JP3968406B1 - Patenting method for steel wire rod - Google Patents

Patenting method for steel wire rod Download PDF

Info

Publication number
JP3968406B1
JP3968406B1 JP2006221745A JP2006221745A JP3968406B1 JP 3968406 B1 JP3968406 B1 JP 3968406B1 JP 2006221745 A JP2006221745 A JP 2006221745A JP 2006221745 A JP2006221745 A JP 2006221745A JP 3968406 B1 JP3968406 B1 JP 3968406B1
Authority
JP
Japan
Prior art keywords
wire
furnace
cooling
transformation
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006221745A
Other languages
Japanese (ja)
Other versions
JP2008045171A (en
Inventor
勝彦 山田
Original Assignee
株式会社アルケミー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルケミー filed Critical 株式会社アルケミー
Priority to JP2006221745A priority Critical patent/JP3968406B1/en
Application granted granted Critical
Publication of JP3968406B1 publication Critical patent/JP3968406B1/en
Publication of JP2008045171A publication Critical patent/JP2008045171A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

【課題】 高品質ピアノ線の製造に際して線材に適用される鉛パテンティングと同等品質を確保し且つ多品種・多サイズの併行処理が可能な無鉛パテンティングの方法・装置を提供し、鉛の消耗による重金属汚染の危険性の問題を解決する。
【解決手段】
本装置は線材供給、加熱炉、冷却炉、空冷帯、保温炉、線材巻取から成り、線径の異なる多数の線材を数段の線径群に集約して平行直進走行させ、該ラインを通過させて連続的にパテンティングする。冷却炉は群毎に並列隔壁を持つ流動床が適用され、群毎に適切な炉長・炉温・空冷長・保温長を設定する。恒温性の向上のため相対的低温冷媒の流動床に次いで空冷帯で変態を完了させる。各群の基準線速は基準線径に反比例させ、各郡内の個々の線材は基準線径からの差に対応して線速を微調整する。
【選択図】 図1
PROBLEM TO BE SOLVED: To provide a lead-free patenting method / apparatus capable of ensuring the same quality as lead patenting applied to a wire material in the production of a high quality piano wire and capable of parallel processing of various types and sizes, and lead consumption Solve the problem of danger of heavy metal contamination by
[Solution]
This equipment consists of wire supply, heating furnace, cooling furnace, air cooling zone, heat insulation furnace, and wire winding, and consolidates a number of wires with different wire diameters into several stages of wire diameters and travels straight in parallel. Pass through and patent continuously. A fluidized bed with parallel bulkheads is applied to each cooling furnace, and appropriate furnace length, furnace temperature, air cooling length, and heat insulation length are set for each group. The transformation is completed in the air-cooled zone next to the fluidized bed of the relatively low-temperature refrigerant in order to improve the constant temperature. The reference line speed of each group is made inversely proportional to the reference wire diameter, and the individual wire rods in each group are finely adjusted according to the difference from the reference wire diameter.
[Selection] Figure 1

Description

本発明は、高強度鋼線の材料とされる高炭素鋼又は高炭素低合金鋼の線材のパテンティング(通常約1000℃から約550℃の鉛浴に焼入して恒温変態を誘導する操作)の方法に関するものである。 The present invention relates to patenting of high carbon steel or high carbon low alloy steel wire used as a material for high-strength steel wire (the operation of inducing isothermal transformation by quenching in a lead bath usually at about 1000 ° C. to about 550 ° C. ).

高炭素鋼線材は伸線前にパテンティングと称される一種の恒温変態処理が適用される。ピアノ線等精密鋼線はパテンティングにより金属組織は微細ラメラの均質パーライトに改質され、その結果材料は強化され且つ靱性・冷間加工性が向上する。該材料は伸線による加工硬化により著しく強化され高強度鋼線となる。当工程の品質・性能水準は変態温度とその恒温性(変態温度幅が小さいこと)に依存することは周知で、冷却方法としては現在鉛浴焼入が品質面、作業面とも最良とされている。 A type of isothermal transformation called patenting is applied to the high carbon steel wire before drawing. Precision steel wire such as piano wire is modified by patenting into a fine lamella homogeneous pearlite. As a result, the material is strengthened and the toughness and cold workability are improved. The material is remarkably strengthened by work hardening by wire drawing to become a high-strength steel wire. It is well known that the quality and performance level of this process depends on the transformation temperature and its constant temperature (small transformation temperature range), and the lead bath quenching is currently the best quality and work aspect as a cooling method. Yes.

その根拠は、鉛浴焼入における熱伝達率の値が極めて大きいので、1)線材(通常5〜15mm径)の予備冷却(変態温度までの急冷)において必要な冷却速度がほぼ得られること、2)所望変態温度と鉛浴温度との差が比較的小さくなり、従って恒温変態が誘導され易いこと、3)同一浴温で線径が異なってもほぼ同様の冶金効果が得られることにある。 The basis for this is that the value of the heat transfer coefficient in lead bath quenching is extremely large, so that 1) almost the required cooling rate can be obtained in the preliminary cooling (rapid cooling to the transformation temperature) of the wire (usually 5 to 15 mm diameter), 2) The difference between the desired transformation temperature and the lead bath temperature is relatively small, and therefore isothermal transformation is likely to be induced. 3) The same metallurgical effect can be obtained even if the wire diameter is different at the same bath temperature. .

鉛浴は温度一定の単一槽であるから鉛浴長さを必要最長に設計しておくことによりどの線径にも対処することができる。通常太径線材ほど線速が小さく浸漬時間が過剰になるが特に不都合が起こらない。逆に一般には気付かれていなかったが内部に偏析欠陥を持つ線材を無難に消化していたという隠れた効果がある。その理由は偏析部は焼入性が大きく、変態時間が長いので理論的浸漬時間では不足するからである。
以上の特徴から鉛浴焼入方式のパテンティング炉では恒温変態に近い熱処理が得られ、その上異なる線径の線材をしかも線径の最大最小比が3倍にもなる場合の併行操業も比較的容易となっている。
Since the lead bath is a single bath with a constant temperature, any wire diameter can be dealt with by designing the lead bath length to the longest required. Usually, the wire speed is smaller and the dipping time is longer as the diameter of the larger diameter wire is not inconvenienced. On the contrary, there is a hidden effect that the wire rod having segregation defects inside was safely digested, although not generally noticed. The reason is that the segregation part has high hardenability and a long transformation time, so that the theoretical immersion time is insufficient.
Based on the above characteristics, the lead bath quenching type patenting furnace can achieve heat treatment close to isothermal transformation, and also compare parallel operations when different wire diameters are used and the maximum / minimum ratio of wire diameters is tripled. Easy.

鉛浴焼入における大きな問題は重金属汚染の危険性である。
1) 焼入槽に鉛−酸化鉛−酸化鉄等の凝結した塊状異物が発生し廃棄処理されている。
2) 鉛浴焼入線材の表面に鉛が付着残存し、一部分が工場内で飛散する。
3) 付着鉛は次工程の酸洗・水洗において残滓となり最終は廃棄される。
有害重金属の使用はコスト問題だけでなく、環境規制からも廃止が期待される。無鉛パテンティングは色々模索されているが未解決ないし不十分である。以下本発明の関連先行例を説明する。
A major problem in lead bath quenching is the risk of heavy metal contamination.
1) Agglomerated foreign bodies such as lead-lead oxide-iron oxide are generated in the quenching tank and discarded.
2) Lead remains on the surface of the lead bath-hardened wire, and a part of it is scattered in the factory.
3) Adhered lead becomes a residue in the next pickling and water washing, and is finally discarded.
The use of toxic heavy metals is expected to be abolished not only due to cost issues but also from environmental regulations. Lead-free patenting has been sought, but unsolved or inadequate. The related prior examples of the present invention will be described below.

A: 流動床による冷却(例えば特許文献1)
本方法は床面より噴出する気流上に粒径1mm前後の砂を浮遊させて伝熱媒体とする。熱伝達率は単なる気流だけなら約50(kcal/m 2 h℃)であるが約1000に増幅され且つ安定している。2mm径以下の細径鋼線のパテンティングに適用されている。
問題は熱伝達率の大きさが鉛浴の2000〜2500に対して半減以下となる。その結果4mm径以上の線材では冷却不足となり、得られる強度は鉛浴焼入に劣る。鉛浴と同等の冷却能(=熱伝達率×材料・冷媒間温度差)とするため流動床温度を低めに設定すると高発熱の変態前半は適切になっても低発熱の後半では冷却過剰になる。その場合ベイナイトの増加やマルテンサイトの混入という品質上の欠陥が発生する。
A: Cooling by fluidized bed (for example, Patent Document 1)
In this method, sand having a particle size of about 1 mm is suspended on an air stream ejected from the floor surface to form a heat transfer medium. The heat transfer coefficient is about 50 (kcal / m 2 h ° C.) with a simple air flow, but is amplified to about 1000 and stable. It is applied to the patenting of thin steel wires with a diameter of 2 mm or less.
The problem is that the heat transfer coefficient is less than half that of 2000-2500 of the lead bath. As a result, a wire with a diameter of 4 mm or more is insufficiently cooled, and the strength obtained is inferior to lead bath quenching. If the fluidized bed temperature is set low to achieve the same cooling capacity as the lead bath (= heat transfer coefficient x temperature difference between the material and refrigerant), the first half of the high heat generation will be adequate, but the second half of the low heat generation will be overcooled. Become. In this case, quality defects such as increase in bainite and martensite are generated.

B: 多室流動床による冷却1(特許文献2)
本方法は細径の鋼線のパテンティングにおいて走行方向に流動床室を数個連結し、各室の温度を適切に設定して上記問題を解決している。第1室を最低温度(250℃以上)に設定して必要且つ充分な冷却速度を確保すると開示されている。変態部では550℃近辺に設定される。問題は線径、鋼種の変更に対して極めて追随しにくく、且つ混在するとなおさら困難になる。即ち線径の異なる鋼線を併行処理すると一方の条件が適切でも他方が不適切になる。単機能的で単純量産には向くが多品種・少量生産には不向きである。しかも5mm径以上の太径線材への適用可能性が一切言及されていない。線径の最大最小比が3倍にもなる線材を同時併行処理するにはスペース、炉長、制御システム、条件の調節と管理等各所に無理が生ずる。
B: Cooling with a multi-chamber fluidized bed 1 (Patent Document 2)
This method solves the above problem by connecting several fluidized bed chambers in the running direction in patenting small diameter steel wires and appropriately setting the temperature of each chamber. It is disclosed that the first chamber is set to a minimum temperature (250 ° C. or higher) to ensure a necessary and sufficient cooling rate. In the transformation part, it is set around 550 ° C. The problem is extremely difficult to follow changes in wire diameter and steel type, and becomes more difficult when mixed. That is, when steel wires having different wire diameters are processed in parallel, one of the conditions is appropriate but the other is inappropriate. It is monofunctional and suitable for simple mass production, but unsuitable for large variety and small volume production. Moreover, no mention is made of the applicability to a thick wire having a diameter of 5 mm or more. In order to simultaneously process wires with a maximum / minimum ratio of the wire diameter of 3 times, it is impossible to adjust the space, furnace length, control system, conditions, and management.

C: 溶融塩焼入(例えば非特許文献1)
熱伝達率は1500〜2000が得られ鉛浴に準ずる。即ち鉛浴同等の冷却能を得るため塩浴温度を鉛浴の場合より多少低温に設定した前段槽と所望変態温度に保持する後段槽を設置して鉛浴焼入と同様の効果を得ている。線材圧延工程に直結・後続されていて単機能的であるがどの線径の線材についても適用可能である。
本方法における第1の問題は鉛浴焼入同様の品質が得られ、重金属汚染も解消されるが新たに溶融塩のヒュームによる周辺汚染、ドロス(塩と酸化鉄の化合・混合物)の発生とその廃棄、溶融塩の劣化による廃棄等環境上の問題が残る。
第2の問題は、典型的大量生産方式であるから一般の鉄鋼メ−カー線材工場には適切でも、少量多品種の線材2次加工工場には不向きである。
C: Molten salt quenching (for example, Non-Patent Document 1)
A heat transfer coefficient of 1500 to 2000 is obtained, which is similar to a lead bath. In other words, in order to obtain the same cooling capacity as the lead bath, the same effect as the lead bath quenching can be obtained by installing a pre-stage tank in which the salt bath temperature is set slightly lower than that of the lead bath and a post-stage tank that maintains the desired transformation temperature. Yes. Although it is directly connected to and followed by the wire rod rolling process and is monofunctional, it can be applied to any wire diameter.
The first problem with this method is that the quality is the same as that of lead bath quenching, and heavy metal contamination is also eliminated, but newly contaminated ambient fume by molten salt fume and the occurrence of dross (compound / mixture of salt and iron oxide). Environmental problems such as disposal and disposal due to deterioration of molten salt remain.
The second problem is a typical mass production system, so that it is suitable for a general steel maker wire factory, but unsuitable for a small quantity and a wide variety of wire secondary processing factories.

D: 多室流動床による冷却2(特許文献3)
上記文献には一つの流動床炉にリング列状の被処理材の走行させ、走行と直角の方向に隔壁を設けて多室とし、各室を個別に炉温設定して各種の加熱と冷却を行う方法が開示されている。既述のBの方法と比較し設備は簡素になるが同様に線径の異なる線材の併行処理には適さない。
D: Cooling 2 with multi-chamber fluidized bed (Patent Document 3)
In the above-mentioned document, a ring-row processed material is run in one fluidized bed furnace, a partition is provided in a direction perpendicular to the running to form a multi-chamber, and each chamber is individually set to a furnace temperature to perform various heating and cooling. A method of performing is disclosed. Compared with the above-described method B, the equipment is simplified, but it is not suitable for parallel processing of wire rods having different wire diameters.

E: 多品種線材の併行処理(特許文献4)
上記文献には複数の線材をいくつかの群にまとめて加熱炉を通過させ、加熱炉内には並列的に隔壁を設けて群毎に処理温度を設定する方法が開示されている。又複数の加熱炉が直列的に配置され、パスを組み合わせて多種多様な加熱条件が容易に同時設定することができ、多品種の生産が効率的になされる。走行方向と平行に隔壁を設けて個別に加熱温度設定する方法は線材2次加工ではしばしば採用される。当該方法を冷却に適用した例、流動床に適用した例は見当たらない。冷却に重点があり、処理温度が狭く且つ処理時間が短いパテンティングに応用できるかどうかは全く示唆されていないし、当業者なら特別の工夫を要すると推測することができる。
E: Parallel processing of various types of wire (Patent Document 4)
The above document discloses a method in which a plurality of wires are grouped into several groups and passed through a heating furnace, and partition walls are provided in parallel in the heating furnace to set the processing temperature for each group. In addition, a plurality of heating furnaces are arranged in series, and various heating conditions can be easily set simultaneously by combining paths, so that a wide variety of production can be efficiently performed. A method of providing a partition wall in parallel with the traveling direction and individually setting the heating temperature is often employed in the secondary processing of the wire. There are no examples where this method is applied to cooling or fluidized beds. It is not suggested at all whether or not the present invention can be applied to patenting in which the emphasis is on cooling, the processing temperature is narrow, and the processing time is short, and those skilled in the art can deduce that special measures are required.

特開2001−073113JP2001-073113 鉄と鋼 Vol. 69 (1983) S570Iron and Steel Vol. 69 (1983) S570 特開平3−146623JP-A-3-146623 特開2006−144032JP 2006-144032 A 特開平4−276028JP-A-4-276028

以上述べたように高炭素鋼線材の鉛浴焼入によるパテンティングでは、操業面において使用される鉛が処理槽内、処理工場、後続工程の酸洗・水洗等各所で消耗され、多くは回収・廃棄物とされているが重金属汚染の危険性という環境上の問題がある。
鉛浴に代替可能な従来の方法、例えば流動床冷却では上記環境問題は解決できても冷却能不足により線径が大きいと品質面で鉛浴処理に劣り、冷却能を補うため前段には炉温を相当低温に設定し、かつ中段、後段には炉温を上げた直列の多室流動床炉を採用すると特定線径には適合できても線径や焼入性が異なる線材を併行処理する場合には対処できないと言う問題がある。
加熱処理に際して、加熱炉内に走行方向と平行に断熱隔壁を設けて個別に温度を設定して多品種の併行操業を行う方法では生産性に有利であるが、精密制御を要するパテンティングの冷却には適用例が無い。
本発明は鉛浴を使用しない流動床冷却のパテンティングにおいて鉛浴焼入同等の恒温変態を確保すると共に多種多様の線材を合理的に併行処理することを目的とする。
As mentioned above, in lead bath quenching of high carbon steel wire, lead used in operation is consumed in various places such as processing tanks, processing plants, pickling and water washing in subsequent processes, and many of them are recovered.・ Although it is considered to be waste, there is an environmental problem of danger of heavy metal contamination.
Although conventional methods that can replace lead baths, such as fluidized bed cooling, can solve the environmental problems described above, if the wire diameter is large due to insufficient cooling capacity, the quality of the lead bath is inferior, and a furnace is used in the previous stage to compensate for cooling capacity. By adopting a series of multi-chamber fluidized bed furnaces where the temperature is set to a relatively low temperature and the furnace temperature is increased in the middle and subsequent stages, parallel processing of wires with different wire diameters and hardenability is possible even if the specific wire diameter can be met. If you do, there is a problem that you can not cope.
In the heat treatment, a method of providing a heat insulating partition in the heating furnace parallel to the running direction and individually setting the temperature to carry out multiple types of parallel operation is advantageous for productivity, but cooling of patenting that requires precise control Has no application examples.
An object of the present invention is to ensure a constant temperature transformation equivalent to lead bath quenching in a fluidized bed cooling patenting that does not use a lead bath, and to rationally treat a wide variety of wires.

上記問題を解決するため以下の要素手段が効果的に組み合わせられる。
1) 冷却炉として鉛浴を使用せず流動床炉を適用し、冷却能の不足は冷媒の低温設定に より対処する。
2) 多種の線径の多数の線材をいくつかの線径群にまとめて併行処理する。
3) 線径群毎に適切な線速・炉長・炉温を設定する。
4) 強制冷却と空冷と保温の組合せにより恒温性を補償する。
5) 各郡内の線径差に対応して個々の線材の線速を微調整する。
In order to solve the above problem, the following element means are effectively combined.
1) A fluidized bed furnace is used as the cooling furnace without using a lead bath, and the lack of cooling capacity is dealt with by setting the refrigerant at a low temperature.
2) Combine multiple wire rods of various wire diameters into several wire diameter groups and process them together.
3) Set the appropriate wire speed, furnace length, and furnace temperature for each group of wire diameters.
4) Compensate for constant temperature by a combination of forced cooling, air cooling and heat insulation.
5) Fine-tune the wire speed of each wire in accordance with the wire diameter difference within each county.

本発明の要旨は、高炭素鋼及び高炭素低合金鋼の線径の異なる多数の線材を線軸方向に平行して直進走行させつつ同一の加熱炉を通過させて所定温度に加熱した後、流動床冷却炉を通過させて連続的にパテンティングを施す方法において、1)線径の近い線材どうしを集約して数段階の線径群としてまとめて走行させ、2)各群の基準線速を各群の基準線径に反比例して設定し、3)流動床冷却炉内には各線径群を分離するよう並行的に隔壁を設けて各群個別に炉温を設定して線径に対応した冷却を施し、4)該流動床冷却炉の実効長さを各群の基準線径に対応して設定し、5)該流動床冷却炉の下流に空冷帯を直結・後続させて冷却速度を直前より低下させて変態を終了させ、6)さらに各群内においては個々の線材の線速を該線材の線径と基準線径との比に対応して微調整することを特徴とする鋼線材のパテンティング方法である。 The gist of the present invention is that a high-carbon steel and a high-carbon low-alloy steel are heated to a predetermined temperature by passing through a plurality of wires having different wire diameters while traveling straight in parallel with the wire axis direction, and then flowing to a predetermined temperature. In the method of continuously patenting by passing through the floor cooling furnace, 1) collect the wire rods with similar wire diameters and run as a group of wire diameters in several stages, and 2) set the reference linear velocity of each group. Set in inverse proportion to the reference wire diameter of each group. 3) In the fluidized bed cooling furnace, partition walls are provided in parallel to separate each wire diameter group, and the furnace temperature is set individually for each group to correspond to the wire diameter. 4) The effective length of the fluidized bed cooling furnace is set in accordance with the reference wire diameter of each group, and 5) The cooling rate is obtained by directly connecting and following the air cooling zone downstream of the fluidized bed cooling furnace. 6) Further, in each group, the wire speed of each wire is changed to the wire diameter of the wire. A patenting process of steel wire rod, characterized in that fine adjustment in response to the ratio of the reference wire diameter.

上記の要旨において、空冷帯に次いで保温炉を通過させるとともに、該空冷帯と該保温炉の長さをそれぞれ各群の基準線径に反比例して設定することを特徴とする鋼線材のパテンティング方法はより望ましい。 In the above gist, the patenting of the steel wire material is characterized in that the air cooling zone is passed next to the heat insulation furnace, and the length of the air cooling zone and the heat insulation furnace is set in inverse proportion to the reference wire diameter of each group, respectively. The method is more desirable.

さらに前項の発明において、各群の流動床実効長さを基準線速×[パーライト変態までの冷却時間+変態時間×(0.5〜1.0)]に、空冷帯の長さを基準線速×変態時間×(0.3〜1.0)に、保温炉の長さを基準線速×変態時間×(1〜4)にとそれぞれ設定することを特徴とする鋼線材のパテンティング方法は一層望ましい。 Furthermore, in the invention of the preceding paragraph, the fluidized bed effective length of each group is set to the reference linear velocity × [cooling time to pearlite transformation + transformation time × (0.5 to 1.0)], and the length of the air cooling zone is set to the reference line. Steel wire rod patenting method, characterized in that speed x transformation time x (0.3 to 1.0) and the length of the heat-retaining furnace is set to reference linear speed x transformation time x (1 to 4), respectively. Is more desirable.

上記3方法の発明において、流動床冷却炉内の各群のパスにおいて走行方向と直角に線材が貫通可能の隔壁を設け、上流側を各パス一定の炉長一定の炉温とした予備冷却帯とし、下流側をパス毎に基準線径に反比例した炉長を持ち且つ個別の炉温を持つ変態維持帯とすることを特徴とする鋼線材のパテンティング方法も同様に望ましい。 In the invention of the above three methods, a preliminary cooling zone in which a partition through which a wire can penetrate perpendicularly to the traveling direction is provided in each group of passes in the fluidized bed cooling furnace, and the upstream side has a furnace temperature with a constant furnace length at each path. A steel wire patenting method is also desirable in which the downstream side is a transformation maintaining zone having a furnace length inversely proportional to the reference wire diameter for each pass and having an individual furnace temperature.

上記の発明による第1の効果として、パテンティングに対して鉛を一切使用しないので環境改善に役立つ。
第2の効果として、従来の鉛浴焼入と同等の冷却条件が得られるので流動床冷却による品質低下が避けられる。
第3の効果として、従来の流動床焼入では得られなかった鉛浴焼入と同様の多サイズの線材の併行処理が可能となる。
As a first effect of the above invention, lead is not used at all for patenting, which helps to improve the environment.
As a second effect, a cooling condition equivalent to that of the conventional lead bath quenching can be obtained, so that quality deterioration due to fluidized bed cooling can be avoided.
As a third effect, it is possible to perform parallel processing of multi-size wires similar to lead bath quenching that cannot be obtained by conventional fluidized bed quenching.

以下実施の形態について図面を参照しつつ説明する。
図1は本発明の方法によるパテンティング装置の例の全体構成を示す概略平面図、図2は同要部の概略縦断面図である。該装置に各種線径の高炭素鋼又は高炭素低合金鋼の多数の線材コイル1が供給される。各線材2は互いに間隔を持って且つ平行して線軸方向に水平直進で走行し加熱炉3に供給される。該加熱炉3は数本から数十本併行処理することができる幅を持つ。各線材2は線径群4例えば13〜15mm径、10〜12mm径、・・・・、5〜6mm径毎にまとまって該加熱炉3を通過しつつ約1000℃に加熱された後流動床冷却炉5に送られる。
Hereinafter, embodiments will be described with reference to the drawings.
FIG. 1 is a schematic plan view showing the overall configuration of an example of a patenting apparatus according to the method of the present invention, and FIG. 2 is a schematic longitudinal sectional view of the main part. A large number of wire coils 1 of high carbon steel or high carbon low alloy steel of various wire diameters are supplied to the apparatus. Each wire 2 travels in a straight line in the direction of the line axis in parallel with a distance from each other and is supplied to the heating furnace 3. The heating furnace 3 has a width that allows several to tens of parallel processing. Each wire 2 is heated to about 1000 ° C. while being passed through the heating furnace 3 in a group of wire diameter groups 4 such as 13 to 15 mm diameter, 10 to 12 mm diameter,. It is sent to the cooling furnace 5.

線径が異なる場合の線速の決め方は種々あり一長一短があるが、本発明では線速は線径に反比例させる。正確には群毎の基準線速は基準線径に反比例させる。その結果同一の加熱長さに対して通過時間は線径に反比例する。加熱・冷却速度は本来線径に反比例するので加熱炉出口の線材の温度はどの線径でも同一となる。該加熱炉3は均熱帯を持つので多少線速が上下しても線材は同一温度で冷却炉5に送られる。 There are various ways of determining the wire speed when the wire diameters are different, and there are advantages and disadvantages. In the present invention, the wire speed is inversely proportional to the wire diameter. To be precise, the reference linear velocity for each group is inversely proportional to the reference wire diameter. As a result, the passage time is inversely proportional to the wire diameter for the same heating length. Since the heating / cooling rate is inversely proportional to the wire diameter, the temperature of the wire rod at the outlet of the heating furnace is the same regardless of the wire diameter. Since the heating furnace 3 has a soaking zone, the wire is sent to the cooling furnace 5 at the same temperature even if the linear velocity is somewhat increased or decreased.

該冷却炉5は炉床6に多数の送風ノズル7が配置され所定圧の送風により炉床上に堆積された流動砂8を浮遊・流動させて冷媒とし、浮遊層中に線材を通過させて冷却する構造になっている。冷却能は設定温度に依存し当然低温ほど強く冷却される。該冷却炉5の内部は線径群4毎に走行方向と平行に隔壁9で仕切られ線径群パス10を構成する。各パス長さは線径群の基準線径に対応して設定され、線径が小さいほど大きくなる。
該隔壁9は特許文献2に開示された複数の炉を直列配置する方法に対して並列配置に変えたようなもので、加熱炉では例があるが流動床冷却炉では見当たらない。しかも極めて簡素に実施することができる。
The cooling furnace 5 is provided with a large number of blowing nozzles 7 on the hearth 6 and floats and flows the fluidized sand 8 deposited on the hearth by blowing at a predetermined pressure to make a refrigerant, and the wire rod is passed through the floating layer for cooling. It has a structure to do. The cooling capacity depends on the set temperature, and naturally, the lower the temperature, the stronger the cooling. The inside of the cooling furnace 5 is partitioned for each wire diameter group 4 by a partition wall 9 in parallel with the traveling direction to form a wire diameter group path 10. Each path length is set corresponding to the reference wire diameter of the wire diameter group, and increases as the wire diameter decreases.
The partition wall 9 is similar to the method of arranging a plurality of furnaces disclosed in Patent Document 2 in parallel arrangement, and there is an example in a heating furnace, but it is not found in a fluidized bed cooling furnace. Moreover, it can be carried out very simply.

流動床の熱伝達率は鉛浴の約1/2〜1/3であるが炉温を低く設定することにより鉛浴と同程度の冷却能が得られ恒温変態の誘導の第1条件が解決される。
該冷却炉5の温度はパス毎に設定され、線径が大きいほどより低温に設定して鉛浴焼入の冷却速度に近似させる。炉温はバーナー17、水冷管18等により調節される。約600℃まで冷却されるとパーライト変態が始まる。本発明の一つの実施方法は上記の如く各パス毎に一つの炉温が設定される。
The heat transfer coefficient of the fluidized bed is about 1/2 to 1/3 that of the lead bath, but by setting the furnace temperature low, the same cooling capacity as that of the lead bath can be obtained and the first condition for induction of isothermal transformation is solved. Is done.
The temperature of the cooling furnace 5 is set for each pass. The larger the wire diameter, the lower the temperature is set to approximate the cooling rate of the lead bath quenching. The furnace temperature is adjusted by a burner 17, a water cooling pipe 18, and the like. When cooled to about 600 ° C., pearlite transformation begins. In one embodiment of the present invention, one furnace temperature is set for each pass as described above.

もう一つの方法は、ここで更に流動床各パスの中間に線材の走行方向と直角に線材が貫通可能な隔壁11を設け、上流側を冷却帯12、下流側を変態維持帯13に分ける。冷却帯の炉長及び炉温を各パス同一と設定すると、冷却速度は線径に反比例し、線速は線径に反比例するので冷却帯12の出口で各パスの線材は線径が異なっても同一温度になる。 In the other method, a partition wall 11 through which the wire can penetrate perpendicularly to the traveling direction of the wire is provided in the middle of each path of the fluidized bed, and the upstream side is divided into a cooling zone 12 and the downstream side is divided into a transformation maintaining zone 13. If the furnace length and furnace temperature of the cooling zone are set to be the same for each path, the cooling rate is inversely proportional to the wire diameter, and the wire speed is inversely proportional to the wire diameter. Becomes the same temperature.

変態開始とともに発熱が始まる。発熱能率(kcal/h/kg)は一定ではなく、変態進行(いわゆるロジスティック・カーブ)の率に従い、時間経過ともに0から急速に増加してピークを越え、以後低下を引きずる。ピークは変態時間のなかの前から約30%にある。恒温変態を誘導する第2条件は該発熱に見合う冷却を施すことである。線径に対する適正炉温は経験的に知られており、例えば2mm径では約530℃である。 Fever begins with the start of transformation. The exothermic efficiency (kcal / h / kg) is not constant, and increases rapidly from zero over time according to the rate of progression of metamorphosis (so-called logistic curve). The peak is about 30% from before the transformation time. The second condition for inducing the constant temperature transformation is to perform cooling corresponding to the heat generation. The appropriate furnace temperature for the wire diameter is empirically known, for example, about 530 ° C. for a 2 mm diameter.

恒温変態には、変態前冷却ではより早く、変態中は対発熱均衡が条件となる。冷却のための適正炉温と変態温度維持のための適正炉温は異なる。本発明では隔壁11により上下個別に炉温を設定することを原則としそれぞれ最適化する。設備の簡素化のため隔壁11を設けず同一炉温とし、且つ従来一般の流動床より多少低温側に設定して実施することもできる。その際の新規必要手段は後述する。 The isothermal transformation is faster in the pre-transformation cooling, and is required to be balanced against heat during the transformation. The proper furnace temperature for cooling and the proper furnace temperature for maintaining the transformation temperature are different. In the present invention, the furnace temperature is set individually by the partition walls 11 in principle and optimized in principle. In order to simplify the equipment, the temperature can be set to the same furnace temperature without providing the partition wall 11, and the temperature can be set somewhat lower than that of a conventional general fluidized bed. New necessary means in that case will be described later.

変態時間は鋼種と変態温度に依存するが線径にはほぼ無関係で一定である。従って変態維持帯の必要長さは一応変態時間相当分とすると線速×変態時間となり線径に反比例する。流動床冷却炉の長さは変態前冷却帯と変態維持帯の和であり、前者は一定を原則とするが隔壁11を設けない場合はパス毎に異なる。冷却部の長さの決定は、適用する冷却能即ち冷媒の熱伝達率と冷媒の設定温度に関わり当業者なら特別の困難は要しない。 The transformation time depends on the steel type and transformation temperature, but is almost independent of the wire diameter and constant. Therefore, if the required length of the transformation maintenance zone is equivalent to the transformation time, it becomes linear velocity × transformation time and is inversely proportional to the wire diameter. The length of the fluidized bed cooling furnace is the sum of the pre-transformation cooling zone and the transformation maintenance zone, and the former is basically constant, but differs for each pass when the partition wall 11 is not provided. The determination of the length of the cooling section is related to the cooling capacity to be applied, that is, the heat transfer rate of the refrigerant and the set temperature of the refrigerant, and no special difficulty is required by those skilled in the art.

ここで流動床温度を変態維持を優先して設定すると変態までの冷却能が不足する。逆に冷却を優先すると変態中の冷却能が過剰になる。厳密には発熱の大きい変態前期は適切に近くても発熱が低下する後期は明らかに過剰冷却になってパーライトではなくベイナイトが混入、更にマルテンサイトの混入となって加工性を損ない、正常パテンティングにはならない。 Here, if the fluidized bed temperature is set with priority given to transformation maintenance, the cooling capacity until transformation is insufficient. Conversely, if cooling is prioritized, the cooling capacity during transformation becomes excessive. Strictly speaking, even in the early stage of transformation with large exotherm, even if it is close to the proper level, the latter stage is obviously overcooled, and bainite is mixed instead of pearlite, and martensite is mixed, which deteriorates workability and normal patenting. It will not be.

本発明では既述のように炉温を通常の流動床より低目に設定し、変態前と変態中の冷却を適度に強化するとともに、変態後半の過剰冷却の防止策として冷却時間の短縮で対処する。これが新規必要手段である。該時間として変態時間の0.5〜1.0の間の適正値を選定する。従って炉長は各線径群とも冷却と変態のそれぞれに要する時間の和より多少短めに設定される。流動床冷却を通過することは特別な策を講じない限り通常自動的に空冷を意味し特別の意図が無い。本発明では空冷は積極的意味を持つ。空冷の冷却能は相対的に小さいので一方で過剰冷却を防止して恒温性を維持する機能を果たし、他方で変態後段の発熱を排除して同様に恒温性を維持し、本発明の不可欠要素となる。これが恒温変態の誘導の第3条件となっている。 In the present invention, as described above, the furnace temperature is set lower than the normal fluidized bed, the cooling before and during the transformation is moderately strengthened, and the cooling time is shortened as a measure for preventing the excessive cooling in the latter half of the transformation. deal with. This is a new necessary measure. As the time, an appropriate value between 0.5 and 1.0 of the transformation time is selected. Therefore, the furnace length is set slightly shorter than the sum of the time required for cooling and transformation in each wire diameter group. Passing through fluidized bed cooling usually means air cooling automatically and has no special intention unless special measures are taken. In the present invention, air cooling has a positive meaning. Since the cooling capacity of air cooling is relatively small, on the other hand, it functions to prevent overcooling and maintain constant temperature, and on the other hand, it eliminates heat generation after transformation and maintains constant temperature, which is an essential element of the present invention. It becomes. This is the third condition for induction of isothermal transformation.

流動床冷却炉を通過した各線材は意図的に空冷帯14で空冷され、その後保温炉15に誘導される。空冷中に未変態部分の変態がほぼ完了する。該空冷帯14の長さは線速×変態時間×(0.3〜1.0)とする。即ち線径に反比例させる。 Each wire passed through the fluidized bed cooling furnace is intentionally air-cooled in the air-cooling zone 14 and then guided to the heat-retaining furnace 15. The transformation of the untransformed part is almost completed during air cooling. The length of the air cooling zone 14 is linear velocity × transformation time × (0.3 to 1.0). That is, it is made inversely proportional to the wire diameter.

材料が均質なら以上の処理で完了するが、通常材料内部の偏析欠陥の混在は避けがたい。偏析があると該部分の変態時間は数倍になることがある。その場合空冷時にマルテンサイト変態を起こす。対策として変態温度維持のため保温炉を通過させる。保温炉の後続は公知である。本発明では各線径群共通の温度の保温炉を後続させる。保温炉の適切な長さは偏析の程度や許容水準に依存し、経験的に変態時間×線速×(1〜4)とした。これは恒温変態誘導の必要条件ではないが実用条件である。変態時間は高炭素鋼の場合4秒前後である。保温炉の設定温度は単なる時間稼ぎに近いので特に厳密性を要しない。熱の出入りも小さいので簡素な加熱装置と断熱壁と制御装置があればよい。保温炉を通過して変態は確実に終了し、各線材は巻き取られて製品コイル16となる。 If the material is homogeneous, the above processing is completed, but usually segregation defects within the material are unavoidable. If there is segregation, the transformation time of the part may be several times. In that case, martensitic transformation occurs during air cooling. As a countermeasure, pass the heat-retaining furnace to maintain the transformation temperature. The successor to the incubation furnace is known. In the present invention, a heating furnace having a temperature common to each wire diameter group is followed. The appropriate length of the incubation furnace depends on the degree of segregation and the allowable level, and is empirically determined as transformation time × linear velocity × (1 to 4). This is not a necessary condition for induction of isothermal transformation, but a practical condition. The transformation time is around 4 seconds in the case of high carbon steel. Since the set temperature of the heat-retaining furnace is close to mere time earning, no strictness is required. Since the heat input and output is small, a simple heating device, a heat insulating wall, and a control device are sufficient. The transformation is reliably completed after passing through the heat-retaining furnace, and each wire is wound up to become the product coil 16.

以上に述べた冷却方法について線材の冷却挙動を解析する。
図3(A)は加熱温度から変態温度までの冷却を示す。流動床の熱伝達率を700(kcal/m 2 h℃)とした。5,10,15mm径線材に対して適正炉温としてそれぞれ400,250,150℃を設定した。各径とも10mm径の鉛浴焼入より冷却速度が劣り恒温性が危惧されるが、図3(B)に示すように変態に関係する 温度以下で見ると鉛浴焼入と同様になっており問題は無い。
The cooling behavior of the wire will be analyzed for the cooling method described above.
FIG. 3A shows cooling from the heating temperature to the transformation temperature. The heat transfer coefficient of the fluidized bed was 700 (kcal / m 2 h ° C.). 400, 250, and 150 ° C. were set as appropriate furnace temperatures for 5, 10, and 15 mm diameter wires, respectively. Cooling rate than lead baths quenching of 10mm diameter in each diameter inferior homeothermic is feared, but becomes similar to the lead bath quenching Looking below A 3 temperature related to transformation, as shown in FIG. 3 (B) There is no problem.

図4は変態中と変態後の冷却線図を示す。変態時間は線材中心部の冷却遅れを考慮して線径に対して修正(見かけ上増加)してある。各径とも適切な炉温設定により鉛浴焼入と同様の恒温性が得られている。しかし変態終了後の冷却が早く、もし未変態部が残存しノーズ温度(540〜570℃)を下回ると既述のように異常組織を誘発する。変態途中からの空冷と保温の適用が図中の点線で示したように恒温性を維持して当該問題を解決する。 FIG. 4 shows a cooling diagram during and after the transformation. The transformation time is corrected (apparently increased) with respect to the wire diameter in consideration of the cooling delay at the center of the wire. For each diameter, the same thermostability as lead bath quenching is obtained by appropriate furnace temperature setting. However, the cooling after completion of transformation is fast, and if the untransformed part remains and falls below the nose temperature (540 to 570 ° C.), abnormal tissue is induced as described above. The application of air cooling and heat insulation from the middle of transformation maintains the constant temperature as indicated by the dotted line in the figure to solve the problem.

各線径群には当然太め、細めの線材が混在する。基準径からの差により熱処理条件が最適からずれる。本発明ではそのズレを個々の線材毎に線速を微調整して修正する。細めの場合は線速を多少早める。変態初期の温度は僅かに低下するが変態末期は同等になる。加熱温度は線速の多少の変化にも影響は受けない。 Naturally thick and thin wires are mixed in each wire diameter group. Due to the difference from the reference diameter, the heat treatment conditions are not optimal. In the present invention, the deviation is corrected by finely adjusting the linear velocity for each individual wire. If it is narrow, increase the line speed slightly. The temperature at the beginning of transformation is slightly lowered, but it is the same at the end of transformation. The heating temperature is not affected by a slight change in the linear velocity.

鋼種の差により変態時間が異なり冷却炉の全長に過不足が生ずる場合がある。多くの場合線速の修正により対処することができる。 Depending on the type of steel, the transformation time varies and the overall length of the cooling furnace may become excessive or insufficient. In many cases, this can be dealt with by correcting the linear velocity.

流動床内における変態中の冷却時間率(変態維持部の冷却時間/変態時間)の適正値として0.6〜0.8が望ましいが、下限値を0.5とした理由はこれ以下では未変態部の発熱のため以後の昇温が大きくて不都合である。上限値を1.0とした理由は炉温が比較的低いので変態末期では明らかに過剰冷却となるからである。 An appropriate value of the cooling time rate during the transformation in the fluidized bed (cooling time of the transformation maintaining part / transformation time) is preferably 0.6 to 0.8, but the reason why the lower limit is set to 0.5 is not below this value. Since the transformation part generates heat, the subsequent temperature increase is inconvenient. The reason why the upper limit value is set to 1.0 is that the furnace temperature is relatively low, so that overcooling is apparent at the end of the transformation.

空冷部はもう一つの機能を持つ。各線材は露出するので測温装置19の設置や目視チェックに極めて便利である。暗視野により変態進行の状況を全数即時に読みとることができる。 The air cooling part has another function. Since each wire is exposed, it is very convenient for installation of the temperature measuring device 19 and visual check. All the progress of transformation can be read immediately by dark field.

焼入性の大きい低合金鋼線材に対しては、偏析対策として炉長に充分な余裕があるので炭素鋼と同様に処理することができる。それでも不足する場合は炉長の長い細径群のパスを使用する。一つの線径群パスを一時的に当該鋼種向けに条件設定することもできる。具体的には、基準より低速とし、流動床温度を鉛浴同等の温度とすればよい。線径群毎に冷却炉温度は調整できるので多種多様の線材の平行処理に広範に対応することができる。 A low alloy steel wire with high hardenability can be treated in the same manner as carbon steel because the furnace length has a sufficient margin as a segregation countermeasure. If there is still a shortage, use the small diameter group path with a long furnace length. One wire diameter group path can be temporarily set for the steel type. Specifically, the speed may be lower than the standard, and the fluidized bed temperature may be equivalent to that of a lead bath. Since the temperature of the cooling furnace can be adjusted for each group of wire diameters, it can be widely applied to parallel processing of a wide variety of wires.

高炭素鋼の高級鋼線の製造にはパテンティングが不可欠であり、旧来の線材2次加工工場では未だ鉛浴焼入がなされている。鉛浴焼入方式には線径の異なる線材を併行処理することが容易であるという特徴がある。当該設備を本発明に代替させることにより鉛の使用を廃止することができる。鉛浴の設置規制問題を解消して新規参入もやり易くなる。 Patenting is indispensable for the production of high-carbon steel high-grade steel wires, and lead bath quenching is still performed in the conventional secondary processing plant for wire rods. The lead bath quenching method has a feature that it is easy to perform parallel processing of wires having different wire diameters. By replacing the equipment with the present invention, the use of lead can be abolished. Eliminates the problem of lead bath installation regulations and makes it easier to enter new markets.

本発明を実施するパテンティング・ラインの例の概略平面図である。It is a schematic plan view of the example of the patenting line which implements this invention. 同上の要所の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the principal point same as the above. 本発明による線材の変態前の冷却線図を示す。The cooling diagram before transformation of the wire according to the present invention is shown. 本発明による線材の変態中、変態後の冷却線図である。It is a cooling diagram after transformation during transformation of a wire rod by the present invention.

符号の説明Explanation of symbols

1:線材コイル 2:線材 3:加熱炉 4:線径群 5:流動床冷却炉 6:炉床 7:送風ノズル 8:流動砂 9:隔壁 10:線径群パス 11:隔壁 12:冷却帯 13:変態維持帯 14:空冷帯 15:保温炉 16:製品コイル 17:バーナー 18:水冷管 19:測温装置
1: Wire Coil 2: Wire Material 3: Heating Furnace 4: Wire Diameter Group 5: Fluidized Bed Cooling Furnace 6: Furnace Bed 7: Blowing Nozzle 8: Fluidized Sand 9: Bulkhead 10: Wire Diameter Group Pass 11: Bulkhead 12: Cooling Zone 13: Transformation maintenance zone 14: Air cooling zone 15: Incubator 16: Product coil 17: Burner 18: Water-cooled tube 19: Temperature measuring device

Claims (2)

高炭素鋼及び高炭素低合金鋼の線径の異なる多数の線材を線軸方向に平行して直進走行させつつ同一の加熱炉を通過させて所定温度に加熱した後、流動床冷却炉を通過させて連続的にパテンティングを施す方法において、1)線径の近い線材どうしを集約して数段階の線径群としてまとめて走行させ、2)各群の基準線速を各群の基準線径に反比例して設定し、3)流動床冷却炉内には各線径群を分離するよう並行的に隔壁を設けて各群個別に炉温を設定して線径に対応した冷却を施し、4)該流動床冷却炉の各群の実効長さを基準線速×[パーライト変態までの冷却時間+変態時間×(0.5〜1.0)]に設定して変態の過半を進行させ、5)該流動床冷却炉の下流に各群の長さが基準線速×変態時間×(0.3〜1.0)である空冷帯を直結・後続させて冷却速度を直前より低下させて変態を終了させ、6)空冷帯に次いで各群の長さが基準線速×変態時間×(1〜4)である保温炉を通過させ、7)さらに各群内においては個々の線材の線速を該線材の線径と基準線径との比に対応して微調整することを特徴とする鋼線材のパテンティング方法。 A number of wire rods of high carbon steel and high carbon low alloy steel with different wire diameters are linearly run parallel to the wire axis direction and passed through the same heating furnace and heated to a predetermined temperature, and then passed through a fluidized bed cooling furnace. In the method of applying patenting continuously, 1) wire rods having similar wire diameters are aggregated and run together as a group of wire diameters of several stages, and 2) the reference linear velocity of each group is set to the reference wire diameter of each group. 3) In the fluidized bed cooling furnace, partition walls are provided in parallel so as to separate each group of wire diameters, the furnace temperature is set individually for each group, and cooling corresponding to the wire diameter is performed. ) Set the effective length of each group of the fluidized bed cooling furnace to the standard linear velocity x [cooling time to pearlite transformation + transformation time x (0.5 to 1.0)], and proceed the majority of transformation. 5) An air cooling zone in which the length of each group is a reference linear velocity × transformation time × (0.3 to 1.0) downstream of the fluidized bed cooling furnace. Then, the cooling rate is lowered from the previous time to finish the transformation. 6) Next to the air-cooling zone, the length of each group is passed through a heat-retaining furnace whose basic linear velocity × transformation time × (1 to 4), 7) Furthermore, in each group, the wire speed of the individual wire rod is finely adjusted in accordance with the ratio of the wire diameter of the wire rod to the reference wire diameter. 流動床冷却炉内の各群のパスにおいて走行方向と直角に線材が貫通可能の隔壁を設け、上流側を各パス一定の炉長・一定の炉温とした予備冷却帯とし、下流側をパス毎に個別の炉温を持つ変態維持帯とすることを特徴とする請求項1に記載の鋼線材のパテンティング方法。 In each group of passes in the fluidized bed cooling furnace, a partition that allows the wire to penetrate perpendicularly to the traveling direction is provided, the upstream side is a precooling zone with a constant furnace length and a constant furnace temperature, and the downstream side is a pass. The steel wire rod patenting method according to claim 1, wherein a transformation maintenance zone having an individual furnace temperature is used for each.
JP2006221745A 2006-08-16 2006-08-16 Patenting method for steel wire rod Expired - Fee Related JP3968406B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006221745A JP3968406B1 (en) 2006-08-16 2006-08-16 Patenting method for steel wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006221745A JP3968406B1 (en) 2006-08-16 2006-08-16 Patenting method for steel wire rod

Publications (2)

Publication Number Publication Date
JP3968406B1 true JP3968406B1 (en) 2007-08-29
JP2008045171A JP2008045171A (en) 2008-02-28

Family

ID=38498678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006221745A Expired - Fee Related JP3968406B1 (en) 2006-08-16 2006-08-16 Patenting method for steel wire rod

Country Status (1)

Country Link
JP (1) JP3968406B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6030801B1 (en) * 2016-07-14 2016-11-24 山田 榮子 Multifunctional heat treatment equipment for steel wire that can be processed in parallel
JP2020143344A (en) * 2019-03-07 2020-09-10 山田 榮子 Fluidized bed furnace for heating and cooling steel wires

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4923226Y1 (en) * 1970-11-19 1974-06-22
BE1004383A3 (en) * 1989-07-26 1992-11-10 Bekaert Sa Nv Fluidized bed for deterring WIRE.
JPH04276028A (en) * 1991-02-28 1992-10-01 Hitachi Metals Ltd Continuous heat treating device for metal wire rod or hoop material

Also Published As

Publication number Publication date
JP2008045171A (en) 2008-02-28

Similar Documents

Publication Publication Date Title
EP2687612B1 (en) Steel pipe quenching method
JPS6254022A (en) Production of welded steel pipe usable in transport of acidic gas and/or oil
CN101098973A (en) Method for control of cooling of steel plate
CN111455281B (en) Method for controlling yield strength fluctuation of same ring of HRB400E wire rod twisted steel and HRB400E wire rod twisted steel
CN104053807A (en) Rolled Wire Rod, And Method For Producing Same
CN105624554B (en) A kind of effective steel plate of 70 grades of SA671 electro-fusion weldings and manufacturing method with good hic resistance characteristic
JP3968406B1 (en) Patenting method for steel wire rod
JP2020190017A (en) Dew point control method for reduction atmospheric furnace, reduction atmospheric furnace, method for producing cold rolled steel sheet, and method for producing hot dip galvanized steel sheet
JP3914953B1 (en) Patenting method for high carbon steel wire rod
JP6030801B1 (en) Multifunctional heat treatment equipment for steel wire that can be processed in parallel
JP6724617B2 (en) Steel pipe manufacturing method and quenching apparatus
JP5911164B2 (en) Direct quenching type thin wall steel for construction machinery
JP2017008372A (en) Hardening equipment and method for producing steel pipe
JPS631369B2 (en)
WO2001046485A1 (en) Direct patenting high strength wire rod and method for producing the same
RU2341565C2 (en) Method of candy manufacturing from low-alloy steel
JP2017066435A (en) Method of producing high strength steel wire
JP2019210549A (en) Method for cooling steel sheet, cooling system for steel sheet, and method for manufacturing steel sheet
KR20110066281A (en) Producing method for reinforcing steel and reinforcing steel using the same
JP4325326B2 (en) Manufacturing method of high-tensile steel sheet
EP0803583B1 (en) Primary cooling method in continuously annealing steel strips
RU2709075C1 (en) Method of producing hot-rolled coil of low-alloy steel
US5192485A (en) Continuous annealing line having carburizing/nitriding furnace
JP2575544B2 (en) Manufacturing method of high-strength, high-carbon steel wire rod with excellent drawability
RU2727385C1 (en) Dynamic adjustment method for making heat-treated sheet steel

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070508

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees