JP3972920B2 - NC machine tool and correction processing method - Google Patents

NC machine tool and correction processing method Download PDF

Info

Publication number
JP3972920B2
JP3972920B2 JP2004124263A JP2004124263A JP3972920B2 JP 3972920 B2 JP3972920 B2 JP 3972920B2 JP 2004124263 A JP2004124263 A JP 2004124263A JP 2004124263 A JP2004124263 A JP 2004124263A JP 3972920 B2 JP3972920 B2 JP 3972920B2
Authority
JP
Japan
Prior art keywords
surface element
uncut
amount
reference point
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004124263A
Other languages
Japanese (ja)
Other versions
JP2005309673A (en
Inventor
浩之 中野
尚 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2004124263A priority Critical patent/JP3972920B2/en
Publication of JP2005309673A publication Critical patent/JP2005309673A/en
Application granted granted Critical
Publication of JP3972920B2 publication Critical patent/JP3972920B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Numerical Control (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Description

本発明は、NC工作機械において工具およびテーブルを相対移動させてワークを加工し、同機械上で加工表面を測定して許容値を超える削り残しを補正加工するNC工作機械および補正加工方法に関する。   The present invention relates to an NC machine tool and a correction machining method for machining a workpiece by relatively moving a tool and a table in an NC machine tool, and measuring a machining surface on the machine to correct an uncut residue exceeding an allowable value.

従来、マシニングセンタなどのNC工作機械において、目標形状に加工すべくワークを基準NCデータに従って加工した後、目標形状に対するワークの加工誤差を計測し、加工誤差が許容範囲から外れた部分を補正加工する補正加工方法が特許文献1に記載されている。   Conventionally, in an NC machine tool such as a machining center, a workpiece is machined according to reference NC data to be machined into a target shape, and then a machining error of the workpiece with respect to the target shape is measured, and a portion where the machining error is outside the allowable range is corrected. A correction processing method is described in Patent Document 1.

この特許文献1に記載されたNC工作機械では、主軸に、工具に代えてタッチセンサを取り付け、計測用NCデータに従って加工表面に設定された測定点に順次タッチセンサを接触させ、各測定点の3次元座標値(X,Y,Z)を測定し、この各測定点の測定3次元座標値と測定点に対応する目標形状における目標3次元座標値とから加工誤差を算出し、この加工誤差が許容範囲内から外れる部分を抽出し、この抽出された部分について補正NCデータが作成されて補正加工が実施される。   In the NC machine tool described in Patent Document 1, a touch sensor is attached to the spindle instead of a tool, and the touch sensor is sequentially brought into contact with the measurement points set on the machining surface in accordance with the measurement NC data. A three-dimensional coordinate value (X, Y, Z) is measured, and a machining error is calculated from the measured three-dimensional coordinate value of each measurement point and a target three-dimensional coordinate value in a target shape corresponding to the measurement point. Is extracted from the allowable range, corrected NC data is created for the extracted portion, and correction processing is performed.

また、特許文献2に記載されたNC工作機械では、ワークの加工表面を構成する複数の面要素を傾斜角度毎に分類し、この分類した面要素毎の工具軌跡上に工具先端形状を投影し、この投影した工具先端形状に基づいて各面要素における削り残し量を演算し、この演算した削り残し量が許容範囲内から外れる面要素を抽出して補正加工を実施するようにしている。
特開平6−277981号公報(第4頁段落番号[0026]から第6頁段落番号[0035]、図1) 特開2003−108207号公報(第3頁段落番号[0020]から第3頁段落番号[0028]、図2)
Further, in the NC machine tool described in Patent Document 2, a plurality of surface elements constituting the workpiece machining surface are classified for each inclination angle, and the tool tip shape is projected onto the tool trajectory for each classified surface element. Then, based on the projected tool tip shape, an uncut amount is calculated for each surface element, and a surface element whose calculated uncut amount is outside the allowable range is extracted and correction processing is performed.
JP-A-6-277781 (paragraph number [0026] from page 4 to paragraph number [0035] from page 6 [FIG. 1]) JP 2003-108207 A (3rd page paragraph number [0020] to 3rd page paragraph number [0028], FIG. 2)

ところで、特許文献1に記載されたNC工作機械の補正加工方法では、目標形状を構成する全ての面要素について加工精度を測定しているので、計測に多大の時間とコストを必要とする。ワークの形状測定では、正確な測定が必要なほど測定点の数が増加し、また形状が複雑になれば測定点の数も増加する。例えば、塑性加工などに用いられる金型では、測定点の数が数万から数十万点にもなり、計測が事実上不可能になることがある。   By the way, in the NC machine tool correction machining method described in Patent Document 1, machining accuracy is measured for all the surface elements constituting the target shape, and thus a great deal of time and cost are required for measurement. In workpiece shape measurement, the number of measurement points increases as accurate measurement is required, and the number of measurement points increases as the shape becomes complicated. For example, in a mold used for plastic working or the like, the number of measurement points may be tens of thousands to hundreds of thousands, and measurement may be virtually impossible.

NC工作機械により加工されたワークの加工精度は、目標形状が同じであっても、機械の熱変位、ワークの材質や剛性、工具の剛性、熱膨張や摩耗等によって変化する。このため、特許文献2に記載されているNC工作機械における各面要素の削り残し量の演算方法では、加工中の工具先端位置が目標形状に対して一致していることが前提となり、機械の熱変位、ワークの変形等を加味した各面要素削り残し量は演算することができない。   The machining accuracy of a workpiece machined by an NC machine tool varies depending on the thermal displacement of the machine, the material and rigidity of the workpiece, the rigidity of the tool, thermal expansion and wear, etc., even if the target shape is the same. For this reason, in the calculation method of the remaining amount of each surface element in the NC machine tool described in Patent Document 2, it is assumed that the tool tip position during machining matches the target shape. The remaining uncut amount of each surface element considering thermal displacement, workpiece deformation, etc. cannot be calculated.

本発明は、上記事情に鑑みてなされたもので、機械の熱変位、ワークの材質などに係りなく削り残し量を推定することができるとともに、加工後のワークの形状測定に要する時間を大幅に短縮し、ワークの補正加工を効率的に行うことができるNC工作機械の補正加工方法を提供することである。   The present invention has been made in view of the above circumstances, and it is possible to estimate the amount of uncut material regardless of the thermal displacement of the machine, the material of the workpiece, etc., and to greatly reduce the time required for measuring the shape of the workpiece after machining. An object of the present invention is to provide a correction machining method for an NC machine tool that can be shortened and can efficiently perform workpiece correction machining.

上記の課題を解決するため、請求項1に記載の発明の構成上の特徴は、ワークを保持するテーブルと、工具が装着される主軸とを備え、ワークを目標形状に加工するための基準NCデータに従って主軸およびテーブルを相対的に移動させ、ワークを工具により目標形状に加工するNC工作機械において、テーブル上に保持されたワークの形状を測定する測定装置を備え、ワークの加工表面を構成する複数の面要素を面特性別に複数の区分に分類し、該各区分毎に面特性に基づく削り残し量に対応する誤差係数を決定して記憶しておき、複数の面要素のうちの少なくとも1つの面要素に設定された基準点を測定装置によって測定し、基準点の測定値から基準点の削り残し量を求め、基準点のある面要素が属する区分の誤差係数と各未測定面要素が属する区分の誤差係数との関係および基準点の削り残し量とから各未測定面要素の推定削り残し量を演算し、推定削り残し量の演算結果に基づいて各未測定面要素の補正加工の要否を判断することである。    In order to solve the above-described problem, the structural feature of the invention described in claim 1 is that a reference NC for machining a workpiece into a target shape, comprising a table for holding the workpiece and a spindle on which a tool is mounted. An NC machine tool that relatively moves a spindle and a table according to data and processes the workpiece into a target shape with a tool, and includes a measuring device that measures the shape of the workpiece held on the table, and constitutes a machining surface of the workpiece A plurality of surface elements are classified into a plurality of sections according to surface characteristics, and an error coefficient corresponding to an uncut amount based on the surface characteristics is determined and stored for each section, and at least one of the plurality of surface elements is stored. The reference point set for one surface element is measured by a measuring device, the uncut amount of the reference point is determined from the measured value of the reference point, the error factor of the category to which the surface element with the reference point belongs and each unmeasured surface element Calculate the estimated remaining amount of each unmeasured surface element from the relationship with the error coefficient of the category to which it belongs and the uncut amount of the reference point, and perform correction processing of each unmeasured surface element based on the calculation result of the estimated remaining amount. It is to judge necessity.

請求項2に係る発明の構成上の特徴は、請求項1において、複数の面要素のうち同一の工具で加工する面要素グループを形成し、これら面要素グループ毎の少なくとも1つの面要素に基準点を設定するようにしたことである。    The structural feature of the invention according to claim 2 is that, in claim 1, a surface element group to be processed with the same tool is formed among the plurality of surface elements, and a reference is made to at least one surface element for each of the surface element groups. The point is set.

請求項3に係る発明の構成上の特徴は、請求項1または請求項2において、 補正加工の要否の判断は、予め決められた削り残し許容最大値を含む所定の要測定範囲を設定し、該要測定範囲と各未測定面要素の推定削り残し量とを比較し、要測定範囲内に推定削り残し量を有する未測定面要素を要測定面要素として測定装置で測定し、推定削り残し量が要測定範囲を越える未測定面要素と、要測定面要素のうちで測定結果が削り残し許容最大値を越える測定面要素に対して補正加工が必要と判断し、推定削り残し量が要測定範囲を越えない未測定面要素と、要測定面要素のうちで測定結果が削り残し許容最大値を越えない測定面要素に対して補正加工が不要と判断するようにしたするようにしたことである。    The structural feature of the invention according to claim 3 is that, in claim 1 or claim 2, in determining whether or not correction processing is necessary, a predetermined required measurement range including a predetermined maximum allowable uncut value is set. , Compare the required measurement range with the estimated uncut amount of each unmeasured surface element, measure the unmeasured surface element with the estimated uncut amount within the required measurement range as the required measurement surface element, and estimate the scrap It is determined that correction processing is required for unmeasured surface elements whose residual amount exceeds the required measurement range and measurement surface elements whose required measurement results exceed the allowable maximum value among the measurement surface elements that require measurement. Judged that correction processing is unnecessary for unmeasured surface elements that do not exceed the required measurement range and measurement surface elements that require measurement surface elements that do not exceed the maximum allowable value. That is.

請求項4に係る発明の構成上の特徴は、請求項1から請求項3のいづれか一項において、面特性は、面要素毎の形状および寸法に係る特性であることにある。    The structural feature of the invention according to claim 4 is that, in any one of claims 1 to 3, the surface characteristics are characteristics related to the shape and dimensions of each surface element.

請求項5に係る発明の構成上の特徴は、ワークを保持するテーブルと、工具が装着される主軸と、ワークを目標形状に加工するための基準NCデータを記憶するデータ記憶部と、データ記憶部に記憶された基準NCデータに従って主軸およびテーブルを相対的に移動させ、ワークを工具により目標形状に加工する制御部とから構成されるNC工作機械において、テーブル上に保持されたワークの形状を測定する測定装置を備え、データ記憶部は、ワークの加工表面を構成する複数の面要素を面特性別に分類された複数の区分と、該区分毎に面特性に基づく削り残し量に対応する誤差係数とを記憶し、制御部は、基準NCデータによって加工されたワークの複数の面要素を複数の区分に分類する分類手段と、複数の面要素のうちの少なくとも1つの面要素に設定された基準点を測定装置によって測定する測定手段と、基準点の測定値から基準点の削り残し量を求める検出手段と、基準点のある面要素が属する区分の誤差係数と各未測定面要素が属する区分の誤差係数との関係および基準点の削り残し量とから各未測定面要素の推定削り残し量を演算する演算手段と、推定削り残し量の演算結果に基づいて各未測定面要素の補正加工の要否を判断する判断手段とを備えたことである。   The structural features of the invention according to claim 5 are a table for holding a workpiece, a spindle on which a tool is mounted, a data storage unit for storing reference NC data for machining the workpiece into a target shape, and a data storage. The shape of the workpiece held on the table is determined in an NC machine tool composed of a control unit that relatively moves the spindle and the table according to the reference NC data stored in the unit and processes the workpiece into a target shape with a tool. The measuring device is equipped with a measuring device, and the data storage unit includes a plurality of sections in which a plurality of surface elements constituting the work surface of the work are classified according to surface characteristics, and an error corresponding to the uncut amount based on the surface characteristics for each section. The coefficient is stored, and the control unit classifies the plurality of surface elements of the workpiece processed by the reference NC data into a plurality of sections, and at least one of the plurality of surface elements. Measuring means for measuring a reference point set on the surface element by a measuring device, detection means for determining the uncut amount of the reference point from the measured value of the reference point, and an error coefficient of a classification to which the surface element having the reference point belongs Based on the relationship between the error coefficient of the category to which each unmeasured surface element belongs and the uncut amount of the reference point, the calculation means for calculating the estimated uncut amount of each unmeasured surface element, and the calculation result of the estimated uncut amount And determining means for determining whether or not each unmeasured surface element needs to be corrected.

請求項6に係る発明の構成上の特徴は、請求項5において、面特性は、面要素毎の形状および寸法に係る特性であることにある。   The structural feature of the invention according to claim 6 is that, in claim 5, the surface characteristics are characteristics related to the shape and dimensions of each surface element.

上記のように構成した請求項1に係る発明においては、工具により加工された加工表面を構成する少なくとも1つの面要素に基準点を設定し、この基準点を測定して削り残し量を求め、基準点の削り残し量から未測定面の削り残し量を推定演算によって求める。これにより、機械の熱変位、ワークの材質などの影響を同じように受けて加工された加工表面の1つの面要素に設定された基準点の削り残し量を測定装置によって実際に測定し、この基準点の実測した削り残し量に基づいて各未測定面要素の削り残し量を推定演算するので、各未測定面要素について機械の熱変位、ワークの材質などの影響を含んだ削り残し量を推定演算することができる。   In the invention according to claim 1 configured as described above, a reference point is set on at least one surface element constituting the machining surface machined by the tool, the reference point is measured, and an uncut amount is obtained. The amount of uncut surface on the unmeasured surface is obtained by estimation calculation from the amount of uncut material on the reference point. As a result, the uncut amount of the reference point set on one surface element of the machined surface processed in the same manner affected by the thermal displacement of the machine, the material of the workpiece, etc. is actually measured by the measuring device. Since the remaining amount of unmeasured surface element is estimated and calculated based on the measured remaining amount of the reference point, the unremoved amount including the thermal displacement of the machine and the material of the workpiece is calculated for each unmeasured surface element. An estimation calculation can be performed.

上記のように構成した請求項2に係る発明においては、同一工具毎に面要素グループを形成し、この面要素グループ毎に基準点を設定して測定するようにしたので、工具の種類に起因する削り残し量を同一面要素グループで共通にしたうえで、未測定面要素の削り残し量を推定演算できる。このため、工具の種類に起因する削り残し量のデータがなくても、各未測定面要素について工具の種類に起因する削り残し量を含んだ削り残し量を推定演算できる。   In the invention according to claim 2 configured as described above, a surface element group is formed for each same tool, and a reference point is set and measured for each surface element group. It is possible to estimate and calculate the remaining amount of unmeasured surface element after making the remaining amount to be cut common to the same surface element group. For this reason, even if there is no data of the remaining amount of cutting due to the type of tool, the remaining amount of cutting including the remaining amount of cutting due to the type of tool can be estimated and calculated for each unmeasured surface element.

上記のように構成した請求項3に係る発明においては、各未測定面要素について推定演算した推定削り残し量が、削り残し許容値の上限部分を含む所定の要測定範囲にある未測定面要素についてのみ測定装置で測定するので、測定時間を大幅に短縮することができる。測定した削り残し量が削り残し許容最大値を超える面要素および推定削り残し量が要測定範囲を超える未測定面要素について補正加工が必要と判断するので、補正加工の必要な面要素を短時間で正確にみつけ出すことができる。   In the invention according to claim 3 configured as described above, the unmeasured surface element in which the estimated uncut amount calculated for each unmeasured surface element is within a predetermined measurement range including the upper limit portion of the uncut allowance value Since only the measurement is performed with the measuring device, the measurement time can be greatly shortened. Since it is judged that correction processing is necessary for surface elements whose measured uncut amount exceeds the maximum allowable uncut amount and unmeasured surface elements whose estimated remaining amount exceeds the required measurement range, the surface elements that require correction processing are determined in a short time. To find out exactly.

上記のように構成した請求項4に係る発明においては、ワークの加工表面を構成する複数の面要素を面の傾斜角度、半径の大きさ等の面特性別に複数の区分に分類し、各未測定面要素の削り残し量を各未測定面要素の面特性および基準点の測定削り残し量から推定演算するので、各未測定面要素の削り残し量を現実に則して正確に推定することができる。    In the invention according to claim 4 configured as described above, a plurality of surface elements constituting the machining surface of the workpiece are classified into a plurality of categories according to surface characteristics such as the inclination angle of the surface and the size of the radius. Estimate the uncut amount of the measured surface element from the surface characteristics of each unmeasured surface element and the measured uncut amount of the reference point, and accurately estimate the uncut amount of each unmeasured surface element according to the actual situation. Can do.

上記のように構成した請求項5に係る発明においては、測定手段が工具により加工された加工表面を構成する少なくとも1つの面要素に基準点を設定して測定し、検出手段が測定結果から削り残し量を求め、演算手段が基準点の削り残し量から未測定面の削り残し量を推定演算によって求める。これにより、機械の熱変位、ワークの材質などの影響を同じように受けて加工された加工表面の1つの面要素に設定された基準点の削り残し量を測定装置によって実際に測定し、この基準点の実測した削り残し量に基づいて各未測定面要素の削り残し量を推定演算する。この結果、NC工作機械は、各未測定面要素について機械の熱変位、ワークの材質などの影響を含んだ削り残し量を推定演算することができる。   In the invention according to claim 5 configured as described above, the measuring means sets and measures a reference point on at least one surface element constituting the machining surface machined by the tool, and the detection means scrapes from the measurement result. The remaining amount is obtained, and the calculation means obtains the uncut surface remaining amount on the unmeasured surface from the remaining uncut amount of the reference point by estimation calculation. As a result, the uncut amount of the reference point set on one surface element of the machined surface processed in the same manner affected by the thermal displacement of the machine, the material of the workpiece, etc. is actually measured by the measuring device. Based on the measured uncut amount of the reference point, the uncut amount of each unmeasured surface element is estimated and calculated. As a result, the NC machine tool can estimate and calculate the uncut amount including the influence of the thermal displacement of the machine, the material of the workpiece, and the like for each unmeasured surface element.

上記のように構成した請求項6に係る発明においては、ワークの加工表面を構成する複数の面要素を面の傾斜角度、半径の大きさ等の面特性別に複数の区分に分類し、各未測定面要素の削り残し量を各未測定面要素の面特性および基準点の測定削り残し量から推定演算するので、NC工作機械は、各未測定面要素の削り残し量を現実に則して正確に推定することができる。    In the invention according to claim 6 configured as described above, a plurality of surface elements constituting the machining surface of the workpiece are classified into a plurality of categories according to surface characteristics such as the inclination angle of the surface, the size of the radius, and the like. Since the uncut amount of the measured surface element is estimated and calculated from the surface characteristics of each unmeasured surface element and the measured uncut amount of the reference point, the NC machine tool will determine the uncut amount of each unmeasured surface element according to the reality. It can be estimated accurately.

以下、本発明の実施の形態に係るNC工作機械の補正加工方法を図面に基づいて説明する。図1において10はNC工作機械としてのマシニングセンタで、ワークWを保持するテーブル12と、工具Tが装着される主軸15とを備え、ワークWを目標形状に加工するための基準NCデータに従って主軸15およびテーブル12を相対的に移動させ、ワークWを目標形状となるように工具Tにより加工する。主軸15には、工具TによるワークWの加工を終了した後に、図2に示すワークの形状を測定する測定装置18が工具Tに換えて装着され、テーブル12上に保持された加工済みワークの加工表面を構成する複数の面要素のうちの少なくとも1つの面要素に設定された基準点を測定する。    Hereinafter, a correction machining method for an NC machine tool according to an embodiment of the present invention will be described with reference to the drawings. In FIG. 1, reference numeral 10 denotes a machining center as an NC machine tool, which includes a table 12 for holding a workpiece W and a spindle 15 on which a tool T is mounted, and the spindle 15 according to reference NC data for machining the workpiece W into a target shape. And the table 12 is moved relatively, and the workpiece W is machined with the tool T so as to have a target shape. After the machining of the workpiece W by the tool T is finished, the measuring device 18 for measuring the shape of the workpiece shown in FIG. 2 is attached to the spindle 15 in place of the tool T, and the processed workpiece held on the table 12 is mounted. A reference point set on at least one of the plurality of surface elements constituting the machining surface is measured.

マシニングセンタ10は、ベッド11を備えており、このベッド11上にはX軸方向(左右方向)に沿って移動するスライドテーブル12およびZ軸方向(前後方向)に沿って移動するコラム13が備えられている。コラム13はY軸方向(上下方向)に沿って移動する主軸台14を備えており、主軸台14にはモータにより回転駆動され、先端に工具Tが着脱可能に装着される主軸15が軸承されている。スライドテーブル12上には、チルトテーブル16がX軸と平行なA軸回りに揺動可能に装架され、チルトテーブル16上には、ワークWを保持するテーブルとして回転テーブル17がA軸と直交するB軸回りに回転可能に支承されている。   The machining center 10 includes a bed 11, and a slide table 12 that moves along the X-axis direction (left-right direction) and a column 13 that moves along the Z-axis direction (front-back direction) are provided on the bed 11. ing. The column 13 includes a headstock 14 that moves in the Y-axis direction (vertical direction). The spindle stock 14 is rotatably driven by a motor, and a spindle 15 on which a tool T is detachably mounted is supported on the tip. ing. A tilt table 16 is mounted on the slide table 12 so as to be swingable about an A axis parallel to the X axis, and on the tilt table 16, a rotary table 17 as a table for holding the workpiece W is orthogonal to the A axis. It is supported so as to be rotatable around the B axis.

測定装置18は、タッチプローブ19が本体20に移動可能に装架されて軸線方向に前方に突出され、圧縮スプリングにより初期姿勢に保持されている。タッチプローブ19は先端に球体部21が形成され、球体部21が外力を受けて任意の方向に傾動し、その傾動角度により球体部21の変位量が検出される。本体20の後方には装着部22が突設され、装着部22が主軸15の先端に形成された嵌合穴に嵌装され、測定装置18が定位置に停止された主軸15に装着される。測定装置18が主軸15に装着された状態において、タッチプローブ19の球体部21の中心を通る軸線は、主軸15の軸線と一致する。本体20には接続端子23が後方に突出され、測定装置18が主軸15に装着されると電気端子23が主軸台14に設けられた電気端子と接続され、球体部21の変位量に関する情報が制御装置24に伝送される。   In the measuring device 18, the touch probe 19 is movably mounted on the main body 20, protrudes forward in the axial direction, and is held in an initial posture by a compression spring. The touch probe 19 has a sphere portion 21 formed at the tip, and the sphere portion 21 tilts in an arbitrary direction by receiving an external force, and the displacement amount of the sphere portion 21 is detected by the tilt angle. A mounting portion 22 projects from the rear of the main body 20, the mounting portion 22 is fitted into a fitting hole formed at the tip of the main shaft 15, and the measuring device 18 is mounted on the main shaft 15 stopped at a fixed position. . In a state where the measuring device 18 is attached to the main shaft 15, the axis passing through the center of the sphere 21 of the touch probe 19 coincides with the axis of the main shaft 15. A connection terminal 23 projects rearward from the main body 20, and when the measuring device 18 is attached to the main shaft 15, the electric terminal 23 is connected to an electric terminal provided on the main shaft 14, and information on the displacement amount of the sphere 21 is obtained. It is transmitted to the control device 24.

図3に示すように、マシニングセンタ10の制御装置24は、データ記憶部25および駆動制御部26を備え、例えばCAD/CAM30にて生成された基準NCデータは、データ記憶部25に基準NCデータファイル27となって記憶されている。そして、駆動制御部26が、基準NCデータファイル27から基準NCデータを読み込み、その基準NCデータに従ってスライドテーブル12、コラム13、主軸台14、チルトテーブル16および回転テーブル17のX,Y,Z,A,B軸の各駆動軸用モータ29を駆動し、主軸15用の主軸モータを回転駆動する。これにより、主軸15の先端に装着された工具Tが、ワークWを目標形状となるように加工する。なお、本発明のデータ記憶部は、本実施の形態のデータ記憶部25およびCAD/CAM30に相当し、本発明の制御部は、本実施の形態の制御装置24およびCAD/CAM30に相当する。   As shown in FIG. 3, the control device 24 of the machining center 10 includes a data storage unit 25 and a drive control unit 26. For example, reference NC data generated by the CAD / CAM 30 is stored in the data storage unit 25 as a reference NC data file. 27 is stored. Then, the drive control unit 26 reads the reference NC data from the reference NC data file 27, and in accordance with the reference NC data, the X, Y, Z, and X of the slide table 12, the column 13, the headstock 14, the tilt table 16, and the rotary table 17 are read. The drive shaft motors 29 for the A and B axes are driven, and the main shaft motor for the main shaft 15 is driven to rotate. As a result, the tool T attached to the tip of the main spindle 15 processes the workpiece W so as to have a target shape. The data storage unit of the present invention corresponds to the data storage unit 25 and the CAD / CAM 30 of the present embodiment, and the control unit of the present invention corresponds to the control device 24 and the CAD / CAM 30 of the present embodiment.

主軸15に測定装置18を装着し、テーブル12上に保持された加工済みワークの加工表面を構成する複数の面要素のうちの少なくとも1つの面要素に設定された基準点を測定するために、計測用NCデータがCAD/CAM30にて作成され、計測用NCデータファイル28となってデータ記憶部25に記憶されている。基準点は、X,Z軸を含むX−Z平面と平行な平面で、ワークWの中央部分に位置する面要素の中心部分に設定すると測定誤差を小さくすることができる。   In order to measure a reference point set on at least one surface element among a plurality of surface elements constituting a processed surface of a processed workpiece held on the table 12 by mounting the measuring device 18 on the spindle 15. The measurement NC data is created by the CAD / CAM 30 and is stored in the data storage unit 25 as the measurement NC data file 28. If the reference point is a plane parallel to the XZ plane including the X and Z axes and is set at the center portion of the surface element located at the center portion of the workpiece W, the measurement error can be reduced.

CAD/CAM30は、基準点を設定された面要素の基準点における面法線ベクトルを求め、この面法線ベクトルが主軸15の軸線と一致させるようにワークWを回転させ、且つタッチプローブ19の先端が基準点から面法線ベクトル方向に所定量離れた測定開始位置に測定装置18をワークWに対して位置させた後に、タッチプローブ19を面法線方向から基準点に接近させて球体部21を基準点が設定された面要素に接触させ、これによりタッチプローブ19を本体20に対して微少量後退させるように、チルトテーブル16および回転テーブル17をA,B軸回りに回転させるとともに、スライドテーブル12、コラム13および主軸台をX,Y,Z軸方向に移動させるための計測用NCデータを作成し、計測用NCデータファイル28としてデータ記憶部25に記憶させる。このような球体部21と面要素との接触によるタッチプローブ19の後退量を本体20に内蔵された変位形で測定し、このタッチプローブ19の測定後退量と、目標形状におけるタッチプローブ19の設定後退量との差から基準点が設定された面要素の削り残し量がCAD/CAM30で求められる。なお、測定装置18の測定誤差を減少するために、回転テーブル17上にX−Z平面と平行でY方向の高さが既知の基準面を設け、この基準面の高さを前述と同様の計測用NCデータで測定した測定値に基づいてタッチプローブ19の測定後退量を校正するようにしてもよい。    The CAD / CAM 30 obtains a surface normal vector at the reference point of the surface element for which the reference point is set, rotates the workpiece W so that the surface normal vector coincides with the axis of the main axis 15, and the touch probe 19 After the measuring device 18 is positioned with respect to the workpiece W at the measurement start position whose tip is separated from the reference point by a predetermined amount in the surface normal vector direction, the touch probe 19 is moved closer to the reference point from the surface normal direction. 21, the tilt table 16 and the rotary table 17 are rotated around the A and B axes so that the touch probe 19 is slightly moved backward with respect to the main body 20. NC data for measurement is created to move the slide table 12, column 13 and headstock in the X, Y and Z axis directions, and the NC data file for measurement 2 It is stored in the data storage unit 25 as. The retraction amount of the touch probe 19 due to the contact between the spherical portion 21 and the surface element is measured by a displacement type built in the main body 20, and the measurement retraction amount of the touch probe 19 and the setting of the touch probe 19 in the target shape are set. From the difference from the retraction amount, the uncut amount of the surface element on which the reference point is set is obtained by CAD / CAM 30. In order to reduce the measurement error of the measuring device 18, a reference surface parallel to the XZ plane and having a known height in the Y direction is provided on the rotary table 17, and the height of this reference surface is the same as described above. The measurement retraction amount of the touch probe 19 may be calibrated based on the measurement value measured by the measurement NC data.

ワークWの一例として成形用金型を図4に示す。成形用金型31は、加工表面を構成する複数の面要素32から構成され、面要素32は形状に基づいて複数種類に分類される。すなわち、金型31の底面等を形作る平面33、金型31の底隅部等を形作る球面34、金型31の側面角部等を形作るコーナ曲面35に大別される。各形状の面要素32は形状特有の寸法によってさらに区分され、ワークWの加工表面を構成する複数の面要素32は、面要素32毎の形状および寸法に係る面特性別に複数の区分に分類される。形状特有の寸法は、平面33については加工時のX−Y平面に対する傾斜角度θであり、球面34およびコーナ曲面35については半径Rである。加工表面に生じる削り残し量の大きさの程度が区分毎に試加工した表面の実測値等によって求められ、面特性に基づく削り残し量に対応する誤差係数が区分毎に決定してデータ記憶部25に記憶されている。   As an example of the workpiece W, a molding die is shown in FIG. The molding die 31 is composed of a plurality of surface elements 32 constituting a processed surface, and the surface elements 32 are classified into a plurality of types based on the shape. That is, it is roughly divided into a plane 33 that forms the bottom surface of the mold 31, a spherical surface 34 that forms the bottom corner of the mold 31, and a corner curved surface 35 that forms the side corners of the mold 31. The surface elements 32 of each shape are further divided according to the shape-specific dimensions, and the plurality of surface elements 32 constituting the machining surface of the workpiece W are classified into a plurality of sections according to the surface characteristics related to the shape and dimensions of each surface element 32. The The dimension peculiar to the shape is an inclination angle θ with respect to the XY plane at the time of processing for the plane 33, and a radius R for the spherical surface 34 and the corner curved surface 35. The degree of the amount of uncut residue generated on the machined surface is obtained from the measured values of the surface that were trial-machined for each category, and an error coefficient corresponding to the uncut amount based on the surface characteristics is determined for each category and the data storage unit 25.

各区分の誤差係数は、傾斜角度θが0の平面の誤差係数を平面ベース値1とし、これに対して相対的に決められている。平面33の誤差係数k1は、図5に示すように傾斜角度θの増加につれて大きくなるグラフとして記憶されている。球面34の誤差係数k2は、図6に示すように球面の半径Rと工具の半径D/2との比2×R/Dが1のとき、1より大きい球面ベース値であり、比が大きくなるにつれて1に向かって漸減するグラフとして記憶されている。コーナ曲面35の誤差係数k3は、図7に示すように曲面の半径Rと工具の半径D/2との比2×R/Dが1のとき、1より大きく球面ベース値より小さい曲面ベース値であり、比が大きくなるにつれて1に向かって漸減するグラフとして記憶されている。なお、平面の傾斜角度θ、球面および曲面の半径Rと工具Tの半径D/2との比を夫々複数に区分し、区分毎に試加工した表面の実測値等に基づいて決定した誤差係数を割り付けてデータ記憶装置25に登録するようにしてもよい。   The error coefficient of each section is determined relative to an error coefficient of a plane having an inclination angle θ of 0 having a plane base value of 1. The error coefficient k1 of the plane 33 is stored as a graph that increases as the inclination angle θ increases as shown in FIG. The error coefficient k2 of the spherical surface 34 is a spherical base value larger than 1 when the ratio 2 × R / D between the spherical radius R and the tool radius D / 2 is 1, as shown in FIG. It is memorize | stored as a graph which decreases gradually toward 1 as it becomes. As shown in FIG. 7, when the ratio 2 × R / D between the radius R of the curved surface and the radius D / 2 of the tool is 1, the error coefficient k3 of the corner curved surface 35 is larger than 1 and smaller than the spherical base value. And is stored as a graph that gradually decreases toward 1 as the ratio increases. In addition, the ratio of the slope angle θ of the plane, the radius R of the spherical surface and the curved surface, and the radius D / 2 of the tool T is divided into a plurality of parts, and the error coefficient determined based on the measured value of the surface trial-worked for each section. May be registered in the data storage device 25.

CAD/CAM30において、基準点の測定値から基準点の削り残し量を求め、基準点のある面要素が属する区分の誤差係数と各未測定面要素が属する区分の誤差係数との関係および基準点Pの削り残し量とから各未測定面要素の推定削り残し量を演算する場合、例えば、基準点Pが加工時にX−Y平面と平行な平面33に設定されているとすると、金型31の底隅部の球面34の推定削り残し量は、球面34の半径Rと加工に使用した工具Tの半径D/2とに基づいて図6に示すグラフから誤差係数k2を求め、この誤差係数k2を基準点の削り残し量に乗算することにより推定演算される。金型31の傾斜したコーナ曲面36の推定削り残し量は、傾斜角度θに基づいて図5に示すグラフから傾斜角度θだけ傾斜した平面の誤差係数k1を求め、曲面36の半径Rと加工に使用した工具Tの直径Dとに基づいて図7に示すグラフから誤差係数k3を求め、これら誤差係数の積k1×k3を基準点の削り残し量に乗算することにより推定演算される。なお、凸球面あるいは凸曲面からなる面要素については、面要素が複数の素平面から構成されているとし、各素平面の傾斜角度θに対応する誤差係数k1から推定削り残し量を演算する。   In CAD / CAM 30, the uncut amount of the reference point is obtained from the measured value of the reference point, the relationship between the error coefficient of the section to which the surface element having the reference point belongs and the error coefficient of the section to which each unmeasured surface element belongs, and the reference point When calculating the estimated remaining amount of each unmeasured surface element from the uncut amount of P, for example, if the reference point P is set on a plane 33 parallel to the XY plane at the time of machining, the mold 31 6 is obtained from the graph shown in FIG. 6 based on the radius R of the spherical surface 34 and the radius D / 2 of the tool T used for machining. An estimation calculation is performed by multiplying the uncut amount of the reference point by k2. The estimated uncut amount of the curved corner surface 36 of the mold 31 is obtained by calculating an error coefficient k1 of a plane inclined by the inclination angle θ from the graph shown in FIG. An error coefficient k3 is obtained from the graph shown in FIG. 7 based on the diameter D of the tool T used, and is estimated and calculated by multiplying the uncut amount of the reference point by a product k1 × k3 of these error coefficients. For a surface element composed of a convex spherical surface or a convex curved surface, the surface element is assumed to be composed of a plurality of elementary planes, and the estimated uncut amount is calculated from an error coefficient k1 corresponding to the inclination angle θ of each elementary plane.

CAD/CAM30には、基準点の測定値から基準点の削り残し量を求め、 各未測定面要素の推定削り残し量を演算し、予め決められた削り残し許容最大値を含む所定の要測定範囲を設定し、該要測定範囲と各未測定面要素の推定削り残し量とを比較し、要測定範囲内に含まれるような推定削り残し量を有する未測定面要素を要測定面要素として測定装置18で測定し、推定削り残し量が要測定範囲を越える未測定面要素と、要測定面要素のうちで測定結果が削り残し許容最大値を越える測定面要素に対して補正加工が必要と判断するプログラムが記憶されている。そして、補正加工が必要と判断した面要素に対する補正加工用NCデータを作成し、補正加工用NCデータファイル37としてデータ記憶部25に記憶させる。   The CAD / CAM 30 calculates the uncut remaining amount of the reference point from the measured value of the reference point, calculates the estimated uncut amount of each unmeasured surface element, and performs a predetermined required measurement including a predetermined maximum allowable uncut amount Set the range, compare the required measurement range with the estimated uncut amount of each unmeasured surface element, and set the unmeasured surface element with the estimated uncut amount included in the required measurement range as the required measurement surface element Correction processing is required for unmeasured surface elements that are measured by the measurement device 18 and whose estimated uncut remaining amount exceeds the required measurement range, and for measured surface elements that require measurement results that exceed the allowable maximum value. Is stored. Then, NC data for correction processing is created for the surface element determined to require correction processing, and is stored in the data storage unit 25 as the NC data file 37 for correction processing.

次に、上記NC工作機械の補正加工方法の作動を説明する。CAD/CAM30には、図8、図9のプログラムが記憶されている。ワークWが回転テーブル17上に冶具により保持され、駆動制御部26が基準NCデータファイル27から基準NCデータを読み出して実行し、ワークWを成形用金型31に加工する(図8のS1)。     Next, the operation of the NC machine tool correction machining method will be described. The CAD / CAM 30 stores the programs shown in FIGS. The workpiece W is held on the rotary table 17 by a jig, and the drive control unit 26 reads and executes the reference NC data from the reference NC data file 27 to process the workpiece W into the molding die 31 (S1 in FIG. 8). .

基準NCデータによるワークWの加工が終了すると、ステップ2に示すようにNC工作機械10は、基準点Pの測定および未測定面要素の推定削り残し量の演算を実行する。このステップ2の詳細な動作を図9に示す。まず、CAD/CAM30は、予め基準NCデータを作成するために記憶されたワークWのモデルデータに基づいて、図4に示すようなワークWの目標形状の画面を図略の表示装置に表示する(図9のS100)。ワークWの目標形状の画面が表示されると、オペレータは、図略のタッチペンやマウスなどを用いてワークWの形状画面から測定する面要素Hの指定する(図9のS101)。なお、ここでは図4の金型31の中央の平面33を測定する面要素Hとして指定したものとする。測定する面要素が指定されるとCAD/CAM30は、マシニングセンタ10が測定を行うための計測用NCデータの作成を実行する。   When the machining of the workpiece W by the reference NC data is completed, as shown in step 2, the NC machine tool 10 performs the measurement of the reference point P and the calculation of the estimated remaining amount of the unmeasured surface element. The detailed operation of Step 2 is shown in FIG. First, the CAD / CAM 30 displays a screen of the target shape of the workpiece W as shown in FIG. 4 on a display device (not shown) based on the model data of the workpiece W stored in advance for creating the reference NC data. (S100 in FIG. 9). When the screen of the target shape of the workpiece W is displayed, the operator designates the surface element H to be measured from the shape screen of the workpiece W using a touch pen or a mouse (not shown) (S101 in FIG. 9). Here, it is assumed that the central plane 33 of the mold 31 in FIG. 4 is designated as the surface element H to be measured. When a surface element to be measured is designated, the CAD / CAM 30 creates NC data for measurement for the machining center 10 to perform measurement.

この計測用NCデータの作成は、ステップ101で指定された測定する面要素Hの基準点Pを作成する。この基準点Pの作成は、指定された面要素の中心を基準点Pとして設定する(図9のS102)。次いで、ステップ103に移行して基準点Pにおける面要素Hの面法線ベクトルを求める。ステップ104では、この基準点Pに面要素Hの面法線ベクトルの方向からタッチプローブ19を接近させて基準点Pの座標を測定するための計測用NCデータを作成する。具体的には、図4のワークWの面要素Hは、傾斜のない平面、すなわち傾斜角度θが0°の平面である。従って、基準点Pにおける面要素Hの面法線ベクトルは、鉛直方向に向かう。   The measurement NC data is created by creating the reference point P of the surface element H to be measured designated in step 101. In creating the reference point P, the center of the designated surface element is set as the reference point P (S102 in FIG. 9). Next, the routine proceeds to step 103, where the surface normal vector of the surface element H at the reference point P is obtained. In step 104, measurement NC data for measuring the coordinates of the reference point P by making the touch probe 19 approach the reference point P from the direction of the surface normal vector of the surface element H is created. Specifically, the surface element H of the workpiece W in FIG. 4 is a plane having no inclination, that is, a plane having an inclination angle θ of 0 °. Accordingly, the surface normal vector of the surface element H at the reference point P is directed in the vertical direction.

そして、この基準点Pに面要素Hの面法線ベクトルの方向からタッチプローブ19を接触させるためには、Z軸が基準点Pにおける面要素Hの面法線ベクトルと平行になるようにする必要がある。このため、面要素HがX軸およびY軸と平行になるようチルトテーブル16と回転テーブル17によってワークWをA軸およびB軸を中心に旋回させるNCデータと、X軸およびY軸のX―Y平面において、基準点Pの面法線ベクトル方向にタッチプローブ19を位置決めするために、スライドテーブル12および主軸台14を移動させるNCデータ、および、コラム13をワークWに接近させてタッチプローブ19を面要素Hに接触したZ方向の座標位置を検出するNCデータを作成する。このように、計測用NCデータが作成されると、CAD/CAM30は、データ記憶部25の計測用NCデータファイル28に計測用NCデータを転送して記憶させ、メイン制御部41を介して、マシニングセンター10の駆動制御部26に計測開始信号を付与する。   In order to bring the touch probe 19 into contact with the reference point P from the direction of the surface normal vector of the surface element H, the Z axis is made parallel to the surface normal vector of the surface element H at the reference point P. There is a need. Therefore, NC data for turning the workpiece W around the A axis and the B axis by the tilt table 16 and the rotary table 17 so that the surface element H is parallel to the X axis and the Y axis, and X− In the Y plane, in order to position the touch probe 19 in the direction of the surface normal vector of the reference point P, the NC data for moving the slide table 12 and the headstock 14 and the column 13 are brought close to the work W to touch the touch probe 19. NC data for detecting the coordinate position in the Z direction in contact with the surface element H is created. Thus, when the measurement NC data is created, the CAD / CAM 30 transfers and stores the measurement NC data in the measurement NC data file 28 of the data storage unit 25, and via the main control unit 41, A measurement start signal is given to the drive control unit 26 of the machining center 10.

すると、マシニングセンタ10の駆動制御部26は、データ記憶部25の計測用NCデータファイル28から計測用NCデータを読み込み、タッチプローブ19により、ワークWの基準点PのZ軸方向の座標位置を測定する。(S105)。そして、CAD/CAM30は、モデルデータに基づいたワークWの目標形状における基準点PのZ軸方向の座標位置と、実際に測定した基準点PのZ軸方向の座標位置を比較し、この基準点PのZ軸方向の座標位置の偏差、すなわち基準点Pの設定された面要素Hの削り残し量を求める。   Then, the drive control unit 26 of the machining center 10 reads the measurement NC data from the measurement NC data file 28 of the data storage unit 25 and measures the coordinate position in the Z-axis direction of the reference point P of the workpiece W by the touch probe 19. To do. (S105). Then, the CAD / CAM 30 compares the coordinate position in the Z-axis direction of the reference point P in the target shape of the workpiece W based on the model data with the coordinate position in the Z-axis direction of the actually measured reference point P. The deviation of the coordinate position of the point P in the Z-axis direction, that is, the uncut amount of the surface element H where the reference point P is set is obtained.

次に、CAD/CAM30は、モデル形状の認識を行う。このモデル形状の認識は主に、加工された工程と、形状および寸法によって面要素によって各面要素の面特性によって複数に分類する(S106)。具体的には、工具および送り速度等の加工条件の違う加工工程に分類するとともに、モデル形状を予め定められた形状、例えば、平面、コーナ曲面、球面などに分解して各面要素毎に分類する。図4に示す金型31においては、33は平面に分類され、35はコーナ曲面に分類され、34は球面に分類される。また、36のような傾斜したコーナ曲面は、平面とコーナ曲面の両方に属するように分類される。なお、図4の金型31では、説明を簡単にするため同一工具および同一加工条件で加工されたものとして形状のみによって分類されたものとする。そして、これら分類された各面要素はさらに、寸法によりさらに区分される。具体的には、平面33は所定の傾斜角度θ毎に区分され、コーナ曲面35および球面34では、工具の半径D/2とコーナ半径Rとの比に基づいて区分される。   Next, the CAD / CAM 30 recognizes the model shape. The recognition of the model shape is mainly classified into a plurality of types according to the surface characteristics of each surface element according to the processed element and the surface element according to the shape and dimensions (S106). Specifically, it is classified into machining processes with different machining conditions such as tools and feed rates, and the model shape is decomposed into predetermined shapes, for example, planes, corner curved surfaces, spherical surfaces, etc., and classified for each surface element To do. In the mold 31 shown in FIG. 4, 33 is classified as a plane, 35 is classified as a corner curved surface, and 34 is classified as a spherical surface. Further, an inclined corner curved surface such as 36 is classified so as to belong to both a flat surface and a corner curved surface. In addition, in the metal mold | die 31 of FIG. 4, suppose that it classify | categorized only by the shape as what was processed with the same tool and the same process conditions for easy description. These classified surface elements are further classified by dimensions. Specifically, the plane 33 is divided for each predetermined inclination angle θ, and the corner curved surface 35 and the spherical surface 34 are divided based on the ratio of the radius D / 2 of the tool to the corner radius R.

ステップ106のモデル形状の認識が完了すると、ステップ107に進み、ステップ105で求めた基準点Pの属する面要素Hの削り残し量から各未測定の面要素の削り残し量を推定する。この未測定面要素の削り残し量の推定には、誤差係数が用いられる。
この誤差係数は、図5から図7に示す如く、各面要素の区分に基づいて決められており、データ記憶部25に記憶されている。具体的には、平面33では、図5のように傾斜角度θが0°、すなわち水平面の削り残し量が最も小さく、傾斜角度が大きくなるに従って削り残し量が大きくなる。また、コーナ曲面および球面では図6、図7のように、工具の半径D/2とコーナ半径Rとの比が大きくなるに従って削り残し量が小さくなることが実験的に解明されている。また、平面33、コーナ曲面34および球面35の各面要素32には関連付けがあり、コーナ曲面34および球面35は工具の半径D/2とコーナ半径Rとの比が大きくなると平面とみなすことができる。このため、平面33の削り残し量に基づいてコーナ曲面34および球面35の削り残し量を推定できる。具体的には図5から明らかなように、水平面(傾斜角度θが0°)での誤差係数K1が1.0であり、このときの削り残し量が20μmとすると、コーナ曲面をほぼ平面とみなせる工具の半径D/2とコーナ半径2Rとの比が2.0付近以上であり、この比が2.0付近以上では図6より誤差係数K2が1.0であることから、20μm×1.0=20μmとなる。球面においても同様に、平面とみなせる工具の半径D/2とコーナ半径Rとの比が2.0付近以上であり、この比が2.0付近以上では図7より誤差係数K3が2.0であることから、20μm×2.0=40μmとなる。
When the recognition of the model shape in step 106 is completed, the process proceeds to step 107, and the uncut amount of each unmeasured surface element is estimated from the uncut amount of the surface element H to which the reference point P obtained in step 105 belongs. An error coefficient is used to estimate the uncut surface amount of the unmeasured surface element.
As shown in FIGS. 5 to 7, the error coefficient is determined based on the division of each surface element and stored in the data storage unit 25. Specifically, on the plane 33, the inclination angle θ is 0 ° as shown in FIG. 5, that is, the uncut amount on the horizontal plane is the smallest, and the uncut amount increases as the inclination angle increases. Further, as shown in FIGS. 6 and 7, it has been experimentally clarified that the amount of uncut material decreases as the ratio of the radius D / 2 of the tool and the corner radius R increases as shown in FIGS. Further, there is an association between the surface element 32 of the plane 33, the corner curved surface 34, and the spherical surface 35, and the corner curved surface 34 and the spherical surface 35 can be regarded as a plane when the ratio of the tool radius D / 2 to the corner radius R increases. it can. For this reason, it is possible to estimate the uncut amount of the corner curved surface 34 and the spherical surface 35 based on the uncut amount of the flat surface 33. Specifically, as apparent from FIG. 5, when the error coefficient K1 on the horizontal plane (inclination angle θ is 0 °) is 1.0, and the uncut amount at this time is 20 μm, the corner curved surface is substantially flat. The ratio of the radius D / 2 of the tool that can be considered and the corner radius 2R is about 2.0 or more. If this ratio is about 2.0 or more, the error coefficient K2 is 1.0 from FIG. 0.0 = 20 μm. Similarly, in the spherical surface, the ratio of the radius D / 2 of the tool that can be regarded as a plane and the corner radius R is about 2.0 or more. When this ratio is about 2.0 or more, the error coefficient K3 is 2.0 from FIG. Therefore, 20 μm × 2.0 = 40 μm.

そして、基準点Pのある面要素が属する区分の誤差係数K1、K2、K3と各未測定面要素が属する区分の誤差係数K1、K2、K3との関係および基準点Pの削り残し量とから各未測定面要素の推定削り残し量を演算する。具体的には、図6において基準点Pのある面要素Hは水平面であり、測定した削り残し量が20μmとすると、傾斜角度が45度の平面では図5から誤差係数K1は1.5であり、従って推定削り残し誤差は、20μm×1.5=30μmと推定演算される。また、ステップ106で区分したときに平面33およびコーナ曲面の両方に属するような傾斜コーナ曲面では、削り残し量が、傾斜する平面であることとコーナ曲面であることの両方に起因して発生するため、誤差係数K1、K2を積算して推定削り残し量が求められる。このようにして、ステップ107において、ワークWの未測定面要素の推定削り残し量の演算が完了すると、CAD/CAM30は、未測定面要素の推定削り残し量を一時的に格納し、図8のステップ3に進む。   From the relationship between the error coefficients K1, K2, and K3 of the section to which the surface element having the reference point P belongs and the error coefficients K1, K2, and K3 of the section to which each unmeasured surface element belongs and the uncut amount of the reference point P Calculate the estimated uncut amount of each unmeasured surface element. Specifically, in FIG. 6, the surface element H having the reference point P is a horizontal plane, and when the measured uncut amount is 20 μm, the error coefficient K1 is 1.5 from the plane of FIG. Therefore, the estimated uncut error is estimated as 20 μm × 1.5 = 30 μm. Further, in the case of an inclined corner curved surface that belongs to both the flat surface 33 and the corner curved surface when classified in step 106, the uncut amount is generated due to both the inclined plane and the corner curved surface. Therefore, the estimated uncut amount is obtained by integrating the error coefficients K1 and K2. In this way, when the calculation of the estimated uncut surface amount of the unmeasured surface element of the workpiece W is completed in step 107, the CAD / CAM 30 temporarily stores the estimated uncut surface amount of the unmeasured surface element. Proceed to step 3.

ステップ3に進むと、CAD/CAM30は、一時的に記憶された未測定面要素の推定削り残し量の中から、1つの未測定面要素の推定削り残し量を読み出し、ステップ3からステップ9に示す補正加工の要否判定を実行する。
ここで、ステップ3からステップ9に示す補正加工の要否判定の概念について、図12を用いて説明する。図12は、ステップ2にて推定演算された各面要素の推定削り残し量と後述する削り残し許容最大値γおよび要測定範囲α―βとの関係を示す図である。削り残し許容最大値γは、金型31が製品として許容可能な最大の削り残し量を示している。また、要測定範囲α―βは、削り残し許容最大値γを間に挟み、所定の幅をもってそれぞれ設定された値である。これら削り残し許容最大値γおよび要測定範囲α―βは、CAD/CAM30に記憶されている。なお、金型31の各面要素が製品として合格とみなされる削り残し許容値は、0から削り残し許容最大値γまでの間の値となる。このような関係において、ステップ3で推定演算した推定削り残し量の補正加工の要否判定を行う。まず、推定削り残し量がαと0の間、すなわち削り残し許容最大値より十分小さい値である未測定面要素の場合は、削り残し量を実測したとしても削り残し許容値に入ると考えられるため、測定装置18による測定は行わずに補正加工が不要な面要素と判定する。逆に、推定削り残し量がβより大きい、すなわち削り残し許容最大値より十分大きい値である未測定面要素の場合は、削り残し量を実測したとしても削り残し許容値に入らないと考えられるため、測定装置18による測定は行わずに補正加工が必要な面要素と判定する。そして、推定削り残し量がαとβの間の値、すなわち要測定範囲内である未測定面要素の場合は、推定演算の誤差などによって削り残し量を実測しなけば削り残し許容最大値γを越えるか否かの判定が困難であるため、測定装置18による実測を行う。この結果、実測した削り残し量が削り残し許容最大値γを越える場合は、補正加工が必要な面要素と判定する。また、実測した削り残し量が削り残し許容最大値γを越えない場合は、補正加工が不要な面要素と判定する。
When proceeding to step 3, the CAD / CAM 30 reads out the estimated uncut amount of one unmeasured surface element from the temporarily stored uncut surface amount of the unmeasured surface element, and goes from step 3 to step 9. The correction processing necessity determination shown is executed.
Here, the concept of the necessity determination of the correction process shown in step 3 to step 9 will be described with reference to FIG. FIG. 12 is a diagram showing the relationship between the estimated uncut amount of each surface element calculated in step 2, the uncut remaining allowable maximum value γ and the required measurement range α-β, which will be described later. The uncut allowance maximum value γ indicates the maximum uncut amount that the die 31 can accept as a product. Further, the measurement required range α-β is a value set with a predetermined width with an uncut remaining allowable maximum value γ interposed therebetween. These allowable uncut values γ and the required measurement range α-β are stored in the CAD / CAM 30. In addition, the uncut remaining allowable value for which each surface element of the mold 31 is regarded as acceptable as a product is a value between 0 and the uncut remaining allowable maximum value γ. In such a relationship, it is determined whether or not it is necessary to correct the estimated remaining shaving amount estimated in step 3. First, in the case of an unmeasured surface element whose estimated uncut amount is between α and 0, that is, a value sufficiently smaller than the uncut allowance maximum value, it is considered that even if the uncut amount is measured, the uncut allowance value is entered. Therefore, it is determined that the surface element does not require correction processing without performing measurement by the measuring device 18. Conversely, in the case of an unmeasured surface element whose estimated remaining amount is larger than β, that is, a value sufficiently larger than the maximum allowable remaining value, it is considered that the allowable remaining value does not enter even if the remaining amount is measured. Therefore, it is determined that the surface element needs to be corrected without performing measurement by the measuring device 18. If the estimated uncut amount is a value between α and β, that is, an unmeasured surface element that is within the required measurement range, the uncut remaining allowable maximum value γ unless the uncut amount is actually measured due to an error in the estimation calculation, etc. Since it is difficult to determine whether or not the value exceeds, actual measurement by the measurement device 18 is performed. As a result, when the actually measured uncut amount exceeds the uncut allowable maximum value γ, it is determined that the surface element needs correction processing. Further, when the actually measured uncut amount does not exceed the uncut allowable maximum value γ, it is determined that the surface element does not require correction processing.

以上のように、各未測定面要素について推定演算した推定削り残し量が、削り残し許容値の上限部分を含む所定の要測定範囲α−βにある未測定面要素についてのみ測定装置で測定するので、測定時間を大幅に短縮することができる。測定した削り残し量が削り残し許容最大値を超える面要素および推定削り残し量が要測定範囲を超える未測定面要素について補正加工が必要と判断するので、補正加工の必要な面要素を短時間で正確にみつけ出すことができる。   As described above, the measurement apparatus measures only the unmeasured surface element whose estimated uncut amount estimated for each unmeasured surface element is within the predetermined measurement range α-β including the upper limit portion of the uncut value allowable value. Therefore, the measurement time can be greatly shortened. Since it is judged that correction processing is necessary for surface elements whose measured uncut amount exceeds the maximum allowable uncut amount and unmeasured surface elements whose estimated remaining amount exceeds the required measurement range, the surface elements that require correction processing are determined in a short time. To find out exactly.

以下、引き続き、図9のステップ4の説明をする。ステップ4において、ステップ3で読み出された未測定面要素の推定削り残し量が要測定範囲内であるか否かが判定される。この要測定範囲はワークWの目標形状に対する削り残し許容最大値を含む範囲に設定され、推定削り残し量の演算誤差などにより削り残し許容値内にあるか否かの判断が困難な未測定要素を抽出するために用いられ、読み出された未測定面要素の推定削り残し量が要測定範囲内である場合には、ステップ5に移行し、未測定面要素の推定削り残し量が要測定範囲以外であればステップ6に移行する。   Hereinafter, step 4 in FIG. 9 will be described. In step 4, it is determined whether or not the estimated uncut amount of the unmeasured surface element read in step 3 is within the measurement required range. This required measurement range is set to a range that includes the maximum allowable uncut value for the target shape of the workpiece W, and it is difficult to determine whether it is within the allowable uncut value due to calculation error of the estimated uncut amount If the estimated uncut surface amount of the unmeasured surface element that is used to extract the unmeasured surface element is within the required measurement range, the process proceeds to step 5, and the estimated uncut surface element amount of the unmeasured surface element is required to be measured. If it is outside the range, the process proceeds to step 6.

ステップ5では、推定削り残し量の演算誤差などにより削り残し許容値内にあるか否かの判断が困難なため、要測定面要素として実際に測定を行う。この測定の手順は基準点Pの測定手順と同様であり、要測定面要素の面法線ベクトルの方向からタッチプローブ19を接近させて座標を測定するための計測用NCデータを作成する。このように、計測用NCデータが作成されると、CAD/CAM30は、データ記憶部25の計測用NCデータファイル28に計測用NCデータを転送して記憶させ、マシニングセンター10の駆動制御部26に計測開始信号を付与する。すると、マシニングセンタ10の駆動制御部26は、データ記憶部25の計測用NCデータファイル28から計測用NCデータを読み込み、タッチプローブ19により、要測定面要素のZ軸方向の座標位置を測定する。   In Step 5, since it is difficult to determine whether or not it is within the allowable uncut value due to a calculation error of the estimated uncut amount, actual measurement is performed as a measurement surface element. This measurement procedure is the same as the measurement procedure for the reference point P, and the measurement NC data for measuring the coordinates by bringing the touch probe 19 closer from the direction of the surface normal vector of the measurement surface element to be measured is created. In this way, when the measurement NC data is created, the CAD / CAM 30 transfers the measurement NC data to the measurement NC data file 28 of the data storage unit 25 and stores it in the drive control unit 26 of the machining center 10. A measurement start signal is given. Then, the drive control unit 26 of the machining center 10 reads the measurement NC data from the measurement NC data file 28 of the data storage unit 25, and measures the coordinate position in the Z-axis direction of the measurement surface element required by the touch probe 19.

ステップ5において、要測定面要素のZ軸方向の座標位置が測定されると、ステップ7に移行し、モデルデータに基づいたワークWの目標形状における要測定面要素のZ軸方向の座標位置と、実際に測定した要測定面要素のZ軸方向の座標位置を比較する。このZ軸方向の座標位置の偏差、すなわちの要測定面要素の削り残し量を求め、この削り残し量が削り残し許容最大値より大きいか否かを判定する。この判定により削り残し量が削り残し許容最大値より大きくない、すなわち、削り残し量が削り残し許容最大値以下であると判定された場合はステップ8に進み、削り残し量が削り残し許容最大値より大きいと判定された場合は、補正加工が必要であるためステップ9において補正加工要の面要素としてCAD/CAM30に記憶され、ステップ10に進む。   In step 5, when the coordinate position in the Z-axis direction of the measurement surface element is measured, the process proceeds to step 7 and the coordinate position in the Z-axis direction of the measurement surface element in the target shape of the workpiece W based on the model data. Then, the coordinate positions in the Z-axis direction of the measurement surface elements actually measured are compared. The deviation of the coordinate position in the Z-axis direction, that is, the uncut amount of the surface element requiring measurement is obtained, and it is determined whether or not the uncut amount is larger than the uncut remaining allowable maximum value. If it is determined by this determination that the uncut remaining amount is not larger than the maximum uncut remaining allowable value, that is, the uncut remaining amount is equal to or less than the maximum unleaved allowable value, the process proceeds to step 8, and the uncut remaining amount is the maximum uncut remaining allowable value. If it is determined that it is larger, correction processing is necessary, so that it is stored in the CAD / CAM 30 as a surface element requiring correction processing in step 9, and the process proceeds to step 10.

一方、ステップ4にて未測定面要素の推定削り残し量が要測定範囲以外と判定され、ステップ6に移行すると、次いで未測定面要素の推定削り残し量が要測定範囲より大きいか否かが判定される。ここで、未測定面要素の推定削り残し量が要測定範囲より大きいと判定された場合には、補正加工が必要なためステップ9に進み、未測定面要素の推定削り残し量が要測定範囲より大きくない、すなわち、未測定面要素の推定削り残し量が要測定範囲より小さいと判定された場合には、補正加工の必要がなく、補正加工不要の面要素としてデータ記憶部25に記憶され、ステップ10に進む。   On the other hand, when it is determined in step 4 that the estimated remaining amount of the unmeasured surface element is outside the required measurement range and the process proceeds to step 6, it is then determined whether or not the estimated remaining amount of the unmeasured surface element is larger than the required measurement range. Determined. Here, when it is determined that the estimated remaining amount of the unmeasured surface element is larger than the required measurement range, correction processing is necessary, and thus the process proceeds to Step 9 where the estimated remaining amount of the unmeasured surface element is the required measurement range. If it is determined that the estimated remaining amount of unmeasured surface element is smaller than the required measurement range, there is no need for correction processing, and it is stored in the data storage unit 25 as a surface element that does not require correction processing. , Go to Step 10.

以上のように上記実施の形態では、測定した基準点Pの削り残し量と各面要素の区分毎に設定した誤差係数に基づいて未測定面要素の推定削り残し量を求め、この未測定面要素の推定削り残し量と要測定範囲と比較して測定が必要な面要素のみを図10の○で示すように測定するようした。これにより、ワークWの測定する要測定面要素が減少され、測定時間を大幅に短縮できる。   As described above, in the above-described embodiment, the estimated remaining amount of the unmeasured surface element is obtained based on the measured remaining amount of the reference point P and the error coefficient set for each surface element, and this unmeasured surface Only the surface elements that need to be measured are measured as indicated by the circles in FIG. 10 in comparison with the estimated uncut remaining amount of elements and the required measurement range. Thereby, the measurement surface element which the workpiece | work W measures is decreased, and measurement time can be shortened significantly.

ステップ10に進むと、全ての未測定面要素について補正加工の要否が完了したか否かが判定され、完了していなければステップ3に戻り、ステップ4からステップ10を繰り返して全ての未測定面要素について補正加工の要否を判定する。そして、全ての未測定面要素について補正加工の要否を判定が完了すると、ステップ11に進み、データ記憶部25に記憶された補正加工要の面要素について、補正加工を行う(図11における●で示した面要素)。具体的には、目標形状に沿って加工を行った結果、削り残しが削り残し許容最大値を超えて残ったのであるから、CAD/CAM30が目標形状よりさらに切り込んだ深い位置に補正加工用の目標加工面を設定して、補正加工用NCデータを生成して、補正加工用NCデータファイル37に記憶させ、このマシニングセンタ10が補正加工用NCデータに基づいて補正加工を行う。   Proceeding to step 10, it is determined whether or not correction processing is necessary for all unmeasured surface elements. If not, the process returns to step 3 and repeats step 4 to step 10 to repeat all unmeasured. The necessity of correction processing is determined for the surface element. When the determination of whether or not correction processing is necessary for all unmeasured surface elements is completed, the process proceeds to step 11 and correction processing is performed on the surface elements that require correction processing stored in the data storage unit 25 (● in FIG. 11). Surface element). Specifically, as a result of machining along the target shape, the uncut residue remains beyond the maximum allowable allowable value, so that the CAD / CAM 30 is used for correction machining at a deeper position where the CAD / CAM 30 is further cut than the target shape. A target machining surface is set, correction machining NC data is generated and stored in the correction machining NC data file 37, and the machining center 10 performs correction machining based on the correction machining NC data.

この補正加工終了後に、例えば、再度、補正加工した面要素の中から基準点Pを設定し、測定装置18による形状計測を行い、図8のステップ2からステップ11までを繰り返し、削り残し量を削り残し許容最大値以下に収束させる。あるいは、補正加工を数回行った後、金型31と目標形状との削り残し量が、削り残し許容最大値以下に収まらなかった金型31は不合格品として排除する。   After the correction processing is completed, for example, the reference point P is set again from the corrected surface elements, the shape is measured by the measuring device 18, and the steps 2 to 11 in FIG. It converges below the maximum allowable uncut value. Alternatively, after performing the correction process several times, the mold 31 in which the uncut amount between the mold 31 and the target shape does not fall below the maximum allowable uncut value is excluded as a rejected product.

このように、機械の熱変位、ワークの材質などの影響を同じように受けて加工された加工表面の1つの面要素に設定された基準点Pの削り残し量を測定装置18によって実際に測定し、この基準点Pの実測した削り残し量に基づいて各未測定面要素の削り残し量を推定演算するので、各未測定面要素について機械の熱変位、ワークWの材質などの影響を含んだ削り残し量を正確に推定演算することができる。また、各未測定面要素について推定演算した推定削り残し量が、削り残し許容値の上限部分を含む所定の要測定範囲にある未測定面要素についてのみ測定装置で測定するので、測定時間を大幅に短縮することができる。測定した削り残し量が許容値を超える面要素および推定削り残し量が要測定範囲を超える未測定面要素について補正加工が必要と判断するので、補正加工の必要な面要素を短時間で正確にみつけ出すことができる。   In this way, the measurement device 18 actually measures the uncut amount of the reference point P set on one surface element of the machined surface that has been machined in the same manner affected by the thermal displacement of the machine and the material of the workpiece. In addition, since the uncut surface amount of each unmeasured surface element is estimated on the basis of the actually measured uncut amount of the reference point P, the influence of the thermal displacement of the machine, the material of the workpiece W, etc. on each unmeasured surface element is included. It is possible to accurately estimate and calculate the amount of uncut residue. In addition, since the estimated amount of uncut material estimated and calculated for each unmeasured surface element is measured by the measuring device only for unmeasured surface elements that are within the required measurement range including the upper limit of the uncut value, the measurement time is greatly increased. Can be shortened. Since it is judged that correction processing is necessary for surface elements whose measured remaining amount exceeds the allowable value and unmeasured surface elements whose estimated remaining amount exceeds the required measurement range, the surface elements that require correction processing are accurately determined in a short time. Can be found.

さらに、ワークの加工表面を構成する複数の面要素を平面の傾斜角度、コーナ曲面の半径の大きさ等の面特性別に複数の区分に分類し、各未測定面要素の削り残し量を各未測定面要素の面特性および基準点Pの測定削り残し量から推定演算するので、各未測定面要素の削り残し量を現実に則して正確に推定することができる。   Furthermore, the multiple surface elements that make up the work surface of the workpiece are classified into multiple categories according to surface characteristics such as the inclination angle of the plane and the radius of the corner curved surface, and the uncut amount of each unmeasured surface element Since the estimation calculation is performed from the surface characteristics of the measurement surface element and the measurement uncut amount of the reference point P, the uncut amount of each unmeasured surface element can be accurately estimated according to reality.

なお、上記実施の形態において、本発明の分類手段は、図9のステップ106に相当し、測定手段および検出手段は、ステップ105に相当する。また、演算手段はステップ107に相当し、判断手段は、図8のステップ4からステップ9に相当する。   In the above embodiment, the classification means of the present invention corresponds to step 106 in FIG. 9, and the measurement means and detection means correspond to step 105. The computing means corresponds to step 107, and the judging means corresponds to step 4 to step 9 in FIG.

上記実施の形態において、複数の工具を使用して加工する場合、同一工具毎に面要素グループを形成し、この面要素グループ毎に基準点を設定して測定するようにすれば、工具の種類に起因する削り残し量を同一面要素グループで共通にしたうえで、未測定面要素の削り残し量を推定演算できる。このため、工具の種類に起因する削り残し量のデータがなくても、各未測定面要素について工具の種類に起因する削り残し量を含んだ削り残し量を正確に推定演算できる。   In the above embodiment, when machining using a plurality of tools, if a surface element group is formed for each same tool and a reference point is set for each surface element group and measured, the type of tool It is possible to estimate and calculate the uncut surface amount of the unmeasured surface element after making the uncut surface amount due to the same in the same surface element group. For this reason, even if there is no data of the remaining amount of cutting due to the type of tool, the remaining amount of cutting including the remaining amount of cutting due to the type of tool can be accurately estimated and calculated for each unmeasured surface element.

また、推定削り残し量を実測値と同等の値で推定演算可能な場合は、推定削り残し量と削りの残し許容最大値とを比較し、推定削り残し量が残し許容最大値より大きい場合は補正要と判定し、推定削り残し量が許容最大値以下の場合は補正不要と判定するようにしてもよい。このようにすれば、さらに測定時間を短縮することが可能になる。   Also, if the estimated amount of remaining shaving can be estimated and calculated with a value equivalent to the actual measured value, the estimated amount of remaining shaving is compared with the maximum allowable amount of remaining shaving. If it is determined that correction is necessary, and the estimated uncut remaining amount is equal to or less than the allowable maximum value, it may be determined that correction is unnecessary. In this way, the measurement time can be further shortened.

[他の実施形態]
本発明は、前記実施形態に限定されるものではなく、例えば、以下に説明するような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
[Other Embodiments]
The present invention is not limited to the above-described embodiment. For example, the embodiments described below are also included in the technical scope of the present invention, and various other than the following can be made without departing from the scope of the invention. It can be changed and implemented.

(1)前記実施形態のワークWは金型31であったが、ワークWの形状は金型に限定されるものではない。
(2)前記実施形態では、マシニングセンター10の主軸15に測定装置18を着脱自在に取り付けてワークの形状を計測したが、マシニングセンター10と対峙させて3次元測定装置を備えた構成であってもよい。
(3)測定装置18は、ワークに接触して形状を計測するものであったが、例えば、非接触の距離センサを備え、その距離センサによりワークの表面をスキャンしてワークの形状を計測する構成にしてもよい。
(4)上記実施の形態では、基準点Pの選択をオペレータが指定するようにしたが、CAD/CAM30が自動設定するようにしてもよい。また、このとき、基準点Pを誤差係数の値が最も小さい面要素、例えば水平面に設定するようにすれば、加工が簡単な面であることから加工精度が良好になる。この結果、加工精度が良好な面要素において測定が行われるため、推定削り残し量の推定演算精度が向上し、さらに測定すべき要測定面要素の抽出精度を向上することができ、測定時間を短縮することができる。
(1) Although the workpiece W of the embodiment is the mold 31, the shape of the workpiece W is not limited to the mold.
(2) In the above embodiment, the measuring device 18 is detachably attached to the main shaft 15 of the machining center 10 to measure the shape of the workpiece. However, the configuration may be such that the machining center 10 is confronted with a three-dimensional measuring device. .
(3) The measuring device 18 measures the shape in contact with the workpiece. For example, the measuring device 18 includes a non-contact distance sensor, and measures the shape of the workpiece by scanning the surface of the workpiece with the distance sensor. It may be configured.
(4) In the above embodiment, the operator designates the selection of the reference point P. However, the CAD / CAM 30 may automatically set it. Further, at this time, if the reference point P is set to a surface element having the smallest error coefficient value, for example, a horizontal plane, the processing accuracy is improved because the processing is simple. As a result, since measurement is performed on surface elements with good machining accuracy, the estimation calculation accuracy of the estimated uncut remaining amount can be improved, and the extraction accuracy of the measurement surface elements to be measured can be improved. It can be shortened.

本発明の実施の形態に係るNC工作機械のとしてのマシニングセンタの概観斜視図。1 is a schematic perspective view of a machining center as an NC machine tool according to an embodiment of the present invention. ワークの形状を測定する測定装置の概観図。1 is an overview diagram of a measuring device that measures the shape of a workpiece. マシニングセンタの電気的な構成を示すブロック図。The block diagram which shows the electrical structure of a machining center. ワークWの一例として成形用金型の平面図。The top view of the metal mold | die for shaping | molding as an example of the workpiece | work W. FIG. 平面の誤差係数を示すグラフ。The graph which shows the error coefficient of a plane. コーナ曲面の誤差係数を示すグラフ。The graph which shows the error coefficient of a corner curved surface. 球面の誤差係数を示すグラフ。The graph which shows the error coefficient of a spherical surface. NC工作機械の動作手順を示すフローチャート。The flowchart which shows the operation | movement procedure of NC machine tool. 削り残し量を推定する動作手順を示すフローチャート。The flowchart which shows the operation | movement procedure which estimates the amount of uncut parts. 成形用金型における要測定面要素の設定状態を示す説明図。Explanatory drawing which shows the setting state of the measurement surface element required in a metal mold | die for shaping | molding. 成形用金型における補正加工要の面要素の設定状態を示す説明図。Explanatory drawing which shows the setting state of the surface element of the correction process required in the metal mold | die for shaping | molding. 補正加工の要否判定の概念を説明する図。The figure explaining the concept of the necessity determination of a correction process.

符号の説明Explanation of symbols

10…マシニングセンタ(NC工作機械)、11…ベッド、12…スライドテーブル、13…コラム、14…主軸台、15…主軸、16…チルトテーブル、17…回転テーブル(テーブル)、18…測定装置、19…タッチプローブ、20…本体、21…球体部、22…装着部、23…接続端子、24…制御装置、25…データ記憶部、26…駆動制御部、27…基準NCデータファイル、28…計測用NCデータファイル、29…各軸の駆動軸用モータ、30…CAD/CAM、31…成形用金型、32…面要素、33…平面、34…球面、35…コーナ曲面、36…傾斜したコーナ曲面、37…補正加工用NCデータファイル、P…基準点。 DESCRIPTION OF SYMBOLS 10 ... Machining center (NC machine tool), 11 ... Bed, 12 ... Slide table, 13 ... Column, 14 ... Spindle table, 15 ... Spindle, 16 ... Tilt table, 17 ... Rotary table (table), 18 ... Measuring device, 19 DESCRIPTION OF SYMBOLS ... Touch probe, 20 ... Main body, 21 ... Sphere part, 22 ... Mounting part, 23 ... Connection terminal, 24 ... Control device, 25 ... Data storage part, 26 ... Drive control part, 27 ... Reference NC data file, 28 ... Measurement NC data file, 29 ... Drive shaft motor for each axis, 30 ... CAD / CAM, 31 ... Mold for molding, 32 ... Surface element, 33 ... Plane, 34 ... Spherical surface, 35 ... Corner curved surface, 36 ... Inclined Corner curved surface, 37: NC data file for correction processing, P: Reference point.

Claims (6)

ワークを保持するテーブルと、工具が装着される主軸とを備え、前記ワークを目標形状に加工するための基準NCデータに従って前記主軸およびテーブルを相対的に移動させ、前記ワークを前記工具により前記目標形状に加工するNC工作機械において、
前記テーブル上に保持されたワークの形状を測定する測定装置を備え、
前記ワークの加工表面を構成する複数の面要素を面特性別に複数の区分に分類し、該区分毎に面特性に基づく削り残し量に対応する誤差係数を決定して記憶しておき、
前記複数の面要素のうちの少なくとも1つの面要素に設定された基準点を前記測定装置によって測定し、
前記基準点の測定値から基準点の削り残し量を求め、
前記基準点のある面要素が属する区分の誤差係数と各未測定面要素が属する区分の誤差係数との関係および前記基準点の削り残し量とから各未測定面要素の推定削り残し量を演算し、
前記推定削り残し量の演算結果に基づいて前記各未測定面要素の補正加工の要否を判断する
ことを特徴とするNC工作機械の補正加工方法。
A table for holding a workpiece and a spindle on which a tool is mounted; the spindle and the table are moved relative to each other according to reference NC data for machining the workpiece into a target shape; In NC machine tools that machine into shapes,
A measuring device for measuring the shape of the workpiece held on the table;
Classifying a plurality of surface elements constituting the machining surface of the workpiece into a plurality of sections according to surface characteristics, and determining and storing an error coefficient corresponding to an uncut amount based on the surface characteristics for each section,
A reference point set on at least one of the plurality of surface elements is measured by the measuring device;
Obtain the uncut amount of the reference point from the measured value of the reference point,
Calculate the estimated uncut amount of each unmeasured surface element from the relationship between the error coefficient of the category to which the surface element with the reference point belongs and the error coefficient of the category to which each unmeasured surface element belongs and the uncut amount of the reference point And
A correction machining method for an NC machine tool, wherein the necessity of correction machining for each unmeasured surface element is determined based on a calculation result of the estimated remaining uncut amount.
請求項1において、
前記複数の面要素のうち同一の工具で加工する面要素グループを形成し、これら面要素グループ毎の少なくとも1つの面要素に基準点を設定するようにしたことを特徴とするNC工作機械の補正加工方法。
In claim 1,
An NC machine tool correction characterized in that a surface element group to be processed with the same tool is formed among the plurality of surface elements, and a reference point is set to at least one surface element for each of the surface element groups. Processing method.
請求項1または請求項2において、
前記補正加工の要否の判断は、予め決められた削り残し許容最大値を含む所定の要測定範囲を設定し、該要測定範囲と前記各未測定面要素の前記推定削り残し量とを比較し、前記要測定範囲内に前記推定削り残し量を有する未測定面要素を要測定面要素として前記測定装置で測定し、
前記推定削り残し量が前記要測定範囲を越える未測定面要素と、前記要測定面要素のうちで測定結果が前記削り残し許容最大値を越える測定面要素に対して補正加工が必要と判断し、
前記推定削り残し量が前記要測定範囲を越えない未測定面要素と、前記要測定面要素のうちで測定結果が前記削り残し許容最大値を越えない測定面要素に対して補正加工が不要と判断するようにしたことを特徴とするNC工作機械の補正加工方法。
In claim 1 or claim 2,
The determination of the necessity of the correction machining is performed by setting a predetermined required measurement range including a predetermined maximum allowable uncut amount and comparing the required measurement range with the estimated uncut amount of each unmeasured surface element. And measuring the unmeasured surface element having the estimated uncut amount within the measurement required range as the measurement surface element required by the measuring device,
It is determined that correction processing is necessary for an unmeasured surface element whose estimated uncut remaining amount exceeds the required measurement range and a measured surface element whose measurement result exceeds the allowable uncut maximum value among the required measurement surface elements. ,
No correction processing is required for the unmeasured surface element whose estimated uncut remaining amount does not exceed the required measurement range, and the measurement surface element whose measurement result does not exceed the allowable maximum remaining value of the unmeasured surface elements. A correction machining method for an NC machine tool, characterized in that a judgment is made.
請求項1から請求項3のいづれか一項において、
前記面特性は、前記面要素毎の形状および寸法に係る特性であることを特徴とするNC工作機械の補正加工方法。
In any one of Claim 1 to Claim 3,
The NC machine tool correction processing method according to claim 1, wherein the surface characteristic is a characteristic related to a shape and a dimension of each surface element.
ワークを保持するテーブルと、工具が装着される主軸と、前記ワークを目標形状に加工するための基準NCデータを記憶するデータ記憶部と、前記前記データ記憶部に記憶された基準NCデータに従って主軸およびテーブルを相対的に移動させ、前記ワークを前記工具により前記目標形状に加工する制御部とから構成されるNC工作機械において、
前記テーブル上に保持されたワークの形状を測定する測定装置を備え、
前記データ記憶部は、
前記ワークの加工表面を構成する複数の面要素を面特性別に分類された複数の区分と、該区分毎に面特性に基づく削り残し量に対応する誤差係数とを記憶し、
前記制御部は、
前記基準NCデータによって加工されたワークの複数の面要素を前記複数の区分に分類する分類手段と、
前記複数の面要素のうちの少なくとも1つの面要素に設定された基準点を前記測定装置によって測定する測定手段と、
前記基準点の測定値から基準点の削り残し量を求める検出手段と、
前記基準点のある面要素が属する区分の誤差係数と各未測定面要素が属する区分の誤差係数との関係および前記基準点の削り残し量とから各未測定面要素の推定削り残し量を演算する演算手段と、
前記推定削り残し量の演算結果に基づいて前記各未測定面要素の補正加工の要否を判断する判断手段と、
を備えたことを特徴とするNC工作機械。
A table for holding a workpiece, a spindle on which a tool is mounted, a data storage unit for storing reference NC data for machining the workpiece into a target shape, and a spindle according to the reference NC data stored in the data storage unit And an NC machine tool configured to move the table relatively and control the workpiece into the target shape with the tool,
A measuring device for measuring the shape of the workpiece held on the table;
The data storage unit
Storing a plurality of sections classified by surface characteristics into a plurality of surface elements constituting the work surface of the workpiece, and an error coefficient corresponding to an uncut amount based on the surface characteristics for each section;
The controller is
A classifying means for classifying a plurality of surface elements of the workpiece machined by the reference NC data into the plurality of sections;
Measuring means for measuring a reference point set on at least one of the plurality of surface elements by the measuring device;
Detecting means for obtaining a reference point uncut amount from the measured value of the reference point;
Calculate the estimated uncut amount of each unmeasured surface element from the relationship between the error coefficient of the category to which the surface element with the reference point belongs and the error coefficient of the category to which each unmeasured surface element belongs and the uncut amount of the reference point Computing means for
Determination means for determining whether or not correction processing of each unmeasured surface element is necessary based on the calculation result of the estimated uncut amount;
NC machine tool characterized by comprising
請求項5において、
前記面特性は、前記面要素毎の形状および寸法に係る特性であることを特徴とするNC工作機械。
In claim 5,
The NC machine tool, wherein the surface characteristic is a characteristic related to a shape and a dimension of each surface element.
JP2004124263A 2004-04-20 2004-04-20 NC machine tool and correction processing method Expired - Fee Related JP3972920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004124263A JP3972920B2 (en) 2004-04-20 2004-04-20 NC machine tool and correction processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004124263A JP3972920B2 (en) 2004-04-20 2004-04-20 NC machine tool and correction processing method

Publications (2)

Publication Number Publication Date
JP2005309673A JP2005309673A (en) 2005-11-04
JP3972920B2 true JP3972920B2 (en) 2007-09-05

Family

ID=35438415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004124263A Expired - Fee Related JP3972920B2 (en) 2004-04-20 2004-04-20 NC machine tool and correction processing method

Country Status (1)

Country Link
JP (1) JP3972920B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5359651B2 (en) * 2009-07-29 2013-12-04 株式会社ジェイテクト Shape measuring device
DE102018214072B4 (en) * 2017-08-28 2023-05-25 Fanuc Corporation EVALUATION WORKPIECE AND MACHINING PROGRAM
JP2022067666A (en) * 2019-03-12 2022-05-09 株式会社Ihi Method for correcting cord length of wing
JP7088872B2 (en) * 2019-04-03 2022-06-21 ファナック株式会社 Evaluation workpiece and machining program
CN111361337B (en) * 2020-03-27 2021-05-28 深圳市联合蓝海黄金材料科技股份有限公司 Shape following measurement processing control method for three-dimensional circular jewelry
CN111300212B (en) * 2020-03-27 2021-06-25 深圳市联合蓝海黄金材料科技股份有限公司 Shape-following measurement processing control method and application thereof in jewelry processing field
CN111264983B (en) * 2020-03-27 2021-08-27 深圳市联合蓝海黄金材料科技股份有限公司 Shape-following measurement processing control method of ellipse-like jewelry
CN111300141B (en) * 2020-03-27 2021-05-28 深圳市联合蓝海黄金材料科技股份有限公司 Method for measuring and processing jewelry arc-shaped surface along shape
CN117124483B (en) * 2023-07-13 2024-03-08 同济大学 Free-form surface prism high-precision compensation processing method based on online and offline detection

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0780752A (en) * 1993-09-14 1995-03-28 Nikon Corp Numerical control method and numerical control system
JP3903779B2 (en) * 2001-11-29 2007-04-11 日産自動車株式会社 Determination method of tool diameter and machining layer in contour machining
JP2004284002A (en) * 2003-01-31 2004-10-14 Fujitsu Ltd Working control device

Also Published As

Publication number Publication date
JP2005309673A (en) 2005-11-04

Similar Documents

Publication Publication Date Title
US5208995A (en) Fixture gauge and method of manufacturing same
EP1787176B2 (en) Machine tool method
Cho et al. Inspection planning strategy for the on-machine measurement process based on CAD/CAM/CAI integration
JP4510755B2 (en) Tool edge position calculation method and machine tool
JP3396409B2 (en) Method and apparatus for measuring shape and size of work
CN108287522B (en) Multi-platform-based automatic on-line detection method
JP3972920B2 (en) NC machine tool and correction processing method
US11486696B2 (en) On-machine measurement device, machine tool, and on-machine measurement method
JP2008241608A (en) On board method for detecting work standard point, and machining device using the method
JP2005074569A (en) Program, computer device, multiple spindle machine, nc program forming method, and workpiece machining method
JP2006289580A (en) Teaching point correcting method of program and teaching point correcting device of program
US20040128846A1 (en) Method and apparatus for measuring bent workpieces
US6953077B2 (en) Method and apparatus for producing mold
JP2007086953A (en) Numerical control correction machining method of machined face, and device for forming correction machining numerical control data
JP2773917B2 (en) Work positioning device for bending equipment
JP2002267438A (en) Free curved surface shape measuring method
CN115365941B (en) Automatic workpiece pose calibration method for optical polishing
JP2001264048A (en) Method and device for measuring shape of v-groove
JP3961293B2 (en) Surface texture copying measuring method, program, and recording medium
CN110362038B (en) Test piece for identifying online detection capability of five-axis linkage numerical control machine tool and detection method
CN114549521A (en) Carbon tube array honeycomb surface shape precision calculation method based on G code processing guidance
JP4545501B2 (en) Tool centering method and tool measuring method
CN115702061A (en) Positional relationship measuring method and processing device
JPH0698567B2 (en) Free curved surface processing machine
CN113631339B (en) Processing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051228

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070604

R150 Certificate of patent or registration of utility model

Ref document number: 3972920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees