WO2001046485A1 - Direct patenting high strength wire rod and method for producing the same - Google Patents

Direct patenting high strength wire rod and method for producing the same Download PDF

Info

Publication number
WO2001046485A1
WO2001046485A1 PCT/JP2000/009167 JP0009167W WO0146485A1 WO 2001046485 A1 WO2001046485 A1 WO 2001046485A1 JP 0009167 W JP0009167 W JP 0009167W WO 0146485 A1 WO0146485 A1 WO 0146485A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
wire
steel
carbon content
strength direct
Prior art date
Application number
PCT/JP2000/009167
Other languages
French (fr)
Japanese (ja)
Inventor
Seiki Nishida
Atsuhiko Yoshie
Naoshi Hikita
Susumu Sahara
Hitoshi Saito
Koji Yoshimura
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP36527699A external-priority patent/JP3965010B2/en
Priority claimed from JP37131299A external-priority patent/JP4392093B2/en
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Publication of WO2001046485A1 publication Critical patent/WO2001046485A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon

Definitions

  • the present invention is applicable to high-strength PC steel wire, PWS steel wire, Piano wire, steel cord, hose wire, bead wire, contact opening cable, fishing line, cut wire, saw wire, etc.
  • the present invention relates to a wire capable of producing a high-strength steel wire to be used and a method for producing the same. Background art
  • wires made of high carbon steel containing 0.6% or more carbon and used for steel cord, etc. are processed to a diameter of 5 to 16 mm by hot rolling, and then the structure is adjusted by adjusting cooling. It is used as wire.
  • a wire is wound up and transported in a coil shape.
  • Japanese Patent Application Laid-Open No. Sho 60-204865 discloses that the content of Mn is regulated to less than 0.3% to suppress the generation of a supercooled structure after lead patenting.
  • By regulating the amounts of elements such as manganese, Mn, etc. ultra-fine wires with high strength and high toughness and ductility and high carbon steel wires for steel cords are disclosed.
  • Japanese Patent Publication No. 63-24046 discloses that by increasing the Si content to 1.0% or more, the tensile strength of the lead-patented material is increased and the wire drawing rate is reduced.
  • the disclosed high toughness and high ductility ultrafine wire II wire is disclosed.
  • the present invention has been made in order to solve the above-mentioned problems, and provides a wire rod that has reduced susceptibility to flaws generated in the process of transporting or secondary working of a hot-rolled wire rod and is resistant to flaws.
  • the gist of the present invention is as follows.
  • the high-strength direct patenting wire is characterized in that the layer is a layer in which a scratched martensite structure is hardly generated.
  • High carbon steel containing 0.7% by mass or more of carbon by mass, and the Vickers hardness of the layer from the surface layer to at least 300 is set to HV: 390 or less, and By setting the average carbon content of the layer to 0.97 times or less of the average carbon content in the entire cross section, the layer is a layer in which a scratched martensite structure is hardly generated.
  • a high-strength direct-patterning wire characterized by:
  • the steel component of the high carbon steel is expressed as C: 0.7-1.2%,
  • the high-strength direct patenting wire according to any one of the above (1) to (3), comprising a balance of Fe and unavoidable impurities.
  • the high-strength direct patenting wire according to any one of the above (1) to (3), comprising one or more of the following.
  • a high-carbon steel having a carbon content of 0.7% or more by mass% is heated at 100 to 1200 ° C in a wire heating furnace, and then has a diameter of 4 to 16 mm. Hot rolling is performed, and the hot rolling is completed at a temperature of 850 ° C or more, cooled to 750 to 830 ° C within 15 seconds, and immediately thereafter, 400 ° C.
  • a method for producing a high-strength direct patenting wire characterized by immersing it in a molten salt bath at up to 570 ° C to terminate perlite transformation.
  • a method for producing a high-strength direct patenting wire rod characterized in that:
  • the carbon content in mass% is 0.7% or more, and the average carbon content of the layer from its surface to at least 300m is the average carbon content of all cross sections. 0.97 times or less of high carbon steel in a wire heating furnace
  • hot rolling After heating at 100 to 1200 ° C, hot rolling to a diameter of 4 to 16 mm is performed, and the hot rolling is completed at a temperature of 75 0 ° C or more, and immediately thereafter.
  • a method for producing a high-strength direct patenting wire characterized by immersing it in a molten salt bath at 400 to 570 ° C to terminate perlite transformation.
  • C is an element effective for strengthening, and it is necessary to set the amount of C to 0.7% or more in order to obtain a high-strength steel wire.However, if it is too high, proeutectoid cementite precipitates. Since the ductility tends to decrease, the ductility decreases and the drawability deteriorates. Therefore, the upper limit is set to 1.2%.
  • Si is an element necessary for the deoxidation of steel. Therefore, when the content is too small, the deoxidizing effect becomes insufficient, so 0.1% or more is added. Further, Si forms a solid solution with the graphite phase in the pearlite formed after the heat treatment and increases the strength after the patenting, but on the other hand, it impairs the heat treatment property, so the content is 1.5% or less.
  • Mn For Mn, it is necessary to add 0.1% or more of Mn to secure the hardenability of steel. However, the addition of a large amount of Mn also delays the recovery of ductility during hot-dip galvanizing, so it is set to 1.0% or less.
  • the amount of Cr added is set to 0.1% or more, at which the effect can be expected, and to 0.5% or less, at which the heat treatment property is not deteriorated due to the transformation delay at the time of patenting.
  • V is also added to improve the strength after patenting and the strength after wire drawing. If it is added, the effect appears. %. If added too much, the transformation is significantly delayed and the productivity is affected, so the content is set to 0.1% or less.
  • Ni is also added to improve the strength after patenting and the strength after wire drawing.
  • the content is set to 0.05% or more at which the effect is exhibited, and when added too much, the transformation is significantly delayed and productivity is affected, so the content is set to 1.0% or less.
  • M 0 is also added to improve the strength after patenting and the strength after wire drawing.
  • the content is set to 0.1% or more, at which the effect is exhibited, and when added excessively, the pearlite transformation is remarkably delayed, and productivity is lowered.
  • Cu is added to improve corrosion fatigue properties.
  • the content is set to 0.05% or more at which the effect is exhibited, and when added excessively, the content is set to 0.8% or less, which significantly delays the transformation of the pellets and has no effect of lowering the productivity.
  • W is added to improve corrosion fatigue properties.
  • the content is set to 0.05% or more, at which the effect is exhibited, and when added excessively, the content is set to 0.8% or less, which significantly delays the pearlite transformation and has no effect of lowering productivity.
  • a 1 is added to reduce the size of the perlite block. When it is added, it is added in an amount of 0.001% or more that exhibits the effect. Since added pressure amounts to zero. 0 6 percent reduces the wire drawability increased inclusions hard, such as eight 1 2 03
  • B is added to reduce the particle block size. If it is added, add 0.005% or more to show the effect. If too much element is added, the isothermal transformation is delayed and hard 0.06% or less, because it is easy to generate birds.
  • Ti is added to reduce the size of the perlite block. If it is added, it should be added in an amount of 0.001% or more that shows the effect. If the amount of the added element is too large, the isothermal transformation is delayed and hard micro-martensite is generated, so that the content is set to 0.06% or less.
  • Nb is added to make the pearlite block size fine. If it is added, it should be added in an amount of 0.001% or more that shows the effect. If the amount of the added element is too large, the isothermal transformation is delayed and hard micro-martensite is easily generated, so the content is set to 0.06% or less.
  • P easily forms an embrittlement structure due to segregation
  • S is an element that easily forms inclusions, so that it is desirable to set each of them to not more than 0.02% at which adverse effects are reduced.
  • the steel adjusted to the above-described steel composition is continuously formed into blooms or billets.
  • the bloomed steel is hot rolled into billets by slab rolling.
  • the billet is heated in a wire heating furnace from 100 ° C to 100 t to make the steel structure austenitic.
  • the temperature for austenitization must be at least 900 ° C or higher in order to keep the temperature during austenite rolling below the austenitizing temperature.
  • the finishing temperature of the rolling becomes high, and the grain growth of austenite is promoted.
  • the heated billet is formed into a shape having a diameter of 4 to 16 by hot rolling, and hot rolling is completed at a temperature of 800 t or more.
  • the finishing temperature at this time is set to 850 ° C or more
  • the wire is immediately cooled in order to reduce the austenite grain size near the surface layer of the wire, and the winding temperature is reduced to 75 ° C within 15 seconds. It must be adjusted between 0 ° C and 830 t. If the time is more than 15 seconds, grain growth tends to occur. Adjust within at least 15 seconds.
  • the transformation starts, and the non-uniformity becomes too large. Also, when the temperature exceeds 830 ° C, the austenite in the surface layer becomes large, and the lamellar spacing is 95 nm, which hardly generates martensite by scraping the structure within at least 300 ULm from the surface layer. It is difficult to establish the above organization.
  • the depth of the flaw entering the wire is as large as about 100 m.
  • the most influential on the break is the presence of hard martensite formed on the surface layer by the heat generated when the flaw is formed.
  • a Pickers hardness of at least 300 m from the surface layer should be HV 390 or less, or at least 300 m from the surface layer. It is necessary to adjust the average lamella spacing of the layers above 95 nm. As a result, the martensite formed when a flaw is formed will not be generated or will be harmlessly thin. Further, in the present invention, the steel adjusted to the above-mentioned steel composition is continuously rusted into blooms or pellets after being melted.
  • the carbon concentration of at least 30 from the surface layer is set to 0.9 times or less of the average carbon concentration.
  • the molten salt is heated at a temperature of 400 ° C to 530 ° C.
  • the Pickers hardness in the range of at least 300 m from the surface layer is Hv 390 or less, or the average lamella spacing is 95 nm or more. I can't do that. Therefore, the carbon content of at least 300 m from the surface layer needs to be 0.97 times or less of the average concentration of the entire cross section.
  • Table 1 shows the chemical composition of the steel of the present invention used in the trial production.
  • Table 1 shows the chemical composition of the comparative steel.
  • the steel of the present invention and the comparative steel were melted in a converter, and then formed into a bloom of 500 mm ⁇ 300 mm by continuous forming. Then, it was hot rolled into a 112 mm square billet. Thereafter, the wire was heated at 110 to 1200 ° C., and hot-rolled into a wire having a diameter of 5.5 to 13 mm.
  • Table 2 shows the manufacturing conditions including the temperature after the completion of hot rolling of the wire, and Table 2 shows the hardness of the surface layer and the lamellar spacing of the surface of the obtained wire.
  • steels 1 to 15 the chemical composition and microstructure of the steel are adjusted according to the present invention.
  • Comparative steel 16 had the same steel composition as the steel of the present invention, with a finishing temperature of 900 t in hot rolling, and a temperature of 850 ° C higher than that of the present invention due to subsequent cooling. is there.
  • Comparative steel 17 has the same steel composition as the steel of the present invention, and has a finishing temperature in hot rolling and a subsequent winding temperature within the range of the present invention, but it is required to cool down to the winding temperature. This is the case where the execution time is longer than that of the present invention.
  • Comparative steel 18 had the same steel composition as the steel of the present invention, and had a winding temperature of 800 ° C. higher than that of the present invention without cooling after finishing in hot rolling without cooling.
  • Comparative steel 19 has the same steel composition as the steel of the present invention, but has a lower heating temperature and a lower winding temperature than the present invention.
  • Comparative steel 20 has the same steel composition as the steel of the present invention, but has a higher heating temperature but more intense finish cooling and a lower winding temperature than the present invention.
  • Nos. 1 to 15 manufactured according to the present invention have good martensite thickness and show good results with a small number of disconnections.
  • the comparative steels 11 to 13 have a larger martensite thickness and the number of disconnections is higher than that of the steel of the present invention.
  • the comparative steels 14 to 15 have a small martensite thickness, but have a low drawing shown in Table 1, and the number of disconnections shown in Table 2 is higher than that of the steel of the present invention.
  • Table 1 Chemical composition of the steel of the present invention (mass%)
  • Table 3 shows the chemical compositions of the steel of the present invention and the comparative steel used in the trial production.
  • the steel of the present invention and the comparative steel were melted in a converter, and then made into a bloom of 500 mra x 300 mm by continuous forming. Then, it was hot rolled to form a 112 mm square billet. Then, after heating at 110 to 1200 ° C, a wire rod having a diameter of 5.5 mm to 13 mm was formed by hot rolling.
  • Table 4 shows the manufacturing conditions including the carbon content ratio obtained by dividing the carbon concentration of 300 m from the surface layer of the wire by the average carbon content of the entire cross-sectional area of the wire, and the temperature after completion of hot rolling.
  • Table 4 shows the hardness of the surface layer and the lamellar spacing of the surface layer of the obtained wire.
  • steels 1 to 15 the chemical composition and the microstructure of the steel are adjusted according to the present invention.
  • comparative steels 16 and 17 have the same steel composition and rolling method as the steel of the present invention, but have a higher carbon content ratio than the steel of the present invention.
  • the steels 1 to 15 of the present invention produced according to the present invention have a small martensite thickness and show good results with a small number of disconnections.
  • the comparative steels 16 to 17 have a larger martensite thickness and the number of disconnections is higher than that of the present invention steel.

Abstract

A direct patenting wire rod with a diameter of 4. 0 mm to 16 mm comprising a high carbon steel having a carbon content of 0. 7 % or more, wherein the layer in the range of at least 300 µm from the surface of the wire rod has an average carbon content of 0. 97 or less times that of the whole cross section of the wire rod, has a Vickers hardness of Hv 390 or less, and has an average separation between lamellas of 95 nm or more; and a method for producing the wire rod. The wire rod is a direct patenting high strength wire rod having a surface layer which is less prone to the occurrence of fretting martensite and thus is less susceptible to the occurrence of the cut due to a flaw formed by the handling during transportation or the like.

Description

明 細 書 高強度直接パテンティ ング線材およびその製造方法 技術分野  Description High-strength direct patenting wire and its manufacturing method
本発明は、 高強度の P C鋼線、 P W S鋼線、 ピア ノ線、 スチール コー ド、 ホースワイヤ、 ビー ドワイヤ、 コ ン ト 口一ルケ一ブル、 釣 り糸、 カ ツ 卜 ワイヤ、 ソーワイヤなどに使用される高強度鋼線を製 造可能とする線材とその製造方法に関する ものである。 背景技術  The present invention is applicable to high-strength PC steel wire, PWS steel wire, Piano wire, steel cord, hose wire, bead wire, contact opening cable, fishing line, cut wire, saw wire, etc. The present invention relates to a wire capable of producing a high-strength steel wire to be used and a method for producing the same. Background art
一般にスチールコー ドなどに用いる 0 . 6 %以上の炭素を含む高 炭素鋼からなるワイヤは、 熱間圧延によ り 直径 5 〜 1 6 mmに加工さ れた後に、 調整冷却によ り組織調整され線材と される。 一般に線材 はコイル状に巻き取られ搬送される。  In general, wires made of high carbon steel containing 0.6% or more carbon and used for steel cord, etc. are processed to a diameter of 5 to 16 mm by hot rolling, and then the structure is adjusted by adjusting cooling. It is used as wire. Generally, a wire is wound up and transported in a coil shape.
例えば、 特開昭 6 0 - 2 0 4 8 6 5号公報には、 M n含有量を 0 . 3 %未満に規制して鉛パテンティ ング後の過冷組織の発生を抑え 、 C, S i , M n等の元素量を規制するこ とによって、 撚り線時の 断線が少な く 高強度および高靱延性の極細線およびスチールコー ド 用高炭素鋼線材が開示されており、 また、 特開昭 6 3 — 2 4 0 4 6 号公報には、 S i 含有量を 1 . 0 0 %以上とするこ とによって鉛パ テンティ ング材の引張強さ を高く して伸線加工率を小さ く した高靱 性高延性極細線甩線材が開示されている。  For example, Japanese Patent Application Laid-Open No. Sho 60-204865 discloses that the content of Mn is regulated to less than 0.3% to suppress the generation of a supercooled structure after lead patenting. By regulating the amounts of elements such as manganese, Mn, etc., ultra-fine wires with high strength and high toughness and ductility and high carbon steel wires for steel cords are disclosed. Japanese Patent Publication No. 63-24046 discloses that by increasing the Si content to 1.0% or more, the tensile strength of the lead-patented material is increased and the wire drawing rate is reduced. The disclosed high toughness and high ductility ultrafine wire II wire is disclosed.
このよ うな高強度に用いられる線材は、 伸線工程で表面に付けら れた疵によ り断線を引 き起こ しゃすい。 このため、 従来の線材では 、 輸送中やコイルの取り扱い時に出来るだけ疵を付けない工夫がな されていた。 しかし、 このよ う な努力にも限界があ り 、 疵による断 線の起こ らない線材が必要と されている。 発明の開示 Wires used for such high strength are broken due to scratches on the surface during the wire drawing process. For this reason, conventional wire rods have been devised so as not to damage as much as possible during transportation or handling of the coil. However, there is a limit to such efforts, and cuts due to flaws There is a need for wires that do not cause wire. Disclosure of the invention
本発明は、 上記課題を解決するためになされたもので、 熱間圧延 された線材の搬送あるいは二次加工過程で発生する疵に対する感受 性を低減し、 疵に強い線材を提供する。  The present invention has been made in order to solve the above-mentioned problems, and provides a wire rod that has reduced susceptibility to flaws generated in the process of transporting or secondary working of a hot-rolled wire rod and is resistant to flaws.
本発明の要旨は次のとおりである。  The gist of the present invention is as follows.
( 1 ) 炭素含有量が質量%で 0 . 7 %以上を含有する高炭素鋼で 、 その表層から少なく と も 3 0 0 mまでの層のビッカース硬度を H V : 3 9 0以下とするこ とによ り 、 前記層が擦過マルテ ンサイ 卜 組織の生成し難い層と したこ とを特徴とする高強度直接パテンティ ング線材。  (1) High carbon steel containing 0.7% by mass or more of carbon in mass%, and the Vickers hardness of the layer from the surface layer to at least 300m shall be HV: 390 or less. Thus, the high-strength direct patenting wire is characterized in that the layer is a layer in which a scratched martensite structure is hardly generated.
( 2 ) 炭素含有量が質量%で 0 . 7 %以上を含有する高炭素鋼で 、 その表層から少なく と も 3 0 0 mまでの層の平均炭素含有量が 全断面での平均炭素含有量の 0 . 9 7倍以下とするこ とによ り 、 前 記層が擦過マルテンサイ ト組織の生成し難い層と したこ とを特徴と する高強度直接パテンテ ィ ング線材。  (2) High carbon steel with a carbon content of 0.7% or more by mass%, and the average carbon content of the layer from the surface layer to at least 300m is the average carbon content in the entire cross section A high-strength direct patenting wire rod characterized in that the above-mentioned layer is a layer in which the abrasion martensite structure is hardly generated by setting the thickness to 0.997 times or less.
( 3 ) 炭素含有量が質量%で 0 . 7 %以上を含有する高炭素鋼で 、 その表層から少なく と も 3 0 0 までの層のビッ カース硬度を H V : 3 9 0以下と し、 かつ、 前記層の平均炭素含有量が全断面で の平均炭素含有量の 0 . 9 7倍以下とするこ とによ り、 前記層が擦 過マルテ ンサイ 卜組織の生成し難い層と したこ とを特徴とする高強 度直接パテ ンテ ィ ング線材。  (3) High carbon steel containing 0.7% by mass or more of carbon by mass, and the Vickers hardness of the layer from the surface layer to at least 300 is set to HV: 390 or less, and By setting the average carbon content of the layer to 0.97 times or less of the average carbon content in the entire cross section, the layer is a layer in which a scratched martensite structure is hardly generated. A high-strength direct-patterning wire characterized by:
( 4 ) 前記層内の平均ラメ ラ間隔が 9 5 nm以上であるこ とを特徴 とする上記 ( 1 ) 〜 ( 3 ) のいずれかに記載の高強度直接パテンテ ィ ング線材。  (4) The high-strength direct patenting wire according to any one of (1) to (3), wherein the average lamellar spacing in the layer is 95 nm or more.
( 5 ) 前記高炭素鋼の鋼成分が、 質量%で、 C : 0 . 7〜 1 . 2 %、 (5) The steel component of the high carbon steel is expressed as C: 0.7-1.2%,
S i : 0 . 1 〜 し 5 %、  S i: 0.1 to 5%,
M n : 0 . 1 〜 し 0 %、  M n: 0.1 to 0%,
残部 F eおよび不可避不純物からなることを特徴とする上記 ( 1 ) 〜 ( 3 ) のいずれかに記載の高強度直接パテンティ ング線材。  The high-strength direct patenting wire according to any one of the above (1) to (3), comprising a balance of Fe and unavoidable impurities.
( 6 ) 前記高炭素鋼の鋼成分が、 質量%で、  (6) The steel component of the high carbon steel is expressed as
C : 0 7 1 2 %、  C: 0 7 1 2%,
S i 0 1 〜 1 . 5 %、  S i 01-1.5%,
M n 0 1 〜 1 . 0 %を含み、 更(  M n 0 1 to 1.0%
C r 0 1 〜 0 . 5 %  Cr 01 to 0.5%
V : 0 0 0 1 〜 0 . 2 %  V: 0.001 to 0.2%
Ν i 0 0 5 〜 1 . 0 %  Ν i 0 05 〜 1.0%
Μ ο o 1丄 o . 5 %  % Ο o 1 丄 o. 5%
C u 0 0 5 0 . 8 %  C u 0 0 5 0 .8%
W : 0 0 5 0 . 8 %  W: 00.50.8%
L a 0 0 0 0 5〜 0 . 0 1 %  L a 0 0 0 0 5 to 0 .01%
C e 0 0 0 0 5 〜 0 . 0 1 %  C e 0 0 0 0 5 to 0 .01%
A 1 0 0 0 1 〜 0 . 0 6 %  A 1 0 0 0 1 to 0 .06%
B : 0 0 0 0 5 〜 0 . 0 6 %  B: 0 0 0 0 5 to 0 .06%
T i 0 0 0 1 〜 0 . 0 6 %  T i 0 0 0 1 to 0 .06%
N b 0 0 0 1 〜 0 . 0 6 %  N b 0 0 0 1 to 0 .06%
の 1 種または 2種以上を含有することを特徴とする上記 ( 1 ) 〜 ( 3 ) のいずれかに記載の高強度直接パテンティ ング線材。  The high-strength direct patenting wire according to any one of the above (1) to (3), comprising one or more of the following.
( 7 ) 炭素含有量が質量%で 0 . 7 %以上を含有する高炭素鋼を 、 線材加熱炉で 1 0 0 0〜 1 2 0 0 °Cで加熱後、 直径 4 〜 1 6 mmと する熱間圧延を行い、 前記熱間圧延を 8 5 0 °C以上の温度で終了 し 、 1 5秒以内に 7 5 0〜 8 3 0 °C まで冷却し、 その後直ちに 4 0 0 〜 5 7 0 °Cの溶融ソル トバスに浸漬してパーラィ ト変態を終了させ るこ とを特徴とする高強度直接パテンティ ング線材の製造方法。 (7) A high-carbon steel having a carbon content of 0.7% or more by mass% is heated at 100 to 1200 ° C in a wire heating furnace, and then has a diameter of 4 to 16 mm. Hot rolling is performed, and the hot rolling is completed at a temperature of 850 ° C or more, cooled to 750 to 830 ° C within 15 seconds, and immediately thereafter, 400 ° C A method for producing a high-strength direct patenting wire, characterized by immersing it in a molten salt bath at up to 570 ° C to terminate perlite transformation.
( 8 ) 炭素含有量が質量%で、 0 . 7 %以上を含有する高炭素鋼 を、 線材加熱炉で 1 0 0 0 〜 1 2 0 0 °Cで加熱後、 直径 4 〜 1 6 mm とする熱間圧延を行い、 前記熱間圧延を 7 5 0 〜 8 3 (TCの温度で 終了し、 その後直ちに 4 0 0 〜 5 7 0 tの溶融ソル 卜バスに浸漬し てパーライ ト変態を終了させるこ とを特徴とする高強度直接パテン ティ ング線材の製造方法。  (8) After heating a high-carbon steel containing 0.7% or more by mass in a wire rod heating furnace at 100 to 1200 ° C, the diameter of the steel is 4 to 16 mm. Hot rolling is performed at a temperature of 750 to 83 (TC temperature, and then immediately immersed in a molten salt bath of 400 to 570 t to complete the pearlite transformation. A method for producing a high-strength direct patenting wire rod, characterized in that:
( 9 ) 前記熱間圧延を行い、 その後、 1 5秒以内に 7 5 0 〜 8 3 0 °Cの温度で巻き取り、 その後直ちに 4 0 0 〜 5 7 0 °Cの溶融ソル 卜バスに浸漬するこ とを特徴とする上記 ( 8 ) 記載の高強度直接パ テンティ ング線材の製造方法。  (9) Perform the hot rolling described above, then wind up at a temperature of 750-830 ° C within 15 seconds, and immediately immerse it in a molten salt bath at 400-570 ° C. (8) The method for producing a high-strength direct patenting wire according to the above (8).
( 1 0 ) 前記 4 0 0 〜 5 7 0 °Cの溶融ソル トバスに浸漬するこ と に替えて、 衝風冷却を行ってパーライ 卜変態を終了させるこ とを特 徴とする上記 ( 8 ) 記載の高強度直接パテンティ ング線材の製造方 法。  (10) The above (8), which is characterized in that, instead of being immersed in a molten salt bath at a temperature of 400 to 570 ° C., blast cooling is performed to terminate the pearlite transformation. The method for producing the high-strength direct patenting wire described.
( 1 1 ) 炭素含有量が質量%で、 0 . 7 %以上を含有し、 かつそ の表層から少なく と も 3 0 0 mまでの層の平均炭素含有量が全断 面の平均炭素含有量の 0 . 9 7倍以下の高炭素鋼を、 線材加熱炉で (11) The carbon content in mass% is 0.7% or more, and the average carbon content of the layer from its surface to at least 300m is the average carbon content of all cross sections. 0.97 times or less of high carbon steel in a wire heating furnace
1 0 0 0 〜 1 2 0 0 °Cで加熱後、 直径 4 〜 1 6 mmとする熱間圧延を 行い、 前記熱間圧延を 7 5 0 °C以上の温度で終了 し、 その後直ちにAfter heating at 100 to 1200 ° C, hot rolling to a diameter of 4 to 16 mm is performed, and the hot rolling is completed at a temperature of 75 0 ° C or more, and immediately thereafter.
4 0 0 〜 5 7 0 °Cの溶融ソル 卜バスに浸漬してパーライ 卜変態を終 了させるこ とを特徴とする高強度直接パテンティ ング線材の製造方 法。 A method for producing a high-strength direct patenting wire, characterized by immersing it in a molten salt bath at 400 to 570 ° C to terminate perlite transformation.
( 1 ) 前記熱間圧延を行い、 その後、 7 5 0 〜 9 0 0 tの温度 で巻き取り、 その後直ちに 4 0 0 〜 5 7 0 °Cの溶融ソル トバスに浸 漬するこ とを特徴とする上記 ( 1 1 ) 記載の高強度直接パテンティ ング線材の製造方法。 (1) The above-mentioned hot rolling is performed, and thereafter, it is wound at a temperature of 750 to 900 t, and is immediately immersed in a molten salt bath at 400 to 570 ° C. High strength direct patenting as described in (11) above Manufacturing method of wire rod.
( 1 3 ) 前記 4 0 0 〜 5 7 0 °Cの溶融ソル 卜バスに浸漬するこ と に替えて、 衝風冷却を行ってパーラィ ト変態を終了させるこ とを特 徴とする上記 ( 1 1 ) または ( 1 2 ) 記載の高強度直接パテンティ ング線材の製造方法。 発明を実施するための最良の形態  (13) Instead of immersion in a molten salt bath at 400 to 570 ° C, the above-mentioned (1 The method for producing a high-strength direct patenting wire according to 1) or 1). BEST MODE FOR CARRYING OUT THE INVENTION
まず、 鋼組成の限定理由について説明する。 成分は全て質量%で あ り、 重量%と同義である。  First, the reasons for limiting the steel composition will be described. All components are% by mass, which is synonymous with% by weight.
Cは強化に有効な元素であ り高強度の鋼線を得るためには C量を 0 . 7 %以上とするこ とが必要であるが、 高すぎる と初析セメ ンタ ィ 卜が析出 しやすいため、 延性が低下し、 かつ伸線性が劣化するの でその上限は 1 . 2 %とする。  C is an element effective for strengthening, and it is necessary to set the amount of C to 0.7% or more in order to obtain a high-strength steel wire.However, if it is too high, proeutectoid cementite precipitates. Since the ductility tends to decrease, the ductility decreases and the drawability deteriorates. Therefore, the upper limit is set to 1.2%.
S i は鋼の脱酸のために必要な元素であ り 、 従ってその含有量が あま り に少ないと き、 脱酸効果が不十分になるので 0 . 1 %以上添 加する。 また、 S i は熱処理後に形成されるパーライ ト中のフヱラ ィ ト相に固溶しパテンティ ング後の強度を上げるが、 反面、 熱処理 性を阻害するので 1 . 5 %以下とする。  Si is an element necessary for the deoxidation of steel. Therefore, when the content is too small, the deoxidizing effect becomes insufficient, so 0.1% or more is added. Further, Si forms a solid solution with the graphite phase in the pearlite formed after the heat treatment and increases the strength after the patenting, but on the other hand, it impairs the heat treatment property, so the content is 1.5% or less.
M nは鋼の焼き入れ性を確保するために 0 . 1 %以上の M n を添 加するこ とが必要である。 しかし、 多量の M nの添加も溶融亜鉛め つ きの際の延性の回復を遅らすので 1 . 0 %以下とする。  For Mn, it is necessary to add 0.1% or more of Mn to secure the hardenability of steel. However, the addition of a large amount of Mn also delays the recovery of ductility during hot-dip galvanizing, so it is set to 1.0% or less.
C r はパテンティ ング後の強度ならびに伸線加工後の強度を向上 するために添加する。 従って、 C r の添加量はその効果が期待でき る 0 . 1 %以上と し、 パテンティ ング時の変態遅延による熱処理性 が悪化するこ との無い 0 . 5 %以下とする。  Cr is added to improve the strength after patenting and the strength after wire drawing. Therefore, the amount of Cr added is set to 0.1% or more, at which the effect can be expected, and to 0.5% or less, at which the heat treatment property is not deteriorated due to the transformation delay at the time of patenting.
Vもパテンティ ング後の強度ならびに伸線加工後の強度を向上す るために添加する。 添加する場合は、 その効果の表れる 0 . 0 0 1 %以上と し、 添加し過ぎる と変態が著しく遅れ、 生産性に影響を及 ぼすので 0 . 1 %以下とする。 V is also added to improve the strength after patenting and the strength after wire drawing. If it is added, the effect appears. %. If added too much, the transformation is significantly delayed and the productivity is affected, so the content is set to 0.1% or less.
N i もパテンティ ング後の強度ならびに伸線加工後の強度を向上 するために添加する。 添加する場合は、 その効果の表れる 0 . 0 5 %以上と し、 添加し過ぎる と変態が著しく遅れ、 生産性に影響を及 ぼすので 1 . 0 %以下とする。  Ni is also added to improve the strength after patenting and the strength after wire drawing. When added, the content is set to 0.05% or more at which the effect is exhibited, and when added too much, the transformation is significantly delayed and productivity is affected, so the content is set to 1.0% or less.
M 0 もパテンティ ング後の強度ならびに伸線加工後の強度を向上 するために添加する。 添加する場合は、 その効果の表れる 0 . 1 % 以上と し、 添加し過ぎる とパーライ ト変態を著しく 遅らせ生産性を 低下させるので影響の無い 0 . 5 %以下とする。  M 0 is also added to improve the strength after patenting and the strength after wire drawing. When added, the content is set to 0.1% or more, at which the effect is exhibited, and when added excessively, the pearlite transformation is remarkably delayed, and productivity is lowered.
C uは腐食疲労特性を向上するために添加する。 添加する場合は 、 その効果の表れる 0 . 0 5 %以上と し、 添加し過ぎる とパ一ライ 卜変態を著し く遅らせ生産性を低下させる影響の無い 0 . 8 %以下 とする。  Cu is added to improve corrosion fatigue properties. When added, the content is set to 0.05% or more at which the effect is exhibited, and when added excessively, the content is set to 0.8% or less, which significantly delays the transformation of the pellets and has no effect of lowering the productivity.
Wは腐食疲労特性を向上するために添加する。 添加する場合は、 その効果の表れる 0 . 0 5 %以上と し、 添加し過ぎる とパーライ ト 変態を著し く 遅らせ生産性を低下させる影響の無い 0 . 8 %以下と する。 また、 これらの元素は複合添加する とよ り効果を発揮する。  W is added to improve corrosion fatigue properties. When added, the content is set to 0.05% or more, at which the effect is exhibited, and when added excessively, the content is set to 0.8% or less, which significantly delays the pearlite transformation and has no effect of lowering productivity. These elements are more effective when added in combination.
その他、 L a , C e を微量添加 ( 0 . 0 0 0 5 %〜 0 . 0 1 %) するこ とによ り腐食疲労特性を向上するこ とができる。  In addition, by adding a small amount of La and Ce (0.00.05% to 0.01%), corrosion fatigue characteristics can be improved.
A 1 はパーライ 卜ブロ ッ クサイ ズを微細にするために添加する。 添加する場合は、 その効果の表れる 0 . 0 0 1 %以上添加する。 添 加量が 0 . 0 6 %超では八 1 2 03 などの硬質の介在物が増え伸線 加工性を低下させるので A 1 is added to reduce the size of the perlite block. When it is added, it is added in an amount of 0.001% or more that exhibits the effect. Since added pressure amounts to zero. 0 6 percent reduces the wire drawability increased inclusions hard, such as eight 1 2 03
Bはパ一ライ 卜ブロ ッ クサイ ズを微細にするために添加する。 添 加する場合は、 その効果の表れる 0 . 0 0 0 5 %以上添加する。 添 加元素が多すぎる と恒温変態が遅延し、 硬質なミ ク ロマルテンサイ 卜が発生しやすく なるため 0 . 0 6 %以下とする。 B is added to reduce the particle block size. If it is added, add 0.005% or more to show the effect. If too much element is added, the isothermal transformation is delayed and hard 0.06% or less, because it is easy to generate birds.
T i はパーライ 卜ブロ ッ クサイ ズを微細にするため添加する。 添 加する場合は、 その効果の表れる 0 . 0 0 1 %以上添加する。 添加 元素が多すぎる と恒温変態が遅延し、 硬質なミ ク ロマルテンサイ 卜 が発生しゃすく なるため 0 . 0 6 %以下とする。  Ti is added to reduce the size of the perlite block. If it is added, it should be added in an amount of 0.001% or more that shows the effect. If the amount of the added element is too large, the isothermal transformation is delayed and hard micro-martensite is generated, so that the content is set to 0.06% or less.
N b はパーライ トブロ ッ クサイ ズを微細にするため添加する。 添 加する場合は、 その効果の表れる 0 . 0 0 1 %以上添加する。 添加 元素が多すぎる と恒温変態が遅延し、 硬質なミ クロマルテンサイ ト が発生しやすく なるため 0 . 0 6 %以下とする。  Nb is added to make the pearlite block size fine. If it is added, it should be added in an amount of 0.001% or more that shows the effect. If the amount of the added element is too large, the isothermal transformation is delayed and hard micro-martensite is easily generated, so the content is set to 0.06% or less.
Pは偏析するこ とによる脆化組織を生成しやすく 、 Sは介在物を 形成しやすい元素なので悪影響の少なく なる 0 . 0 2 %以下にそれ ぞれするのが望ま しい。  P easily forms an embrittlement structure due to segregation, and S is an element that easily forms inclusions, so that it is desirable to set each of them to not more than 0.02% at which adverse effects are reduced.
次にこれらの本発明の製造方法について説明する。  Next, the production method of the present invention will be described.
前述の鋼成分に調整された鋼は、 溶製された後にブルームあるい はビレツ 卜 に連続鎵造される。 また、 ブルームとされた鋼は、 分塊 圧延でビレツ ト に熱間圧延される。 ビレッ ト は線材加熱炉で 1 0 0 0 °Cから 1 0 0 tで加熱して鋼の組織をオーステナイ ト とする。 オーステナイ ト化する温度は、 熱間圧延中にオーステナイ 卜化温度 以下とならないよ う にするため、 少な く と も 9 0 0 °C以上に加熱す る必要がある。 また、 加熱し過ぎる と圧延の仕上げ温度が高く な り 、 オーステナイ 卜の粒成長を促進するので 1 2 0 0 °C以下の温度と する。 その後、 加熱されたビレツ 卜 を熱間圧延によ り直径 4〜 1 6 關の形状と し、 8 0 0 t以上の温度で熱間圧延を終える。  After being melted, the steel adjusted to the above-described steel composition is continuously formed into blooms or billets. The bloomed steel is hot rolled into billets by slab rolling. The billet is heated in a wire heating furnace from 100 ° C to 100 t to make the steel structure austenitic. The temperature for austenitization must be at least 900 ° C or higher in order to keep the temperature during austenite rolling below the austenitizing temperature. On the other hand, if the temperature is excessively increased, the finishing temperature of the rolling becomes high, and the grain growth of austenite is promoted. Thereafter, the heated billet is formed into a shape having a diameter of 4 to 16 by hot rolling, and hot rolling is completed at a temperature of 800 t or more.
この時の仕上げ温度を 8 5 0 °C以上とする場合には、 線材の表層 近傍のオーステナイ ト粒径を小さ く するために、 直ちに冷却を行い 、 1 5秒以内に巻き取り温度を 7 5 0 °Cから 8 3 0 tの間に調整す る必要がある。 1 5秒以上では、 粒成長が起こ りやすく なるため、 少なく と も 1 5秒以内に調整する。 When the finishing temperature at this time is set to 850 ° C or more, the wire is immediately cooled in order to reduce the austenite grain size near the surface layer of the wire, and the winding temperature is reduced to 75 ° C within 15 seconds. It must be adjusted between 0 ° C and 830 t. If the time is more than 15 seconds, grain growth tends to occur. Adjust within at least 15 seconds.
また、 冷却後の温度が 7 5 0 t未満では変態が開始するため、 不 均一さが大き く な り過ぎ、 かえって伸線加工性を低下させるので 7 5 0 °C以上とする。 また、 8 3 0 °C を越える と表層のオーステナイ 卜が大き く な り、 表層から少な く と も 3 0 0 UL m以内の組織を擦過 マルテンサイ 卜 を発生しにく いラメ ラ間隔 9 5 nm以上の組織とする 事が困難となる。  If the temperature after cooling is lower than 750 t, the transformation starts, and the non-uniformity becomes too large. Also, when the temperature exceeds 830 ° C, the austenite in the surface layer becomes large, and the lamellar spacing is 95 nm, which hardly generates martensite by scraping the structure within at least 300 ULm from the surface layer. It is difficult to establish the above organization.
その後、 直ちに 5 3 0 ΐ:〜 5 7 0 °Cの溶融ソル ト に浸漬しパーラ ィ ト変態を終了させるこ とによ り、 ラメ ラ間隔 9 5 nm以上のパ一ラ ィ トあるいはビッカース硬度 H V 3 9 0以下に組織を調整する。 溶 融ソル 卜の温度が 5 3 0 °C未満ではラメ ラ間隔を 9 5 nm以上とする こ とが困難となる。 また、 5 7 0 t以上とする と強度が低く な りす ぎるので 5 7 0 t以下とするのが望ま しい。 なお、 上記仕上げ圧延 温度を 7 5 0〜 8 3 0 °C とする場合には、 仕上げ圧延後直ちに 4 0 0〜 5 7 0 °Cの溶融ソル 卜バスに浸漬してパーラィ ト変態を終了さ せるプロセスを採用するこ とでも同様の特性を有する製品を得るこ とができる。 また、 巻き取り後の冷却を衝風冷却、 ミ ス ト冷却など を行っても同様の効果が得られる。  Immediately thereafter, immediately immersed in a molten salt at 530 ° C: ~ 570 ° C to terminate the pearlite transformation, whereby the pearlite or Vickers hardness with a lamella spacing of 95 nm or more is obtained. Adjust the organization to HV 390 or less. When the temperature of the melting solution is lower than 530 ° C, it is difficult to make the lamellar spacing to 95 nm or more. In addition, if it is more than 570 t, the strength is too low, so it is desirable to make it less than 570 t. When the finish rolling temperature is set at 750 to 830 ° C, the pearlite transformation is completed by immersion in a molten salt bath at 400 to 570 ° C immediately after the finish rolling. A product with similar characteristics can also be obtained by adopting a process that allows the same. The same effect can be obtained even if the cooling after winding is performed by blast cooling or mist cooling.
次に線材に疵が入る場合、 断線に至る原因について述べる。  Next, the cause of wire breakage when a wire is damaged will be described.
線材に入る疵の深さは、 大きいもので 1 0 0 m程度である。 こ のと き断線に最も影響を与えるのは、 疵が入る際に発生する熱によ り表層に形成される硬質なマルテンサイ 卜の存在である。 断線を引 き起こすマルテンサイ 卜の発生を無害化するためには、 表層から少 な く と も 3 0 0 mのピツ カース硬度を H V 3 9 0以下、 あるいは 表層から少なく と も 3 0 0 〃 mの層の平均のラメ ラ間隔を 9 5 nm以 上に調整する必要がある。 これらのこ とによ り、 疵が入る際に形成 されるマルテンサイ 卜は、 発生しな く なるか無害な程度に薄く なる また、 本発明においては、 前述の鋼成分に調整された鋼は、 溶製 された後にブルームあるいはビレツ 卜に連続銹造される。 この錶造 時の錶型内のモール ド近傍に純鉄を添加する事によ り、 表層から少 なく と も 3 0 の炭素濃度を平均の炭素濃度の 0 . 9 了倍以下 とする。 0 . 9 7倍超の場合では、 一般的な製造工程である巻き取 り温度 8 5 0 °C以上で巻き取つた後、 4 0 0 °C 〜 5 3 0 °Cの温度で 溶融ソル 卜に浸漬してパーライ 卜組織と した場合、 表層から少なく と も 3 0 0 mの範囲のピツ カ一ス硬度が H v 3 9 0以下、 あるい は平均のラメ ラ間隔が 9 5 nm以上とするこ とが出来ない。 従って、 表層から少なく と も 3 0 0 mの炭素量が断面全体平均濃度の 0 . 9 7倍以下である必要がある。 The depth of the flaw entering the wire is as large as about 100 m. In this case, the most influential on the break is the presence of hard martensite formed on the surface layer by the heat generated when the flaw is formed. In order to detoxify the occurrence of martensite, which causes wire breakage, a Pickers hardness of at least 300 m from the surface layer should be HV 390 or less, or at least 300 m from the surface layer. It is necessary to adjust the average lamella spacing of the layers above 95 nm. As a result, the martensite formed when a flaw is formed will not be generated or will be harmlessly thin. Further, in the present invention, the steel adjusted to the above-mentioned steel composition is continuously rusted into blooms or pellets after being melted. By adding pure iron to the vicinity of the mold in the mold at the time of this construction, the carbon concentration of at least 30 from the surface layer is set to 0.9 times or less of the average carbon concentration. In the case of over 0.97 times, after winding at a winding temperature of 850 ° C or more, which is a general manufacturing process, the molten salt is heated at a temperature of 400 ° C to 530 ° C. When immersed in a pearlite structure, the Pickers hardness in the range of at least 300 m from the surface layer is Hv 390 or less, or the average lamella spacing is 95 nm or more. I can't do that. Therefore, the carbon content of at least 300 m from the surface layer needs to be 0.97 times or less of the average concentration of the entire cross section.
実施例 1 .  Example 1
表 1 に試作に用いた本発明鋼の化学成分を示す。 また、 比較鋼の 化学成分を同表 1 に示す。 本発明鋼ならびに比較鋼を転炉で溶製し たのち連続錡造によ り 5 0 0 mm x 3 0 0 mmのブルームと した。 その 後、 熱間圧延で 1 1 2 mm角のビレッ ト と した。 その後、 1 1 0 0 〜 1 2 0 0 °Cで加熱した後、 熱間圧延で直径 5 . 5 から 1 3 mmの線 材と した。  Table 1 shows the chemical composition of the steel of the present invention used in the trial production. Table 1 shows the chemical composition of the comparative steel. The steel of the present invention and the comparative steel were melted in a converter, and then formed into a bloom of 500 mm × 300 mm by continuous forming. Then, it was hot rolled into a 112 mm square billet. Thereafter, the wire was heated at 110 to 1200 ° C., and hot-rolled into a wire having a diameter of 5.5 to 13 mm.
表 2 に線材の熱間圧延終了後の温度をはじめとする製造条件を示 し、 同表 2 に得られた線材の表層の硬度ならびに表層のラメ ラ間隔 を示した。  Table 2 shows the manufacturing conditions including the temperature after the completion of hot rolling of the wire, and Table 2 shows the hardness of the surface layer and the lamellar spacing of the surface of the obtained wire.
本発明鋼 1 〜 1 5 は、 本発明に従って鋼の化学成分と ミ ク ロ組織 が調整されている。  In the present invention steels 1 to 15, the chemical composition and microstructure of the steel are adjusted according to the present invention.
比較鋼 1 6 は、 鋼の成分は本発明鋼と同じで、 熱間圧延における 仕上げ温度が 9 0 0 tで、 その後の冷却によ り 8 5 0 °C と本発明よ り高く した場合である。 比較鋼 1 7は、 鋼の成分は本発明鋼と同じで、 熱間圧延における 仕上げ温度ならびにその後の巻き取り温度が本発明の範囲にあるが 卷き取り温度にするまでの冷却をゆつ く り行い時間が本発明よ り長 く かかつた場合である。 Comparative steel 16 had the same steel composition as the steel of the present invention, with a finishing temperature of 900 t in hot rolling, and a temperature of 850 ° C higher than that of the present invention due to subsequent cooling. is there. Comparative steel 17 has the same steel composition as the steel of the present invention, and has a finishing temperature in hot rolling and a subsequent winding temperature within the range of the present invention, but it is required to cool down to the winding temperature. This is the case where the execution time is longer than that of the present invention.
比較鋼 1 8 は、 鋼の成分は本発明鋼と同じで、 熱間圧延における 仕上げ後に冷却を行わずに巻き取り温度が 8 4 0 °C と本発明よ り高 く なった場合である。  Comparative steel 18 had the same steel composition as the steel of the present invention, and had a winding temperature of 800 ° C. higher than that of the present invention without cooling after finishing in hot rolling without cooling.
比較鋼 1 9 は、 鋼の成分は本発明鋼と同じで、 加熱温度が低く 、 巻き取り温度が本発明よ り低い場合である。  Comparative steel 19 has the same steel composition as the steel of the present invention, but has a lower heating temperature and a lower winding temperature than the present invention.
比較鋼 2 0 は、 鋼の成分は本発明鋼と同じで、 加熱温度は高いが 仕上げの冷却を強く し、 卷き取り温度が本発明よ り低く なつた場合 である。  Comparative steel 20 has the same steel composition as the steel of the present invention, but has a higher heating temperature but more intense finish cooling and a lower winding temperature than the present invention.
これらの線材を用いて、 人工的に疵を付け、 疵の下に形成された マルテンサイ 卜の厚み測定した。 また、 これらの線材の 2 ト ンのコ ィルをフォーク リ フ 卜のフッ クが線材と擦れあうようにして 3 0回 運搬を繰り返し、 伸過程における断線回数を調べた。 これらの結果 を表 2 に示す。  These wires were artificially flawed, and the thickness of the martensite formed under the flaws was measured. In addition, the two-ton coils of these wires were transported 30 times repeatedly with the hook of the fork lift rubbing against the wires, and the number of breaks in the elongation process was examined. Table 2 shows the results.
本発明にしたがって製造された 1 〜 1 5 はマルテンサイ 卜の厚み が薄く 、 断線回数を少ない良好な結果を示す。  Nos. 1 to 15 manufactured according to the present invention have good martensite thickness and show good results with a small number of disconnections.
一方、 比較鋼 1 1 〜 1 3 は、 マルテンサイ 卜の厚みがあつく 、 断 線回数が本発明鋼よ り高い。 また比較鋼 1 4 〜 1 5は、 マルテンサ ィ 卜の厚みは薄いものの、 表 1 に示す絞りが低く 、 表 2 の断線回数 が本発明鋼よ り高く なつている。 表 1 本発明鋼の化学成分 (mass%) On the other hand, the comparative steels 11 to 13 have a larger martensite thickness and the number of disconnections is higher than that of the steel of the present invention. Further, the comparative steels 14 to 15 have a small martensite thickness, but have a low drawing shown in Table 1, and the number of disconnections shown in Table 2 is higher than that of the steel of the present invention. Table 1 Chemical composition of the steel of the present invention (mass%)
c Si Mn P S Cr V Ni Mo w Al R Ti c Si Mn P S Cr V Ni Mo w Al R Ti
1 0.72 0.20 0.51 0.016 0.008 0.21 0.01 0.10 0.10 0005 1 0.72 0.20 0.51 0.016 0.008 0.21 0.01 0.10 0.10 0005
2 0.82 0.21 0.71 0.014 0.010 一 0.028 0005 2 0.82 0.21 0.71 0.014 0.010 one 0.028 0005
3 0.82 0.20 0.48 0.012 0.006 一 ― ― 一 ― ― 0: 034 ― ― 3 0.82 0.20 0.48 0.012 0.006 One--One--0: 034--
4 0.83 0.21 0.62 0.013 0.008 0.10 0.80 0.10  4 0.83 0.21 0.62 0.013 0.008 0.10 0.80 0.10
本 5 0.86 0.71 二 Books 5 0.86 0.71 II
0.72 0.012 0.006 0.21  0.72 0.012 0.006 0.21
6 1.02 0.21 0.30 0.008 0.008 0.10 0.30 0.50 0.05  6 1.02 0.21 0.30 0.008 0.008 0.10 0.30 0.50 0.05
発 7 0.98 1.20 0.29 0.013 0.006 0.21 0.01 006Departure 7 0.98 1.20 0.29 0.013 0.006 0.21 0.01 006
8 0.82 0.20 0.92 0.013 0.003 0.001 0.80 0.01 8 0.82 0.20 0.92 0.013 0.003 0.001 0.80 0.01
明 9 0.92 0.21 0.29 0.40 ― ― ― ― ― ―Light 9 0.92 0.21 0.29 0.40 ― ― ― ― ― ―
10 0.84 0.21 0.72 0.01 鋼 11 0.84 0.15 0.33 0.016 0.012 0.10 0.05 0.10 10 0.84 0.21 0.72 0.01 Steel 11 0.84 0.15 0.33 0.016 0.012 0.10 0.05 0.10
12 0.82 0.20 0.50 0.013 0.013 0.041  12 0.82 0.20 0.50 0.013 0.013 0.041
13 0.86 0.20 0.39 0.008 0.011 0.10 0.10 0.80  13 0.86 0.20 0.39 0.008 0.011 0.10 0.10 0.80
14 0.92 0.80 0.99 0.012 0.011 0.12  14 0.92 0.80 0.99 0.012 0.011 0.12
15 1.15 0.20 0.32 0.004 0.012  15 1.15 0.20 0.32 0.004 0.012
16 0.82 0.20 0.71 0.016 0.008 0.032  16 0.82 0.20 0.71 0.016 0.008 0.032
比 17 0.82 0.21 0.76 0.014 0.010 0.028 Ratio 17 0.82 0.21 0.76 0.014 0.010 0.028
較 18 0.82 0.21 0.77 0.013 0.008 0.031 Comparison 18 0.82 0.21 0.77 0.013 0.008 0.031
鋼 19 0.82 0.21 0.82 0.012 0.008 0.034 Steel 19 0.82 0.21 0.82 0.012 0.008 0.034
20 0.82 0.21 0.71 0.012 0.009 0.033 20 0.82 0.21 0.71 0.012 0.009 0.033
表 2 熱間圧延された線材の加工工程 Table 2 Processing of hot-rolled wire
Figure imgf000014_0001
Figure imgf000014_0001
DLP:溶融塩ソル卜ノ ィング  DLP: Molten salt salt knotting
DP :衝風冷却 ィ ング DP: Blast cooling
実施例 . Example .
表 3 に試作に用いた本発明鋼および比較鋼の化学成分を示す。 本 発明鋼ならびに比較鋼を転炉で溶製したのち連続铸造によ り 5 0 0 mra x 3 0 0 mmのブルームと した。 その後、 熱間圧延で 1 1 2 mm角の ビレッ ト と した。 その後、 1 1 0 0 〜 1 2 0 0 °Cで加熱した後、 熱 間圧延で直径 5 . 5 mmから 1 3 mmの線材と した。  Table 3 shows the chemical compositions of the steel of the present invention and the comparative steel used in the trial production. The steel of the present invention and the comparative steel were melted in a converter, and then made into a bloom of 500 mra x 300 mm by continuous forming. Then, it was hot rolled to form a 112 mm square billet. Then, after heating at 110 to 1200 ° C, a wire rod having a diameter of 5.5 mm to 13 mm was formed by hot rolling.
表 4 に線材の表層から 3 0 0 mの炭素濃度を線材全断面積の平 均の炭素量で割つた炭素量比ならびに熱間圧延終了後の温度をはじ めとする製造条件を示した。  Table 4 shows the manufacturing conditions including the carbon content ratio obtained by dividing the carbon concentration of 300 m from the surface layer of the wire by the average carbon content of the entire cross-sectional area of the wire, and the temperature after completion of hot rolling.
得られた線材の表層の硬度ならびに表層のラメ ラ間隔を同表 4 に 示した。  Table 4 shows the hardness of the surface layer and the lamellar spacing of the surface layer of the obtained wire.
本発明鋼 1 〜 1 5 は、 本発明に従って鋼の化学成分と ミ ク 口組織 が調整されている。 一方、 比較鋼 1 6 , 1 7 は、 鋼の成分と圧延方 法は本発明鋼と同じであるが、 炭素量比が本発明鋼に比べ高い場合 である。  In the present invention steels 1 to 15, the chemical composition and the microstructure of the steel are adjusted according to the present invention. On the other hand, comparative steels 16 and 17 have the same steel composition and rolling method as the steel of the present invention, but have a higher carbon content ratio than the steel of the present invention.
これらの線材を用いて、 人工的に疵を付け、 疵の下に形成された マルテンサイ 卜の厚み測定した。 また、 これらの線材の 2 t のコィ ルをフォーク リ フ トのフッ クが線材と擦れあう よう にして 3 0 回運 搬を繰り返し、 伸過程における断線回数を調べた。 これらの結果を 表 4 に示した。  These wires were artificially flawed, and the thickness of the martensite formed under the flaws was measured. In addition, a 2t coil of these wires was transported 30 times with the forklift hook rubbing against the wires, and the number of breaks during the elongation process was examined. Table 4 shows the results.
本発明にしたがって製造された本発明鋼 1 〜 1 5 はマルテンサイ 卜の厚みが薄く 、 断線回数の少ない良好な結果を示す。 一方、 比較 鋼 1 6 〜 1 7 は、 マルテンサイ 卜の厚みがあつく 、 断線回数が本発 明鋼よ り高い。 ,一 The steels 1 to 15 of the present invention produced according to the present invention have a small martensite thickness and show good results with a small number of disconnections. On the other hand, the comparative steels 16 to 17 have a larger martensite thickness and the number of disconnections is higher than that of the present invention steel. ,one
表 3 本発嚷の化¾¾} (mass°/0) Table 3 Conversion of the present invention} (mass ° / 0 )
C Si Mn P S Cr V Ni Mo Cu W A1 B Ti Nb La Ce C Si Mn P S Cr V Ni Mo Cu W A1 B Ti Nb La Ce
1 0.72 0.21 0.51 0.012 0.009 0.21 0.01 0.20 0.10 0.10 ― ― 0.007 ― ― 0.001 ―1 0.72 0.21 0.51 0.012 0.009 0.21 0.01 0.20 0.10 0.10 ― ― 0.007 ― ― 0.001 ―
2 0.82 0.21 0.72 0.011 0.010 ― ― ― ― 一 ― 0.029 ― ― 0.006 ― 一2 0.82 0.21 0.72 0.011 0.010 ― ― ― ― 1 ― 0.029 ― ― 0.006 ― 1
3 0.84 0.19 0.48 0.014 0.008 ― 一 一 ― 一 ― 0.032 ― ― 一 ― ―3 0.84 0.19 0.48 0.014 0.008 ― 1 ― 1 ― 0.032 ― ― 1 ― ―
4 0.83 0.29 0.63 0.012 0.009 ― 0.10 0.80 0.10 一 ― 一 ― ― 一 —— ― 本 5 0.87 0.72 0.72 0.014 0.008 0.20 ― ― ― 一 ― ― ― 0.006 ― —— 一4 0.83 0.29 0.63 0.012 0.009 ― 0.10 0.80 0.10 One-one--one---Book 5 0.87 0.72 0.72 0.014 0.008 0.20---one---0.006---one
6 1.00 0.18 0.32 0.010 0.008 0.10 ― 0.30 0.50 0.13 0.05 一 ― ― ― ― 0.0016 1.00 0.18 0.32 0.010 0.008 0.10-0.30 0.50 0.13 0.05 One----0.001
7 0.97 7 0.97
発 1.17 0.29 0.013 0.006 0.21 0.01 ― ― ― 一 ― ― ― 0.06 ― ― Departure 1.17 0.29 0.013 0.006 0.21 0.01---One---0.06--
8 0.83 0.21 0.81 0.013 0.003 ― 0.002 ― ― 0.75 ― 一 0.02 ― ― ― ― 明 9 0.92 0.19 0.31 0.012 0.009 0.40 ― ― ― 一 ― ― ― 一 ― ― ―  8 0.83 0.21 0.81 0.013 0.003-0.002--0.75--0.02----Clear 9 0.92 0.19 0.31 0.012 0.009 0.40----------
10 0.94 0.21 0.72 0.011 0.006 0.02  10 0.94 0.21 0.72 0.011 0.006 0.02
鋼 11 0.83 0.16 0.32 0.016 0.012 0.10 0.08 0.15 Steel 11 0.83 0.16 0.32 0.016 0.012 0.10 0.08 0.15
12 0.82 0.18 0.48 0.013 0.013 0.039  12 0.82 0.18 0.48 0.013 0.013 0.039
13 0.86 0.19 0.32 0.008 0.011 0.10 0.12 0.77  13 0.86 0.19 0.32 0.008 0.011 0.10 0.12 0.77
14 0.92 0.79 0.86 0.012 0.011 0.16  14 0.92 0.79 0.86 0.012 0.011 0.16
15 1.15 0.18 0.31 0.005 0.012  15 1.15 0.18 0.31 0.005 0.012
16 0.81 0.20 0.71 0.016 0.008 0.032  16 0.81 0.20 0.71 0.016 0.008 0.032
17 0.81 0.21 0.76 0.014 0.010 0.028 17 0.81 0.21 0.76 0.014 0.010 0.028
表 4 f Eされ/ " l ^の力 DXI程 Table 4 f E / "L ^ force DXI
Figure imgf000017_0001
Figure imgf000017_0001
DLP:溶融塩ソルトパテンティ ング  DLP: Molten salt salt patenting
DP :衝風冷却パテンティ ング DP: blast cooling patenting
産業上の利用可能性 Industrial applicability
本発明を用いるこ とで、 疵による断線の少ない高強度の線材を容 易に得るこ とができる。  By using the present invention, it is possible to easily obtain a high-strength wire with less disconnection due to flaws.

Claims

請 求 の 範 囲 The scope of the claims
1 . 炭素含有量が質量%で 0 . 7 %以上を含有する高炭素鋼で、 その表層から少なく と も 3 0 0 mまでの層の ビッ カース硬度を H1. High carbon steel containing 0.7% by mass or more of carbon by mass. The Vickers hardness of the layer from its surface up to at least 300m is H.
V : 3 9 0以下とするこ とによ り、 前記層が擦過マルテンサイ ト組 織の生成し難い層と したこ とを特徴とする高強度直接パテンティ ン グ線材。 V: a high strength direct patenting wire rod characterized in that the layer is not more than 390, whereby the layer is a layer in which abrasion martensite tissue is hardly generated.
2 . 炭素含有量が質量%で 0 . 7 %以上を含有する高炭素鋼で、 その表層から少なく と も 3 0 0 mまでの層の平均炭素含有量が全 断面での平均炭素含有量の 0 . 9 7倍以下とするこ とによ り、 前記 層が擦過マルテンサイ ト組織の生成し難い層と したこ とを特徴とす る高強度直接パテ ンテ ィ ング線材。  2. High carbon steel with a carbon content of 0.7% or more by mass%. The average carbon content of the layer from the surface layer to at least 300m is the average carbon content of the entire cross section. A high-strength direct-patterning wire characterized in that by setting the ratio to 0.97 or less, the layer is a layer in which the abrasion martensite structure is hardly generated.
3 . 炭素含有量が質量%で 0 . 7 %以上を含有する高炭素鋼で、 その表層から少なく と も 3 0 0 ; u mまでの層のビッカース硬度を H 3. High carbon steel with a carbon content of 0.7% or more by mass%, and the Vickers hardness of the layer from its surface up to at least 300;
V : 3 9 0以下と し、 かつ、 前記層の平均炭素含有量が全断面での 平均炭素含有量の 0 . 9 7倍以下とするこ と によ り 、 前記層が擦過 マルテ ンサイ 卜組織の生成し難い層と したこ とを特徴とする高強度 直接パテ ンテ ィ ング線材。 V: 390 or less and the average carbon content of the layer is 0.97 times or less the average carbon content of the entire cross section, so that the layer has a scratched martensite structure. A high-strength direct-patterning wire characterized by having a layer that is difficult to generate.
4 . 前記層内の平均ラメ ラ間隔が 9 5 nm以上であるこ とを特徴と する請求項 1 〜 3 のいずれかに記載の高強度直接パテンテ ィ ング線 材。  4. The high-strength direct patenting wire according to any one of claims 1 to 3, wherein the average lamellar spacing in the layer is 95 nm or more.
5 . 前記高炭素鋼の鋼成分が、 質量%で、  5. The steel component of the high carbon steel is expressed in mass%
C : 0 . 7 〜 し 2 %、  C: 0.7 to 2%,
S i : 0 . 1 〜 1 . 5 %、  S i: 0.1 to 1.5%,
M n : 0 . 1 〜 1 . 0 %、  Mn: 0.1 to 1.0%,
残部 F e および不可避不純物からなる こ とを特徴とする請求項 1 〜 3 のいずれかに記載の高強度直接パテンテ ィ ング線材。 The high-strength direct patenting wire according to any one of claims 1 to 3, comprising a balance of Fe and unavoidable impurities.
6 . 前記高炭素鋼の鋼成分が、 質量%で 6. The steel composition of the high carbon steel is
C 0 . 7 1 2 %、  C 0.72%,
C • 1 Ί  C • 1 Ί
1 . Π U , 1 丄 . 0 70 >  1 Π U, 1 丄. 0 70>
M n : 0 . 1 1 . 0 %を含み、 更  Mn: 0.1%, including 0.1%
C Γ : 0 . 1 0 . 5 %  C Γ: 0.10.5%
V 0 . 0 0 1 0 . 2 %  V 0 .0 0 1 0 .2%
N i 0 . 0 5 〜 1 . 0 %  Ni 0.05-1.0%
M 0 0 . ト 0 . 5 %  0.5%
C u 0 . 0 5 〜 0 . 8 %  Cu 0.05-0.8%
W : 0 . 0 5 〜 0 . 8 %  W: 0.05 to 0.8%
し a 0 . 0 0 0 5 〜 0 . 0 1 %  A 0 .0 0 0 5 to 0 .01%
C e 0 . 0 0 0 5 〜 0 . 0 1 %  C e 0 .0 0 0 5 to 0 .01%
A 1 0 . 0 0 1 〜 0 . 0 6 %  A10.001-0.06%
B : 0 . 0 0 0 5 〜 0 . 0 6 %  B: 0.005 to 0.006%
T i : 0 . 0 0 1 〜 0 . 0 6 %  T i: 0.001 to 0.06%
N b : 0 . 0 0 1 〜 0 . 0 6 %  Nb: 0.001 to 0.06%
の 1 種または 2種以上を含有するこ とを特徴とする請求項 1 〜 3 のいずれかに記載の高強度直接パテンティ ング線材。  The high-strength direct patenting wire according to any one of claims 1 to 3, comprising one or more of the following.
7 . 炭素含有量が質量%で 0 . 7 %以上を含有する高炭素鋼を、 線材加熱炉で 1 0 0 0 〜 1 2 0 0 °Cで加熱後、 直径 4 〜 1 6 mmとす る熱間圧延を行い、 前記熱間圧延を 8 5 0 °C以上の温度で終了し、 1 5秒以内に 7 5 0 〜 8 3 0 t まで冷却し、 その後直ちに 4 0 0 〜 5 7 0 °Cの溶融ソル トバスに浸漬してパーラィ 卜変態を終了させる こ とを特徴とする高強度直接パテンティ ング線材の製造方法。  7. High carbon steel with a carbon content of 0.7% or more by mass% is heated in a wire heating furnace at 100 to 1200 ° C to a diameter of 4 to 16 mm. Hot rolling is performed, and the hot rolling is completed at a temperature of 850 ° C or higher, cooled to 750 to 830t within 15 seconds, and immediately thereafter, 400 to 570 ° A method for producing a high-strength direct patenting wire, characterized by immersing it in a molten salt bath of C to complete the pearlite transformation.
8 . 炭素含有量が質量%で、 0 . 7 %以上を含有する高炭素鋼を 、 線材加熱炉で 1 0 0 0 〜 1 2 0 0 °Cで加熱後、 直径 4 〜 1 6 mmと する熱間圧延を行い、 前記熱間圧延を 7 5 0 〜 8 3 0 tの温度で終 了し、 その後直ちに 4 0 0 〜 5 7 0 °Cの溶融ソル トバスに浸漬して パーライ ト変態を終了させるこ とを特徴とする高強度直接パテンテ ィ ング線材の製造方法。 8. High-carbon steel with a carbon content of 0.7% or more in mass% is heated at 100 to 1200 ° C. in a wire heating furnace, and then has a diameter of 4 to 16 mm. Hot rolling is performed, and the hot rolling is completed at a temperature of 750 to 830 t. And immediately thereafter, immersing it in a molten salt bath at 400 to 570 ° C. to complete the pearlite transformation, thereby producing a high-strength direct patenting wire.
9 . 前記熱間圧延を行い、 その後、 1 5秒以内に 了 5 0 〜 8 3 0 。(:の温度で巻き取り、 その後直ちに 4 0 0 〜 5 7 0 °Cの溶融ソル ト バスに浸漬するこ とを特徴とする請求項 8記載の高強度直接パテン ティ ング線材の製造方法。  9. Perform the hot rolling, and then finish within 50 seconds 50-830. The method for producing a high-strength direct patenting wire according to claim 8, wherein the wire is wound at a temperature of (:) and immediately immersed in a molten salt bath at 400 to 570 ° C.
1 0 . 前記 4 0 0 〜 5 7 0 の溶融ソル トバスに浸漬するこ とに 替えて、 衝風冷却を行ってパーライ ト変態を終了させるこ とを特徴 とする請求項 8記載の高強度直接パテンティ ング線材の製造方法。  10. The high-strength direct material according to claim 8, wherein, instead of being immersed in the molten salt bath of 400 to 570, blast cooling is performed to terminate the pearlite transformation. Manufacturing method of patented wire rod.
1 1 . 炭素含有量が質量%で、 0 . 7 %以上を含有し、 かつその 表層から少なく と も 3 0 0 mまでの層の平均炭素含有量が全断面 の平均炭素含有量の 0 . 9 7倍以下の高炭素鋼を、 線材加熱炉で 1 0 0 0 〜 1 2 0 0 °Cで加熱後、 直径 4 〜 1 6 mmとする熱間圧延を行 い、 前記熱間圧延を 7 5 0 °C以上の温度で終了し、 その後直ちに 4 0 0 〜 5 7 0 °Cの溶融ソル 卜バスに浸漬してパーライ 卜変態を終了 させるこ とを特徴とする高強度直接パテンティ ング線材の製造方法  11. The carbon content is 0.7% by mass or more, and the average carbon content of the layer up to at least 300 m from the surface layer is 0.3% of the average carbon content of the entire cross section. 9-7 times or less high-carbon steel is heated in a wire heating furnace at 100 to 1200 ° C, and then hot-rolled to a diameter of 4 to 16 mm. A high-strength direct patenting wire characterized by ending at a temperature of 50 ° C or higher and immediately immersing it in a molten salt bath at 400 to 570 ° C to terminate the pearlite transformation. Production method
1 2 . 前記熱間圧延を行い、 その後、 7 5 0 〜 9 0 0 °Cの温度で 巻き取り 、 その後直ちに 4 0 0 〜 5 7 0 °Cの溶融ソル 卜バスに浸漬 するこ とを特徴とする請求項 1 1 記載の高強度直接パテンティ ング 線材の製造方法。 12. The above hot rolling is carried out, then wound up at a temperature of 750 to 900 ° C, and then immediately immersed in a molten salt bath at 400 to 570 ° C. 12. The method for producing a high-strength direct patenting wire according to claim 11, wherein:
1 3 . 前記 4 0 0 〜 5 7 0 °Cの溶融ソル トバスに浸漬するこ とに 替えて、 衝風冷却を行ってパーライ 卜変態を終了させるこ とを特徴 とする請求項 1 1 または 1 2記載の高強度直接パテンティ ング線材 の製造方法。  13. The perlite transformation is completed by blast cooling instead of being immersed in a molten salt bath at 400 to 570 ° C. 2. The method for producing a high-strength direct patenting wire according to 2.
PCT/JP2000/009167 1999-12-22 2000-12-22 Direct patenting high strength wire rod and method for producing the same WO2001046485A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP36527699A JP3965010B2 (en) 1999-12-22 1999-12-22 High-strength direct patenting wire and method for producing the same
JP11-365276 1999-12-22
JP37131299A JP4392093B2 (en) 1999-12-27 1999-12-27 High-strength direct patenting wire and method for producing the same
JP11-371312 1999-12-27

Publications (1)

Publication Number Publication Date
WO2001046485A1 true WO2001046485A1 (en) 2001-06-28

Family

ID=26581652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/009167 WO2001046485A1 (en) 1999-12-22 2000-12-22 Direct patenting high strength wire rod and method for producing the same

Country Status (4)

Country Link
KR (1) KR100430068B1 (en)
CN (1) CN1117171C (en)
MY (1) MY128660A (en)
WO (1) WO2001046485A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103060706A (en) * 2011-10-20 2013-04-24 上海田岛工具有限公司 High hardness and corrosion resistant blade material
CN103060681A (en) * 2011-10-20 2013-04-24 上海田岛工具有限公司 High toughness and corrosion resistant blade material
CN103060708A (en) * 2011-10-20 2013-04-24 上海田岛工具有限公司 High hardness and high toughness blade material
EP2733229A1 (en) * 2011-07-15 2014-05-21 Posco Wire rod having superior hydrogen delayed fracture resistance, method for manufacturing same, high strength bolt using same and method for manufacturing bolt

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2617381C (en) * 2006-06-01 2013-09-17 Nippon Steel Corporation High-carbon steel wire rod of high ductility
KR101458684B1 (en) * 2011-03-14 2014-11-05 신닛테츠스미킨 카부시키카이샤 Steel wire material and process for producing same
CN103122437A (en) * 2011-11-18 2013-05-29 江苏省沙钢钢铁研究院有限公司 Vanadium-silicon microalloyed super-strength wire rod and production process thereof
WO2015163409A1 (en) * 2014-04-24 2015-10-29 新日鐵住金株式会社 Filament for high strength steel cord
CN105506500B (en) * 2014-09-26 2017-08-25 宝山钢铁股份有限公司 A kind of high strength wire rod and its manufacture method with superior low-temperature performance
CN108300938A (en) * 2018-01-19 2018-07-20 天津荣程联合钢铁集团有限公司 A kind of rolled wire steel and its processing method
CN110819899B (en) * 2019-11-19 2021-09-14 马鞍山钢铁股份有限公司 Steel for 2100MPa grade marine steel wire rope and production method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673500A (en) * 1992-05-18 1994-03-15 Nippon Steel Corp High carbon steel wire rod excellent in fracture toughness
JPH06136484A (en) * 1992-10-29 1994-05-17 Nippon Steel Corp Pc steel material excellent in spot weldability and its production
JPH07179994A (en) * 1993-12-22 1995-07-18 Kobe Steel Ltd Hyper-eutectoid steel wire having high strength and high toughness and ductility and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673500A (en) * 1992-05-18 1994-03-15 Nippon Steel Corp High carbon steel wire rod excellent in fracture toughness
JPH06136484A (en) * 1992-10-29 1994-05-17 Nippon Steel Corp Pc steel material excellent in spot weldability and its production
JPH07179994A (en) * 1993-12-22 1995-07-18 Kobe Steel Ltd Hyper-eutectoid steel wire having high strength and high toughness and ductility and its production

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2733229A1 (en) * 2011-07-15 2014-05-21 Posco Wire rod having superior hydrogen delayed fracture resistance, method for manufacturing same, high strength bolt using same and method for manufacturing bolt
EP2733229A4 (en) * 2011-07-15 2015-04-08 Posco Wire rod having superior hydrogen delayed fracture resistance, method for manufacturing same, high strength bolt using same and method for manufacturing bolt
CN103060706A (en) * 2011-10-20 2013-04-24 上海田岛工具有限公司 High hardness and corrosion resistant blade material
CN103060681A (en) * 2011-10-20 2013-04-24 上海田岛工具有限公司 High toughness and corrosion resistant blade material
CN103060708A (en) * 2011-10-20 2013-04-24 上海田岛工具有限公司 High hardness and high toughness blade material

Also Published As

Publication number Publication date
MY128660A (en) 2007-02-28
KR100430068B1 (en) 2004-05-03
KR20010102307A (en) 2001-11-15
CN1117171C (en) 2003-08-06
CN1341155A (en) 2002-03-20

Similar Documents

Publication Publication Date Title
JP4842408B2 (en) Wire, steel wire, and method for manufacturing wire
US8142577B2 (en) High strength wire rod excellent in drawability and method of producing same
JP5154694B2 (en) High carbon steel wire rod with excellent workability
JP4970562B2 (en) High strength steel wire rod excellent in ductility and method for manufacturing steel wire
WO2007139234A1 (en) High-ductility high-carbon steel wire
JP2007327084A (en) Wire rod having excellent wire drawability and its production method
US10597748B2 (en) Steel wire rod for wire drawing
JP2000355736A (en) High carbon steel wire excellent in longitudinal cracking resistance, steel for high carbon steel wire and its production
KR20150119378A (en) High-strength steel wire material exhibiting excellent cold-drawing properties, and high-strength steel wire
JP5241178B2 (en) Wire rod excellent in wire drawing workability and manufacturing method thereof
WO2016158901A1 (en) High-carbon steel wire material with excellent wire drawability, and steel wire
RU2710817C1 (en) Steel welded pipe obtained by contact welding for flexible continuous pipe and method of its production
WO2001046485A1 (en) Direct patenting high strength wire rod and method for producing the same
KR20010042224A (en) Wire for high-fatigue-strength steel wire, steel wire and production method therefor
JP3965010B2 (en) High-strength direct patenting wire and method for producing the same
JP3536684B2 (en) Steel wire with excellent wire drawing workability
US5662747A (en) Bainite wire rod and wire for drawing and methods of producing the same
JP4392093B2 (en) High-strength direct patenting wire and method for producing the same
JP2575544B2 (en) Manufacturing method of high-strength, high-carbon steel wire rod with excellent drawability
JPH06271937A (en) Production of high strength and high toughness hyper-eutectoid steel wire
JP3984393B2 (en) High-strength steel wire without delamination and method for producing the same
US5665182A (en) High-carbon steel wire rod and wire excellent in drawability and methods of producing the same
JP2000345294A (en) Steel wire rod, extra-fine steel wire, and stranded steel wire
JP3388012B2 (en) Method of manufacturing steel wire for steel cord with reduced delamination
JP3036393B2 (en) High strength and high toughness hot-dip galvanized steel wire and method for producing the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00804128.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR

WWE Wipo information: entry into national phase

Ref document number: 1020017010640

Country of ref document: KR