JP3972297B2 - Vibration control device with foreign matter discharge function - Google Patents

Vibration control device with foreign matter discharge function Download PDF

Info

Publication number
JP3972297B2
JP3972297B2 JP2002255590A JP2002255590A JP3972297B2 JP 3972297 B2 JP3972297 B2 JP 3972297B2 JP 2002255590 A JP2002255590 A JP 2002255590A JP 2002255590 A JP2002255590 A JP 2002255590A JP 3972297 B2 JP3972297 B2 JP 3972297B2
Authority
JP
Japan
Prior art keywords
independent mass
shaft member
foreign matter
mass member
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002255590A
Other languages
Japanese (ja)
Other versions
JP2004092805A (en
Inventor
孝弘 青井
浩幸 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2002255590A priority Critical patent/JP3972297B2/en
Publication of JP2004092805A publication Critical patent/JP2004092805A/en
Application granted granted Critical
Publication of JP3972297B2 publication Critical patent/JP3972297B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)

Description

【0001】
【技術分野】
本発明は、振動部材に固設される軸部材に対して、それに外挿した環状の独立マス部材を打ち当てることにより相殺的な制振効果を得るようにした制振装置に関するものである。
【0002】
【背景技術】
従来から、自動車のボデーなどのように振動が問題となる部材において振動を低減する手法としては、(a)振動部材にマス材を固設するマスダンパや、(b)振動部材にばね材を介してマス材を連結支持せしめるダイナミックダンパ、更に、(c)振動部材の表面にシート状弾性材を貼着した制振材が、知られている。ところが、上記(a)マスダンパと(b)ダイナミックダンパは、何れも、大きなマス材の質量が必要になることに加えて、有効な制振効果の発揮される周波数域が狭いという問題があった。また、上記(c)制振材は、広い貼着面積が必要になると共に、重量が嵩むという問題があった。更に、上記(b)ダイナミックダンパと(c)制振材は、制振効果の温度依存性が高いために、目的とする制振効果を安定して得ることが難しいという問題もあったのである。
【0003】
このような従来からの問題に鑑み、本出願人は、先に、特許文献1において、振動部材に固定される剛性のハウジングに対して、隙間を隔てて非接着で相対変位可能に独立マス部材を配設せしめて、振動入力時に、かかる独立マス部材を、ハウジングに対して弾性的な当接面で当接させることにより、当接時における滑り摩擦と衝突によるエネルギ損失を利用して相殺的な制振効果を得るようにした、新規な構造の車両用制振装置を提案した。このような構造の車両用制振装置においては、小さなマス質量により、広い周波数域に亘る振動に対して有効な制振効果を得ることが出来るのである。
【0004】
【特許文献1】
国際公開WO00/14429号パンフレット
【0005】
ところが、かかる特許文献1に記載された車両用制振装置においては、独立マス部材をその全体を覆うようにして収容するハウジングを略密閉構造をもって形成する必要があることから、構造が複雑で製造が難しいことに加えて、ハウジングの外形サイズが大きくなってしまい、特に配設スペースが制限される場合への対応が難しいという不具合があった。
【0006】
そこで、本出願人は、新たな特許出願(特願2001−037790号)を行い、そこにおいて、振動部材に固設される軸部材に対して環状の独立マス部材を外挿して非接着で独立変位可能に配設せしめて、独立マス部材が軸部材に対して相対変位して直接的且つ弾性的に打ち当たるようにした、改良された構造の制振装置を提案した。このような制振装置においては、独立マス部材を覆う密閉構造のハウジングを設ける必要がないことから、構造の簡略化と製造の容易化が図られ得ると共に、外形サイズのコンパクト化も有利に実現可能となるのである。
【0007】
しかしながら、上述の先願(特願2001−037790号)で開示した、改良された構造の制振装置について、本発明者等が更なる検討を加えたところ、かかる制振装置においては、独立マス部材が配設された領域を、ハウジングによって密閉されずに外気に対してオープン構造とされた形態をもって形成することが可能であるが、そのようなオープン構造のハウジングを採用した場合には、装着場所の条件により水や泥,埃等の異物に対して独立マス部材が直接に晒されるおそれがあり、かかる異物が、独立マス部材と軸部材の当接面間の隙間に侵入してしまって、独立マス部材と軸部材の打ち当り条件が変化してしまい、かかる打ち当りに基づく所期の制振効果が安定して発揮され難くなってしまうおそれがあるという、新たな不具合を内在していることが明らかとなった。
【0008】
【解決課題】
ここにおいて、本発明は、上述の如き事情を背景として為されたものであって、その解決課題とするところは、密閉タイプのハウジングを備えない上述の如き制振装置であって、独立マス部材と軸部材の打ち当り面間の隙間に対して異物が侵入することに起因する制振性能の低下の問題が回避され得て、所期の制振効果を安定して得ることの出来る、改良された構造の制振装置を提供することにある。
【0009】
【解決手段】
以下、このような課題を解決するために為された本発明の態様を記載する。なお、以下に記載の各態様において採用される構成要素は、可能な限り任意の組み合わせで採用可能である。また、本発明の態様乃至は技術的特徴は、以下に記載のものに限定されることなく、明細書全体および図面に記載され、或いはそれらの記載から当業者が把握することの出来る発明思想に基づいて認識されるものであることが理解されるべきである。
【0010】
すなわち、本発明の第一の態様は、振動部材に固設される軸部材に対して環状の独立マス部材を外挿して非接着で独立変位可能に配設せしめて、該軸部材に対して該独立マス部材が相対変位して直接的且つ弾性的に打ち当たるようにした制振装置において、前記独立マス部材と前記軸部材の相互的な打ち当り面を構成する軸直角方向および軸方向の少なくとも一方の対向面間において、かかる対向面間に侵入した異物が外部へ容易に排出されるようにして該異物の外部への排出を促し得る異物排出部を設けて、且つ、前記軸部材に対して前記独立マス部材が軸直角方向で相対変位せしめられることにより互いに打ち当たる該軸部材の外周面と該独立マス部材の内周面において前記打ち当り面としての第一の打ち当り面を形成すると共に、該第一の打ち当り面が形成された前記軸直角方向対向面間の距離を周上で部分的に大きくして軸方向に貫通する第一の排出用通路を形成し、該第一の排出用通路により前記異物排出部を構成して該軸直角方向対向面間に侵入した異物が該第一の排出用通路を通じて軸方向外方に排出され得るようにして、前記軸部材および前記独立マス部材の各中心軸が略水平方向に延びる状態で前記振動部材に装着されるようにする一方、該軸部材と該独立マス部材の周方向の相対変位を制限する周方向変位制限手段を設けると共に、それら軸部材と独立マス部材の前記軸直角方向対向面における周上の一部に前記第一の排出用通路を形成して、該振動部材への装着状態下で該第一の排出用通路が該軸直角方向対向面の鉛直下端部に位置せしめられるようにしたことを、特徴とする。
【0011】
このような本態様においては、独立マス部材が外部空間に直接に露呈されていても、外部空間から及ぼされる水や泥,埃等の異物が独立マス部材と軸部材の打ち当り面間の隙間に入り混んだ場合には、かかる異物の外部空間への排出が促され得ることとなる。従って、密閉構造のハウジングを備えないが故に発揮され得る、サイズのコンパクト性や構造の簡略性などの優れた効果を充分に確保しつつ、外部空間からの異物の侵入に起因する不具合が軽減乃至は回避され得るのであり、目的とする制振効果を有効に且つ安定して得ることが可能となるのである。
【0012】
また、本態様において、独立マス部材は、その全体をゴム弾性体や合成樹脂材等で形成したり、補強的に金属等の剛性材を固着することも可能であるが、独立マス部材を金属等の高比重の剛性材で形成することによって、コンパクトで且つ質量の大きい独立マス部材が有利に実現され得る。そこにおいて、独立マス部材だけでなく軸部材も剛性材で形成する場合には、独立マス部材と軸部材の打ち当り面の少なくとも一方にゴム弾性体や合成樹脂等の弾性材を被着形成することにより、独立マス部材の軸部材に対する弾性的な当接が有利に実現され得る。
【0013】
更にまた、本態様において、独立マス部材は軸部材に対して非接着で独立変位可能とされていることから、それら独立マス部材と軸部材の間には、両部材を弾性的に連結せしめる部材も存在していない。即ち、独立マス部材の全表面は、軸部材に対して完全に分離独立せしめられており、独立マス部材を軸部材に対する移動中心に位置せしめた状態下では、独立マス部材の内周面が軸部材の外周面に対して全体に亘って軸直角方向で離隔位置せしめられるようになっているのである。
【0015】
そして、本態様においては、第一の打ち当り面における軸部材と独立マス部材の当接作用に基づいて、軸直角方向の振動に対して有効な制振効果が発揮され得るのであり、また、かかる第一の打ち当り面を構成する軸直角方向対向面間に異物が侵入した場合でも、かかる異物が第一の排出用通路を通じて軸方向外方に導かれて外部空間に容易に排出され得ることから、異物が隙間にとどまることに起因する制振効果の低下が効果的に防止され得ることとなる。特に、第一の排出用通路は、振動入力に際して相対変位せしめられる軸部材と独立マス部材の対向面間に形成されており、それら軸部材と独立マス部材の相対変位に伴って第一の排出用通路の断面形状が変化せしめられて、該第一の排出用通路に導かれた異物に対しても外力(加振力)が及ぼされることから、かかる異物が第一の排出用通路から速やかに外部に排出され得るのである。なお、第一の排出通路を通じての異物の排出を一層効率化するために、該第一の排出用通路を形成する軸部材と独立マス部材の対向面に対して相対的な軸方向テーパ(傾斜面)を付するようにしても良い。また、かかる第一の排出用通路は、軸直角方向対向面において周上で部分的に形成されていることから、独立マス部材の軸部材への当接に基づく制振効果は、第一の排出用通路が形成されていない部分によって有効に発揮され得るのである。
さらに、本態様においては、制振装置を振動部材に装着せしめた状態下で、軸直角方向対向面間の隙間において鉛直方向の下端部に位置して上方に向かって開口する形態をもって、第一の排出用通路を構成する凹溝が位置せしめられることとなる。それ故、軸直角方向対向面間に入り込んだ異物が、重力の作用により第一の排出用通路に向けて導かれ得るのであり、それによって、異物の外部空間への排出がより効率的に且つ速やかに実現され得るのである。
【0016】
なお、本態様において、第一の打ち当り面の軸直角方向における対向面間距離は、軸部材に対して独立マス部材を同一中心軸上に配設せしめて、軸部材の外周面と独立マス部材の内周面を同一中心軸上に位置せしめた状態下で測定される寸法をもって定義することとする。
【0018】
また、本発明の第の態様は、前記第一の態様に係る制振装置において、前記軸部材と前記独立マス部材を何れも金属材で形成すると共に、該軸部材の外周面と該独立マス部材の内周面の少なくとも一方にゴム弾性体を被着形成して、該ゴム弾性体で該軸部材と該独立マス部材における前記軸直角方向対向面の少なくとも一方を構成すると共に、該ゴム弾性体において、該軸部材の外周面および該独立マス部材の内周面の一方から他方に向かって突出する弾性突出部を、軸方向の複数箇所でそれぞれ周方向に延びるように一体形成して、それら弾性突出部の突設先端面によって前記第一の打ち当り面を構成したことを、特徴とする。このような本態様においては、第一の打ち当り面が、軸部材の外周面と独立マス部材の内周面において部分的に形成されることから、それらの全面に亘って第一の打ち当り面を形成した場合に比して、第一の打ち当り面への異物の噛み込みが抑えられ得ると共に、軸部材の外周面と独立マス部材の内周面の軸直角方向対向面間に入り込んだ異物も、弾性突出部の形成されていない部分に設けられた比較的に大きな隙間を通じて周方向で第一の排出用通路に向かってより速やかに導かれることとなり、第一の排出用通路を通じての異物の外部空間への排出効率が向上され得る。
【0020】
また、本発明の第の態様は、振動部材に固設される軸部材に対して環状の独立マス部材を外挿して非接着で独立変位可能に配設せしめて、該軸部材に対して該独立マス部材が相対変位して直接的且つ弾性的に打ち当たるようにした制振装置において、前記独立マス部材と前記軸部材の相互的な打ち当り面を構成する軸直角方向および軸方向の少なくとも一方の対向面間において、かかる対向面間に侵入した異物が外部へ容易に排出されるようにして該異物の外部への排出を促し得る異物排出部を設けて、且つ、前記軸部材に対して前記独立マス部材が軸直角方向で相対変位せしめられることにより互いに打ち当たる該軸部材の外周面と該独立マス部材の内周面によって前記打ち当り面としての第一の打ち当り面を構成すると共に、該第一の打ち当り面を構成する該独立マス部材の内周面において、軸方向中間部分から軸方向両端部に向かって次第に拡開して該軸部材の外周面から径方向外方に離隔する軸方向傾斜面を形成し、かかる軸方向傾斜面により前記異物排出部を構成して前記軸直角方向対向面間に侵入した異物が該軸方向傾斜面で導かれて軸方向外方に排出され得るようにして、前記軸部材および前記独立マス部材の各中心軸が略水平方向に延びる状態で前記振動部材に装着されるようにしたことを、特徴とする。
【0021】
このような本態様においては、第一の打ち当り面における軸部材と独立マス部材の当接作用に基づいて、軸直角方向の振動に対して有効な制振効果が発揮され得るのであり、また、かかる第一の打ち当り面を構成する軸直角方向対向面間に異物が侵入した場合でも、かかる異物が、隙間を形成する軸方向傾斜面に沿って案内されることにより、軸方向外方に導かれて外部空間に容易に排出され得ることから、異物が隙間にとどまることに起因する制振効果の低下が効果的に防止され得ることとなる。特に、軸方向傾斜面は、振動入力に際して軸部材に対して相対変位せしめられる独立マス部材に形成されており、該独立マス部材の軸部材に対する変位に伴って、軸方向傾斜面上の異物に対して外力(加振力)が及ぼされ得ることから、かかる異物が軸方向傾斜面によって一層効率的に導かれて外部空間に速やかに排出され得るのである。
また、本態様においては、制振装置を振動部材に装着せしめた状態下で、軸直角方向対向面間に入り込んだ異物が重力の作用により隙間内を周方向下方に導かれて、隙間の鉛直下端部に集められることとなり、更に、かかる鉛直下端部において、重力の作用によって、独立マス部材の内周面に形成された軸方向傾斜面上に載置されることとなる。それ故、軸方向傾斜面による異物の軸方向への案内作用が、異物に及ぼされる重力の分力によって一層効果的に発揮され得ることとなり、異物の外部空間への排出がより効率的に且つ速やかに実現され得るのである。
【0022】
また、本発明の第の態様は、前記第の態様に係る制振装置において、前記軸部材と前記独立マス部材を何れも金属材で形成すると共に、該独立マス部材の内周面にゴム弾性体を被着形成して、該ゴム弾性体で該独立マス部材における前記軸方向傾斜面を備えた前記軸直角方向対向面を構成したことを、特徴とする。このような本態様においては、軸部材および独立マス部材の強度や、独立マス部材の質量を容易に確保することが出来ると共に、第一の打ち当り面を構成するゴム弾性体の成形に際して、目的とする軸方向傾斜面を、任意の傾斜角度や面形状をもって容易に形成することが可能となる。
【0024】
また、本発明の第の態様は、前記第一乃至第の何れかの態様に係る制振装置において、前記独立マス部材を軸方向に挟んだ両側に位置して軸直角方向に広がる一対の軸方向当接部を前記軸部材に対して固定的に設けて、前記軸部材に対して該独立マス部材が軸方向で相対変位せしめられることにより互いに打ち当たる該軸方向当接部と該独立マス部材の軸方向端面によって前記打ち当り面としての第二の打ち当り面を構成したことを、特徴とする。このような本態様に係る制振装置においては、独立マス部材の軸部材に対する第一の打ち当り面での当接作用に基づいて軸直角方向の振動に対する制振効果が発揮され得ることに加えて、独立マス部材の軸部材に対する第二の打ち当り面での当接作用に基づいて軸方向の振動に対しても有効な制振効果が発揮され得るのである。
【0033】
【発明の実施形態】
以下、本発明を更に具体的に明らかにするために、本発明の実施形態について、図面を参照しつつ、詳細に説明する。
【0034】
先ず、図1〜2には、本発明の第一の実施形態としての制振装置10が示されている。この制振装置10は、軸部材としての支持ロッド12に対して独立マス部材としての環状マス14が外挿状態で組み付けられることによって構成されており、支持ロッド12が、自動車のボデー等の制振すべき振動部材16に固定されることによって装着されるようになっている。なお、以下の説明において上下方向とは、鉛直上下方向に相当する図1,2中の上下方向を言うものとする。
【0035】
より詳細には、支持ロッド12は、中実の円形ロッド形状を有しており、軸方向一方の端部には大径の頭部18が一体形成されている一方、軸方向他方の端部には軸方向外方に突出するボルト部20が一体形成されている。そして、頭部18には、円環板形状の抜止めプレート22が外嵌固定されている一方、ボルト部20には、ブラケット板24が外挿されて、ボルト部20に螺合された締付ナット26で固着されており、これら抜止めプレート22とブラケット板24が、支持ロッド12の軸方向で所定距離を隔てて対向位置せしめられている。
【0036】
なお、支持ロッド12と抜止めプレート22およびブラケット板24は、何れも、振動入力に伴って及ぼされる外力に対して充分な強度を剛性を備えた材料、例えば鉄等の金属等で形成されている。
【0037】
また、抜止めプレート22には、中心軸周りで周方向に所定長さで延びる円弧形状の係合窓26が、板厚方向に貫設されている。更にまた、ブラケット板24は、略矩形平板形状とされていると共に、下端縁部が水平方向に屈曲されて固定板部28が一体形成されており、この固定板部28において振動部材16の表面に重ね合わされて固定ボルト30で振動部材16に固定されるようになっている。
【0038】
一方、環状マス14は、環状のマス金具32の表面にゴム弾性体34が着形成された構造とされている。マス金具32は、矩形断面形状で周方向に延びる厚肉の円筒形状を有しており、その内径寸法は支持ロッド12の外形寸法よりも充分に大きくされていると共に、その外形寸法が、抜止めプレート22の外形寸法と略同じとされている。なお、マス金具32は、安価で且つ成形が容易であって質量の大きい材料を選択することが望ましく、例えば鉄系金属等が有利に採用される。
【0039】
また、ゴム弾性体34は、マス金具32の外周面に被着されて、マス金具32の実質的に全外周面を覆う薄肉の被覆ゴム層36と、マス金具32の軸方向両端部から、軸方向外方に傾斜して径方向内方に突出する一対の当接ゴム部38,38、更にマス金具32の軸方向一方の端面から軸方向外方に突出する係合突起40を含んで構成されている。なお、これら被覆ゴム層36と当接ゴム部38,38および係合突起40を含むゴム弾性体34は、マス金具32の外周面上で一体成形されてマス金具32に対して加硫接着されている。
【0040】
そこにおいて、当接ゴム部38,38は、それぞれ、軸方向外方に向かって次第に小径化するテーパ筒形状を有しているが、マス金具32の全周に亘って連続しておらず、周方向において半周よりも僅かに大きい長さで形成されている。そして、かかる一対の当接ゴム部38,38の突出先端部における内周面によって小径円弧形状の当接内周面42,42が形成されており、これらの当接内周面42,42が、被覆ゴム層36の内周面よりも径方向内方に位置せしめられている。
【0041】
また、係合突起40は、周方向に所定長さで延びる円弧板形状を有しており、当接ゴム部38と周上の同じ位置で、該当接ゴム部38の外周側に位置せしめられて、該当接ゴム部38よりも軸方向外方にまで突設されている。
【0042】
そして、このような環状マス14は、支持ロッド12に対して、ブラケット板24の組付前に外挿されて組み付けられている。また、かかる組付状態下では、環状マス14の係合突起40が、抜止めプレート22の係合窓26に対して、遊挿状態で挿通されており、係合突起40の係合窓26に対する係合作用により、環状マス14が抜止めプレート22ひいては支持ロッド12に対して周方向で位置決めされている。
【0043】
これにより、振動部材16にボルト固定されたブラケット板24により、中心軸が水平方向に延びる状態で配設された支持ロッド12に対して外挿装着された環状マス14は、一対の当接ゴム部38,38が鉛直上方に位置せしめられた状態で周方向に位置決めされており、かかる一対の当接ゴム部38,38の当接内周面42,42が支持ロッド12の外周面に当接せしめられることにより、吊り下げ状態で支持されている。要するに、本実施形態では、支持ロッド12の外周面と、そこに当接せしめられる一対の当接ゴム部38,38の当接内周面42,42によって第一の打ち当り面が構成されているのである。
【0044】
そして、かかる装着状態下において、支持ロッド12とマス金具32の径方向対向面(軸直角方向対向面)44,46間には、マス金具32の軸方向中間部分を周方向に連続して延びる空所48が形成されている。また、支持ロッド12の外径寸法よりもマス金具32の内径寸法が充分に大きくされていることによって、マス金具32が支持ロッド12で懸吊支持された状態下で、空所48の径方向寸法が周方向に変化せしめられており、かかる空所48が鉛直上方で狭く、鉛直下方で広くされている。また、空所48の径方向寸法が最も大きくされた鉛直下端部では、環状マス14の軸方向両端部に当接ゴム部(38,38)が形成されておらず、それによって、かかる空所48が軸方向両側で直接に外部空間に開口せしめられて連通されている。即ち、ゴム弾性体34を構成する一対の当接ゴム部38,38には、環状マス14の鉛直方向下端部に位置せしめられる部位において、周方向で半周に満たない幅の切欠部50,50が形成されており、これらの切欠部50,50と空所48で協働して、支持ロッド12と環状マス14の径方向対向面間距離が大きくされて軸方向に貫通して延びる凹溝状の第一の排出通路52が形成されているのである。
【0045】
従って、このような構造とされた制振装置10においては、振動部材16から支持ロッド12に対して鉛直方向の振動が及ぼされると、支持ロッド12に外挿された環状マス14に振動エネルギが伝達されて該環状マス14が軸直角方向(鉛直方向)に飛び跳ね変位せしめられて、環状マス14がその当接内周面42において支持ロッド12の外周面に対して打ち当りせしめられるのであり、かかる打ち当りに基づいて、支持ロッド12ひいては振動部材16に対して相殺的な制振効果が発揮され得ることとなる。
【0046】
そこにおいて、かかる制振装置10においては、環状マス14と支持ロッド12の軸直角方向当接面を構成する径方向対向面44,46間に形成された空所48が、装着状態下で環状マス14が重力作用で下方に吊り下げられることによって鉛直下端部において大きく設定されるようになっていると共に、該鉛直下端部には、当接ゴム部38,38に切欠部50,50が設けられて、軸方向に貫通して外部空間に開口する第一の排出通路52が形成されているのであり、それ故、例えば、制振装置10の装着状態下で、水や泥等の異物が径方向対向面44,46間に入り込んだ場合でも、空所48を通じて重力の作用で下方に移動せしめられて鉛直下端部に導かれ、その後、第一の排出通路52を通じて外部空間に速やかに排出され得るのである。
【0047】
従って、水や泥等の異物が、環状マス14と支持ロッド12の軸直角方向当接面を構成する径方向対向面44,46間にとどまって、支持ロッド12の外周面と環状マス14の当接内周面44,44との当接面間に入り込んで制振効果を阻害し続けることが防止され得るのであり、環状マス14の支持ロッド12への当接に基づく所期の制振効果が安定して有効に発揮され得るのである。
【0048】
しかも、上述の如き構造とされた制振装置10においては、環状マス14を直接に外部空間に露呈せしめた構造が維持され得ることから、全体構造が簡略で製造が容易であるという効果や、全体サイズをコンパクトにすることが出来る等という効果も、有効に発揮され得る。
【0049】
また、特に本実施形態では、支持ロッド12と環状マス14の弾性的な当接部位が、環状マス14から軸方向斜め外方に突設された一対の当接ゴム部38,38で構成されており、軸直角方向の当接に際してこれら当接ゴム部38,38が剪断成分をもって弾性変形せしめられることから、環状マス14の支持ロッドに対する当接部のバネ特性を低ばね特性に設定して、制振特性のピークを低周波数域にチューニングすることが容易であるという利点もある。
【0056】
また、図には、本発明の第の実施形態としての制振装置70が示されている。この制振装置70は、軸部材としての固定金具72に対して、独立マス部材としての環状マス74が相対変位可能に組み付けられており、図に示されている如き振動部材75への装着状態下で、環状マス74が固定金具72に打ち当たることにより制振効果が発揮されるようになっている。
【0057】
より詳細には、固定金具72は、筒金具76の軸方向端部に板金具78が固着された構造とされている。筒金具76は、円筒形状の筒部80の軸方向一端部にフランジ部82が一体形成されており、L字形断面で周方向に連続して延びる円環形状を有している。一方、板金具78は、中央部分に挿通孔80を有する円環板形状を有しており、筒金具76の軸方向他端部(フランジ部82と反対の軸方向端部)に対して軸方向で重ね合わされて外嵌固定されている。これにより、フランジ部82と板金具78が、筒金具76の筒部80を軸方向に挟んだ両側に位置してそれぞれ軸直角方向で外方に広がり、且つ、相互に軸方向で所定距離を隔てて対向位置せしめられており、固定金具72が、全体として径方向外方に開口して周方向に連続して延びる環状凹溝の形態を呈している。
【0058】
一方、環状マス74は、矩形断面で周方向に連続して延びる円環ブロック形状のマス金具84に対して、ゴム弾性体86が被着形成された構造とされている。特に、ゴム弾性体86は、マス金具84の表面を、実質的に全体に亘って被覆するゴム層形態をもって形成されており、好適にはマス金具84に対して加硫接着される。また、環状マス74は、その最小内径寸法が、固定金具72の筒金具76の外径寸法よりも所定量だけ大きくされていると共に、その軸方向最大寸法が、固定金具72におけるフランジ部82と板金具78の軸方向対向面間距離よりも所定量だけ小さくされている。
【0059】
そして、かかる環状マス74は、固定金具72の筒部80に外挿されて、フランジ部82と板金具78の軸方向対向面間に配されており、固定金具72に形成された環状凹溝に収容された状態で組み付けられている。また、かかる組付状態下、環状マス74は、固定金具72に対して、軸直角方向および軸方向で、それぞれ、所定距離だけ独立して相対変位可能とされている。要するに、環状マス74を固定金具72に対して同一中心軸上で、且つ軸方向中央部分に位置せしめた状態下では、周方向の全体に亘って、環状マス74と固定金具72の間には、所定量の隙間が形成されて、環状マス74が固定金具72に対して独立して相対変位可能とされているのである。
【0060】
これにより、固定金具72と環状マス74には、固定金具72における筒部80の外周面と環状マス74の内周面によって、径方向で対向位置せしめられて相互に打ち当たる径方向対向面88,90が構成されていると共に、固定金具72におけるフランジ部82および板金具78の各内面と環状マス74の軸方向両端面によって、軸方向で対向位置せしめられて相互に打ち当たる一対の軸方向対向面92,94が構成されている。
【0061】
また、ゴム弾性体86は、マス金具84の内周面に被着されて径方向対向面90を形成する部分の肉厚寸法が、軸方向で変化せしめられており、円筒形状とされたマス金具84の内周面からのゴム弾性体86の突出高さが軸方向が異ならされている。具体的には、マス金具84の内周面からのゴム弾性体86の突出高さは、軸方向中央部分で最も大きく、そこから軸方向両側に行くに従って次第に小さくされている。これにより、ゴム弾性体86で形成された環状マス74の径方向対向面88(環状マス74の内周面)に対して、中央部分で最も小径となり、そこから軸方向両側に行くに従って次第に拡径するテーパが付されているのである。
【0062】
更にまた、ゴム弾性体86には、マス金具84の軸方向両端面に被着されて軸方向対向面94,94を形成する部分において、径方向中間部分で軸方向外方に突出する弾性突起96,96が、周方向に延びる突条形態をもって一体形成されている。
【0063】
而して、上述の如き構造とされた制振装置70は、図に示されているように、固定ボルト98に外挿されて、該固定ボルト98が振動部材75に螺着されることにより、固定金具72が、振動部材75と固定ボルト98の頭部100の間で締め付けられて振動部材75に対して固定されることによって装着せしめられる。また、かかる装着状態下では、固定金具72の中心軸が略水平方向に延びるようにされる。
【0064】
これにより、かかる装着状態では、図に示されているように、また、前記第一の実施形態と同様に、振動部材75に固定された固定金具72によって、該固定金具72に外挿された環状マス74が吊り下げられた状態で懸吊支持せしめられることとなる。そして、鉛直方向の振動が及ぼされると、固定金具72から環状マス74に振動エネルギが伝達されて環状マス74が固定金具72に対して鉛直方向に飛び跳ね状態で相対変位せしめられることとなり、その結果、環状マス74が固定金具72に対して径方向対向面88,90間で繰り返して打ち当てられて相殺的な制振効果が振動部材75に及ぼされ得るのである。また、かかる制振装置70に対して中心軸方向に相当する水平方向(図中の左右方向)の振動が及ぼされると、固定金具72から環状マス74に振動エネルギが伝達されて環状マス74が固定金具72に対して軸方向に飛び跳ね状態で相対変位せしめられることとなり、その結果、環状マス74が固定金具72に対して軸方向両側の軸方向対向面92,94間で繰り返して打ち当てられて相殺的な制振効果が振動部材75に及ぼされ得るのである。
【0065】
ここにおいて、かかる制振装置70にあっては、環状マス14の固定金具72に対する径方向当接面を構成する径方向対向面90が、軸方向に傾斜した傾斜面とされていることから、図に示されているように、固定金具72により環状マス14が重力作用で下方に吊り下げられて装着せしめられた状態下では、環状マス14と固定金具72の筒部80の径方向対向面88,90間に形成された空間が、下端部において大きくなるようにされて、軸方向に貫通して外部空間に開口する第一の排出通路102が形成されている。また、かかる第一の排出通路102は、その底面が環状マス74の内周面(径方向対向面)90で構成されており、径方向に傾斜したテーパが付されている。それ故、例えば、制振装置10の装着状態下で、水や泥等の異物が径方向対向面88,90間に入り込んだ場合でも、固定金具72の筒部80と環状マス74の対向面間に形成された空所を通じて重力の作用で下方に移動せしめられて鉛直下端部に導かれ、その後、第一の排出通路102を通じて、該第一の排出通路102の底面に形成されたテーパで軸方向外方に向かって送り出されるようにして、外部空間に速やかに排出され得るのである。
【0066】
従って、本実施形態の制振装置70においても、第一の実施形態と同様に、水や泥等の異物が、環状マス74と固定金具72の軸直角方向当接面を構成する径方向対向面88,90間にとどまって、固定金具72と環状マス74の径方向当接面間に入り込んで制振効果を阻害し続けることが防止され得るのであり、環状マス74の固定金具72への当接に基づく所期の制振効果が安定して有効に発揮され得るのである。
【0067】
なお、上述の説明から明らかなように、本実施形態では、環状マス74が固定金具72で懸吊支持されることにより、それら環状マス74と固定金具72の径方向対向面88,90間に形成される第一の排出通路102と、該排出通路102からの異物の排出をより促進せしめる環状マス74の内周面のテーパ付構造とによって、環状マス74の固定金具72への打ち当り面間に侵入した異物の外部への排出を促す異物排出部が協働して構成されている。
【0078】
以上、本発明の実施形態について詳述してきたが、これらはあくまでも例示であって、本発明は、かかる実施形態における具体的な記載によって、何等、限定的に解釈されるものでなく、当業者の知識に基づいて種々なる変更,修正,改良等を加えた態様において実施され得るものであり、また、そのような実施態様が、本発明の趣旨を逸脱しない限り、何れも、本発明の範囲内に含まれるものであることが理解されるべきである。
【0079】
【発明の効果】
上述の説明から明らかなように、本発明に従う構造とされた制振装置においては、異物排出機能を備えていることにより、外部空間から及ぼされる水等の異物が独立マス部材と軸部材の打ち当り面間の隙間に入り混んだ場合にも、かかる異物の外部空間への排出が促されるのであり、それ故、外部空間からの異物の侵入に起因する不具合が軽減乃至は回避されて、目的とする制振効果が有効に且つ安定して発揮され得るのである。
【図面の簡単な説明】
【図1】 本発明の第一の実施形態としての制振装置を示す縦断面図である。
【図2】 図1における右側面図である。
【図】 本発明の第の実施形態としての制振装置を示す縦断面図である。
【図】 図に示された制振装置の装着状態を示す縦断面説明図である。
【符号の説明】
10 制振装置
12 支持ロッド
14 環状マス
16 振動部材
32 マス金具
34 ゴム弾性体
36 被覆ゴム層
38 当接ゴム部
40 係合突起
42 当接内周面
44 径方向対向面
46 径方向対向面
48 空所
52 第一の排出通
0 制振装置
72 固定金具
74 環状マス
75 振動部材
76 筒金具
78 板金具
84 マス金具
86 ゴム弾性体
88 径方向対向面
90 径方向対向面
92 軸方向対向面
94 軸方向対向面
102 第一の排出通
[0001]
【Technical field】
The present invention relates to a vibration damping device that obtains an offset vibration damping effect by hitting an annular independent mass member extrapolated to a shaft member fixed to a vibration member.
[0002]
[Background]
Conventionally, as a method of reducing vibration in a member such as an automobile body in which vibration is a problem, (a) a mass damper in which a mass member is fixed to the vibrating member, or (b) a spring member is interposed in the vibrating member. In addition, a dynamic damper that connects and supports the mass material, and (c) a vibration damping material in which a sheet-like elastic material is attached to the surface of the vibration member are known. However, both the (a) mass damper and the (b) dynamic damper have a problem in that the frequency range where the effective damping effect is exhibited is narrow in addition to the necessity of a large mass material mass. . In addition, the above (c) damping material has a problem that a large sticking area is required and the weight increases. Furthermore, the above-mentioned (b) dynamic damper and (c) damping material have a problem that it is difficult to stably obtain the desired damping effect because the temperature dependence of the damping effect is high. .
[0003]
In view of such a conventional problem, the applicant of the present invention previously described in Patent Document 1 is an independent mass member that can be displaced relative to a rigid housing that is fixed to the vibration member with no gap therebetween. When the vibration is input, the independent mass member is brought into contact with the housing by an elastic contact surface, thereby canceling out the sliding friction at the time of contact and energy loss due to the collision. We proposed a new structure of a vehicle vibration control device that can achieve a good vibration control effect. In the vehicular vibration damping device having such a structure, an effective vibration damping effect can be obtained with respect to vibrations over a wide frequency range with a small mass.
[0004]
[Patent Document 1]
International Publication WO00 / 14429 Pamphlet
[0005]
However, in the vehicular vibration damping device described in Patent Document 1, it is necessary to form a housing that houses the independent mass member so as to cover the entire mass member, so that the structure is complicated and manufactured. In addition to being difficult, the outer size of the housing becomes large, and there is a problem that it is difficult to cope with the case where the installation space is particularly limited.
[0006]
Therefore, the present applicant has filed a new patent application (Japanese Patent Application No. 2001-037790), in which an independent annular mass member is extrapolated with respect to a shaft member fixed to the vibration member, and is independent without adhesion. A vibration damping device having an improved structure has been proposed in which the independent mass member is disposed so as to be displaceable so that the independent mass member is displaced relative to the shaft member directly and elastically. In such a vibration control device, since it is not necessary to provide a sealed housing that covers the independent mass member, the structure can be simplified and the manufacturing can be facilitated, and the outer size can be advantageously reduced. It becomes possible.
[0007]
However, the inventors have made further studies on the improved structure damping device disclosed in the above-mentioned prior application (Japanese Patent Application No. 2001-037790). It is possible to form the area where the members are arranged with a form that is open to the outside air without being sealed by the housing. The independent mass member may be directly exposed to foreign matters such as water, mud, dust, etc. depending on the conditions of the location, and such foreign matter has entered the gap between the contact surfaces of the independent mass member and the shaft member. A new problem that the contact condition of the independent mass member and the shaft member may change, and the desired vibration damping effect based on such a contact may not be stably exhibited. That is inherent revealed.
[0008]
[Solution]
