JP3972374B2 - Silica glass annealing method - Google Patents

Silica glass annealing method Download PDF

Info

Publication number
JP3972374B2
JP3972374B2 JP22926394A JP22926394A JP3972374B2 JP 3972374 B2 JP3972374 B2 JP 3972374B2 JP 22926394 A JP22926394 A JP 22926394A JP 22926394 A JP22926394 A JP 22926394A JP 3972374 B2 JP3972374 B2 JP 3972374B2
Authority
JP
Japan
Prior art keywords
glass
temperature
silica glass
hour
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22926394A
Other languages
Japanese (ja)
Other versions
JPH0891857A (en
Inventor
信一 近藤
俊幸 多賀
富義 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP22926394A priority Critical patent/JP3972374B2/en
Publication of JPH0891857A publication Critical patent/JPH0891857A/en
Application granted granted Critical
Publication of JP3972374B2 publication Critical patent/JP3972374B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/012Tempering or quenching glass products by heat treatment, e.g. for crystallisation; Heat treatment of glass products before tempering by cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、均質度の高いシリカガラスを得るためのアニール方法に関し、詳しくはシリカガラスを、容器に入れて、または、粉末に埋め込んで、または、板で囲む等して熱処理を施すアニール方法に関するものである。
【0002】
【従来の技術】
近年、シリカガラス対し、その諸物性向上の要求がますます高まっている。特に、ガラスの基本的物性の一つである均質性については、特性の向上が強く要求されている。シリカガラスの用途は多岐にわたり、均質性を要求されるのはプリズムやレンズなどの光学用途であるが、中でも半導体製造に使用されるエキシマレーザステッパーに使用されるレンズや人工衛星等に搭載されるコーナーキューブ(キューブコーナープリズム)などは特に高い均質性が要求されている。
【0003】
従来、光学用のシリカガラスは、先ず、ガラスインゴットの中から、良質な部分を選びだし、この部分から目的とする物に合わせたサイズの硝材を切り出す。次いでこの硝材を、徐冷点として定義されている温度よりもやや高めの温度にて数時間から数十日間加熱保持し、ガラス内部に存在し、均質性を悪くする歪を取り除く。続いて、ひずみ点として定義されている温度よりやや低い温度まで、新たに冷却による歪が入らぬよう、数十時間から時には数ケ月という長い時間をかけて冷却する、というアニールを施して得る方法が一般的であった。
【0004】
しかしながら、前記のごとく長時間かけてアニールを施しても硝材の表面付近に歪が観察され、この部分において均質性が悪化する、という現象がしばしば観察された。これは、冷却工程において、ガラス塊の表面部分と中心部分とで温度差が生じ、熱膨張の差から表面近傍に歪が発生するためである。したがって、均質性の高いガラス塊を得ようとした場合、表面部分に歪みが入らぬように、さらに長い時間をかけた冷却をおこなう、あるいは、表面付近に歪が残ってもその部分を避けて、つまり歪の存在する部分を除去して使用できるように、必要とする寸法に余裕をもたせ、大きめの硝材をアニールする、という方法をとらなければならない。
【0005】
いずれの方法を採っても、高均質ガラス塊を得るためには、長時間を要しスループットが悪い、あるいは、製品歩留りが低下してしまう、といった問題があった。
【0006】
【発明が解決しようとする課題】
本発明の目的は、均質性の高いシリカガラス塊を短時間で、かつ、歩留り良く得ることのできるアニール方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、上記した課題を解決するために鋭意研究した結果、シリカガラス塊の表面に歪を残さずにアニールを施すためには、シリカガラス塊をシリカ、あるいはシリカ質、例えばシリカアルミナ系酸化物、あるいはシリカと熱伝導率が大きく違わない物質で覆い、ガラス塊の外側に実質的な表面を作ってやれば、歪は覆いの部分に入り、シリカガラス塊には入らないことを見出し、本発明を完成するに至ったものである。
【0008】
すなわち、本発明によって提供されるアニール方法は、シリカガラス塊に前記の様な状態を与えてやるために、シリカガラス塊を、シリカ等よりなる容器に入れて、または、粉末に埋め込んで、または、板で囲むか挟むかしてアニール処理を施すという特徴を有するものである。
【0009】
【作用】
以下、本発明について詳細に説明する。
【0010】
本発明の特徴は、均質性の高いシリカガラス塊を短時間で歩留り良く得るためのアニール方法を提供するものである。ガラスにおいて均質性が高いということは、泡や異物の混入が無く、組成に偏りが無く、脈理に代表される屈折率の局所的変動部分が無いことに加え、機械的・熱的歪みがある一定以上存在しない、ということである。一般的に高均質ガラスというものは、泡や異物、組成の偏り、脈理といった不均質部分は無いことが前提であり、ガラス中に存在する歪みがいかに少ないかで均質性の高低が決まる。
【0011】
したがって、アニールによる除歪操作は、均質性の高いガラスを得るための大変に重要な操作である。アニールは、先に述べたように、ガラス塊を除冷点(そのガラスの粘度がlogη=12.0/Pa・sとなる温度)よりも数〜数十℃、場合によっては100℃前後、高い温度にまで昇温して、その温度で一定時間保持し、次いでその温度からひずみ点(同粘度がlogη=13.5/Pa・sとなる温度)よりも数〜数十℃、場合によっては100℃前後、低い温度にまでゆっくりと冷やす、というのが主な操作である。
【0012】
ここにおいて、各温度や保持時間、冷却速度はガラスの組成や大きさによって決まる。アニールの際、冷却速度が速すぎると、表面部分と中心部分とで温度の差が生ずる。すると、冷却に伴う収縮は表面部分が先行する。これが原因となって、特に温度勾配の大きいガラス表面近傍に歪が発生する。ガラス中に存在する歪は、そのガラスの均質性を損う一因となる。したがって、ガラスの均質性を高めるためのアニール操作は、加熱後の冷却時に、中心部分と表面部分との間である一定以上の温度差が生じないように、非常にゆっくりとした冷却速度で、長時間を費やしておこなわれる。ところが、ガラス塊の大きさが一定以上大きくなると、冷却時の中心と表面との温度差を許容範囲内に収めることが困難になり、先に述べた理由により外周分に歪が発生してしまう。一般的に、歪の存在する部分は、高均質ガラスとしては使用することが出来ず、研削等により除去するしかない。
【0013】
したがって、この表面部分における歪の発生を防ぐことが出来れば、高均質ガラスの歩留り、生産性は飛躍的に向上する。本発明のアニール方法は、ガラス塊の表面を、シリカ等からなる容器、粉末または板等で覆い、加熱、冷却処理を施すものである。ガラス塊を覆う物質としては、シリカが好ましい。また、シリカ以外であっても、アニール操作における最高の温度において安定に存在し、かつ、シリカガラスと反応しないものであって、100℃における熱伝導率が0.004以上0.080未満(cal・s-1・cm-1・℃-1)である物質であればよい。この方法によれば、シリカガラス塊を覆う容器等の外周部分が表面となり、ガラス塊の表面は実質的な表面ではなくなる。したがって冷却時の温度勾配は、容器等の表面では大きくとも、ガラス塊の表面近傍では緩やかなものとなり、歪量も許容限度内に入ることとなる。このように本発明のアニール方法によれば、従来に比べて歩留、生産性共に格段に良く高均質ガラスを製造することが出来る。
【0014】
【実施例】
本発明を以下の実施例によりさらに詳しく説明する。
【0015】
なお、均質性の評価方法は次の様である。歪が発生した部分は、屈折率に変化が生じる。そこで、均質性の測定は、屈折率分布(Δn)を測定することにより実施した。ここにおいて、屈折率分布の幅(Δn値)が小さいほど、また、Δn値が同じなら有効領域が大きいほど均質性は良いということになる。屈折率分布の精密測定には、フィゾー干渉計を用いた。
【0016】
実施例1
たて×よこ×高さが100mm×100mm×100mmのシリカガラス塊を、外寸200mm×200mm×200mm、内寸が約100mm×100mm×100mmのシリカガラスからなる容器に入れ、マッフル炉にセットした。炉内を大気雰囲気にて室温から1230℃まで100℃/時間の速度で昇温し、1230℃で7時間保持し、1000℃まで48℃/時間の速度で降温し、続いて900℃まで90℃/時間の速度で降温し、さらに660℃まで240℃/時間で降温し、以後炉冷した。
【0017】
室温まで冷却したガラス塊の屈折率分布の測定をおこなったところ、有効領域100mm×100mmでΔn=2.0×10-6であった。
【0018】
実施例2
実施例1と同サイズのシリカガラス塊を、外寸200mm×200mm×200mm、内寸が約180mm×180mm×180mmのシリカガラスからなる容器の底に石英砂(平均粒径約1mm)を40mmの厚さに敷いたほぼ中央に入れ、さらにに容器との隙間に石英砂を容器最上部にまで充填し、蓋をしてマッフル炉にセットした。炉内を大気雰囲気にて、室温から1230℃まで100℃/時間の速度で昇温し、1230℃で7時間保持し、1000℃まで48℃/時間の速度で降温し、続いて900℃まで90℃/時間の速度で降温し、さらに660℃まで240℃/時間で降温し、以後炉冷した。
【0019】
室温まで冷却したガラス塊の屈折率分布の測定をおこなったところ、有効領域100mm×100mmでΔn=2.6×10-6、100mm×90mmでΔn=2.0×10-6であった。
【0020】
比較例1
実施例1と同サイズのシリカガラス塊を、マッフル炉にセットした。炉内を、室温から1230℃まで100℃/時間の速度で昇温し、1230℃で7時間保持し、1000℃まで48℃/時間の速度で降温し、続いて900℃まで90℃/時間の速度で降温し、さらに660℃まで240℃/時間で降温し、以後炉冷した。炉内雰囲気は終始大気雰囲気とした。
【0021】
室温まで冷却したガラス塊の屈折率分布の測定をおこなったところ、有効領域100mm×100mmでΔn=9.8×10-6、50mm×50mmでΔn=2.0×10-6であった。
【0022】
実施例3
サイズ160mmφ×100mmtのシリカガラス板を、160mmφ×50mmtの2枚のシリカガラス板で上下から挟み、マッフル炉にセットした。炉内を、室温から1230℃まで100℃/時間の速度で昇温し、1230℃で7時間保持し、1000℃まで48℃/時間の速度で降温し、続いて900℃まで90℃/時間の速度で降温し、続いて660℃まで240℃/時間で降温し、以後炉冷した。炉内雰囲気は終始大気雰囲気とした。室温まで冷却したガラス塊の屈折率分布の測定をおこなったところ、有効領域160mmφでΔn=3.0×10-6、150mmφでΔn=2.0×10-6であった。
【0023】
実施例4
実施例3と同サイズのシリカガラス板を、外寸200mm×200mm×200mm、内寸が約180mm×180mm×180mmのシリカガラスからなる容器の底に石英砂(平均粒径約1mm)を約65mmの厚さに敷いたほぼ中央に入れ、さらにに容器との隙間に石英砂を容器最上部にまで充填し、蓋をしてマッフル炉にセットした。炉内を、室温から1230℃まで100℃/時間の速度で昇温し、1230℃で7時間保持し、1000℃まで48℃/時間の速度で降温し、続いて900℃まで90℃/時間の速度で降温し、さらに660℃まで240℃/時間で降温し、以後炉冷した。炉内雰囲気は終始大気雰囲気とした。室温まで冷却したガラス塊の屈折率分布の測定をおこなったところ、有効領域160mmφでΔn=2.0×10-6であった。
【0024】
比較例2
実施例3と同サイズのシリカガラス板を、マッフル炉にセットした。炉内を大気雰囲気にて、室温から1230℃まで100℃/時間の速度で昇温し、1230℃で7時間保持し、1000℃まで48℃/時間の速度で降温し、続いて900℃まで90℃/時間の速度で降温し、さらに660℃まで240℃/時間で降温し、以後炉冷した。室温まで冷却したガラス塊の屈折率分布の測定をおこなったところ、有効領域160mmφでΔn=9.0×10-6、150mmφでΔn=2.0×10-6、であった。
【0025】
【発明の効果】
以上の説明から明らかなように、本発明のアニール方法によれば、歪の少ない高均質なシリカガラス塊を歩留り良く生産することが出来、その有用性は極めて高い。
[0001]
[Industrial application fields]
The present invention relates to an annealing method for obtaining silica glass with high homogeneity, and more particularly to an annealing method in which silica glass is heat-treated by being placed in a container, embedded in a powder, or surrounded by a plate. Is.
[0002]
[Prior art]
In recent years, there has been an increasing demand for improving the properties of silica glass. In particular, for homogeneity, which is one of the basic physical properties of glass, there is a strong demand for improved properties. Silica glass has a wide range of applications, and optical applications such as prisms and lenses require homogeneity, but they are mounted on lenses and satellites used in excimer laser steppers used in semiconductor manufacturing. Corner cubes (cube corner prisms) are required to have particularly high homogeneity.
[0003]
Conventionally, for silica glass for optics, first, a high-quality part is selected from a glass ingot, and a glass material having a size suitable for a target object is cut out from this part. The glass material is then heated and held at a temperature slightly higher than the temperature defined as the annealing point for several hours to several tens of days to remove strains that are present inside the glass and impair homogeneity. Next, a method of performing annealing by cooling to a temperature slightly lower than the temperature defined as the strain point, taking a long time of several tens of hours to sometimes several months so that no new strain is caused by cooling. Was common.
[0004]
However, even when annealing is performed for a long time as described above, a phenomenon is observed in which strain is observed near the surface of the glass material, and homogeneity deteriorates in this portion. This is because, in the cooling process, a temperature difference occurs between the surface portion and the central portion of the glass lump, and distortion occurs near the surface due to the difference in thermal expansion. Therefore, when trying to obtain a glass block with high homogeneity, perform cooling for a longer time so as not to cause distortion on the surface portion, or avoid that portion even if strain remains near the surface. That is, in order to be able to use it by removing a portion where the strain exists, a method of giving a margin to a required dimension and annealing a larger glass material must be taken.
[0005]
Regardless of which method is used, there is a problem that it takes a long time to obtain a highly homogeneous glass lump, resulting in poor throughput or reduced product yield.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide an annealing method capable of obtaining a silica glass lump having high homogeneity in a short time and with a high yield.
[0007]
[Means for Solving the Problems]
As a result of diligent research to solve the above-mentioned problems, the present inventors have found that silica glass lump is treated with silica or siliceous, for example, silica alumina, in order to anneal without leaving strain on the surface of the silica glass lump. If it is covered with an oxide or a material whose thermal conductivity is not significantly different from that of silica, and if a substantial surface is formed outside the glass lump, the strain will enter the cover and not enter the silica glass lump. The headline and the present invention have been completed.
[0008]
That is, in the annealing method provided by the present invention, in order to give the silica glass lump the state as described above, the silica glass lump is placed in a container made of silica or the like, or embedded in a powder, or It is characterized in that it is annealed by surrounding or sandwiching with a plate.
[0009]
[Action]
Hereinafter, the present invention will be described in detail.
[0010]
A feature of the present invention is to provide an annealing method for obtaining a silica glass lump having high homogeneity in a short time with good yield. High homogeneity in glass means that there is no mixing of bubbles and foreign matters, there is no bias in composition, there is no local variation in the refractive index represented by striae, and mechanical and thermal distortions. It means that there is no more than a certain amount. In general, high-homogeneity glass is premised on the absence of inhomogeneous parts such as bubbles, foreign substances, compositional deviation, and striae, and the degree of homogeneity is determined by how much distortion is present in the glass.
[0011]
Therefore, the strain removal operation by annealing is a very important operation for obtaining highly homogenous glass. As described above, the annealing is performed at a temperature of several to several tens of degrees Celsius than the decooling point (temperature at which the viscosity of the glass is log η = 12.0 / Pa · s). Raise the temperature to a high temperature, hold at that temperature for a certain period of time, and then several to several tens of degrees Celsius from the temperature to the strain point (the temperature at which the viscosity is log η = 13.5 / Pa · s), depending on the case The main operation is to cool slowly to a low temperature around 100 ° C.
[0012]
Here, each temperature, holding time, and cooling rate are determined by the composition and size of the glass. If the cooling rate is too high during annealing, a temperature difference occurs between the surface portion and the central portion. Then, the shrinkage accompanying cooling precedes the surface portion. This causes distortion in the vicinity of the glass surface where the temperature gradient is particularly large. Strain present in the glass contributes to the loss of the homogeneity of the glass. Therefore, the annealing operation for increasing the homogeneity of the glass is performed at a very slow cooling rate so that a certain temperature difference between the central portion and the surface portion does not occur during cooling after heating. It takes place for a long time. However, if the size of the glass lump becomes larger than a certain level, it becomes difficult to keep the temperature difference between the center and the surface during cooling within an allowable range, and distortion occurs in the outer periphery due to the reasons described above. . In general, a portion where distortion exists cannot be used as highly homogeneous glass, and can only be removed by grinding or the like.
[0013]
Therefore, if the generation of strain on the surface portion can be prevented, the yield and productivity of the highly homogeneous glass are dramatically improved. In the annealing method of the present invention, the surface of a glass lump is covered with a container made of silica or the like, powder or plate, and subjected to heating and cooling treatments. Silica is preferable as the material covering the glass block. Further, even if it is other than silica, it is stably present at the highest temperature in the annealing operation and does not react with silica glass, and its thermal conductivity at 100 ° C. is 0.004 or more and less than 0.080 (cal Any material that is s −1 · cm −1 · ° C. −1 ) According to this method, the outer peripheral portion of a container or the like covering the silica glass block becomes the surface, and the surface of the glass block is not a substantial surface. Therefore, even if the temperature gradient during cooling is large on the surface of the container or the like, the temperature gradient is gentle in the vicinity of the surface of the glass lump, and the strain amount falls within the allowable limit. As described above, according to the annealing method of the present invention, a highly homogeneous glass can be manufactured with much better yield and productivity than the conventional method.
[0014]
【Example】
The invention is further illustrated by the following examples.
[0015]
The homogeneity evaluation method is as follows. In the portion where the distortion occurs, the refractive index changes. Therefore, the homogeneity was measured by measuring the refractive index distribution (Δn). Here, the smaller the width of the refractive index distribution (Δn value), and the larger the effective region, the better the homogeneity if the Δn value is the same. A Fizeau interferometer was used for precise measurement of the refractive index distribution.
[0016]
Example 1
Silica glass lump of length x width x height 100mm x 100mm x 100mm was put in a container made of silica glass with outer dimensions of 200mm x 200mm x 200mm and inner dimensions of about 100mm x 100mm x 100mm and set in a muffle furnace . The temperature in the furnace was increased from room temperature to 1230 ° C. at a rate of 100 ° C./hour in the air atmosphere, held at 1230 ° C. for 7 hours, decreased to 1000 ° C. at a rate of 48 ° C./hour, and subsequently increased to 900 ° C. at 90 ° C. The temperature was lowered at a rate of ° C./hour, further lowered to 660 ° C. at 240 ° C./hour, and then cooled in the furnace.
[0017]
When the refractive index distribution of the glass block cooled to room temperature was measured, the effective area was 100 mm × 100 mm, and Δn = 2.0 × 10 −6 .
[0018]
Example 2
A silica glass lump of the same size as that of Example 1 is obtained by adding 40 mm of quartz sand (average particle diameter of about 1 mm) to the bottom of a container made of silica glass having an outer size of 200 mm × 200 mm × 200 mm and an inner size of about 180 mm × 180 mm × 180 mm. The container was placed in the middle of the thickness and filled with quartz sand up to the top of the container in the gap with the container, covered and set in a muffle furnace. The temperature in the furnace is increased from room temperature to 1230 ° C. at a rate of 100 ° C./hour, held at 1230 ° C. for 7 hours, lowered to 1000 ° C. at a rate of 48 ° C./hour, and subsequently to 900 ° C. The temperature was lowered at a rate of 90 ° C./hour, further lowered to 660 ° C. at 240 ° C./hour, and then cooled in the furnace.
[0019]
When the refractive index distribution of the glass block cooled to room temperature was measured, Δn = 2.6 × 10 −6 at an effective area of 100 mm × 100 mm and Δn = 2.0 × 10 −6 at 100 mm × 90 mm.
[0020]
Comparative Example 1
A silica glass lump of the same size as in Example 1 was set in a muffle furnace. The inside of the furnace was heated from room temperature to 1230 ° C. at a rate of 100 ° C./hour, held at 1230 ° C. for 7 hours, lowered to 1000 ° C. at a rate of 48 ° C./hour, and subsequently to 900 ° C. at 90 ° C./hour. The temperature was lowered at a rate of 240 ° C./hour to 660 ° C., and then cooled in the furnace. The atmosphere in the furnace was an atmospheric atmosphere throughout.
[0021]
When the refractive index distribution of the glass block cooled to room temperature was measured, Δn = 9.8 × 10 −6 at an effective area of 100 mm × 100 mm, and Δn = 2.0 × 10 −6 at 50 mm × 50 mm.
[0022]
Example 3
A silica glass plate having a size of 160 mm φ × 100 mm t was sandwiched from above and below by two silica glass plates of 160 mm φ × 50 mm t and set in a muffle furnace. The inside of the furnace was heated from room temperature to 1230 ° C. at a rate of 100 ° C./hour, held at 1230 ° C. for 7 hours, lowered to 1000 ° C. at a rate of 48 ° C./hour, and subsequently to 900 ° C. at 90 ° C./hour. The temperature was then lowered to 660 ° C. at 240 ° C./hour, and then cooled in the furnace. The atmosphere in the furnace was an atmospheric atmosphere throughout. Was subjected to measurement of the refractive index distribution of the glass mass was cooled to room temperature, Δn = 3.0 × 10 -6 in the effective region 160 mm phi, was Δn = 2.0 × 10 -6 at 150 mm phi.
[0023]
Example 4
A silica glass plate of the same size as that of Example 3 is made by adding quartz sand (average particle size of about 1 mm) to the bottom of a container made of silica glass having an outer size of 200 mm × 200 mm × 200 mm and an inner size of about 180 mm × 180 mm × 180 mm. The quartz sand was filled in the gap between the container and the top of the container, and the container was covered and set in a muffle furnace. The inside of the furnace was heated from room temperature to 1230 ° C. at a rate of 100 ° C./hour, held at 1230 ° C. for 7 hours, lowered to 1000 ° C. at a rate of 48 ° C./hour, and subsequently to 900 ° C. at 90 ° C./hour. The temperature was lowered at a rate of 240 ° C./hour to 660 ° C., and then cooled in the furnace. The atmosphere in the furnace was an atmospheric atmosphere throughout. When the refractive index distribution of the glass block cooled to room temperature was measured, Δn = 2.0 × 10 −6 with an effective area of 160 mmφ .
[0024]
Comparative Example 2
A silica glass plate of the same size as in Example 3 was set in a muffle furnace. The temperature in the furnace is increased from room temperature to 1230 ° C. at a rate of 100 ° C./hour, held at 1230 ° C. for 7 hours, lowered to 1000 ° C. at a rate of 48 ° C./hour, and subsequently to 900 ° C. The temperature was lowered at a rate of 90 ° C./hour, further lowered to 660 ° C. at 240 ° C./hour, and then cooled in the furnace. Was subjected to measurement of the refractive index distribution of the glass mass was cooled to room temperature, Δn = 9.0 × 10 -6 in the effective region 160 mm phi, was Δn = 2.0 × 10 -6, at 150 mm phi.
[0025]
【The invention's effect】
As is apparent from the above description, according to the annealing method of the present invention, a highly homogeneous silica glass lump with less strain can be produced with good yield, and its usefulness is extremely high.

Claims (2)

シリカガラスのアニール方法において、アニールの加熱・冷却処理の際、リカガラス表面を、100℃において0.004(cal・s -1 ・cm -1 ・℃ -1 )以上、0.080(cal・s -1 ・cm -1 ・℃ -1 )未満の熱伝導率を有する物質からなる、容器、粉末または板で接するように覆うことを特徴とするシリカガラスのアニール方法。In the annealing method of the silica glass, the time of heating and cooling process of the annealing, the sheet Rikagarasu surface, at 100 ℃ 0.004 (cal · s -1 · cm -1 · ℃ -1) or more, 0.080 (cal · A method of annealing silica glass, characterized by covering a substance , a powder, or a plate made of a material having a thermal conductivity of less than s -1 · cm -1 · ° C -1 ) . 請求項1記載のシリカガラスのアニ−ル方法において、容器、粉末、あるいは、板が、シリカよりなることを特徴とする方法。2. The method for annealing silica glass according to claim 1, wherein the container, powder or plate is made of silica.
JP22926394A 1994-09-26 1994-09-26 Silica glass annealing method Expired - Fee Related JP3972374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22926394A JP3972374B2 (en) 1994-09-26 1994-09-26 Silica glass annealing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22926394A JP3972374B2 (en) 1994-09-26 1994-09-26 Silica glass annealing method

Publications (2)

Publication Number Publication Date
JPH0891857A JPH0891857A (en) 1996-04-09
JP3972374B2 true JP3972374B2 (en) 2007-09-05

Family

ID=16889379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22926394A Expired - Fee Related JP3972374B2 (en) 1994-09-26 1994-09-26 Silica glass annealing method

Country Status (1)

Country Link
JP (1) JP3972374B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4439072B2 (en) * 2000-03-29 2010-03-24 信越石英株式会社 Synthetic quartz glass for optics, heat treatment method and heat treatment apparatus thereof
US6578382B2 (en) 2000-03-29 2003-06-17 Heraeus Quarzglas Gmbh & Co. Kg Synthetic quartz glass for optical use, heat treatment method and heat treatment apparatus for the same
JP4462720B2 (en) 2000-06-06 2010-05-12 信越石英株式会社 Heat treatment method for optical synthetic quartz glass
US20020122902A1 (en) * 2000-11-30 2002-09-05 Tetsuji Ueda Blank for an optical member as well as vessel and method of producing the same
JP5912999B2 (en) 2012-08-27 2016-04-27 信越石英株式会社 Heat treatment method for synthetic quartz glass

Also Published As

Publication number Publication date
JPH0891857A (en) 1996-04-09

Similar Documents

Publication Publication Date Title
EP0972863B1 (en) Method for annealing single crystal fluoride and method for manufacturing the same
JP2858637B2 (en) Method for producing fused silica glass product
TWI758576B (en) Glass substrate and method for producing the same
JP4462557B2 (en) Method for producing synthetic silica glass substrate for photomask, synthetic silica glass substrate for photomask by the method
US6374640B1 (en) Method for compaction of flat glass panes
JP3972374B2 (en) Silica glass annealing method
Presser et al. Microstructural evolution of silica on single‐crystal silicon carbide. Part I: devitrification and oxidation rates
JPH1121197A (en) Seed crystal for crystal growth and fluoride crystal
JP5912999B2 (en) Heat treatment method for synthetic quartz glass
JP2010265124A (en) Heat-treatment method of glass optical member and method for manufacturing glass optical element
KR20200142018A (en) Method of making a glass substrate with reduced birefringence
JP2814795B2 (en) Manufacturing method of quartz glass
JPH10105915A (en) Glass sealed body and its production
JPH09278465A (en) Production of glass substrate having small heat shrinkage ratio
JP4839205B2 (en) Fluorite manufacturing method
JP4092515B2 (en) Fluorite manufacturing method
JP2007161565A (en) Method for heat treating fluoride single crystal and fluoride single crystal
EP3366816A1 (en) Method for producing lithium niobate single crystal substrate
JPH06247730A (en) Method for slowly cooling sheet glass
KR101769670B1 (en) Method of making glass substrate and glass substrate
JP4839204B2 (en) Fluorite
JP2005239542A (en) Method for producing low stress non-(111) oriented large volume crystal with reduced stress birefringence and homogenous refractive index, and crystal produced by the same
JPH05170466A (en) Heat treatment for optical synthetic quartz glass formed body
JP4158252B2 (en) Fluorite single crystal, heat treatment method thereof, and method for producing fluorite single crystal material
JPH08151224A (en) Method for treating plate glass

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070604

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees