radio frequency receiver circuit and fed to an off-chip TCXO 10 as described in European Patent Application EP-B1-0401919. 1 shows a circuit arrangement for applying temperature compensation and automatic frequency control voltage simultaneously. An on-chip current source 12 representing temperature compensated current is supplied to the inverting input 13 of a first operational amplifier 16 which acts as a current-to-current converter. The output 15 of the first operational amplifier 16 is connected to the pin P4 by a switch 17. Pin P4 is connected to one side of off-chip capacitor C, and the other side of the capacitor is connected to the input of TCXO10. The output 15 of the operational amplifier 16 is connected back to the inverting input 13 by an off-chip resistor 18 connected between the pin P4 and the pin P3 connected to the input 13. The TCXO varactor off-chip bias setting resistor 20 is connected to the non-inverting input 14 of the operational amplifier 16 by a pin P5.
[0004]
The on-chip automatic frequency controlled current source 22 is connected to the inverting input 23 of a second operational amplifier 26 which acts as a current / current converter. The non-inverting input 24 of the operational amplifier 26 is connected on-chip to the output 15 of the operational amplifier 16 to provide an automatic frequency control offset. The output 25 of the operational amplifier 26 is fed back to the input 23 by an on-chip switch 27 and an off-chip resistor 28 connected to pins P1 and P2. Yet another resistor 30 is connected between the inputs of pins P1 and TCXO10.
[0005]
Resistor 18 serves to match the always present temperature compensated current with the automatic frequency control current. Resistor 28 is provided to adjust the ratio of current to voltage. The combination of resistor 30 and capacitor C serves to maintain that varactor bias when switches 17 and 27 are open (ie, non-conducting) thereby preventing TCXO 10 from becoming untuned.
[0006]
[Problems to be solved by the invention]
The disadvantage of this known circuit when implemented as an integrated circuit is that it also requires five pins, switches 17 and 27 are leakage current sources, operational amplifiers 16 and 26 are compatible, and When the output becomes high, the capacitor C becomes floating, and it becomes easy to accept noise from other power sources.
[0007]
Accordingly, an object of the present invention is to provide a receiver including a piezoelectric crystal oscillation circuit capable of overcoming these drawbacks.
[0008]
To achieve this object, the present invention provides a temperature controlled piezoelectric crystal oscillator having an input for an analog voltage tuning signal, a first means for generating an analog temperature compensation control signal, and a first means for generating an analog automatic frequency control signal. 2 means, means for adding the analog temperature compensation signal and the analog automatic frequency control signal and generating an analog sum signal, and an output section coupled to the input section for the analog sum signal and the input section of the oscillator Provided is a receiver comprising current / voltage conversion means.
[0009]
The present invention also includes a frequency down conversion stage having a first input unit for a received signal, a second input unit for a local oscillation signal supplied from a temperature controlled piezoelectric crystal oscillator, and an output unit for a frequency down conversion signal. In the integrated receiver, the first means for generating the analog temperature compensation control signal, the second means for generating the analog automatic frequency control signal, and adding the analog temperature compensation signal and the analog automatic frequency control signal to the analog receiver Integration comprising: means for generating a sum signal; and current / voltage conversion means having an input for said analog sum signal and an output coupled to the input of said oscillator for analog tuning signal Provide a receiver.
[0010]
With the receiver according to the invention comprising only one current-voltage conversion means, for example one operational amplifier with fixed gain, compatibility issues and the need for chip area and extra current for the second operational amplifier Eliminated.
[0011]
When an integrated receiver is connected to an off-chip TCXO, it requires one pin compared to the known circuit shown in FIG. 1, since only one operational amplifier is used. When implemented by an integrated circuit designer, saving one pin is important.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments will be described below in detail with reference to the accompanying drawings.
In the drawings, the same reference numerals are used to indicate corresponding features.
Referring to FIG. 2, the zero IF receiver includes an antenna 32 coupled to a radio frequency amplifier 34. The output of the radio frequency amplifier 34 is applied to a signal splitting node 36, the plurality of outputs being applied to the first inputs of quadrature related mixers 38,40. The TCXO 10 is connected to the second input of the mixer 38 and is further connected to the second input of the mixer 40 by a 90 degree phase shifter 42. The mixed products from the mixers 38 and 40 are applied to the respective low-pass filters 44 and 46 to select the zero IF component. Postmixing amplifiers 48 and 50 are coupled to the outputs of filters 44 and 46. The inputs of the amplification limiters 52 and 54 are connected to the outputs of the amplifiers 48 and 50, respectively. The outputs of the limiters 52, 54 are connected to a demodulator 56 which generates a data signal at an output terminal 58.
[0013]
A temperature sensor 60 such as a thermistor is coupled to the input 64 of the TCXO 10. The automatic frequency control circuit 62 has an input coupled to receive the combined output of the limiters 52, 54 and an output coupled to the input 64 of the TCXO. Apart from the antenna 32 and the TCXO 10 that cannot be manufactured as an integrated circuit, other parts of the receiver may be manufactured as one or more integrated circuits.
[0014]
A method for applying the temperature compensation and automatic frequency control signal to the TCXO 10 shown in FIG. 3 will be described below. The temperature compensation signal from current source 12 is applied to summing node 66 along with the automatic frequency control current represented by current source 22. Bias current source 68 is summed with the output from node 66 at the input of a current to voltage converter with only one operational amplifier 70 having a fixed gain as shown in the embodiment. Switch 72 couples the output of operational amplifier 70 to off-chip resistor 30 which in turn couples to capacitor C and frequency control input 64 of TCXO 10.
[0015]
Resistor 28 is coupled to automatic frequency control current source 22 by pin P1 and serves to match a relatively fine current change resulting from automatic frequency control with a relatively coarse change in temperature compensated current source 12. Resistor 76 is coupled to the input of operational amplifier 70 by pin P2. Resistor 76 sets the gain of summing node 66 with respect to the temperature compensation current. The temperature compensation current is selected to select a desired compensation characteristic for temperature, for example, the TCXO 10 is selected to compensate within 4-5 kHz, and the resistor 28 is selected to finely control the TCXO frequency within 1 kHz of the desired frequency. The
[0016]
Bias resistor 20 is coupled to adjust bias current source 68 by pin P4 to set the offset of operational amplifier 70.
[0017]
In operation, when the receiver is switched on, ie, energized according to an effective battery storage protocol, switch 72 is closed and temperature compensation and automatic frequency control current addition are applied to TCXO 10 to control its frequency. The When the receiver is de-energized as required by the protocol, switch 72 is opened and capacitor C stores the compensation voltage applied before the frequency of TCXO 10 is maintained. Compared to the circuit arrangement shown in FIG. 1, that of FIG. 3 has one less pin, which is important for integrated circuit designers, one operational amplifier and one that saves current as well as chip area Only one switch is used.
[0018]
From the facts disclosed herein, other modifications will be apparent to those skilled in the art. Such modifications may include other features and parts thereof already known in the design, manufacture and use of radio frequency receivers, which replace some of the features already described herein. Or may be added. Although the claims of this application have defined specific combinations of features, this means that the scope of the disclosure of this application may also be different from the novel features or disclosures explicitly or implicitly disclosed herein. May include these novel combinations or their generalizations, which may relate to the same invention as the current claim, and the same technical problem as it does the present invention. It should be understood that any or all may be solved, but may be included.
[0019]
It is noted that applicants may thereby define new features and / or combinations of such features during the performance of this application or any other application derived therefrom.
[Brief description of the drawings]
FIG. 1 is a schematic block diagram of a known method in which temperature compensation and automatic frequency control are applied to a TCXO.
FIG. 2 is a schematic block diagram of a zero IF receiver.
3 is a block schematic diagram of a method for applying temperature compensation and automatic frequency control to a TCXO with the receiver shown in FIG. 2;
[Explanation of symbols]
10 Temperature Control Piezoelectric Crystal Oscillator 12 Temperature Compensation Current Source 16, 26, 70 Operational Amplifier 17, 27, 72 Switch 18, 20, 28, 30, 76 Resistor 22 Automatic Frequency Control Current Source 32 Antenna 34 Radio Frequency Amplifier 38, 40 Quadrature Related mixer 42 90 degree phase shifter 44, 46 Low pass filter 48, 50 Amplifier 52, 54 Amplification limiter 56 Demodulator 60 Temperature sensor 62 Automatic frequency control circuit 68 Bias current source

Claims (8)

アナログ電圧同調信号用の入力部を有する温度制御圧電結晶発振器と、アナログ温度補償制御信号を発生する第1手段と、アナログ自動周波数制御信号を生成する第2手段と、前記アナログ温度補償信号及び前記アナログ自動周波数制御信号を加算するとともにアナログ和信号を生成する手段と、前記アナログ和信号用の入力部及び前記発振器の入力部に結合した出力部を有する電流・電圧変換手段とを具えることを特徴とする受信機。A temperature controlled piezoelectric crystal oscillator having an input for an analog voltage tuning signal; a first means for generating an analog temperature compensation control signal; a second means for generating an analog automatic frequency control signal; the analog temperature compensation signal; Means for adding an analog automatic frequency control signal and generating an analog sum signal; and current / voltage conversion means having an input portion for the analog sum signal and an output portion coupled to the input portion of the oscillator. Features receiver. 前記電流・電圧変換手段が、固定利得を有する唯一つの演算増幅器を具えることを特徴とする請求項1記載の受信機。  2. A receiver according to claim 1, wherein said current / voltage converting means comprises a single operational amplifier having a fixed gain. 前記電流・電圧変換手段の出力側に設けたスイッチング手段と、前記スイッチング手段と前記発振器の入力部との間に結合され、前記スイッチング手段が前記発振器の入力部への導通路を遮断するために開であると常に、前記電流・電圧手段の出力電圧を保持する電圧保持手段とを具えることを特徴とする請求項1記載の受信機。  The switching means provided on the output side of the current / voltage conversion means is coupled between the switching means and the input part of the oscillator so that the switching means interrupts the conduction path to the input part of the oscillator. 2. The receiver according to claim 1, further comprising voltage holding means for holding the output voltage of the current / voltage means whenever it is open. 前記温度制御圧電結晶発振器の所望の温度補償特性を選択する利得設定手段を具え、前記加算する手段は、前記アナログ和信号を生成する際に前記アナログ温度補償信号及び自動周波数制御信号を加算することを特徴とする請求項1記載の受信機。Gain setting means for selecting a desired temperature compensation characteristic of the temperature controlled piezoelectric crystal oscillator is provided, and the adding means adds the analog temperature compensation signal and the automatic frequency control signal when generating the analog sum signal. The receiver according to claim 1. 受信信号用の第1入力部、温度制御圧電結晶発振器から供給される局部発振信号用の第2入力部及び周波数ダウン変換信号用の出力部を有する周波数ダウン変換段を具えた集積化受信機において、アナログ温度補償制御信号を発生する第1手段と、アナログ自動周波数制御信号を生成する第2手段と、前記アナログ温度補償信号及び前記アナログ自動周波数制御信号を加算するとともにアナログ和信号を生成する手段と、前記アナログ和信号用の入力部及びアナログ同調信号用の前記発振器の入力部に結合した出力部を有する電流・電圧変換手段とを具えることを特徴とする集積化受信機。In an integrated receiver comprising a frequency down conversion stage having a first input for a received signal, a second input for a local oscillation signal supplied from a temperature controlled piezoelectric crystal oscillator, and an output for a frequency down converted signal First means for generating an analog temperature compensation control signal; second means for generating an analog automatic frequency control signal; means for adding the analog temperature compensation signal and the analog automatic frequency control signal and generating an analog sum signal And an integrated receiver having an input connected to the analog sum signal and an output coupled to the input of the oscillator for the analog tuning signal. 前記電流・電圧変換手段の出力側に設けたスイッチング手段と、前記スイッチング手段と前記発振器の入力部との間に結合され、前記スイッチング手段が前記発振器の入力部への導通路を遮断するために開であると常に、前記電流・電圧手段の出力電圧を保持する電圧保持手段とを具えることを特徴とする請求項5記載の集積化受信機。  The switching means provided on the output side of the current / voltage conversion means is coupled between the switching means and the input part of the oscillator so that the switching means interrupts the conduction path to the input part of the oscillator. 6. The integrated receiver according to claim 5, further comprising voltage holding means for holding the output voltage of said current / voltage means whenever it is open. 前記温度制御圧電結晶発振器の所望の温度補償特性を選択する利得設定手段を具え、前記加算する手段は、前記アナログ和信号を生成する際に前記アナログ温度補償信号及び自動周波数制御信号を加算することを特徴とする請求項5記載の集積化受信機Gain setting means for selecting a desired temperature compensation characteristic of the temperature controlled piezoelectric crystal oscillator is provided, and the adding means adds the analog temperature compensation signal and the automatic frequency control signal when generating the analog sum signal. 6. The integrated receiver according to claim 5, 前記温度制御電圧結晶発振器が前記集積化受信機から分離され、集積されていない抵抗を、自動周波数制御信号源、加算ノード及びバイアス電流源にそれぞれのピンによって結合し、前記スイッチング手段を、一つのピンにより前記電圧保持手段に結合したことを特徴とする請求項7記載の集積化受信機。  The temperature controlled voltage crystal oscillator is separated from the integrated receiver, and a non-integrated resistor is coupled to an automatic frequency control signal source, a summing node and a bias current source by respective pins, and the switching means includes 8. The integrated receiver according to claim 7, wherein said integrated receiver is coupled to said voltage holding means by a pin.
JP06262997A 1996-03-20 1997-03-17 Receiver with piezoelectric crystal oscillation circuit Expired - Lifetime JP3974679B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL96301920:3 1996-03-20
EP96301920 1996-03-20

Publications (2)

Publication Number Publication Date
JPH1013278A JPH1013278A (en) 1998-01-16
JP3974679B2 true JP3974679B2 (en) 2007-09-12

Family

ID=8224857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06262997A Expired - Lifetime JP3974679B2 (en) 1996-03-20 1997-03-17 Receiver with piezoelectric crystal oscillation circuit

Country Status (4)

Country Link
US (1) US6075979A (en)
JP (1) JP3974679B2 (en)
DE (1) DE69722494T2 (en)
SG (1) SG54478A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7035607B2 (en) * 1998-05-29 2006-04-25 Silicon Laboratories Inc. Systems and methods for providing an adjustable reference signal to RF circuitry
US7221921B2 (en) * 1998-05-29 2007-05-22 Silicon Laboratories Partitioning of radio-frequency apparatus
US7242912B2 (en) * 1998-05-29 2007-07-10 Silicon Laboratories Inc. Partitioning of radio-frequency apparatus
US6970717B2 (en) * 2001-01-12 2005-11-29 Silicon Laboratories Inc. Digital architecture for radio-frequency apparatus and associated methods
US7024221B2 (en) * 2001-01-12 2006-04-04 Silicon Laboratories Inc. Notch filter for DC offset reduction in radio-frequency apparatus and associated methods
US7228109B2 (en) * 2001-01-12 2007-06-05 Silicon Laboratories Inc. DC offset reduction in radio-frequency apparatus and associated methods
US6804497B2 (en) 2001-01-12 2004-10-12 Silicon Laboratories, Inc. Partitioned radio-frequency apparatus and associated methods
US7092675B2 (en) * 1998-05-29 2006-08-15 Silicon Laboratories Apparatus and methods for generating radio frequencies in communication circuitry using multiple control signals
JP4121640B2 (en) * 1998-11-12 2008-07-23 富士通株式会社 Local oscillation circuit and receiving circuit including the local oscillation circuit
SE518416C2 (en) * 1998-12-22 2002-10-08 Ericsson Telefon Ab L M Antenna Switch Module
US6903617B2 (en) 2000-05-25 2005-06-07 Silicon Laboratories Inc. Method and apparatus for synthesizing high-frequency signals for wireless communications
US7138858B2 (en) 2001-01-12 2006-11-21 Silicon Laboratories, Inc. Apparatus and methods for output buffer circuitry with constant output power in radio-frequency circuitry
US20030232613A1 (en) * 2001-01-12 2003-12-18 Kerth Donald A. Quadrature signal generation in radio-frequency apparatus and associated methods
US7158574B2 (en) * 2001-01-12 2007-01-02 Silicon Laboratories Inc. Digital interface in radio-frequency apparatus and associated methods
US7177610B2 (en) * 2001-01-12 2007-02-13 Silicon Laboratories Inc. Calibrated low-noise current and voltage references and associated methods
US7035611B2 (en) * 2001-01-12 2006-04-25 Silicon Laboratories Inc. Apparatus and method for front-end circuitry in radio-frequency apparatus
US7031683B2 (en) * 2001-01-12 2006-04-18 Silicon Laboratories Inc. Apparatus and methods for calibrating signal-processing circuitry
US8467483B2 (en) * 2002-03-15 2013-06-18 Silicon Laboratories Inc. Radio-frequency apparatus and associated methods
FR2870002B1 (en) * 2004-05-07 2006-09-08 Thales Sa THERMOSTATE QUARTZ OSCILLATOR AND APPLICATION TO A DISTRESS BEACON
KR100668910B1 (en) * 2006-02-15 2007-01-12 삼성전자주식회사 Apparatus and method for sharing a tcxo of mobile terminal using global positioning system in mobile communication system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3871893D1 (en) * 1987-09-28 1992-07-16 Siemens Ag METHOD FOR TEMPERATURE COMPENSATION OF A VOLTAGE CONTROLLED QUARTZ OCILLATOR IN A PHASE CONTROL CIRCUIT.
GB2233513A (en) * 1989-06-09 1991-01-09 Philips Electronic Associated Oscillators
FI91821C (en) * 1991-02-22 1994-08-10 Nokia Mobile Phones Ltd Automatic frequency control switching of the radio telephone
FI90383C (en) * 1992-03-09 1994-01-25 Nokia Mobile Phones Ltd Method for stabilizing the reference frequency in a radio telephone
JP3186500B2 (en) * 1995-03-29 2001-07-11 三菱電機株式会社 Radio apparatus and radio apparatus adjustment method
US5691666A (en) * 1995-06-07 1997-11-25 Owen; Joseph C. Full threshold FM deviation compression feedback demodulator and method
US5740525A (en) * 1996-05-10 1998-04-14 Motorola, Inc. Method and apparatus for temperature compensation of a reference oscillator in a communication device
US5731742A (en) * 1996-12-17 1998-03-24 Motorola Inc. External component programming for crystal oscillator temperature compensation

Also Published As

Publication number Publication date
JPH1013278A (en) 1998-01-16
DE69722494T2 (en) 2004-05-19
SG54478A1 (en) 1998-11-16
US6075979A (en) 2000-06-13
DE69722494D1 (en) 2003-07-10

Similar Documents

Publication Publication Date Title
JP3974679B2 (en) Receiver with piezoelectric crystal oscillation circuit
US7333779B2 (en) PLL circuit and radio communication terminal apparatus using the same
JP3839117B2 (en) PLL circuit and wireless communication terminal device using the same
JP3700933B2 (en) Receiver and communication terminal
JP2001320238A (en) Numerical control variable oscillator
US4355413A (en) Phase locked loop circuit
WO1996013095A1 (en) A second generation low noise microwave voltage controlled oscillator
JPS61251313A (en) Electronic tuning type fm receiver
CA2210547C (en) A microwave vco having reduced supply voltage
JP3563678B2 (en) High frequency receiver
JP2001044872A (en) Semiconductor integrated circuit for processing reception signal
US5604926A (en) Phase locked loop circuit current mode feedback
EP0797304B1 (en) Improvements in or relating to radio receivers
KR960706712A (en) FM demodulator with threshold extension and receiver comprising such an FM demodulator
US20060114071A1 (en) Phase locked loop
JP3281466B2 (en) FM receiver
JP3060708B2 (en) FM receiver
JPH09246865A (en) Voltage controlled quadrature oscillator
JPH0349473Y2 (en)
JPS6014526A (en) All-band double heterodyne am receiver
JP3438951B2 (en) FM radio receiver
JP3433030B2 (en) Radio receiver
JPH0564101A (en) Receiver with at least two kinds of demodulation circuits sharing tuner device
JP3129351B2 (en) Mobile phone
JPH0715242A (en) Mixer circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070515

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term