Here, the present invention has been made in the background as described above, and the problem to be solved is a vibration damping device as described above that does not include a sealed type housing, and an independent mass member. The problem of reduced vibration control performance caused by foreign matter entering the gap between the contact surfaces of the shaft member and the shaft member can be avoided, and the desired vibration control effect can be stably obtained. An object of the present invention is to provide a vibration damping device having a structured structure.
[0009]
[Solution]
Hereinafter, the aspect of this invention made | formed in order to solve such a subject is described. In addition, the component employ | adopted in each aspect as described below is employable by arbitrary combinations as much as possible. In addition, aspects or technical features of the present invention are not limited to those described below, but are described in the entire specification and drawings, or can be understood by those skilled in the art from those descriptions. It should be understood that it is recognized on the basis of.
[0010]
  That is, according to the first aspect of the present invention, an annular independent mass member is extrapolated from a shaft member fixed to the vibration member so as to be independently displaceable without adhesion, and the shaft member In the vibration damping device in which the independent mass member is relatively displaced and directly and elastically hits, in the axial perpendicular direction and the axial direction constituting the mutual contact surface of the independent mass member and the shaft member A foreign matter discharge portion is provided between at least one of the opposing surfaces so that foreign matter that has entered between the opposing surfaces can be easily discharged to the outside, and the foreign matter can be expelled to the outside.In addition, when the independent mass member is displaced relative to the shaft member in the direction perpendicular to the axis, the outer peripheral surface of the shaft member and the inner peripheral surface of the independent mass member that are in contact with each other are used as the contact surface. A first discharge that penetrates in the axial direction while forming a first hitting surface and partially increasing the distance between the opposing surfaces in the direction perpendicular to the axis on which the first hitting surface is formed. A foreign matter that forms a foreign material passage and constitutes the foreign matter discharge portion by the first discharge passage and enters between the opposing surfaces in the direction perpendicular to the axis can be discharged outward in the axial direction through the first discharge passage. In this way, the shaft member and the independent mass member are attached to the vibrating member in a state where the central axes of the shaft member and the independent mass member extend in a substantially horizontal direction, while the relative displacement in the circumferential direction between the shaft member and the independent mass member. Provide circumferential displacement limiting means to limit Both the shaft member and the independent mass member have the first discharge passage formed in a part of the circumference on the surface perpendicular to the axis, and the first discharge passage is attached to the vibrating member. The passage is positioned at the vertical lower end of the surface perpendicular to the axis.This is a feature.
[0011]
In such an embodiment, even if the independent mass member is directly exposed to the external space, foreign matter such as water, mud, dust, etc. exerted from the external space is not separated from the gap between the contact surface of the independent mass member and the shaft member. In the case of entering and mixing, the discharge of such foreign matter to the external space can be promoted. Therefore, while ensuring sufficient excellent effects such as compactness of size and simplicity of structure that can be exhibited because it does not have a sealed housing, problems caused by intrusion of foreign matters from the external space are reduced or reduced. Can be avoided, and the intended vibration damping effect can be obtained effectively and stably.
[0012]
Further, in this aspect, the independent mass member can be entirely formed of a rubber elastic body, a synthetic resin material, or the like, or a rigid material such as a metal can be fixed for reinforcement. By using a rigid material having a high specific gravity such as a compact independent mass member having a large mass can be advantageously realized. Therefore, in the case where not only the independent mass member but also the shaft member is formed of a rigid material, an elastic material such as a rubber elastic body or a synthetic resin is attached to at least one of the contact surfaces of the independent mass member and the shaft member. Thereby, the elastic contact with the shaft member of the independent mass member can be advantageously realized.
[0013]
Furthermore, in this embodiment, since the independent mass member is non-adherent and can be independently displaced with respect to the shaft member, a member that elastically connects both members between the independent mass member and the shaft member. Also does not exist. In other words, the entire surface of the independent mass member is completely separated and independent from the shaft member. Under the state where the independent mass member is positioned at the movement center with respect to the shaft member, the inner peripheral surface of the independent mass member is the shaft. It is designed to be spaced apart in the direction perpendicular to the axis over the entire outer peripheral surface of the member.
[0015]
  AndIn this aspect, based on the abutting action of the shaft member and the independent mass member on the first striking surface, an effective damping effect against vibration in the direction perpendicular to the axis can be exhibited. Even if foreign matter enters between the opposing surfaces in the direction perpendicular to the axis constituting one hitting surface, such foreign matter can be guided axially outward through the first discharge passage and easily discharged into the external space. Thus, a reduction in the vibration damping effect due to the foreign matter remaining in the gap can be effectively prevented. In particular, the first discharge passage is formed between the opposed surfaces of the shaft member and the independent mass member that are displaced relative to each other when vibration is input, and the first discharge passage is caused by the relative displacement of the shaft member and the independent mass member. Since the cross-sectional shape of the discharge passage is changed and an external force (vibration force) is also exerted on the foreign matter guided to the first discharge passage, the foreign matter is quickly transferred from the first discharge passage. It can be discharged to the outside. In order to further increase the efficiency of discharging foreign matter through the first discharge passage, the axial taper (inclination) relative to the opposing surfaces of the shaft member and the independent mass member forming the first discharge passage is provided. Surface). In addition, since the first discharge passage is partially formed on the circumference in the surface perpendicular to the axis, the damping effect based on the contact of the independent mass member with the shaft member is the first It can be effectively exhibited by the portion where the discharge passage is not formed.
Further, in the present aspect, the first vibration damping device is mounted on the vibration member, and is positioned at the lower end in the vertical direction in the gap between the axially opposed surfaces and opens upward. The concave groove that constitutes the discharge passage is positioned. Therefore, the foreign matter that has entered between the opposed surfaces in the direction perpendicular to the axis can be guided toward the first discharge passage by the action of gravity, thereby more efficiently discharging the foreign matter to the external space and It can be realized quickly.
[0016]
In this aspect, the distance between the opposing surfaces in the direction perpendicular to the axis of the first striking surface is determined by disposing the independent mass member on the same central axis with respect to the shaft member, and the outer peripheral surface of the shaft member and the independent mass. It shall be defined with the dimension measured under the condition that the inner peripheral surface of the member is positioned on the same central axis.
[0018]
  In addition, the first of the present inventiontwoThe aspect of the aboveOneIn the vibration damping device according to the aspect, both the shaft member and the independent mass member are formed of a metal material, and at least one of the outer peripheral surface of the shaft member and the inner peripheral surface of the independent mass member is covered with a rubber elastic body. And forming at least one of the shaft member and the opposed surface in the direction perpendicular to the axis of the independent mass member with the rubber elastic body, and in the rubber elastic body, the outer peripheral surface of the shaft member and the independent mass member Elastic protrusions protruding from one of the inner peripheral surfaces of the inner peripheral surface to the other are integrally formed so as to extend in the circumferential direction at a plurality of locations in the axial direction, and the first protruding surface of the elastic protrusions A hitting surface is formed. In this embodiment, since the first hitting surface is partially formed on the outer peripheral surface of the shaft member and the inner peripheral surface of the independent mass member, the first hitting surface is formed over the entire surface. Compared to the case where the surface is formed, the foreign object can be prevented from being caught in the first contact surface, and the outer peripheral surface of the shaft member and the inner peripheral surface of the independent mass member enter between the opposing surfaces in the direction perpendicular to the axis. The foreign matter is also guided more quickly toward the first discharge passage in the circumferential direction through a relatively large gap provided in the portion where the elastic protrusion is not formed, and through the first discharge passage. The efficiency of discharging the foreign matter into the external space can be improved.
[0020]
  In addition, the first of the present inventionthreeIn this aspect, an annular independent mass member is extrapolated with respect to a shaft member fixed to the vibration member so that it can be independently displaced without adhesion, and the independent mass member is relatively displaced with respect to the shaft member. In the vibration damping device that directly and elastically strikes, between the at least one of the perpendicular direction and the axial direction constituting the mutual contact surface of the independent mass member and the shaft member. A foreign matter discharge portion that can facilitate the discharge of foreign matter that has entered between the opposing surfaces to the outside, and the independent mass member with respect to the shaft member. A first abutting surface as the abutting surface is constituted by the outer peripheral surface of the shaft member and the inner peripheral surface of the independent mass member that abut against each other by being relatively displaced in a direction perpendicular to the axis, and the first abutting surface Configure the hitting surface On the inner peripheral surface of the independent mass member, an axially inclined surface is formed which gradually expands from the axial intermediate portion toward both axial end portions and is spaced radially outward from the outer peripheral surface of the shaft member. The shaft member and the shaft member are configured such that the foreign matter intruding between the opposing surfaces in the direction perpendicular to the axis is configured by the inclined surface in the axial direction, and the foreign material that is introduced between the opposing surfaces in the direction perpendicular to the axis The independent mass member is attached to the vibration member in a state where each central axis extends in a substantially horizontal direction.
[0021]
  In this embodiment, an effective damping effect against vibration in the direction perpendicular to the axis can be exhibited based on the contact action between the shaft member and the independent mass member on the first hitting surface. Even when foreign matter enters between the axially perpendicular facing surfaces constituting the first contact surface, the foreign matter is guided along the axially inclined surface forming the gap, so that Therefore, it is possible to effectively prevent the reduction of the vibration damping effect due to the foreign matter remaining in the gap. In particular, the axially inclined surface is formed on an independent mass member that is displaced relative to the shaft member when a vibration is input, and the foreign material on the axially inclined surface is caused by the displacement of the independent mass member relative to the axial member. On the other hand, since an external force (excitation force) can be exerted, the foreign matter can be more efficiently guided by the axially inclined surface and quickly discharged to the external space.
Further, in this aspect, with the vibration damping device attached to the vibration member, the foreign matter that has entered between the opposed surfaces in the direction perpendicular to the axis is guided downward in the circumferential direction by the action of gravity, and the vertical direction of the gap In addition, the vertical lower end portion is placed on the axially inclined surface formed on the inner peripheral surface of the independent mass member by the action of gravity. Therefore, the guide action of the foreign matter in the axial direction by the inclined surface in the axial direction can be more effectively exhibited by the gravitational force exerted on the foreign matter, and the discharge of the foreign matter to the external space is more efficient and It can be realized quickly.
[0022]
  In addition, the first of the present inventionFourThe aspect of the abovethreeIn the vibration damping device according to the above aspect, the shaft member and the independent mass member are both formed of a metal material, and a rubber elastic body is formed on the inner peripheral surface of the independent mass member, thereby the rubber elastic body. In the independent mass member, the axially perpendicular surface provided with the axially inclined surface is configured. In this embodiment, the strength of the shaft member and the independent mass member and the mass of the independent mass member can be easily ensured, and at the time of molding the rubber elastic body constituting the first striking surface, It is possible to easily form the inclined surface in the axial direction with any inclination angle and surface shape.
[0024]
  In addition, the first of the present inventionFiveThe first to the second aspectsFourIn the vibration damping device according to any one of the above, a pair of axial contact portions that are positioned on both sides of the independent mass member in the axial direction and extend in a direction perpendicular to the axial direction are fixedly provided to the axial member. The independent mass member is relatively displaced in the axial direction with respect to the shaft member, and the second abutting surface is formed by the axial contact portion that abuts each other and the axial end surface of the independent mass member. A hitting surface is formed. In such a vibration damping device according to this aspect, in addition to being capable of exhibiting a vibration damping effect against vibration in a direction perpendicular to the axis based on the abutting action of the independent mass member on the shaft member against the shaft member. Thus, an effective damping effect can be exerted even in the axial direction based on the contact action of the independent mass member with the second abutting surface against the shaft member.
[0033]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, in order to clarify the present invention more specifically, embodiments of the present invention will be described in detail with reference to the drawings.
[0034]
1 to 2 show a vibration damping device 10 as a first embodiment of the present invention. The vibration damping device 10 is configured by assembling an annular mass 14 as an independent mass member in an extrapolated state with respect to a support rod 12 as a shaft member, and the support rod 12 is configured to control a vehicle body or the like. It is attached by being fixed to the vibration member 16 to be shaken. In the following description, the vertical direction means the vertical direction in FIGS. 1 and 2 corresponding to the vertical vertical direction.
[0035]
More specifically, the support rod 12 has a solid circular rod shape, and a large-diameter head 18 is integrally formed at one end in the axial direction, while the other end in the axial direction is formed. A bolt portion 20 that protrudes outward in the axial direction is integrally formed. An annular plate-shaped retaining plate 22 is externally fitted and fixed to the head portion 18, while a bracket plate 24 is extrapolated to the bolt portion 20 and screwed to the bolt portion 20. The retaining plate 22 and the bracket plate 24 are opposed to each other at a predetermined distance in the axial direction of the support rod 12.
[0036]
The support rod 12, the retaining plate 22, and the bracket plate 24 are all formed of a material having rigidity sufficient for an external force exerted by vibration input, for example, a metal such as iron. Yes.
[0037]
Further, the retaining plate 22 is provided with an arcuate engagement window 26 extending in the thickness direction around the central axis and extending in a circumferential direction by a predetermined length. Furthermore, the bracket plate 24 has a substantially rectangular flat plate shape, and a lower end edge portion is bent in the horizontal direction, and a fixed plate portion 28 is integrally formed. In the fixed plate portion 28, the surface of the vibration member 16 is formed. Are fixed to the vibration member 16 with fixing bolts 30.
[0038]
  On the other hand, the annular mass 14 has a rubber elastic body 34 on the surface of the annular mass fitting 32.CoveredThe structure is formed by wearing. The mass fitting 32 has a thick cylindrical shape with a rectangular cross-sectional shape extending in the circumferential direction, and its inner diameter is sufficiently larger than the outer dimension of the support rod 12, and the outer dimension is The outer dimensions of the stop plate 22 are substantially the same. For the mass metal fitting 32, it is desirable to select a material that is inexpensive, easy to mold, and has a large mass. For example, iron-based metal is advantageously employed.
[0039]
Further, the rubber elastic body 34 is attached to the outer peripheral surface of the mass metal fitting 32, and has a thin covering rubber layer 36 covering substantially the entire outer peripheral surface of the mass metal fitting 32, and both axial ends of the mass metal fitting 32. A pair of abutting rubber portions 38, 38 that incline outward in the axial direction and protrude inward in the radial direction, and an engagement protrusion 40 that protrudes outward in the axial direction from one axial end surface of the mass fitting 32. It is configured. The rubber elastic body 34 including the covering rubber layer 36, the contact rubber portions 38, 38 and the engagement protrusion 40 is integrally formed on the outer peripheral surface of the mass fitting 32 and vulcanized and bonded to the mass fitting 32. ing.
[0040]
In this case, each of the contact rubber portions 38, 38 has a tapered cylindrical shape that gradually decreases in diameter toward the outside in the axial direction, but is not continuous over the entire circumference of the mass fitting 32, It is formed with a length slightly larger than a half circumference in the circumferential direction. Further, the contact inner peripheral surfaces 42, 42 having a small-diameter arc shape are formed by the inner peripheral surfaces of the protruding tip portions of the pair of contact rubber portions 38, 38, and these contact inner peripheral surfaces 42, 42 are formed. Further, it is positioned radially inward from the inner peripheral surface of the covering rubber layer 36.
[0041]
The engagement protrusion 40 has an arc plate shape extending in the circumferential direction by a predetermined length, and is positioned on the outer peripheral side of the contact rubber part 38 at the same position on the circumference as the contact rubber part 38. Thus, it protrudes outward in the axial direction from the corresponding rubber contact portion 38.
[0042]
Such an annular mass 14 is attached to the support rod 12 by extrapolation before the bracket plate 24 is assembled. Further, under such an assembled state, the engagement projection 40 of the annular mass 14 is inserted in a loosely inserted state with respect to the engagement window 26 of the retaining plate 22, and the engagement window 26 of the engagement projection 40. Due to the engaging action, the annular mass 14 is positioned in the circumferential direction with respect to the retaining plate 22 and thus the support rod 12.
[0043]
As a result, the annular mass 14 that is externally attached to the support rod 12 that is disposed with the central axis extending in the horizontal direction by the bracket plate 24 that is bolted to the vibration member 16 is formed into a pair of contact rubbers. The portions 38 and 38 are positioned in the circumferential direction with the portions 38 and 38 positioned vertically upward, and the contact inner peripheral surfaces 42 and 42 of the pair of contact rubber portions 38 and 38 abut against the outer peripheral surface of the support rod 12. By being brought into contact with each other, it is supported in a suspended state. In short, in the present embodiment, the first striking surface is constituted by the outer peripheral surface of the support rod 12 and the contact inner peripheral surfaces 42, 42 of the pair of contact rubber portions 38, 38 brought into contact therewith. It is.
[0044]
Under such a mounting state, the axial intermediate portion of the mass fitting 32 continuously extends in the circumferential direction between the support rod 12 and the radially opposed surfaces (axially opposed surfaces) 44 and 46 of the mass fitting 32. A void 48 is formed. In addition, since the inner diameter dimension of the mass metal fitting 32 is sufficiently larger than the outer diameter dimension of the support rod 12, the radial direction of the cavity 48 can be obtained in a state where the mass metal fitting 32 is suspended and supported by the support rod 12. The dimensions are changed in the circumferential direction, and the void 48 is narrow in the vertical direction and wide in the vertical direction. In addition, at the vertical lower end portion where the radial dimension of the void 48 is maximized, the contact rubber portions (38, 38) are not formed at both axial end portions of the annular mass 14, whereby the void 48 is opened and communicated with the external space directly on both sides in the axial direction. That is, the pair of abutting rubber portions 38, 38 constituting the rubber elastic body 34 includes notches 50, 50 having a width less than a half circumference in the circumferential direction at a portion positioned at the lower end in the vertical direction of the annular mass 14. The groove is formed in cooperation with the notches 50 and 50 and the space 48 so that the distance between the radially opposing surfaces of the support rod 12 and the annular mass 14 is increased and extends in the axial direction. A first discharge passage 52 having a shape is formed.
[0045]
Therefore, in the vibration damping device 10 having such a structure, when vertical vibration is applied from the vibration member 16 to the support rod 12, vibration energy is applied to the annular mass 14 extrapolated to the support rod 12. As a result, the annular mass 14 jumps and displaces in the direction perpendicular to the axis (vertical direction), and the annular mass 14 strikes the outer peripheral surface of the support rod 12 at its abutting inner peripheral surface 42. Based on the hitting, an offset damping effect can be exhibited with respect to the support rod 12 and thus the vibration member 16.
[0046]
Therefore, in the vibration damping device 10, the void 48 formed between the radially opposed surfaces 44 and 46 constituting the contact surface perpendicular to the axial direction of the annular mass 14 and the support rod 12 is annular in the mounted state. When the mass 14 is suspended downward by gravity, the vertical lower end portion is set to be large, and the vertical lower end portion is provided with notches 50, 50 in the contact rubber portions 38, 38. Thus, a first discharge passage 52 that penetrates in the axial direction and opens to the external space is formed. Therefore, for example, when the vibration damping device 10 is attached, foreign matters such as water and mud Even when it enters between the radially opposed surfaces 44 and 46, it is moved downward by the action of gravity through the void 48 and guided to the vertical lower end, and then quickly discharged into the external space through the first discharge passage 52. Because it can be That.
[0047]
Accordingly, foreign matter such as water and mud stays between the radially opposing surfaces 44 and 46 constituting the contact surface perpendicular to the axial direction of the annular mass 14 and the support rod 12, and the outer peripheral surface of the support rod 12 and the annular mass 14. It is possible to prevent the vibration damping effect from continuing to enter between the abutting surfaces of the abutting inner peripheral surfaces 44, 44, and the desired vibration damping based on the abutting of the annular mass 14 on the support rod 12. The effect can be stably and effectively exhibited.
[0048]
In addition, in the vibration damping device 10 having the structure as described above, the structure in which the annular mass 14 is directly exposed to the external space can be maintained, so that the overall structure is simple and easy to manufacture, The effect that the overall size can be made compact can also be exhibited effectively.
[0049]
In particular, in the present embodiment, the elastic contact portion between the support rod 12 and the annular mass 14 is constituted by a pair of contact rubber portions 38 and 38 protruding obliquely outward in the axial direction from the annular mass 14. Since the abutment rubber portions 38 and 38 are elastically deformed with a shear component when abutting in the direction perpendicular to the axis, the spring characteristic of the abutment portion with respect to the support rod of the annular mass 14 is set to a low spring characteristic. There is also an advantage that it is easy to tune the peak of the damping characteristic to a low frequency range.
[0056]
  Also figure3In the present invention,twoA vibration damping device 70 as an embodiment is shown. In the vibration damping device 70, an annular mass 74 as an independent mass member is assembled to a fixing bracket 72 as a shaft member so as to be relatively displaceable.4When the annular mass 74 hits the fixing bracket 72 under the mounting state on the vibration member 75 as shown in FIG.
[0057]
More specifically, the fixing fitting 72 has a structure in which a plate fitting 78 is fixed to an end portion of the cylindrical fitting 76 in the axial direction. The tube fitting 76 has a flange portion 82 integrally formed at one axial end portion of a cylindrical tube portion 80, and has an annular shape continuously extending in the circumferential direction with an L-shaped cross section. On the other hand, the metal plate 78 has an annular plate shape having an insertion hole 80 in the center portion, and is axial with respect to the other axial end of the tube metal 76 (the axial end opposite to the flange portion 82). It is overlapped and fixed in the direction. As a result, the flange portion 82 and the plate fitting 78 are located on both sides of the tube portion 80 of the tube fitting 76 in the axial direction, spread outward in the direction perpendicular to the axis, and have a predetermined distance in the axial direction. The fixing bracket 72 is formed in the form of an annular groove that opens outward in the radial direction and extends continuously in the circumferential direction as a whole.
[0058]
On the other hand, the annular mass 74 has a structure in which a rubber elastic body 86 is attached to an annular block-shaped mass fitting 84 that continuously extends in the circumferential direction with a rectangular cross section. In particular, the rubber elastic body 86 is formed in the form of a rubber layer that covers substantially the entire surface of the mass fitting 84, and is preferably vulcanized and bonded to the mass fitting 84. The annular mass 74 has a minimum inner diameter dimension that is larger than the outer diameter dimension of the cylindrical fitting 76 of the fixing bracket 72 by a predetermined amount, and has a maximum axial dimension that is the same as that of the flange portion 82 of the fixing bracket 72. The distance between the opposing surfaces in the axial direction of the metal plate 78 is made smaller by a predetermined amount.
[0059]
The annular mass 74 is externally inserted into the cylindrical portion 80 of the fixing bracket 72 and is disposed between the axially facing surfaces of the flange portion 82 and the plate bracket 78, and an annular groove formed in the fixing bracket 72. It is assembled in the state accommodated in the. Further, under such an assembled state, the annular mass 74 can be relatively displaced with respect to the fixture 72 independently by a predetermined distance in the direction perpendicular to the axis and in the axial direction. In short, when the annular mass 74 is positioned on the same central axis with respect to the fixing bracket 72 and at the central portion in the axial direction, the annular mass 74 is fixed between the annular mass 74 and the fixing bracket 72 over the entire circumferential direction. A predetermined amount of gap is formed so that the annular mass 74 can be relatively displaced with respect to the fixture 72 independently.
[0060]
Thereby, the fixing member 72 and the annular mass 74 are opposed to each other in the radial direction by being opposed to each other in the radial direction by the outer peripheral surface of the cylindrical portion 80 and the inner peripheral surface of the annular mass 74 of the fixing member 72. , 90, and a pair of axial directions that are opposed to each other in the axial direction by the inner surfaces of the flange portion 82 and the plate metal 78 of the fixing metal 72 and the axially opposite end surfaces of the annular mass 74 and abut against each other. Opposing surfaces 92 and 94 are formed.
[0061]
In addition, the rubber elastic body 86 is attached to the inner peripheral surface of the mass metal fitting 84, and the thickness dimension of the portion forming the radial facing surface 90 is changed in the axial direction, so that the cylindrical mass is formed. The protruding height of the rubber elastic body 86 from the inner peripheral surface of the metal fitting 84 is different in the axial direction. Specifically, the protruding height of the rubber elastic body 86 from the inner peripheral surface of the mass metal fitting 84 is the largest at the central portion in the axial direction, and gradually becomes smaller from there toward the both sides in the axial direction. As a result, the diameter of the annular mass 74 formed by the rubber elastic body 86 is the smallest in the central portion with respect to the radially facing surface 88 (inner circumferential surface of the annular mass 74), and gradually expands from there to both sides in the axial direction. The taper which is diameter is attached.
[0062]
Furthermore, the rubber elastic body 86 is provided with elastic protrusions protruding outward in the axial direction at the radial intermediate portion in the portions that are attached to both end surfaces in the axial direction of the mass fitting 84 to form the axially facing surfaces 94, 94. 96 and 96 are integrally formed with the protrusion form extended in the circumferential direction.
[0063]
  Thus, the vibration damping device 70 having the above-described structure is shown in FIG.4As shown in FIG. 5, when the fixing bolt 98 is externally inserted into the fixing bolt 98 and screwed into the vibration member 75, the fixing metal 72 is attached to the vibration member 75 and the head 100 of the fixing bolt 98. It is attached by being fastened between and fixed to the vibration member 75. Further, under such a mounted state, the central axis of the fixing bracket 72 is extended in a substantially horizontal direction.
[0064]
  Thus, in such a mounted state,4As shown in FIG. 6, as in the first embodiment, the annular mass 74 externally attached to the fixing bracket 72 is suspended by the fixing bracket 72 fixed to the vibration member 75. It will be suspended and supported. When vibration in the vertical direction is applied, vibration energy is transmitted from the fixing bracket 72 to the annular mass 74, and the annular mass 74 is relatively displaced in a jumping state in the vertical direction with respect to the fixing bracket 72, and as a result. The annular mass 74 is repeatedly abutted between the radially opposed surfaces 88 and 90 with respect to the fixing bracket 72, and an offset damping effect can be exerted on the vibration member 75. In addition, a horizontal direction corresponding to the central axis direction with respect to the vibration damping device 70 (see FIG.4When vibration in the right and left direction is exerted, vibration energy is transmitted from the fixing bracket 72 to the annular mass 74, and the annular mass 74 is displaced relative to the fixing bracket 72 in the axial direction. As a result, the annular mass 74 is repeatedly abutted between the axially facing surfaces 92 and 94 on both sides in the axial direction with respect to the fixture 72, and an offset vibration damping effect can be exerted on the vibration member 75.
[0065]
  Here, in the vibration damping device 70, since the radial facing surface 90 constituting the radial contact surface of the annular mass 14 with respect to the fixing bracket 72 is an inclined surface inclined in the axial direction, Figure4As shown in FIG. 4, in the state where the annular mass 14 is suspended and attached by the fixing bracket 72 by gravity, the radial facing surfaces 88 of the cylindrical portion 80 of the annular mass 14 and the fixing bracket 72 are mounted. , 90 is made large at the lower end, and a first discharge passage 102 that penetrates in the axial direction and opens to the external space is formed. In addition, the bottom surface of the first discharge passage 102 is configured by the inner peripheral surface (radially opposed surface) 90 of the annular mass 74 and is tapered in a radial direction. Therefore, for example, even when a foreign substance such as water or mud enters between the radially opposed surfaces 88 and 90 under the mounted state of the vibration damping device 10, the opposed surface of the cylindrical portion 80 of the fixing bracket 72 and the annular mass 74. It is moved downward by the action of gravity through the space formed between them and guided to the vertical lower end, and then through the first discharge passage 102, with a taper formed on the bottom surface of the first discharge passage 102. It can be quickly discharged to the external space as it is sent out in the axially outward direction.
[0066]
Accordingly, in the vibration damping device 70 of the present embodiment as well, in the same way as in the first embodiment, foreign matters such as water and mud are opposed to each other in the radial direction that forms the axially perpendicular contact surfaces of the annular mass 74 and the fixing bracket 72. It is possible to prevent staying between the surfaces 88 and 90 and entering the space between the radial contact surfaces of the fixing bracket 72 and the annular mass 74 and continuing to inhibit the damping effect. The desired damping effect based on the contact can be stably and effectively exhibited.
[0067]
As is clear from the above description, in the present embodiment, the annular mass 74 is suspended and supported by the fixing bracket 72, so that the annular mass 74 and the fixing bracket 72 are disposed between the radially facing surfaces 88 and 90. The contact surface of the annular mass 74 against the fixing bracket 72 is formed by the first discharge passage 102 formed and the tapered structure of the inner peripheral surface of the annular mass 74 that further promotes the discharge of foreign matter from the discharge passage 102. A foreign matter discharge portion that promotes the discharge of foreign matter that has entered between them is configured in cooperation.
[0078]
Although the embodiments of the present invention have been described in detail above, these are merely examples, and the present invention is not construed as being limited by specific descriptions in such embodiments, and those skilled in the art The present invention can be carried out in a mode in which various changes, corrections, improvements, etc. are added based on the knowledge of the above, and any such embodiment does not depart from the gist of the present invention. It should be understood that it is included within.
[0079]
【The invention's effect】
As is clear from the above description, the vibration damping device having the structure according to the present invention has a foreign matter discharging function, so that foreign matters such as water exerted from the external space can be applied between the independent mass member and the shaft member. Even in the case of entering the gap between the contact surfaces, the discharge of such foreign matter into the external space is promoted, and therefore, problems caused by the entry of foreign matter from the external space are reduced or avoided. The vibration damping effect can be effectively and stably exhibited.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a vibration damping device as a first embodiment of the present invention.
FIG. 2 is a right side view in FIG.
[Figure3] Of the present inventiontwoIt is a longitudinal cross-sectional view which shows the vibration damping device as embodiment of this.
[Figure4] Figure3It is a longitudinal cross-sectional explanatory drawing which shows the mounting state of the vibration damping device shown by 2.
[Explanation of symbols]
10 Vibration control device
12 Support rod
14 annular mass
16 Vibration member
32 mass brackets
34 Rubber elastic body
36 Coated rubber layer
38 Contact rubber part
40 Engagement protrusion
42 Contact inner peripheral surface
44 Radial facing surface
46 Radial facing surface
48 voids
52 First exhaust passageRoad
70 Damping device
72 Fixing bracket
74 annular mass
75 Vibration member
76 Tube fitting
78 metal plate
84 Mass bracket
86 Rubber elastic body
88 Radial facing surface
90 Radial facing surface
92 Axial facing surface
94 Axial facing surface
102 First exhaust passageRoad

Claims (5)

振動部材に固設される軸部材に対して環状の独立マス部材を外挿して非接着で独立変位可能に配設せしめて、該軸部材に対して該独立マス部材が相対変位して直接的且つ弾性的に打ち当たるようにした制振装置において、
前記独立マス部材と前記軸部材の相互的な打ち当り面を構成する軸直角方向および軸方向の少なくとも一方の対向面間において、かかる対向面間に侵入した異物が外部へ容易に排出されるようにして該異物の外部への排出を促し得る異物排出部を設けて、且つ、
前記軸部材に対して前記独立マス部材が軸直角方向で相対変位せしめられることにより互いに打ち当たる該軸部材の外周面と該独立マス部材の内周面において前記打ち当り面としての第一の打ち当り面を形成すると共に、該第一の打ち当り面が形成された前記軸直角方向対向面間の距離を周上で部分的に大きくして軸方向に貫通する第一の排出用通路を形成し、該第一の排出用通路により前記異物排出部を構成して該軸直角方向対向面間に侵入した異物が該第一の排出用通路を通じて軸方向外方に排出され得るようにして、
前記軸部材および前記独立マス部材の各中心軸が略水平方向に延びる状態で前記振動部材に装着されるようにする一方、該軸部材と該独立マス部材の周方向の相対変位を制限する周方向変位制限手段を設けると共に、それら軸部材と独立マス部材の前記軸直角方向対向面における周上の一部に前記第一の排出用通路を形成して、該振動部材への装着状態下で該第一の排出用通路が該軸直角方向対向面の鉛直下端部に位置せしめられるようにしたことを特徴とする異物排出機能を有する制振装置。
An annular independent mass member is extrapolated from the shaft member fixed to the vibration member so as to be displaceable independently without adhesion, and the independent mass member is directly displaced relative to the shaft member. And in the vibration damping device designed to hit elastically,
The foreign matter that has entered between the opposing surfaces is easily discharged to the outside between at least one of the opposing surfaces in the direction perpendicular to the axis and the axial direction constituting the mutual contact surface of the independent mass member and the shaft member. And providing a foreign matter discharge portion that can promote the discharge of the foreign matter to the outside, and
When the independent mass member is displaced relative to the shaft member in a direction perpendicular to the axis, the outer peripheral surface of the shaft member abuts against each other and the inner peripheral surface of the independent mass member as the first contact surface. In addition to forming a contact surface, a distance between the opposing surfaces perpendicular to the axis on which the first contact surface is formed is partially increased on the circumference to form a first discharge passage that penetrates in the axial direction. The foreign matter that has formed the foreign matter discharge portion by the first discharge passage and has entered between the opposed surfaces in the direction perpendicular to the axis can be discharged outward in the axial direction through the first discharge passage,
The shaft member and the independent mass member are attached to the vibration member in a state where the central axes extend in a substantially horizontal direction, and the circumferential member restricts the relative displacement in the circumferential direction of the shaft member and the independent mass member. In addition to providing a direction displacement limiting means, the first discharge passage is formed in a part of the circumference of the shaft member and the independent mass member on the surface perpendicular to the axis, and the first discharge passage is mounted on the vibration member. A vibration damping device having a foreign matter discharge function, wherein the first discharge passage is positioned at a vertical lower end portion of the surface perpendicular to the axis.
前記軸部材と前記独立マス部材を何れも金属材で形成すると共に、該軸部材の外周面と該独立マス部材の内周面の少なくとも一方にゴム弾性体を被着形成して、該ゴム弾性体で該軸部材と該独立マス部材における前記軸直角方向対向面の少なくとも一方を構成すると共に、該ゴム弾性体において、該軸部材の外周面および該独立マス部材の内周面の一方から他方に向かって突出する弾性突出部を、軸方向の複数箇所でそれぞれ周方向に延びるように一体形成して、それら弾性突出部の突設先端面によって前記第一の打ち当り面を構成した請求項1に記載の異物排出機能を有する制振装置。The shaft member and the independent mass member are both made of a metal material, and a rubber elastic body is formed on at least one of the outer peripheral surface of the shaft member and the inner peripheral surface of the independent mass member, and the rubber elasticity The shaft member and at least one of the opposed surfaces in the direction perpendicular to the axis of the independent mass member, and in the rubber elastic body, one of the outer peripheral surface of the shaft member and the inner peripheral surface of the independent mass member is the other. An elastic projecting portion projecting toward the surface is integrally formed so as to extend in the circumferential direction at a plurality of locations in the axial direction, and the first hitting surface is configured by a projecting tip surface of the elastic projecting portion. A vibration damping device having a foreign matter discharging function according to 1 . 振動部材に固設される軸部材に対して環状の独立マス部材を外挿して非接着で独立変位可能に配設せしめて、該軸部材に対して該独立マス部材が相対変位して直接的且つ弾性的に打ち当たるようにした制振装置において、
前記独立マス部材と前記軸部材の相互的な打ち当り面を構成する軸直角方向および軸方向の少なくとも一方の対向面間において、かかる対向面間に侵入した異物が外部へ容易に排出されるようにして該異物の外部への排出を促し得る異物排出部を設けて、且つ、
前記軸部材に対して前記独立マス部材が軸直角方向で相対変位せしめられることにより互いに打ち当たる該軸部材の外周面と該独立マス部材の内周面によって前記打ち当り面としての第一の打ち当り面を構成すると共に、該第一の打ち当り面を構成する該独立マス部材の内周面において、軸方向中間部分から軸方向両端部に向かって次第に拡開して該軸部材の外周面から径方向外方に離隔する軸方向傾斜面を形成し、かかる軸方向傾斜面により前記異物排出部を構成して前記軸直角方向対向面間に侵入した異物が該軸方向傾斜面で導かれて軸方向外方に排出され得るようにして、
前記軸部材および前記独立マス部材の各中心軸が略水平方向に延びる状態で前記振動部材に装着されるようにしたことを特徴とする異物排出機能を有する制振装置。
An annular independent mass member is extrapolated from the shaft member fixed to the vibration member so as to be displaceable independently without adhesion, and the independent mass member is directly displaced relative to the shaft member. And in the vibration damping device designed to hit elastically,
The foreign matter that has entered between the opposing surfaces is easily discharged to the outside between at least one of the opposing surfaces in the direction perpendicular to the axis and the axial direction constituting the mutual contact surface of the independent mass member and the shaft member. And providing a foreign matter discharge portion that can promote the discharge of the foreign matter to the outside, and
When the independent mass member is displaced relative to the shaft member in a direction perpendicular to the axis, the outer peripheral surface of the shaft member and the inner peripheral surface of the independent mass member which are abutted with each other serve as a first striking surface. The outer peripheral surface of the shaft member that forms a contact surface and gradually expands from the axially intermediate portion toward both axial end portions on the inner peripheral surface of the independent mass member that forms the first contact surface An axially inclined surface that is spaced radially outward from the outer surface is formed, and the foreign material that has entered the foreign material discharge portion by the axially inclined surface and has entered between the opposing surfaces in the direction perpendicular to the axis is guided by the axially inclined surface. So that it can be discharged axially outward,
A vibration damping device having a foreign matter discharging function, wherein the shaft member and the independent mass member are attached to the vibration member in a state in which respective central axes extend in a substantially horizontal direction.
前記軸部材と前記独立マス部材を何れも金属材で形成すると共に、該独立マス部材の内周面にゴム弾性体を被着形成して、該ゴム弾性体で該独立マス部材における前記軸方向傾斜面を備えた前記軸直角方向対向面を構成した請求項に記載の異物排出機能を有する制振装置。The shaft member and the independent mass member are both formed of a metal material, and a rubber elastic body is formed on the inner peripheral surface of the independent mass member, and the axial direction of the independent mass member is formed by the rubber elastic body. The vibration damping device having a foreign matter discharging function according to claim 3 , wherein the axis-perpendicular surface is provided with an inclined surface. 前記独立マス部材を軸方向に挟んだ両側に位置して軸直角方向に広がる一対の軸方向当接部を前記軸部材に対して固定的に設けて、前記軸部材に対して該独立マス部材が軸方向で相対変位せしめられることにより互いに打ち当たる該軸方向当接部と該独立マス部材の軸方向端面によって前記打ち当り面としての第二の打ち当り面を構成した請求項1乃至の何れかに記載の異物排出機能を有する制振装置。A pair of axial contact portions that are positioned on both sides of the independent mass member in the axial direction and extend in a direction perpendicular to the axis are fixedly provided to the shaft member, and the independent mass member is provided to the shaft member. It said axial abutment and said independent mass member by the axial end face as the strike contact surface of the second beat per surface claims 1 to 4 constitute the strikes each other by but is caused to relative displacement in the axial direction A vibration damping device having a foreign matter discharging function according to any one of the above.
JP2002255590A 2002-08-30 2002-08-30 Vibration control device with foreign matter discharge function Expired - Fee Related JP3972297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002255590A JP3972297B2 (en) 2002-08-30 2002-08-30 Vibration control device with foreign matter discharge function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002255590A JP3972297B2 (en) 2002-08-30 2002-08-30 Vibration control device with foreign matter discharge function

Publications (2)

Publication Number Publication Date
JP2004092805A JP2004092805A (en) 2004-03-25
JP3972297B2 true JP3972297B2 (en) 2007-09-05

Family

ID=32061080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002255590A Expired - Fee Related JP3972297B2 (en) 2002-08-30 2002-08-30 Vibration control device with foreign matter discharge function

Country Status (1)

Country Link
JP (1) JP3972297B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107701638A (en) * 2017-10-20 2018-02-16 威固技术(安徽)有限公司 A kind of high-performing car resonance block
CN107863843B (en) * 2017-10-26 2023-11-28 珠海凯邦电机制造有限公司 Vibration reduction component for motor, motor end cover and motor

Also Published As

Publication number Publication date
JP2004092805A (en) 2004-03-25

Similar Documents

Publication Publication Date Title
KR102621534B1 (en) Frequency-tuned dampers and methods used for manufacturing the dampers
JP3846208B2 (en) Vibration control device for vehicle
JP4171219B2 (en) Vibration control device
US7267740B2 (en) Vibration-damping device for vehicles and method of manufacturing the same
US20160238103A1 (en) Hydraulic mount
JP2001241497A (en) Vibration damping device for vehicle
JP2002227921A (en) Vibration control equipment
JP5427095B2 (en) Vibration isolator
JP2003097634A (en) Damping device
JP3972297B2 (en) Vibration control device with foreign matter discharge function
JPS58161616A (en) Device for damping car body vibrations during engine idle operation
JP3896797B2 (en) Vibration control device for vehicle
JP2002081494A (en) Vehicular vibration damper
JP2009144845A (en) Vibration control device
JP2002081503A (en) Strut mount
JP4088955B2 (en) Vibration control device
JP3994437B2 (en) Vibration control device
JPH0529563Y2 (en)
JP4066456B2 (en) Cylindrical vibration isolator
JP3891694B2 (en) Vibration isolator
JP2004148865A (en) Wheel damping device
JP2003148553A (en) Dynamic damper
JP4001230B2 (en) Liquid-filled vibration isolator
JP3972292B2 (en) Shock absorber for vehicles
JP2009074658A (en) Vibration damping device for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees