JP3967166B2 - Silver halide emulsion and chemical sensitization method - Google Patents

Silver halide emulsion and chemical sensitization method Download PDF

Info

Publication number
JP3967166B2
JP3967166B2 JP2002088786A JP2002088786A JP3967166B2 JP 3967166 B2 JP3967166 B2 JP 3967166B2 JP 2002088786 A JP2002088786 A JP 2002088786A JP 2002088786 A JP2002088786 A JP 2002088786A JP 3967166 B2 JP3967166 B2 JP 3967166B2
Authority
JP
Japan
Prior art keywords
group
silver halide
layer
silver
emulsion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002088786A
Other languages
Japanese (ja)
Other versions
JP2003287842A (en
Inventor
博幸 鈴木
博友 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2002088786A priority Critical patent/JP3967166B2/en
Publication of JP2003287842A publication Critical patent/JP2003287842A/en
Application granted granted Critical
Publication of JP3967166B2 publication Critical patent/JP3967166B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明はハロゲン化銀乳剤に関し、詳しくは高感度でカブリが低く、かつ露光時の湿度条件の違いによる感度変動が小さく、耐湿潤摩耗性に優れるハロゲン化銀乳剤に関するものである。
【0002】
【従来の技術】
近年、ハロゲン化銀写真感光材料における高感度、優れた粒状性、階調や高い鮮鋭度、良好な保存性、更に現像進行性などを早めた迅速処理等々への要望はますます強くなっている。特に、カブリを低く抑えたまま保存性の良い、さらなる高感度化への要望は強い。また処理時のタフネスなどの性能に対する要求も強まっており、低カブリ、高感度で保存時の感度変動の少ない乳剤、露光時の温度及び湿度条件の違いによる写真性変動の少ない乳剤、耐湿潤摩耗性に優れた乳剤が望まれている。
【0003】
ハロゲン化銀写真感光材料に使用するハロゲン化銀乳剤は通常、所望の感度、階調などを得るために各種の化学物質を用いて化学増感を施される。その具体的方法としては、硫黄増感、セレン増感、テルル増感などのカルコゲン増感や、金などの貴金属をもちいた貴金属増感や、還元剤を用いた還元増感があり、これらを単独または組み合わせて用いる。これらの中で、最も広く普遍的に用いられ、かつ、組合せ増感法でも最も基本なものとして使われるのは、不安定硫黄化合物を用いる硫黄増感法であり、具体的には、P.Grafkides 著,Chimie et Physique Photographique(Paul Momtel 社刊,1987年、第5版)、T.H.James 編集,The Theory of the Photographic Process(Macmillian 社刊,1977年,第4版)、H.Frieser 著、Die Grundlagen der Photographischen Prozess mit Silverhalogeniden(Akademische Verlagsgesellschaft,1968年)や米国特許第1574944号、同第1623449号、同第2278947号、同第2410689号、同第2440206号、同第2449153号、同第2728668号、同第3189458号、同第3501313号、同第3656955号、同第4030928号、同第4054457号、同第4067740号、同第4266018号、同第4810626号、独国特許第1422869号、同第1572260号、同第228658号、同第235929号、英国特許第1129356号、同99701号、同第1403980号、欧州特許第61446号、同第138622号、日本特許特開昭63−5355号、同63−5336号、同63−229449号、同58−80634号、特開平1−114839号、同1−227140号、同5−165135号、特公昭58−30570号、同60−24457号、同62−17216号、Research Disclosure 誌,07巻,307105号などに記載されている。
【0004】
ところで、近年ハロゲン化銀写真感光材料における優れた粒状性や高い鮮鋭度を保持しつつの高感度化と、さらに処理速度を早めるための高温迅速処理や更に、高温現像の押し現像(現像時間をのばして)での高感度化等が強く要望されてきたが、これらは、共にカブリの発生の拡大と階調の軟調化がおこりやすく、上記硫黄増感法、および硫黄−金増感法、硫黄−セレン−金増感法などの硫黄増感法を基とした組合せ増感法の改良が所望されていた。
【0005】
このような背景のもとで、感度増加が大きく、カブリの発生が少ないカルコゲン増感剤の開発がなおも強く望まれていた。
【0006】
【発明が解決しようとする課題】
本発明の目的は高感度でカブリが低く、かつ露光時の湿度条件の違いによる感度変動が小さく、耐湿潤摩耗性に優れるハロゲン化銀乳剤及び係る乳剤の化学増感方法を提供することである。
【0007】
【課題を解決するための手段】
上記目的は下記の手段によって達成された。
[1]下記一般式(1)で表される化合物により化学増感されたことを特徴とするハロゲン化銀乳剤。
一般式(1)
【0008】
【化2】

Figure 0003967166
【0009】
[式(1)において、Chは硫黄原子、セレン原子またはテルル原子を表す。AはO、S、Se、TeまたはNRを表し、R〜Rは各々水素原子または置換基を表す。RはRまたはRと共に5〜7員の環状構造を形成してもよい。Mは水素原子またはカチオンを表す。]
[2] 上記一般式(1)で表される化合物による化学増感に金増感を併用したことを特徴とする[1]に記載のハロゲン化銀乳剤。
[3] ハロゲン化銀粒子のシェル部分に、全銀モルあたり0.01〜0.50モル%相当の沃塩化銀相を有するハロゲン化銀粒子を含有することを特徴とする[1]に記載のハロゲン化銀乳剤。
[4] [1]に記載の一般式(1)で表される化合物を添加することを特徴とするハロゲン化銀乳剤の化学増感方法。
[5] [1]に記載の一般式(1)で表される化合物と金化合物とを添加することを特徴とする[4]に記載のハロゲン化銀乳剤の化学増感方法。
] 支持体上に少なくとも一層のハロゲン化銀乳剤層を有するハロゲン化銀写真感光材料において、該ハロゲン化銀乳剤層の少なくとも一層が、上記[1]、[2]または[3]記載のハロゲン化銀乳剤を含むことを特徴とするハロゲン化銀写真感光材料。
【0010】
【発明の実施の形態】
以下に本発明に用いられる一般式(1)で表される化合物について詳細に説明する。
式(1)において、Chは硫黄原子、セレン原子またはテルル原子を表す。本発明においてChは硫黄原子またはセレン原子である場合が好ましく、更に硫黄原子である場合がより好ましい。
一般式(1)において、AはO、S、Se、TeまたはNR4 を表し、R1 〜R4 は各々水素原子または置換基を表す。本発明においてAはO、S、またはNR4 である場合が好ましく、より好ましくはOまたはSであり、更に好ましくはOである場合である。
【0011】
1 〜R4 は各々水素原子または置換基を表すが、ここでいう置換基とはハロゲン原子、アルキル基(シクロアルキル基、ビシクロアルキル基を含む)、アルケニル基(シクロアルケニル基、ビシクロアルケニル基を含む)、アルキニル基、アリール基、ヘテロ環基、シアノ基、ヒドロキシル基、ニトロ基、カルボキシル基、アルコキシ基、アリールオキシ基、シリルオキシ基、ヘテロ環オキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アミノ基(アニリノ基を含む)、アシルアミノ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルファモイルアミノ基、アルキル及びアリールスルホニルアミノ基、メルカプト基(その塩を含む)、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルファモイル基、スルホ基、アルキル及びアリールスルフィニル基、アルキル及びアリールスルホニル基、アシル基、アリールオキシカルボニル基、アルコキシカルボニル基、カルバモイル基、アリール及びヘテロ環アゾ基、イミド基、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、シリル基が例として挙げられる。
更に詳しくは、ハロゲン原子(例えば、塩素原子、臭素原子、ヨウ素原子)、アルキル基〔直鎖、分岐、環状の置換もしくは無置換のアルキル基を表す。アルキル基(好ましくは炭素数1から30のアルキル基、例えばメチル、エチル、n−プロピル、イソプロピル、t−ブチル、n−オクチル、エイコシル、2−クロロエチル、2−シアノエチル、2―エチルヘキシル)、シクロアルキル基(好ましくは、炭素数3から30の置換または無置換のシクロアルキル基、例えば、シクロヘキシル、シクロペンチル、4−n−ドデシルシクロヘキシル)、ビシクロアルキル基(好ましくは、炭素数5から30の置換もしくは無置換のビシクロアルキル基、つまり、炭素数5から30のビシクロアルカンから水素原子を一個取り去った一価の基である。例えば、ビシクロ[1,2,2]ヘプタン−2−イル、ビシクロ[2,2,2]オクタン−3−イル)、更に環構造が多いトリシクロ構造なども包含する。以下に説明する置換基の中のアルキル基(例えばアルキルチオ基のアルキル基)もこのような概念のアルキル基を表す。]、アルケニル基[直鎖、分岐、環状の置換もしくは無置換のアルケニル基を表す。アルケニル基(好ましくは炭素数2から30の置換または無置換のアルケニル基、例えば、ビニル、アリル、プレニル、ゲラニル、オレイル)、シクロアルケニル基(好ましくは、炭素数3から30の置換もしくは無置換のシクロアルケニル基、つまり、炭素数3から30のシクロアルケンの水素原子を一個取り去った一価の基である。例えば、2−シクロペンテン−1−イル、2−シクロヘキセン−1−イル)、ビシクロアルケニル基(置換もしくは無置換のビシクロアルケニル基、好ましくは、炭素数5から30の置換もしくは無置換のビシクロアルケニル基、つまり二重結合を一個持つビシクロアルケンの水素原子を一個取り去った一価の基である。例えば、ビシクロ[2,2,1]ヘプト−2−エン−1−イル、ビシクロ[2,2,2]オクト−2−エン−4−イル)]、アルキニル基(好ましくは、炭素数2から30の置換または無置換のアルキニル基、例えば、エチニル、プロパルギル、トリメチルシリルエチニル基、アリール基(好ましくは炭素数6から30の置換もしくは無置換のアリール基、例えばフェニル、p−トリル、ナフチル、m−クロロフェニル、o−ヘキサデカノイルアミノフェニル)、ヘテロ環基(好ましくは5または6員の置換もしくは無置換の、芳香族もしくは非芳香族のヘテロ環化合物から一個の水素原子を取り除いた一価の基であり、更に好ましくは、炭素数3から30の5もしくは6員の芳香族のヘテロ環基である。例えば、2−フリル、2−チエニル、2−ピリミジニル、2−ベンゾチアゾリル)、シアノ基、ヒドロキシル基、ニトロ基、カルボキシル基、アルコキシ基(好ましくは、炭素数1から30の置換もしくは無置換のアルコキシ基、例えば、メトキシ、エトキシ、イソプロポキシ、t−ブトキシ、n−オクチルオキシ、2−メトキシエトキシ)、アリールオキシ基(好ましくは、炭素数6から30の置換もしくは無置換のアリールオキシ基、例えば、フェノキシ、2−メチルフェノキシ、4−t−ブチルフェノキシ、3−ニトロフェノキシ、2−テトラデカノイルアミノフェノキシ)、シリルオキシ基(好ましくは、炭素数3から20のシリルオキシ基、例えば、トリメチルシリルオキシ、t−ブチルジメチルシリルオキシ)、ヘテロ環オキシ基(好ましくは、炭素数2から30の置換もしくは無置換のヘテロ環オキシ基、1−フェニルテトラゾールー5−オキシ、2−テトラヒドロピラニルオキシ)、アシルオキシ基(好ましくはホルミルオキシ基、炭素数2から30の置換もしくは無置換のアルキルカルボニルオキシ基、炭素数6から30の置換もしくは無置換のアリールカルボニルオキシ基、例えば、ホルミルオキシ、アセチルオキシ、ピバロイルオキシ、ステアロイルオキシ、ベンゾイルオキシ、p−メトキシフェニルカルボニルオキシ)、カルバモイルオキシ基(好ましくは、炭素数1から30の置換もしくは無置換のカルバモイルオキシ基、例えば、N,N−ジメチルカルバモイルオキシ、N,N−ジエチルカルバモイルオキシ、モルホリノカルボニルオキシ、N,N−ジ−n−オクチルアミノカルボニルオキシ、N−n−オクチルカルバモイルオキシ)、アルコキシカルボニルオキシ基(好ましくは、炭素数2から30の置換もしくは無置換アルコキシカルボニルオキシ基、例えばメトキシカルボニルオキシ、エトキシカルボニルオキシ、t−ブトキシカルボニルオキシ、n−オクチルカルボニルオキシ)、アリールオキシカルボニルオキシ基(好ましくは、炭素数7から30の置換もしくは無置換のアリールオキシカルボニルオキシ基、例えば、フェノキシカルボニルオキシ、p−メトキシフェノキシカルボニルオキシ、p−n−ヘキサデシルオキシフェノキシカルボニルオキシ)、アミノ基(好ましくは、アミノ基、炭素数1から30の置換もしくは無置換のアルキルアミノ基、炭素数6から30の置換もしくは無置換のアニリノ基、例えば、アミノ、メチルアミノ、ジメチルアミノ、アニリノ、N−メチル−アニリノ、ジフェニルアミノ)、アシルアミノ基(好ましくは、ホルミルアミノ基、炭素数1から30の置換もしくは無置換のアルキルカルボニルアミノ基、炭素数6から30の置換もしくは無置換のアリールカルボニルアミノ基、例えば、ホルミルアミノ、アセチルアミノ、ピバロイルアミノ、ラウロイルアミノ、ベンゾイルアミノ、3,4,5−トリ−n−オクチルオキシフェニルカルボニルアミノ)、アミノカルボニルアミノ基(好ましくは、炭素数1から30の置換もしくは無置換のアミノカルボニルアミノ、例えば、カルバモイルアミノ、N,N−ジメチルアミノカルボニルアミノ、N,N−ジエチルアミノカルボニルアミノ、モルホリノカルボニルアミノ)、アルコキシカルボニルアミノ基(好ましくは炭素数2から30の置換もしくは無置換アルコキシカルボニルアミノ基、例えば、メトキシカルボニルアミノ、エトキシカルボニルアミノ、t−ブトキシカルボニルアミノ、n−オクタデシルオキシカルボニルアミノ、N−メチルーメトキシカルボニルアミノ)、アリールオキシカルボニルアミノ基(好ましくは、炭素数7から30の置換もしくは無置換のアリールオキシカルボニルアミノ基、例えば、フェノキシカルボニルアミノ、p−クロロフェノキシカルボニルアミノ、m−n−オクチルオキシフェノキシカルボニルアミノ)、スルファモイルアミノ基(好ましくは、炭素数0から30の置換もしくは無置換のスルファモイルアミノ基、例えば、スルファモイルアミノ、N,N−ジメチルアミノスルホニルアミノ、N−n−オクチルアミノスルホニルアミノ)、アルキル及びアリールスルホニルアミノ基(好ましくは炭素数1から30の置換もしくは無置換のアルキルスルホニルアミノ、炭素数6から30の置換もしくは無置換のアリールスルホニルアミノ、例えば、メチルスルホニルアミノ、ブチルスルホニルアミノ、フェニルスルホニルアミノ、2,3,5−トリクロロフェニルスルホニルアミノ、p−メチルフェニルスルホニルアミノ)、メルカプト基(及びその塩を含む。ここで塩とは、例えばLi、Na、K、Rb、Csなどのアルカリ金属塩、MgやCaなどのアルカリ土類金属塩、金塩などを含む)、アルキルチオ基(好ましくは、炭素数1から30の置換もしくは無置換のアルキルチオ基、例えばメチルチオ、エチルチオ、n−ヘキサデシルチオ)、アリールチオ基(好ましくは炭素数6から30の置換もしくは無置換のアリールチオ、例えば、フェニルチオ、p−クロロフェニルチオ、m−メトキシフェニルチオ)、ヘテロ環チオ基(好ましくは炭素数2から30の置換または無置換のヘテロ環チオ基、例えば、2−ベンゾチアゾリルチオ、1−フェニルテトラゾール−5−イルチオ)、スルファモイル基(好ましくは炭素数0から30の置換もしくは無置換のスルファモイル基、例えば、N−エチルスルファモイル、N−(3−ドデシルオキシプロピル)スルファモイル、N,N−ジメチルスルファモイル、N−アセチルスルファモイル、N−ベンゾイルスルファモイル、N−(N’−フェニルカルバモイル)スルファモイル)、スルホ基、アルキル及びアリールスルフィニル基(好ましくは、炭素数1から30の置換または無置換のアルキルスルフィニル基、6から30の置換または無置換のアリールスルフィニル基、例えば、メチルスルフィニル、エチルスルフィニル、フェニルスルフィニル、p−メチルフェニルスルフィニル)、アルキル及びアリールスルホニル基(好ましくは、炭素数1から30の置換または無置換のアルキルスルホニル基、6から30の置換または無置換のアリールスルホニル基、例えば、メチルスルホニル、エチルスルホニル、フェニルスルホニル、p−メチルフェニルスルホニル)、アシル基(好ましくはホルミル基、炭素数2から30の置換または無置換のアルキルカルボニル基、炭素数7から30の置換もしくは無置換のアリールカルボニル基、例えば、アセチル、ピバロイル、2−クロロアセチル、ステアロイル、ベンゾイル、p−n−オクチルオキシフェニルカルボニル)、アリールオキシカルボニル基(好ましくは、炭素数7から30の置換もしくは無置換のアリールオキシカルボニル基、例えば、フェノキシカルボニル、o−クロロフェノキシカルボニル、m−ニトロフェノキシカルボニル、p−t−ブチルフェノキシカルボニル)、アルコキシカルボニル基(好ましくは、炭素数2から30の置換もしくは無置換アルコキシカルボニル基、例えば、メトキシカルボニル、エトキシカルボニル、t−ブトキシカルボニル、n−オクタデシルオキシカルボニル)、カルバモイル基(好ましくは、炭素数1から30の置換もしくは無置換のカルバモイル、例えば、カルバモイル、N−メチルカルバモイル、N,N−ジメチルカルバモイル、N,N−ジ−n−オクチルカルバモイル、N−(メチルスルホニル)カルバモイル)、アリール及びヘテロ環アゾ基(好ましくは炭素数6から30の置換もしくは無置換のアリールアゾ基、炭素数3から30の置換もしくは無置換のヘテロ環アゾ基、例えば、フェニルアゾ、p−クロロフェニルアゾ、5−エチルチオ−1,3,4−チアジアゾール−2−イルアゾ)、イミド基(好ましくは、N−スクシンイミド、N−フタルイミド)、ホスフィノ基(好ましくは、炭素数2から30の置換もしくは無置換のホスフィノ基、例えば、ジメチルホスフィノ、ジフェニルホスフィノ、メチルフェノキシホスフィノ)、ホスフィニル基(好ましくは、炭素数2から30の置換もしくは無置換のホスフィニル基、例えば、ホスフィニル、ジオクチルオキシホスフィニル、ジエトキシホスフィニル)、ホスフィニルオキシ基(好ましくは、炭素数2から30の置換もしくは無置換のホスフィニルオキシ基、例えば、ジフェノキシホスフィニルオキシ、ジオクチルオキシホスフィニルオキシ)、ホスフィニルアミノ基(好ましくは、炭素数2から30の置換もしくは無置換のホスフィニルアミノ基、例えば、ジメトキシホスフィニルアミノ、ジメチルアミノホスフィニルアミノ)、シリル基(好ましくは、炭素数3から30の置換もしくは無置換のシリル基、例えば、トリメチルシリル、t−ブチルジメチルシリル、フェニルジメチルシリル)を表わす。
上記の官能基の中で、水素原子を有するものは、これを取り去り更に上記の基で置換されていても良い。
【0012】
1 〜R4 は各々置換基を有していてもよく、その例としては上述の置換基と同じものが挙げられる。R1 〜R4 が有していてもよい置換基のうち、好ましくはハロゲン原子、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロ環基、シアノ基、ヒドロキシル基、カルボキシル基、アルコキシ基、アリールオキシ基、ヘテロ環オキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アミノ基、アシルアミノ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、アルキル及びアリールスルホニルアミノ基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルファモイル基、スルホ基、アルキル及びアリールスルホニル基、アシル基、アリールオキシカルボニル基、アルコキシカルボニル基、カルバモイル基、イミド基、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、シリル基などであり、更に好ましくはハロゲン原子、アルキル基、アルケニル基、アリール基、ヘテロ環基、シアノ基、ヒドロキシル基、カルボキシル基、アルコキシ基、アリールオキシ基、ヘテロ環オキシ基、アシルオキシ基、アミノ基、アシルアミノ基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルファモイル基、スルホ基、アルキル及びアリールスルホニル基、アシル基、カルバモイル基などが挙げられる。
【0013】
式(1)においてR1 、R2 は各々好ましくは水素原子、アルキル基、アリール基、ヘテロ環基、ヒドロキシル基、アルコキシ基、アリールオキシ基、ヘテロ環オキシ基、アミノ基、メルカプト基(及びその塩)、アルキルチオ基、アリールチオ基、ヘテロ環チオ基などであり、更に好ましくは水素原子、アルキル基、アリール基、ヘテロ環基などであり、最も好ましくは水素原子またはアルキル基である。
【0014】
式(1)においてR3 は好ましくは水素原子、アルキル基、アリール基、ヘテロ環基などであり、更に好ましくはアルキル基、アリール基、ヘテロ環基であり、最も好ましくはアルキル基もしくはアリール基である。式(1)においてR4 は好ましくは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロ環基、アミノ基、アシルアミノ基、アルキル及びアリールスルホニルアミノ基、アルキル及びアリールスルホニル基、アシル基、アリールオキシカルボニル基、アルコキシカルボニル基、カルバモイル基などであり、更に好ましくは水素原子、アルキル基、アリール基、またはヘテロ環基などである。
【0015】
式(1)において、R3 はR1 もしくはR2 と共に5〜7員の環状構造を形成してもよい。この時形成される環状構造は非芳香族の含酸素、含硫黄、含窒素もしくは含セレンのヘテロ環となる。またこの環状構造は芳香族もしくは非芳香族の炭素環、あるいは芳香族もしくは非芳香族のヘテロ環と縮合環構造を形成していてもよい。本発明においてはR3 がR1 もしくはR2 と共に5〜7員の環状構造を形成するのが好ましく、6員の環状構造を形成するのがより好ましく、更に6員の環状構造を形成して式(1)におけるAがOを表す場合が好ましい。このような環構造として好ましいのはグルコース、マンノース、ガラクトース、グロース、キシロース、リキソース、アラビノース、リボース、フコース、イドース、タロース、アロース、アルトロース、ラムノース、ソルボース、ディジトキソース、2−デオキシグルコース、2−デオキシガラクトース、フルクトース、グルコサミン、ガラクトサミン、グルクロン酸などの糖構造が挙げられる。これらの糖類の中では、グルコース、マンノース、ガラクトース、キシロース、アラビノース、ラムノース、2−デオキシグルコース、2−デオキシガラクトースまたはグルコサミンがより好ましく、グルコース、マンノース、ガラクトース、キシロースまたはグルコサミンがさらに好ましく、グルコースが最も好ましい。これら糖構造においては1位の立体構造が異なるα異性体とβ異性体、および鏡像異性体の関係にあるD体とL体が存在するが、本発明においてはこれら異性体を区別することはない。
【0016】
式(1)において、Mは水素原子またはカチオンを表す。ここでいうカチオンとはLi、Na、K、Rb、Csなどのアルカリ金属、Mg、Ca、Baなどのアルカリ土類金属などの無機の陽イオンや、置換または無置換のアンモニウムイオン、ホスホニウムイオンなど有機の陽イオンなどを表す。ただし本発明においてMが無機の陽イオンである場合、MがAu+ またはAg+ を表すことはない。また、Mがカチオンを表す時、式(1)におけるChはカルコゲン原子のアニオン種(−S- 、−Se- もしくは−Te- )を表すことになる。本発明においてMは水素原子、アルカリ金属の陽イオン、アルカリ土類金属の陽イオン、または置換もしくは無置換のアンモニウムイオンが好ましく、水素原子、アルカリ金属の陽イオン、置換もしくは無置換のアンモニウムイオンがより好ましく、アルカリ金属の陽イオンまたは置換もしくは無置換のアンモニウムイオンが更に好ましい。
【0017】
本発明において、式(1)で表される化合物のうち、好ましいものはChが硫黄原子またはセレン原子を表し、AがOまたはSを表し、R1 、R2 が各々水素原子、アルキル基、アリール基、ヘテロ環基、アルコキシ基、アリールオキシ基、ヘテロ環オキシ基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基であり、R3 が水素原子、アルキル基、アリール基、またはヘテロ環基であり、R4 が水素原子、アルキル基、アリール基、ヘテロ環基、アミノ基、アシルアミノ基、アルキル及びアリールスルホニルアミノ基、アルキル及びアリールスルホニル基、またはアシル基であり、Mが水素原子、アルカリ金属の陽イオン、アルカリ土類金属の陽イオン、または置換もしくは無置換のアンモニウムイオンを表すものである。更に好ましくはChが硫黄原子またはセレン原子を表し、AがOまたはSを表し、R1 、R2 が各々水素原子、アルキル基、アリール基、またはヘテロ環基であり、R3 がアルキル基、アリール基、またはヘテロ環基であり、R4 が水素原子、アルキル基、アリール基、ヘテロ環基、またはアシル基であり、Mが水素原子、アルカリ金属の陽イオン、または置換もしくは無置換のアンモニウムイオンを表すものである。最も好ましくはChが硫黄原子を表し、AがOまたはSを表し、R1 、R2 が各々水素原子、アルキル基、またはアリール基であり、R3 がアルキル基、またはアリール基であり、R4 が水素原子、アルキル基、アリール基、またはヘテロ環基であり、Mがアルカリ金属の陽イオンまたは置換もしくは無置換のアンモニウムイオンを表すものである。そのようなもののうち、本発明において特に好ましいのはR3 がR1 またはR2 と共に形成した環状構造がグルコース、マンノース、ガラクトース、グロース、キシロース、リキソース、アラビノース、リボース、フコース、イドース、タロース、アロース、アルトロース、ラムノース、ソルボース、ディジトキソース、2−デオキシグルコース、2−デオキシガラクトース、フルクトース、グルコサミン、ガラクトサミン、グルクロン酸などの糖誘導体(式(1)におけるAがOの場合)及びその硫黄類似体(式(1)におけるAがSの場合)の場合である。これらの糖類の中では、グルコース、マンノース、ガラクトース、キシロース、アラビノース、ラムノース、2−デオキシグルコース、2−デオキシガラクトースまたはグルコサミンがより好ましく、グルコース、マンノース、ガラクトース、キシロースまたはグルコサミンがさらに好ましく、グルコースが最も好ましい。これら糖構造においては1位の立体構造が異なるα異性体とβ異性体、および鏡像異性体の関係にあるD体とL体が存在するが、本発明においてはこれら異性体を区別することはない。
【0018】
次に一般式(1)で表される化合物の具体例を以下に示す。但し本発明はこれらに限定されるものではない。また、立体異性体が複数存在しうる化合物については、その立体構造を限定するものではない。
【0019】
【化3】
Figure 0003967166
【0020】
【化4】
Figure 0003967166
【0021】
【化5】
Figure 0003967166
【0022】
本発明の一般式(1)で表される化合物は、公知の種々の方法により合成することができる。個々の化合物によってその合成法は最適なものが選ばれるため、一般的となりうる合成法を挙げることができないが、その中でも有用な合成ルートを説明する。
【0023】
(例示化合物C−1の合成)
例示化合物C−1はスキーム1に従い合成した。
スキーム1
【0024】
【化6】
Figure 0003967166
【0025】(合成中間体1の合成)
ペンタアセチル−β−D−グルコース156.1gに臭化水素25%酢酸溶液200mLを加えた。室温で3時間かくはんした後、酢酸エチル800mLと氷水800mLを加えて分液した。有機層は飽和炭酸水素ナトリウム水溶液200mL、次いで氷水200mLで洗浄した後、硫酸ナトリウムで乾燥後、減圧下濃縮することで合成中間体1を164g得た。
(合成中間体2の合成)
アセトン400mLに合成中間体1 164gとチオ尿素30gを加え、窒素雰囲気下で加熱還流を2時間行った。反応溶液に酢酸エチル100mLを加えた後に氷冷し、析出した結晶をろ取することで合成中間体2を125g得た。
(例示化合物C−1の合成)
メタノール250mLに合成中間体2 124gを加え、ナトリウムメトキシド28%メタノール溶液を滴下した。室温で3時間かくはんした後、析出した結晶をろ取することで、例示化合物C−1を57g得た。
【0026】
(例示化合物C−2の合成)
例示化合物C−2は例示化合物C−1の合成において、ナトリウムメトキシド28%メタノール溶液の代わりに二亜硫酸カリウム10%水溶液を用いる他は全て同様の操作を行うことにより得ることができた。
【0027】
(例示化合物C−42の合成)
例示化合物C−42は例示化合物C−2の合成において、チオ尿素の代わりにセレノ尿素を用いる他は全て同様の操作を行うことにより得ることができた。
【0028】
(例示化合物C−49の合成)
J.Chem.Soc.Chem.Commun.,第11号,693ページ(1985年)に記載の方法により合成可能なビス(テトラ−O−アセチル−β−D−グルコピラノシル)ジテルリド1.0gをメタノール10mLに溶解し、0℃に冷却しながら水素化ホウ素ナトリウム110mgをゆっくり加える。0℃で30分かくはんした後、エタノール100mLを加え、析出した結晶をろ取することで例示化合物C−49を得ることが可能である。
【0029】
本発明の一般式(1)で表される化合物の添加量は場合に応じて広範囲に変わり得るがハロゲン化銀1モルあたり1×10-7〜5×10-3モル、好ましくは5×10-7〜5×10-4モルである。
【0030】
本発明の一般式(1)で表される化合物は、水、或いはアルコール類(メタノール、エタノールなど)、ケトン類(アセトンなど)、アミド類(ジメチルホルムアミドなど)、グリコール類(メチルプロピレングリコールなど)、及びエステル類(酢酸エチルなど)などを溶媒として添加しても良い。
【0031】
本発明の一般式(1)で表される化合物の添加は、乳剤製造時のどの段階でも可能であるが、ハロゲン化銀粒子形成後から化学増感工程終了までの間に添加することが好ましい。
【0032】
本発明に用いられるハロゲン化銀乳剤中のハロゲン化銀粒子は、好ましくは実質的に{100}面を持つ立方体または14面体の結晶粒子(これらは粒子頂点が丸みを帯び、さらに高次の面を有していてもよい)または8面体の結晶粒子、または全投影面積の50%以上が{100}面または{111}面からなるアスペクト比2以上の平板状粒子が好ましい。アスペクト比とは、投影面積に相当する円の直径を粒子の厚さで割った値である。本発明では、立方体または{100}面を主平面とする平板状粒子または{111}面を主平面とする平板状粒子が好ましく適用される。
【0033】
本発明に用いるハロゲン化銀乳剤としては、塩化銀、臭化銀、沃臭化銀、塩(沃)臭化銀乳剤等が用いられるが、迅速処理性の観点からは、塩化銀含有率が90モル%以上の塩化銀、塩臭化銀、塩沃化銀、または塩臭沃化銀乳剤が好ましく、より好ましくは塩化銀含有率が95モル%以上、更に好ましくは98モル%以上の塩化銀、塩臭化銀、塩沃化銀、または塩臭沃化銀乳剤が好ましい。このようなハロゲン化銀乳剤の中でも、本発明においては、ハロゲン化銀粒子のシェル部分に、全銀モルあたり0.01〜0.50モル%、より好ましくは0.05〜0.40モル%の沃塩化銀相を有するものが高感度が得られ、高照度露光適性に優れるため好ましい。また、ハロゲン化銀粒子の表面に全銀モルあたり0.2〜5モル%、より好ましくは0.5〜3モル%の臭化銀局在相を有するものが、高感度が得られ、しかも写真性能の安定化が図れることから特に好ましい。
【0034】
本発明の乳剤が沃化銀を含有する場合、沃化物イオンの導入は、沃化物塩の溶液を単独で添加させるか、或いは銀塩溶液と高塩化物塩溶液の添加と併せて沃化物塩溶液を添加しても良い。後者の場合は、沃化物塩溶液と高塩化物塩溶液を別々に、またはヨウ化物塩と高塩化物塩の混合溶液として添加しても良い。沃化物塩は、アルカリもしくはアルカリ土類沃化物塩のような溶解性塩の形で添加する。或いは米国特許第5,389,508号明細書に記載される有機分子から沃化物イオンを開裂させることで沃化物を導入することもできる。また別の沃化物イオン源として、微小沃化銀粒子を用いることもできる。
【0035】
沃化物塩溶液の添加は、粒子形成の一時期に集中して行っても良く、またある一定期間かけて行っても良い。高塩化物乳剤への沃化物イオンの導入位置は、高感度で低被りな乳剤を得る上で制限される。沃化物イオンの導入は、乳剤粒子のより内部に行うほど感度の増加が小さい。故に沃化物塩溶液の添加は、粒子体積の50%より外側が好ましく、より好ましくは70%より外側から、最も好ましくは80%より外側から行うのが良い。また沃化物塩溶液の添加は、好ましくは粒子体積の98%より内側で、最も好ましくは96%より内側で終了するのが良い。沃化物塩溶液の添加は、粒子表面から少し内側で終了することで、より高感度で低被りな乳剤を得ることができる。
【0036】
粒子内の深さ方向への沃化物イオン濃度の分布は、エッチング/TOF−SIMS(Time of Flight − Secondary Ion Mass Spectrometry)法により、例えばPhi Evans社製TRIFTII型TOF−SIMSを用いて測定できる。TOF−SIMS法については、具体的には日本表面科学会編「表面分析技術選書 二次イオン質量分析法」丸善株式会社(1999年発行)に記載されている。エッチング/TOF−SIMS法で乳剤粒子を解析すると、沃化物塩溶液の添加を粒子の内側で終了しても、粒子表面に向けて沃化物イオンがしみ出していることが分析できる。本発明の乳剤が沃化銀を含有する場合、エッチング/TOF−SIMS法による分析で、沃化物イオンは粒子表面で濃度極大を有し、内側に向けて沃化物イオン濃度が減衰していることが好ましい。
【0037】
本発明の乳剤が臭化銀局在相を含有する場合、臭化銀含有率が少なくとも10モル%以上の臭化銀局在相を粒子表面にエピタキシャル成長させてつくることが好ましい。臭化銀局在相の臭化銀含有率は、10〜60モル%の範囲が好ましく、20〜50モル%の範囲が最も好ましい。臭化銀局在相は、本発明におけるハロゲン化銀粒子を構成する全銀量の0.1〜5モル%の銀から構成されていることが好ましく、0.3〜4モル%の銀から構成されていることが更に好ましい。臭化銀局在相中には、塩化第1イリジウム(III)、臭化第1イリジウム(III)、塩化第2イリジウム(IV)、ヘキサクロロイリジウム(III)酸ナトリウム、ヘキサクロロイリジウム(IV)酸カリウム、ヘキサアンミンイリジウム(IV)塩、トリオキザラトイリジウム(III)塩、トリオキザラトイリジウム(IV)塩等の第VIII族金属錯イオンを含有させることが好ましい。これらの化合物の添加量は目的に応じて広範囲にわたるが、ハロゲン化銀1モルに対して10-9〜10-2モルが好ましい。
【0038】
本発明においては、ハロゲン化銀粒子を形成及び/または成長させる過程で遷移金属イオンを添加し、ハロゲン化銀粒子の内部及び/または表面に金属イオンを組み込むことがことができる。用いる金属イオンとしては遷移金属イオンが好ましく、なかでも、鉄、ルテニウム、イリジウム、オスミウム、鉛、カドミウム、または、亜鉛であることが好ましい。さらにこれらの金属イオンは配位子を伴い6配位八面体型錯体として用いることがより好ましい。無機化合物を配位子として用いる場合には、シアン化物イオン、ハロゲン化物イオン、チオシアン、水酸化物イオン、過酸化物イオン、アジ化物イオン、亜硝酸イオン、水、アンモニア、ニトロシルイオン、または、チオニトロシルイオンを用いることが好ましく、上記の鉄、ルテニウム、イリジウム、オスミウム、鉛、カドミウム、または、亜鉛のいずれの金属イオンに配位させて用いることも好ましく、複数種の配位子を1つの錯体分子中に用いることも好ましい。また、配位子として有機化合物を用いることも出来、好ましい有機化合物としては主鎖の炭素数が5以下の鎖状化合物および/または5員環あるいは6員環の複素環化合物を挙げることが出来る。さらに好ましい有機化合物は分子内に窒素原子、リン原子、酸素原子、または、硫黄原子を金属への配位原子として有する化合物であり、最も好ましくはフラン、チオフェン、オキサゾール、イソオキサゾール、チアゾール、イソチアゾール、イミダゾール、ピラゾール、トリアゾール、フラザン、ピラン、ピリジン、ピリダジン、ピリミジン、ピラジンであり、さらにこれらの化合物を基本骨格としそれらに置換基を導入した化合物もまた好ましい。
【0039】
金属イオンと配位子の組み合わせとして好ましくは、鉄イオン及びルテニウムイオンとシアン化物イオンの組み合わせである。これらの化合物においてシアン化物イオンは中心金属である鉄またはルテニウムへの配位数のうち過半数を占めることが好ましく、残りの配位部位はチオシアン、アンモニア、水、ニトロシルイオン、ジメチルスルホキシド、ピリジン、ピラジン、又は、4,4’−ビピリジンで占められることが好ましい。最も好ましくは中心金属の6つの配位部位が全てシアン化物イオンで占められ、ヘキサシアノ鉄錯体またはヘキサシアノルテニウム錯体を形成することである。これらシアン化物イオンを配位子とする錯体は粒子形成中に銀1モル当たり1×10-8モル〜1×10-2モル添加することが好ましく、1×10-6モル〜5×10-4モル添加することが最も好ましい。中心金属としてイリジウムを用いた場合に配位子として好ましくは、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオンであり、中でも塩化物イオン又は臭化物イオンを用いることが好ましい。イリジウム錯体として具体的に好ましくは、[IrCl63-、[IrCl62-、[IrCl5(thiazole)]2-、[IrCl5(5−CH3−thiazole)]2-、[IrCl5(H2O)]2-、[IrCl5(H2O)]- 、[IrCl4(H2O)2- 、[IrCl4(H2O)20 、[IrCl3(H2O)30 、[IrCl3(H2O)3+ 、[IrBr63-、[IrBr62-、[IrBr5(H2O)]2-、[IrBr5(H2O)]- 、[IrBr4(H2O)2- 、[IrBr4(H2O)20 、[IrBr3(H2O)30 、および[IrBr3(H2O)3+ である。これらのイリジウム錯体は粒子形成中に銀1モル当たり1×10-10モルから1×10-3モル添加することが好ましく、1×10-8モルから1×10-5モル添加することが最も好ましい。ルテニウムおよびオスミウムを中心金属とした場合にはニトロシルイオン、チオニトロシルイオン、または水分子と塩化物イオンを配位子として共に用いることも好ましい。より好ましくはペンタクロロニトロシル錯体、ペンタクロロチオニトロシル錯体、または、ペンタクロロアクア錯体を形成することであり、ヘキサクロロ錯体を形成することも好ましい。これらの錯体は粒子形成中に銀1モル当たり1×10-10モルから1×10-6モル添加することが好ましく、より好ましくは1×10-9モルから1×10-6モル添加することである。
【0040】
本発明において上記の錯体は、ハロゲン化銀粒子形成時に反応溶液中に直接添加するか、ハロゲン化銀粒子を形成するためのハロゲン化物水溶液中、あるいはそれ以外の溶液中に添加し、粒子形成反応溶液に添加することにより、ハロゲン化銀粒子内に組み込むが好ましい。さらにこれらの方法を組み合わせてハロゲン化銀粒子内へ含有させることも好ましい。
【0041】
これらの錯体をハロゲン化銀粒子に組み込む場合、粒子内部に均一に存在させることも好ましいが、特開平4−208936号、特開平2−125245号、特開平3−188437号各公報に開示されている様に、粒子表面層のみに存在させることも好ましく、粒子内部のみに錯体を存在させ粒子表面には錯体を含有しない層を付加することも好ましい。また、米国特許第5,252,451号および5,256,530号明細書に開示されているように、錯体を粒子内に組み込んだ微粒子で物理熟成して粒子表面相を改質することも好ましい。さらに、これらの方法を組み合わせて用いることも出来、複数種の錯体を1つのハロゲン化銀粒子内に組み込んでもよい。上記の錯体を含有させる位置のハロゲン組成には特に制限はなく、塩化銀層、塩臭化銀層、臭化銀層、沃塩化銀層、沃臭化銀層に何れに錯体を含有させることも好ましい。
【0042】
本発明に用いるハロゲン化銀乳剤に含まれるハロゲン化銀粒子の平均粒子サイズ(粒子の投影面積と等価な円の直径を以て粒子サイズとし、その数平均をとったもの)は、0.1μm〜2μmが好ましい。
また、それらの粒子サイズ分布は変動係数(粒子サイズ分布の標準偏差を平均粒子サイズで除したもの)20%以下、望ましくは15%以下、更に好ましくは10%以下の所謂単分散なものが好ましい。このとき、広いラチチュードを得る目的で平均粒子サイズの異なる2種以上の上記単分散乳剤を同一層にブレンドして使用することや、重層塗布することも好ましく行われる。
【0043】
本発明に用いるハロゲン化銀乳剤には、感光材料の製造工程、保存中あるいは写真処理中のかぶりを防止する、あるいは写真性能を安定化させる目的で種々の化合物あるいはそれ等の前駆体を添加することができる。これらの化合物の具体例は前出の特開昭62−215272号公報明細書の第39頁〜第72頁に記載のものが好ましく用いられる。更にEP0447647号に記載された5−アリールアミノ−1,2,3,4−チアトリアゾール化合物(該アリール残基には少なくとも一つの電子吸引性基を持つ)も好ましく用いられる。
【0044】
また、本発明において、ハロゲン化銀乳剤の保存性を高めるため、特開平11−109576号に記載のヒドロキサム酸誘導体、特開平11−327094号に記載のカルボニル基に隣接して、両端がアミノ基もしくはヒドロキシル基が置換した二重結合を有す環状ケトン類(特に一般式(S1)で表されるもので、段落番号0036〜0071は本願の明細書に取り込むことができる。)、特開平11−143011号に記載のスルホ置換のカテコールやハイドロキノン類(例えば、4,5−ジヒドロキシ−1,3−ベンゼンジスルホン酸、2,5−ジヒドロキシ−1,4−ベンゼンジスルホン酸、3,4−ジヒドロキシベンゼンスルホン酸、2,3−ジヒドロキシベンゼンスルホン酸、2,5−ジヒドロキシベンゼンスルホン酸、3,4,5−トリヒドロキシベンゼンスルホン酸およびこれらの塩など)、米国特許第5,556,741号の一般式(A)で表されるヒドロキシルアミン類(米国特許第5,556,741号の第4欄の第56行〜第11欄の第22行の記載は本願においても好ましく適用され、本願の明細書の一部として取り込まれる)、特開平11−102045号の一般式(I)〜(III)で表される水溶性還元剤は本発明においても好ましく使用される。
【0045】
分光増感は、本発明の感光材料における各層の乳剤に対して所望の光波長域に分光感度を付与する目的で行われる。
本発明の感光材料において、青、緑、赤領域の分光増感に用いられる分光増感色素としては例えば、F.M.Harmer著 Heterocyclic compounds−Cyanine dyes and related compounds (John Wiley & Sons [New York,London] 社刊1964年)に記載されているものを挙げることができる。具体的な化合物の例ならびに分光増感法は、前出の特開昭62−215272号公報の第22頁右上欄〜第38頁に記載のものが好ましく用いられる。また、特に塩化銀含有率の高いハロゲン化銀乳剤粒子の赤感光性分光増感色素としては特開平3−123340号に記載された分光増感色素が安定性、吸着の強さ、露光の温度依存性等の観点から非常に好ましい。
【0046】
これらの分光増感色素の添加量は場合に応じて広範囲にわたり、ハロゲン化銀1モルあたり0.5×10-6モル〜1.0×10-2モルの範囲が好ましい。更に好ましくは、1.0×10-6モル〜5.0×10-3モルの範囲である。
【0047】
本発明で用いるハロゲン化銀粒子は、本発明に係わる化合物による処理以外に、従来の硫黄増感、セレン増感及びテルル増感等のカルコゲン増感、金増感及びパラジウム増感等の貴金属増感、並びに還元増感の少なくとも1つをハロゲン化銀乳剤の製造工程の任意の工程で施すことができる。2種以上の増感法を組み合わせることは好ましい。どの工程で化学増感するかによって種々のタイプの乳剤を調製することが出来る。粒子内部に化学増感核を埋め込むタイプ、粒子表面から浅い位置に埋め込むタイプ、あるいは、表面に化学増感核を作るタイプがある。本発明の乳剤は、目的に応じて化学増感核の場所を選ぶことが出来るが、一般的に好ましいのは表面近傍に少なくとも一種の化学増感核を作った場合である。
【0048】
好ましく併用しうる化学増感の一つはカルコゲナイド増感と貴金属増感の単独又は組み合わせであり、ジェームス(T.H.James)著、ザ・フォトグラフィック・プロセス、第4版、マクミラン社刊、1977年、(T.H.James、The Theory of the Photographic Process,4th ed,Macmillan,1977)67〜76頁に記載されるように活性ゼラチンを用いて行うことが出来るし、また、リサーチ・ディスクロージャー120巻、1974年4月、12008;リサーチ・ディスクロージャー、34巻、1975年6月、13452、米国特許2,642,361号、同3,297,446号、同3,772,031号、同3,857,711号、同3,901,714号、同4,266,018号、及び同3,904,415号、並びに英国特許第1,315,755号に記載されているようにpAg5〜10、pH5〜8及び温度30〜80℃において硫黄、セレン、テルル、金、白金、パラジウム、イリジウムまたはこれら増感剤の複数の組み合わせとすることが出来る。貴金属増感においては、金、白金、パラジウム、イリジウム等の貴金属塩を用いることができ、中でも特に、金増感、パラジウム増感および両者の併用が好ましい。
【0049】
併用しうるセレン増感剤としては、従来公知の特許に開示されているセレン化合物を用いることができる。通常、不安定型セレン化合物および/または非不安定型セレン化合物は、これを添加して高温、好ましくは40℃以上で乳剤を一定時間攪拌することにより用いられる。不安定型セレン化合物としては、特公昭44−15748号、特公昭43−13489号、特開平4−25832号、特開平4−109240号などに記載の化合物を用いることが好ましい。本発明に使用されるセレン増感剤の添加量は、用いるセレン増感剤の活性度、ハロゲン化銀の種類や大きさ、熟成の温度および時間などにより異なるが、好ましくは、ハロゲン化銀1モル当り2×10-6モル以上5×10-6以下である。セレン増感剤を用いた場合の化学増感の温度は、好ましくは40℃以上であり、且つ80℃以下である。pAgおよびpHは任意である。例えばpHについては、4から9までの広い範囲で本発明の効果が得られる。また、これに併用しうる金増感の金増感剤としては、金の酸化数が+1価でも+3価でもよく、金増感剤として通常用いられる金化合物を用いることができる。代表的な例としては、例えば塩化金酸塩、カリウムクロロオーレート、オーリックトリクロライド、カリウムオーリックチオシアネート、カリウムヨードオーレート、テトラシアノオーリックアシド、アンモニウムオーロチオシアネート、ピリジルトリクロロゴールド、硫化金、金セレナイドが挙げられる。金増感剤の添加量は種々の条件により異なるが、目安としてはハロゲン化銀1モル当たり1×10-7モル以上であり、且つ、5×10-5モル以下が好ましい。
【0050】
本発明の化学増感においては従来公知の硫黄増感を併用することが望ましい。硫黄増感には、硫黄増感剤として公知のものを用いることができる。例えばチオ硫酸塩、アリルチオカルバミドチオ尿素、アリルイソチアシアネート、シスチン、p−トルエンチオスルホン酸塩、ローダニンなどが挙げられる。その他、例えば米国特許第1,574,944号、同第2,410,689号、同第2,278,947号、同第2,728,668号、同第3,501,313号、同第3,656,955号、ドイツ特許1,422,869号、特公昭56−24937号、特開昭55−45016号公報に記載されている硫黄増感剤も用いることができる。硫黄増感剤の添加量は、乳剤の感度を効果的に増大させるのに十分な量でよい。この量は、pH、温度、ハロゲン化銀粒子の大きさなどの種々の条件の下で相当の範囲にわたって変化するが、ハロゲン化銀1モル当り1×10-7モル以上、5×10-5モル以下が好ましい。
【0051】
本発明のハロゲン化銀乳剤の化学増感において、当業界に知られる金増感をさらに併用することができる。金増感を施すことにより、乳剤を高感度化でき、レーザー光等によって走査露光したときの写真性能の変動を小さくすることができる。併用しうる金増感としては硫化金コロイド増感、種々の無機金化合物や無機配位子を有する金(I)錯体及び有機配位子を有する金(I)化合物を利用することができる。無機金化合物としては、例えば塩化金酸またはその塩、無機配位子を有する金(I)錯体としては、例えばジチオシアン酸金(I)カリウム等のジチオシアン酸金化合物やジチオ硫酸金(I)3ナトリウム等のジチオ硫酸金化合物等の化合物を用いることができる。
【0052】
有機配位子を有する金(I)化合物としては、特開平4−267249号に記載のビス金(I)メソイオン複素環類、例えば四フッ化硼酸金(I)ビス(1,4,5−トリメチル−1,2,4−トリアゾリウム−3−チオラート)、特開平11−218870号に記載の有機メルカプト金(I)錯体、例えばカリウム ビス(1−[3−(2−スルホナートベンズアミド)フェニル]−5−メルカプトテトラゾールカリウム塩)オーレート(I)5水和物、特開平4−268550号に記載の窒素化合物アニオンが配位した金(I)化合物、例えば、ビス(1−メチルヒダントイナート)金(I)ナトリウム塩四水和物、を用いることができる。また、米国特許第3、503、749号に記載されている金(I)チオレート化合物、特開平8−69074号、特開平8−69075号、特開平9−269554号に記載の金化合物、米国特許第5620841号、同5912112号、同5620841号、同5939245号、同5912111号に記載の化合物も用いることができる。
これらの化合物の添加量は場合に応じて広範囲に変わり得るがハロゲン化銀1モルあたり5×10-7〜5×10-3モル、好ましくは5×10-6〜5×10-4モルである。
【0053】
本発明のハロゲン化銀写真感光材料には、従来公知の写真用素材や添加剤を使用できる。
例えば写真用支持体としては、透過型支持体や反射型支持体を用いることができる。透過型支持体としては、セルロースナイトレートフィルムやポリエチレンテレフタレートなどの透明フィルム、更には2,6−ナフタレンジカルボン酸(NDCA)とエチレングリコール(EG)とのポリエステルやNDCAとテレフタル酸とEGとのポリエステル等に磁性層などの情報記録層を設けたものが好ましく用いられる。反射型支持体としては特に複数のポリエチレン層やポリエステル層でラミネートされ、このような耐水性樹脂層(ラミネート層)の少なくとも一層に酸化チタン等の白色顔料を含有する反射支持体が好ましい。
【0054】
本発明においてさらに好ましい反射支持体としては、ハロゲン化銀乳剤層を設ける側の紙基体上に微小空孔を有するポリオレフィン層を有しているものが挙げられる。ポリオレフィン層は多層から成っていてもよく、その場合、好ましくはハロゲン化銀乳剤層側のゼラチン層に隣接するポリオレフィン層は微小空孔を有さず(例えばポリプロピレン、ポリエチレン)、紙基体上に近い側に微小空孔を有するポリオレフィン(例えばポリプロピレン、ポリエチレン)から成るものがより好ましい。紙基体および写真構成層の間に位置するこれら多層もしくは一層のポリオレフィン層の密度は0.40〜1.0g/mlであることが好ましく、0.50〜0.70g/mlがより好ましい。また、紙基体および写真構成層の間に位置するこれら多層もしくは一層のポリオレフィン層の厚さは10〜100μmが好ましく、15〜70μmがさらに好ましい。また、ポリオレフィン層と紙基体の厚さの比は0.05〜0.2が好ましく、0.1〜0.5がさらに好ましい。
【0055】
また、上記紙基体の写真構成層とは逆側(裏面)にポリオレフィン層を設けることも、反射支持体の剛性を高める点から好ましく、この場合、裏面のポリオレフィン層は表面が艶消しされたポリエチレンまたはポリプロピレンが好ましく、ポリプロピレンがより好ましい。裏面のポリオレフィン層は5〜50μmが好ましく、10〜30μmがより好ましく、さらに密度が0.7〜1.1g/mlであることが好ましい。本発明の反射支持体において、紙基体上に設けるポリオレフィン層に関する好ましい態様については、特開平10−333277号、同10−333278号、同11−52513号、同11−65024号、EP0880065号、およびEP0880066号に記載されている例が挙げられる。
【0056】
更に前記の耐水性樹脂層中には蛍光増白剤を含有するのが好ましい。また、蛍光増白剤は感光材料の親水性コロイド層中に分散してもよい。蛍光増白剤として、好ましくは、ベンゾオキサゾール系、クマリン系、ピラゾリン系が用いることができ、更に好ましくは、ベンゾオキサゾリルナフタレン系及びベンゾオキサゾリルスチルベン系の蛍光増白剤である。使用量は、特に限定されていが、好ましくは1〜100mg/m2 である。耐水性樹脂に混合する場合の混合比は、好ましくは樹脂に対して0.0005〜3質量%であり、更に好ましくは0.001〜0.5質量%である。
反射型支持体としては、透過型支持体、または上記のような反射型支持体上に、白色顔料を含有する親水性コロイド層を塗設したものでもよい。
また、反射型支持体は、鏡面反射性または第2種拡散反射性の金属表面をもつ支持体であってもよい。
【0057】
また、本発明に係わる感光材料に用いられる支持体としては、ディスプレイ用に白色ポリエステル系支持体又は白色顔料を含む層がハロゲン化銀乳剤層を有する側の支持体上に設けられた支持体を用いてもよい。更に鮮鋭性を改良するために、アンチハレーション層を支持体のハロゲン化銀乳剤層塗布側又は裏面に塗設するのが好ましい。特に反射光でも透過光でもディスプレイが観賞できるように、支持体の透過濃度を0.35〜0.8の範囲に設定するのが好ましい。
【0058】
本発明に係わる感光材料には、画像のシャープネス等を向上させる目的で親水性コロイド層に、欧州特許EP0,337,490A2号の第27〜76頁に記載の、処理により脱色可能な染料(なかでもオキソノール系染料)を感光材料の680nmに於ける光学反射濃度が0.70以上になるように添加したり、支持体の耐水性樹脂層中に2〜4価のアルコール類(例えばトリメチロールエタン)等で表面処理された酸化チタンを12質量%以上(より好ましくは14質量%以上)含有させるのが好ましい。
【0059】
本発明に係わる感光材料には、イラジエーションやハレーションを防止したり、セーフライト安全性等を向上させる目的で親水性コロイド層に、欧州特許EP0337490A2号明細書の第27〜76頁に記載の、処理により脱色可能な染料(中でもオキソノール染料、シアニン染料)を添加することが好ましい。さらに、欧州特許EP0819977号明細書に記載の染料も本発明に好ましく添加される。
これらの水溶性染料の中には使用量を増やすと色分離やセーフライト安全性を悪化するものもある。色分離を悪化させないで使用できる染料としては、特開平5−127324号、同5−127325号、同5−216185号に記載された水溶性染料が好ましい。
【0060】
本発明においては、水溶性染料の代わり、あるいは水溶性染料と併用しての処理で脱色可能な着色層が用いられる。用いられる処理で脱色可能な着色層は、乳剤層に直かに接してもよく、ゼラチンやハイドロキノンなどの処理混色防止剤を含む中間層を介して接するように配置されていても良い。この着色層は、着色された色と同種の原色に発色する乳剤層の下層(支持体側)に設置されることが好ましい。各原色毎に対応する着色層を全て個々に設置することも、このうちに一部のみを任意に選んで設置することも可能である。また複数の原色域に対応する着色を行った着色層を設置することも可能である。着色層の光学反射濃度は、露光に使用する波長域(通常のプリンター露光においては400nm〜700nmの可視光領域、走査露光の場合には使用する走査露光光源の波長)において最も光学濃度の高い波長における光学濃度値が0.2以上3.0以下であることが好ましい。さらに好ましくは0.5以上2.5以下、特に0.8以上2.0以下が好ましい。
【0061】
着色層を形成するためには、従来公知の方法が適用できる。例えば、特開平2−282244号3頁右上欄から8頁に記載された染料や、特開平3−7931号3頁右上欄から11頁左下欄に記載された染料のように固体微粒子分散体の状態で親水性コロイド層に含有させる方法、アニオン性色素をカチオンポリマーに媒染する方法、色素をハロゲン化銀等の微粒子に吸着させて層中に固定する方法、特開平1−239544号に記載されているようなコロイド銀を使用する方法などである。色素の微粉末を固体状で分散する方法としては、たとえば、少なくともpH6以下では実質的に水不溶性であるが、少なくともpH8以上では実質的に水溶性である微粉末染料を含有させる方法が特開平2−308244号の第4〜13頁に記載されている。また、例えば、アニオン性色素をカチオンポリマーに媒染する方法としては、特開平2−84637号の第18〜26頁に記載されている。光吸収剤としてのコロイド銀の調製法については米国特許第2,688,601号、同3,459,563号に示されている。これらの方法のなかで微粉末染料を含有させる方法、コロイド銀を使用する方法などが好ましい。
【0062】
本発明のハロゲン化銀写真感光材料は、カラーネガフィルム、カラーポジフィルム、カラー反転フィルム、カラー反転印画紙、カラー印画紙等に用いられるが、中でもカラー印画紙として用いるのが好ましい。
カラー印画紙は、イエロー発色性ハロゲン化銀乳剤層、マゼンタ発色性ハロゲン化銀乳剤層およびシアン発色性ハロゲン化銀乳剤層をそれぞれ少なくとも1層ずつ有してなることが好ましく、一般には、これらのハロゲン化銀乳剤層は支持体から近い順にイエロー発色性ハロゲン化銀乳剤層、マゼンタ発色性ハロゲン化銀乳剤層、シアン発色性ハロゲン化銀乳剤層である。
【0063】
しかしながら、これとは異なった層構成を取っても構わない。
イエロ−カプラーを含有するハロゲン化銀乳剤層は支持体上のいずれの位置に配置されてもかまわないが、該イエローカプラー含有層にハロゲン化銀平板粒子を含有する場合は、マゼンタカプラー含有ハロゲン化銀乳剤層またはシアンカプラー含有ハロゲン化銀乳剤層の少なくとも一層よりも支持体から離れた位置に塗設されていることが好ましい。また、発色現像促進、脱銀促進、増感色素による残色の低減の観点からは、イエロ−カプラー含有ハロゲン化銀乳剤層は他のハロゲン化銀乳剤層より、支持体から最も離れた位置に塗設されていることが好ましい。更に、Blix退色の低減の観点からはシアンカプラー含有ハロゲン化銀乳剤層は他のハロゲン化銀乳剤層の中央の層が好ましく、光退色の低減の観点からはシアンカプラー含有ハロゲン化銀乳剤層は最下層が好ましい。また、イエロー、マゼンタおよびシアンのそれぞれの発色性層は2層または3層からなってもよい。例えば、特開平4−75055号、同9−114035号、同10−246940号、米国特許第5,576,159号等に記載のように、ハロゲン化銀乳剤を含有しないカプラー層をハロゲン化銀乳剤層に隣接して設け、発色層とすることも好ましい。
【0064】
本発明において適用されるハロゲン化銀乳剤やその他の素材(添加剤など)および写真構成層(層配置など)、並びにこの感光材料を処理するために適用される処理法や処理用添加剤としては、特開昭62−215272号、特開平2−33144号、欧州特許EP0,355,660A2号に記載されているもの、特に欧州特許EP0,355,660A2号に記載されているものが好ましく用いられる。更には、特開平5−34889号、同4−359249号、同4−313753号、同4−270344号、同5−66527号、同4−34548号、同4−145433号、同2−854号、同1−158431号、同2−90145号、同3−194539号、同2−93641号、欧州特許公開第0520457A2号等に記載のハロゲン化銀カラー写真感光材料やその処理方法も好ましい。
【0065】
特に、本発明においては、前記の反射型支持体やハロゲン化銀乳剤、更にはハロゲン化銀粒子中にドープされる異種金属イオン種、ハロゲン化銀乳剤の保存安定剤またはカブリ防止剤、化学増感法(増感剤)、分光増感法(分光増感剤)、シアン、マゼンタ、イエローカプラーおよびその乳化分散法、色像保存性改良剤(ステイン防止剤や褪色防止剤)、染料(着色層)、ゼラチン種、感光材料の層構成や感光材料の被膜pHなどについては、下記表1に示す特許の各箇所に記載のものが特に好ましく適用できる。
【0066】
【表1】
Figure 0003967166
【0067】
本発明において用いられるシアン、マゼンタおよびイエローカプラーとしては、その他、特開昭62−215272号の第91頁右上欄4行目〜121頁左上欄6行目、特開平2−33144号の第3頁右上欄14行目〜18頁左上欄末行目と第30頁右上欄6行目〜35頁右下欄11行目やEP0355,660A2号の第4頁15行目〜27行目、5頁30行目〜28頁末行目、45頁29行目〜31行目、47頁23行目〜63頁50行目に記載のカプラーも有用である。
また、本発明はWO−98/33760の一般式(II)および(III)、特開平10−221825号の一般式(D)で表される化合物を添加しても良く、好ましい。
【0068】
以下に更に具体的に説明する。
本発明に使用しうるシアンカプラーとしては、ピロロトリアゾール系カプラーが好ましく用いられ、特開平5−313324号の一般式(I)又は(II)で表されるカプラーおよび特開平6−347960号の一般式(I)で表されるカプラー並びにこれらの特許に記載されている例示カプラーが特に好ましい。
また、フェノール系、ナフトール系のシアンカプラーも好ましく、例えば、特開平10−333297号に記載の一般式(ADF)で表されるシアンカプラーが好ましい。
上記以外のシアンカプラーとしては、欧州特許EP0488248号明細書及びEP0491197A1号明細書に記載のピロロアゾール型シアンカプラー、米国特許第5,888,716号に記載の2,5−ジアシルアミノフェノールカプラー、米国特許第4,873,183号、同第4,916,051号に記載の6位に電子吸引性基、水素結合基を有するピラゾロアゾール型シアンカプラー、特に、特開平8−171185号、同8−311360号、同8−339060号に記載の6位にカルバモイル基を有するピラゾロアゾール型シアンカプラーも好ましい。
【0069】
また、特開平2−33144号公報に記載のジフェニルイミダゾール系シアンカプラーの他に、欧州特許EP0333185A2号明細書に記載の3−ヒドロキシピリジン系シアンカプラー(なかでも具体例として列挙されたカプラー(42)の4当量カプラーに塩素離脱基をもたせて2当量化したものや、カプラー(6)や(9)が特に好ましい)や特開昭64−32260号公報に記載された環状活性メチレン系シアンカプラー(なかでも具体例として列挙されたカプラー例3、8、34が特に好ましい)、欧州特許EP0456226A1号明細書に記載のピロロピラゾール型シアンカプラー、欧州特許EP0484909号に記載のピロロイミダゾール型シアンカプラーを使用することもできる。
【0070】
なお、これらのシアンカプラーのうち、特開平11−282138号に記載の一般式(I)で表されるピロロアゾール系シアンカプラーが特に好ましく、該特許の段落番号0012〜0059の記載は例示シアンカプラー(1)〜(47)を含め、本願にそのまま適用され、本願の明細書の一部として好ましく取り込まれる。
【0071】
本発明に用いられるマゼンタカプラーとしては、前記の表の公知文献に記載されたような5−ピラゾロン系マゼンタカプラーやピラゾロアゾール系マゼンタカプラーが用いられるが、中でも色相や画像安定性、発色性等の点で特開昭61−65245号に記載されたような2級又は3級アルキル基がピラゾロトリアゾール環の2、3又は6位に直結したピラゾロトリアゾールカプラー、特開昭61−65246号に記載されたような分子内にスルホンアミド基を含んだピラゾロアゾールカプラー、特開昭61−147254号に記載されたようなアルコキシフェニルスルホンアミドバラスト基を持つピラゾロアゾールカプラーや欧州特許第226,849A号や同第294,785A号に記載されたような6位にアルコキシ基やアリールオキシ基をもつピラゾロアゾールカプラーの使用が好ましい。
特に、マゼンタカプラーとしては特開平8−122984号に記載の一般式(M−I)で表されるピラゾロアゾールカプラーが好ましく、該特許の段落番号0009〜0026はそのまま本願に適用され、本願の明細書の一部として取り込まれる。
これに加えて、欧州特許第854384号、同第884640号に記載の3位と6位の両方に立体障害基を有するピラゾロアゾールカプラーも好ましく用いられる。
【0072】
また、イエローカプラーとしては、前記表中に記載の化合物の他に、欧州特許EP0447969A1号明細書に記載のアシル基に3〜5員の環状構造を有するアシルアセトアミド型イエローカプラー、欧州特許EP0482552A1号明細書に記載の環状構造を有するマロンジアニリド型イエローカプラー、欧州公開特許第953870A1号、同第953871A1号、同第953872A1号、同第953873A1号、同第953874A1号、同第953875A1号等に記載のピロール−2または3−イルもしくはインドール−2または3−イルカルボニル酢酸アニリド系カプラー、米国特許第5,118,599号明細書に記載されたジオキサン構造を有するアシルアセトアミド型イエローカプラーが好ましく用いられる。その中でも、アシル基が1−アルキルシクロプロパン−1−カルボニル基であるアシルアセトアミド型イエローカプラー、アニリドの一方がインドリン環を構成するマロンジアニリド型イエローカプラーの使用が特に好ましい。これらのカプラーは、単独あるいは併用することができる。
【0073】
本発明に使用するカプラーは、前出表中記載の高沸点有機溶媒の存在下で(または不存在下で)ローダブルラテックスポリマー(例えば米国特許第4,203,716号)に含浸させて、または水不溶性かつ有機溶媒可溶性のポリマーとともに溶かして親水性コロイド水溶液に乳化分散させることが好ましい。
好ましく用いることのできる水不溶性かつ有機溶媒可溶性のポリマーは、米国特許第4,857,449号明細書の第7欄〜15欄及び国際公開WO88/00723号明細書の第12頁〜30頁に記載の単独重合体または共重合体が挙げられる。より好ましくはメタクリレート系あるいはアクリルアミド系ポリマー、特にアクリルアミド系ポリマーの使用が色像安定性等の上で好ましい。
【0074】
本発明においては公知の混色防止剤を用いることができるが、その中でも以下に挙げる特許に記載のものが好ましい。
例えば、特開平5−333501号に記載の高分子量のレドックス化合物、WO98/33760号、米国特許第4,923,787号等に記載のフェニドンやヒドラジン系化合物、特開平5−249637号、特開平10−282615号および独国特許第19629142A1号等に記載のホワイトカプラーを用いることができる。また、特に現像液のpHを上げ、現像の迅速化を行う場合には独国特許第19618786A1号、欧州特許第839623A1号、欧州特許第842975A1号、独国特許19806846A1号および仏国特許第2760460A1号等に記載のレドックス化合物を用いることも好ましい。
【0075】
本発明においては紫外線吸収剤としてモル吸光係数の高いトリアジン骨核を有する化合物を用いることが好ましく、例えば、以下の特許に記載の化合物を用いることができる。これらは、感光性層または/および非感光性に好ましく添加される。
特開昭46−3335号、同55−152776号、特開平5−197074号、同5−232630号、同5−307232号、同6−211813号、同8−53427号、同8−234364号、同8−239368号、同9−31067号、同10−115898号、同10−147577号、同10−182621号、独国特許第19739797A号、欧州特許第711804A号および特表平8−501291号等に記載されている化合物である。
【0076】
本発明に係わる感光材料に用いることのできる結合剤又は保護コロイドとしては、ゼラチンを用いることが有利であるが、それ以外の親水性コロイドを単独であるいはゼラチンとともに用いることができる。好ましいゼラチンとしては、鉄、銅、亜鉛、マンガン等の不純物として含有される重金属は、好ましくは5ppm以下、更に好ましくは3ppm以下である。
また、感光材料中に含まれるカルシウム量は、好ましくは20mg/m2 以下、更に好ましくは10mg/m2 以下、最も好ましくは5mg/m2 以下である。
本発明においては、親水性コロイド層中に繁殖して画像を劣化させる各種の黴や細菌を防ぐために、特開昭63−271247号公報に記載のような防菌・防黴剤を添加するのが好ましい。
さらに、感光材料の被膜pHは4.0〜7.0が好ましく、より好ましくは4.0〜6.5である。
【0077】
本発明においては、感光材料の塗布安定性向上、静電気発生防止、帯電量調節等の点から界面活性剤を感光材料に添加することができる。界面活性剤としてはアニオン系界面活性剤、カチオン系界面活性剤、ベタイン系界面活性剤、ノニオン系界面活性剤があり、例えば特開平5−333492号に記載のものが挙げられる。本発明に用いる界面活性剤としてはフッ素原子含有の界面活性剤が好ましい。特に、フッ素原子含有界面活性剤を好ましく用いることができる。
【0078】
これらの界面活性剤の感光材料への添加量は特に限定されないが、一般的には1×10-5〜1g/m2 、好ましくは1×10-4〜1×10-1g/m2 、更に好ましくは1×10-3〜1×10-2g/m2 である。
これらのフッ素原子含有界面活性剤は単独で用いても、従来公知の他の界面活性剤と併用してもかまわないが、好ましくは従来公知の他の界面活性剤との併用である。
【0079】
本発明の感光材料は、通常のネガプリンターを用いたプリントシステムに使用される以外に、陰極線(CRT)を用いた走査露光方式にも適している。陰極線管露光装置は、レーザーを用いた装置に比べて、簡便でかつコンパクトであり、低コストになる。また、光軸や色の調整も容易である。
画像露光に用いる陰極線管には、必要に応じてスペクトル領域に発光を示す各種発光体が用いられる。例えば赤色発光体、緑色発光体、青色発光体のいずれか1種、あるいは2種以上が混合されて用いられる。スペクトル領域は、上記の赤、緑、青に限定されず、黄色、橙色、紫色或いは赤外領域に発光する蛍光体も用いられる。特に、これらの発光体を混合して白色に発光する陰極線管がしばしば用いられる。
【0080】
感光材料が異なる分光感度分布を有する複数の感光性層を持ち、陰極性管も複数のスペクトル領域の発光を示す蛍光体を有する場合には、複数の色を一度に露光、即ち陰極線管に複数の色の画像信号を入力して管面から発光させてもよい。各色ごとの画像信号を順次入力して各色の発光を順次行わせ、その色以外の色をカットするフィルムを通して露光する方法(面順次露光)を採っても良く、一般には、面順次露光の方が、高解像度の陰極線管を用いることができるため、高画質化のためには好ましい。
【0081】
本発明の感光材料は、ガスレーザー、発光ダイオード、半導体レーザー、半導体レーザーあるいは半導体レーザーを励起光源に用いた固体レーザーと非線形光学結晶を組合わせた第二高調波発光光源(SHG)等の単色高密度光を用いたデジタル走査露光方式が好ましく使用される。システムをコンパクトで、安価なものにするために半導体レーザー、半導体レーザーあるいは固体レーザーと非線形光学結晶を組合わせた第二高調波発生光源(SHG)を使用することが好ましい。特にコンパクトで、安価、更に寿命が長く安定性が高い装置を設計するためには半導体レーザーの使用が好ましく、露光光源の少なくとも一つは半導体レーザーを使用することが好ましい。
【0082】
このような走査露光光源を使用する場合、本発明の感光材料の分光感度極大波長は、使用する走査露光用光源の波長により任意に設定することができる。半導体レーザーを励起光源に用いた固体レーザーあるいは半導体レーザーと非線形光学結晶を組合わせて得られるSHG光源では、レーザーの発振波長を半分にできるので、青色光、緑色光が得られる。従って、感光材料の分光感度極大は通常の青、緑、赤の3つの波長領域に持たせることが可能である。
このような走査露光における露光時間は、画素密度を400dpiとした場合の画素サイズを露光する時間として定義すると、好ましい露光時間は10-4秒以下、更に好ましくは10-6秒以下である。
【0083】
本発明に適用できる好ましい走査露光方式については、前記の表に掲示した特許に詳しく記載されている。
また本発明の感光材料を処理するには、特開平2−207250号の第26頁右下欄1行目〜34頁右上欄9行目、及び特開平4−97355号の第5頁左上欄17行目〜18頁右下欄20行目に記載の処理素材や処理方法が好ましく適用できる。また、この現像液に使用する保恒剤としては、前記の表に掲示した特許に記載の化合物が好ましく用いられる。
【0084】
本発明は迅速処理適性を有する感光材料にも好ましく適用される。
発色現像時間とは、感光材料が発色現像液中に入ってから次の処理工程の漂白定着液に入るまでの時間をいう。例えば、自動現像機などで処理される場合には、感光材料が発色現像液中に浸漬されている時間(いわゆる液中時間)と、感光材料が発色現像液を離れ次の処理工程の漂白定着浴に向けて空気中を搬送されている時間(いわゆる空中時間)との両者の合計を発色現像時間という。同様に、漂白定着時間とは、感光材料が漂白定着液中に入ってから次の水洗又は安定浴に入るまでの時間をいう。また、水洗又は安定化時間とは、感光材料が水洗又は安定化液中に入ってから乾燥工程に向けて液中にある時間(いわゆる液中時間)をいう。
【0085】
本発明において迅速処理を行う場合には、発色現像時間は好ましくは60秒以下、更に好ましくは50秒以下6秒以上、より好ましくは30秒以下6秒以上である。同様に、漂白定着時間は好ましくは60秒以下、更に好ましくは50秒以下6秒以上、より好ましくは30秒以下6秒以上である。また、水洗又は安定化時間は、好ましくは150秒以下、更に好ましくは130秒以下6秒以上である。
【0086】
本発明の感光材料を露光後、現像する方法としては、従来のアルカリ剤と現像主薬を含む現像液で現像する方法、現像主薬を感光材料に内蔵し、現像主薬を含まないアルカリ液などのアクチベーター液で現像する方法などの湿式方式のほか、処理液を用いない熱現像方式などを用いることができる。特に、アクチベーター方法は、現像主薬を処理液に含まないため、処理液の管理や取扱いが容易であり、また廃液処理時の負荷が少なく環境保全上の点からも好ましい方法である。アクチベーター方法において、感光材料中に内蔵される現像主薬またはその前駆体としては、例えば、特開平8−234388号、同9−152686号、同9−152693号、同9−211814号、同9−160193号に記載されたヒドラジン型化合物が好ましい。
【0087】
また、感光材料の塗布銀量を低減し、過酸化水素を用いた画像増幅処理(補力処理)する現像方法も好ましく用いられる。特に、この方法をアクチベーター方法に用いることは好ましい。具体的には、特開平8−297354号、同9−152695号に記載された過酸化水素を含むアクチベーター液を用いた画像形成方法が好ましく用いられる。
アクチベーター方法において、アクチベーター液で処理後、通常脱銀処理されるが、低銀量の感光材料を用いた画像増幅処理方法では、脱銀処理を省略し、水洗または安定化処理といった簡易な方法を行うことができる。また、感光材料から画像情報をスキャナー等で読み取る方式では、撮影用感光材料などの様に高銀量の感光材料を用いた場合でも、脱銀処理を不要とする処理形態を採用することができる。
【0088】
本発明で用いられるアクチベーター液、脱銀液(漂白/定着液)、水洗および安定化液の処理素材や処理方法は公知のものを用いることができる。好ましくは、リサーチ・ディスクロージャーItem 36544(1994年9月)第536頁〜第541頁、特開平8−234388号に記載されたものを用いることができる。
【0089】
本発明の感光材料をプリンター露光する際、米国特許第4,880,726号に記載のバンドストップフィルターを用いることが好ましい。これによって光混色が取り除かれ、色再現性が著しく向上する。
本発明においては、欧州特許EP0789270A1や同EP0789480A1号に記載のように、画像情報を付与する前に、予め、黄色のマイクロドットパターンを前露光し、複写規制を施しても構わない。
【0090】
本発明の感光材料は、以下の公知資料に記載の露光、現像システムと組み合わせることで好ましく用いることができる。
・特開平10−333253に記載の自動プリント並びに現像システム
・特開2000−10206に記載の感光材料搬送装置
・特開平11−215312に記載の画像読取装置を含む記録システム
・特開平11−88619並びに特開平10−202950に記載のカラー画像記録方式からなる露光システム
・特開平10−210206に記載の遠隔診断方式を含むデジタルフォトプリントシステム
【0091】
【実施例】
以下に実施例に基づき本発明をさらに詳細に説明するが、発明の範囲はそれらに限定されるものではない。
実施例1
(青感性乳剤層に用いる、乳剤Aの調製)
立方体の、平均粒子サイズ0.70μmの大サイズ乳剤A1と0.50μmの小サイズ乳剤A2との1:1混合物(銀mol比)を調整し、乳剤Aとした。
乳剤A1及びA2の粒子サイズ分布の変動係数はそれぞれ0.09と0.11であった。各サイズ乳剤とも臭化銀0.5mol%を、塩化銀を基体とする粒子表面の一部に局在含有させた。この粒子の最表層からの体積で10%に相当する部位には、全ハロゲンに対して0.1モル%の沃素イオンを存在させ、ハロゲン化銀1モルに対して1×10-6molのK4Ru(CN)6 、ハロゲン化銀1モルに対して1×10-7molの黄血塩、ハロゲン化銀1モルに対して1×10-8モルのK2IrCl5(H2O)を存在させた。
この乳剤には下記の青感性増感色素A及びBを銀1モル当たり乳剤A1に対しそれぞれ3.2×10-4モル、乳剤A2に対しそれぞれ4.4×10-4モル添加し分光増感を施した。
【0092】
【化7】
Figure 0003967166
【0093】
(緑感性乳剤層に用いる、乳剤Cl−B 及びI−Bの調整)
立方体の、平均粒子サイズ0.40μmである、シェル部に沃塩化銀相を有さない乳剤Cl−Bを調整した。粒子サイズ分布の変動係数はそれぞれ0.09。臭化銀0.4モル%を粒子表面に局在含有させた。また乳剤Aと同様に乳剤粒子中に、K4Ru(CN)6 、黄血塩、K2IrCl5(H2O)を存在させた。以上の様にして乳剤Cl−Bを調整した。
また、シェル部に沃塩化銀相を有する乳剤I−Bを、沃化銀0.1モル%を粒子表面近傍に含有させた以外は乳剤Cl−Bと同様にして調整した。
増感色素Dをハロゲン化銀1モル当り、3.3×10-4モル、また、増感色素Eをハロゲン化銀1モル当り、5×10-5モル、また、増感色素Fをハロゲン化銀1モル当り、2.3×10-4モル添加した。
【0094】
【化8】
Figure 0003967166
【0095】
(赤感性乳剤層に用いる、乳剤Cの調整)
立方体、平均粒子サイズ0.40μmの大サイズ乳剤C1と0.30μmの小サイズ乳剤C2との1:1混合物(銀モル比)を調整した。粒子サイズ分布の変動係数はそれぞれ0.09と0.11。各サイズ乳剤とも各サイズ乳剤とも沃化銀0.1モル%を粒子表面近傍に含有し、臭化銀0.8モル%を粒子表面に局在含有させた。また乳剤Aと同様に乳剤粒子中に、K4 Ru(CN)6 、黄血塩、K2IrCl5(H2O)を存在させた。
増感色素GおよびHをそれぞれ、ハロゲン化銀1モル当り、大サイズ乳剤に対しては8.0×10-5モル、小サイズ乳剤に対しては10.7×10-5モル添加した。さらに、以下の化合物Iを赤感性乳剤層にハロゲン化銀1モル当たり3.0×10-3モル添加した。
【0096】
【化9】
Figure 0003967166
【0097】
【化10】
Figure 0003967166
【0098】
(カラー写真感光材料、塗布サンプルの調整)
紙の両面をポリエチレン樹脂で被覆してなる支持体の表面に、コロナ放電処理を施した後、ドデシルベンゼンスルホン酸ナトリウムを含むゼラチン下塗層を設け、さらに第一層〜第七層の写真構成層を順次塗設して、以下に示す層構成のハロゲン化銀カラー写真感光材料の試料(101)を作製した。各写真構成層用の塗布液は、以下のようにして調製した。
【0099】
第一層塗布液調製
イエローカプラー(ExY)57g、色像安定剤(Cpd−1)7g、色像安定剤(Cpd−2)4g、色像安定剤(Cpd−3)7g、色像安定剤(Cpd−8)2gを溶媒(Solv−1)21g及び酢酸エチル80mlに溶解し、この液を4gのドデシルベンゼンスルホン酸ナトリウムを含む23.5質量%ゼラチン水溶液220g中に高速攪拌乳化機(ディゾルバー)で乳化分散し、水を加えて900gの乳化分散物Aを調製した。
一方、前記乳化分散物Aと乳剤Aとを混合溶解し、後記組成となるように第一層塗布液を調製した。乳剤塗布量は、銀量換算塗布量を示す。
【0100】
第二層〜第七層用の塗布液も第一層塗布液と同様の方法で調製した。各層のゼラチン硬化剤としては、ソジウム(2,4−ジクロロ−6−オキシド−1,3,5−トリアジン)(H−1)、(H−2)、(H−3)を用いた。また、各層にAb−1、Ab−2、Ab−3、及びAb−4をそれぞれ全量が15.0mg/m2 、60.0mg/m2 、5.0mg/m2 及び10.0mg/m2 となるように添加した。
【0101】
【化11】
Figure 0003967166
【0102】
【化12】
Figure 0003967166
【0103】
次に、化学増感工程を説明する。前記の乳剤を40℃に加熱し塩化金酸及び、チオ硫酸ナトリウムを加え、次に60℃で40分加熱した後、前記の増感色素を加え、40℃に冷却後、1−(3−メチルウレイドフェニル)−5−メルカプトテトラゾールを、それぞれハロゲン化銀1モル当り3.3×10-4モル、1.0×10-3モルおよび5.9×10-4モル添加した。本発明の乳剤は、後に表2に示した様に、チオ硫酸ナトリウムを本発明の化合物に変更して化学増感を行うことにより調整した。
【0104】
また、1−(3−メチルウレイドフェニル)−5−メルカプトテトラゾールを、
第二層、第四層、第六層および第七層にも、それぞれ0.2mg/m2 、0.2mg/m2 、0.6mg/m2 、0.1mg/m2 となるように添加した。
【0105】
また、青感性乳剤層および緑感性乳剤層に対し、4−ヒドロキシ−6−メチル−1,3,3a,7−テトラザインデンを、それぞれハロゲン化銀1モル当たり、1×10-4モル、2×10-4モル添加した。
また、赤感性乳剤層にメタクリル酸とアクリル酸ブチルの共重合体ラテックス(質量比1:1、平均分子量200000〜400000)を0.05g/m2を添加した。
また第二層、第四層および第六層にカテコール−3,5−ジスルホン酸二ナトリウムをそれぞれ6mg/m2 、6mg/m2 、18mg/m2 となるように添加した。
また、イラジエーション防止のために、以下の染料(カッコ内は塗布量を表す)を添加した。
【0106】
【化13】
Figure 0003967166
【0107】
(層構成)
以下に、各層の構成を示す。数字は塗布量(g/m2 )を表す。ハロゲン化銀乳剤は、銀換算塗布量を表す。
支持体 ポリエチレン樹脂ラミネート紙
[第一層側のポリエチレン樹脂に白色顔料(TiO2 ;含有率16質量%、ZnO;含有率4質量%)と蛍光増白剤(4,4’−ビス(5−メチルベンゾオキサゾリル)スチルベン。含有率0.03質量%)、青味染料(群青)を含む]
第一層(青感性乳剤層)
乳剤A 0.24
ゼラチン 1.25
イエローカプラー(ExY) 0.57
色像安定剤(Cpd−1) 0.07
色像安定剤(Cpd−2) 0.04
色像安定剤(Cpd−3) 0.07
色像安定剤(Cpd−8) 0.02
溶媒(Solv−1) 0.21
【0108】
第二層(混色防止層)
ゼラチン 0.99
混色防止剤(Cpd−4) 0.09
色像安定剤(Cpd−5) 0.018
色像安定剤(Cpd−6) 0.13
色像安定剤(Cpd−7) 0.01
溶媒(Solv−1) 0.06
溶媒(Solv−2) 0.22
【0109】
第三層(緑感性乳剤層)
表2の乳剤Cl-B 0.14
ゼラチン 1.36
マゼンタカプラー(ExM) 0.15
紫外線吸収剤(UV−A) 0.14
色像安定剤(Cpd−2) 0.02
色像安定剤(Cpd−4) 0.002
色像安定剤(Cpd−6) 0.09
色像安定剤(Cpd−8) 0.02
色像安定剤(Cpd−9) 0.03
色像安定剤(Cpd−10) 0.01
色像安定剤(Cpd−11) 0.0001
溶媒(Solv−3) 0.11
溶媒(Solv−4) 0.22
溶媒(Solv−5) 0.20
【0110】
第四層(混色防止層)
ゼラチン 0.71
混色防止層(Cpd−4) 0.06
色像安定剤(Cpd−5) 0.013
色像安定剤(Cpd−6) 0.10
色像安定剤(Cpd−7) 0.007
溶媒(Solv−1) 0.04
溶媒(Solv−2) 0.16
【0111】
第五層(赤感性乳剤層)
乳剤C 0.12
ゼラチン 1.11
シアンカプラー(ExC−2) 0.13
シアンカプラー(ExC−3) 0.03
色像安定剤(Cpd−1) 0.05
色像安定剤(Cpd−6) 0.06
色像安定剤(Cpd−7) 0.02
色像安定剤(Cpd−9) 0.04
色像安定剤(Cpd−10) 0.01
色像安定剤(Cpd−14) 0.01
色像安定剤(Cpd−15) 0.12
色像安定剤(Cpd−16) 0.03
色像安定剤(Cpd−17) 0.09
色像安定剤(Cpd−18) 0.07
溶媒(Solv−5) 0.15
溶媒(Solv−8) 0.05
【0112】
第六層(紫外線吸収層)
ゼラチン 0.46
紫外線吸収剤(UV−B) 0.45
化合物(S1−4) 0.0015
溶媒(Solv−7) 0.25
第七層(保護層)
ゼラチン 1.00
ポリビニルアルコールのアクリル変性共重合体
(変性度17%) 0.04
流動パラフィン 0.02
界面活性剤(Cpd−13) 0.01
【0113】
【化14】
Figure 0003967166
【0114】
【化15】
Figure 0003967166
【0115】
【化16】
Figure 0003967166
【0116】
【化17】
Figure 0003967166
【0117】
【化18】
Figure 0003967166
【0118】
【化19】
Figure 0003967166
【0119】
【化20】
Figure 0003967166
【0120】
【化21】
Figure 0003967166
【0121】
【化22】
Figure 0003967166
【0122】
【化23】
Figure 0003967166
【0123】
試料(101)の乳剤Cl-Bの代わりに、化学増感工程で後述の表2に示す化合物を用いた表2に記載の乳剤に変更し、試料(101)と同様にして残りの試料を作製した。
【0124】
これらの試料の写真特性を調べるために以下のような実験を行った。
実験1 センシトメトリー(低照度および高照度)
各塗布試料に対して感光計(富士写真フイルム(株)製FWH型)を用いて、センシトメトリー用の階調露光を与えた。SP−2フィルターを装着し、露光量200lx・sec(ルックス・秒)で、低照度10秒間露光した。
また、高照度露光用感光計(山下電装(株)製HIE型)を用いて、センシトメトリー用の階調露光を与えた。SP−2フィルターを装着し、高照度10-4秒間露光した。
露光後は、後述する発色現像処理Aを行った。
【0125】
処理後の各試料のマゼンタ発色濃度を測定し、10秒露光低照度感度、10-4秒露光高照度感度をそれぞれ求めた。感度は、最低発色濃度より1.5高い発色濃度を与える露光量の逆数をもって規定し、試料(107)の現像処理した感度を100とした相対値を相対感度とした。また、該感度点と濃度1.5での感度点との直線の傾きから階調を求めた。
【0126】
実験2 感度の露光湿度依存性
各試料に露光を与える際の相対湿度を55%及び80%に設定した。前記1/10秒間露光後に処理Aを行い、各試料のマゼンタ発色濃度を測定した。感度は、最低発色濃度より0.5高い発色濃度を与える露光量の逆数をもって規定し、試料(107)の感度を100としたときの相対値を相対感度とした。湿度55%で露光した場合の相対感度から湿度80%で露光した場合の相対感度を差し引いた差(以後dSと示す)を求めた。
【0127】
実験1及び実験2の結果をまとめて、表2に示した。
【0128】
【表2】
Figure 0003967166
【0129】
表2から、以下のことが判る。
本発明の化合物を用いた乳剤は、従来のチオ硫酸ナトリウムなどのチオ硫酸塩を用いた乳剤よりも高感度である。10-4秒露光(高照度露光)時も同様に高感度であり、相反則特性に優れる。かつまた、従来のチオ硫酸ナトリウムなどのチオ硫酸塩を用いた乳剤は、露光時の湿度変動によって感度変化し易い問題があったのに対し、本発明の乳剤は、感度変動が極めて小さい利点を有することが判った。
上記の様な増感方法による差異は、ハロゲン化銀乳剤粒子が沃化銀を含有しない場合よりも、沃化銀を含有した場合に特に顕著であった。
【0130】
以下に処理工程を示す。
[処理A]
上記感光材料101を127mm巾のロール状に加工し、富士写真フイルム(株)製ミニラボプリンタープロセッサー PP1258ARを用いて像様露光後、下記処理工程にてカラー現像タンク容量の2倍補充するまで、連続処理(ランニングテスト)を行った。このランニング液を用いた処理を処理Aとした。
処理工程 温 度 時 間 補充量*
カラー現像 38.5℃ 45秒 45ミリリットル
漂白定着 38.0℃ 45秒 35ミリリットル
リンス(1) 38.0℃ 20秒 −
リンス(2) 38.0℃ 20秒 −
リンス(3) **38.0℃ 20秒 −
リンス(4) **38.0℃ 30秒 121ミリリットル
*感光材料1m2 当たりの補充量
**富士写真フイルム社製 リンスクリーニングシステムRC50Dをリンス(3)に装置し、リンス(3)からリンス液を取り出し、ポンプにより逆浸透膜モジュール(RC50D)へ送る。同槽で得られた透過水はリンス(4)に供給し、濃縮水はリンス(3)に戻す。逆浸透モジュールへの透過水量は50〜300ミリリットル/分を維持するようにポンプ圧を調整し、1日10時間温調循環させた。
(リンスは(1)から(4)へのタンク向流方式とした。)
【0131】
各処理液の組成は以下の通りである。
Figure 0003967166
【0132】
Figure 0003967166
【0133】
Figure 0003967166
【0134】
実施例2
実施例1で作製した乳剤を用い、層構成を(101)から下記のように変えて薄層化した試料201を調製した。また、第三層の乳剤Cl-Bを実施例1で作製した乳剤に変更した試料を作製した。これらの試料に対し実施例1の実験1及び2を行った。
層構成は試料(201)で示す。
結果は実施例1の結果と同様であり、薄層化した試料の超迅速処理でも本発明の効果が確かめられた。
【0135】
試料201の作製
第一層(青感性乳剤層)
乳剤A 0.24
ゼラチン 1.25
イエローカプラー(ExY) 0.57
色像安定剤(Cpd−1) 0.07
色像安定剤(Cpd−2) 0.04
色像安定剤(Cpd−3) 0.07
色像安定剤(Cpd−8) 0.02
溶媒(Solv−1) 0.21
【0136】
第二層(混色防止層)
ゼラチン 0.60
混色防止剤(Cpd−19) 0.09
色像安定剤(Cpd−5) 0.007
色像安定剤(Cpd−7) 0.007
紫外線吸収剤(UV−C) 0.05
溶媒(Solv−5) 0.11
【0137】
第三層(緑感性乳剤層)
塩臭化銀乳剤Cl-B(試料201と同じ乳剤) 0.14
ゼラチン 0.73
マゼンタカプラー(ExM) 0.15
紫外線吸収剤(UV−A) 0.05
色像安定剤(Cpd−2) 0.02
色像安定剤(Cpd−7) 0.008
色像安定剤(Cpd−8) 0.07
色像安定剤(Cpd−9) 0.03
色像安定剤(Cpd−10) 0.009
色像安定剤(Cpd−11) 0.0001
溶媒(Solv−3) 0.06
溶媒(Solv−4) 0.11
溶媒(Solv−5) 0.06
【0138】
第四層(混色防止層)
ゼラチン 0.48
混色防止層(Cpd−4) 0.07
色像安定剤(Cpd−5) 0.006
色像安定剤(Cpd−7) 0.006
紫外線吸収剤(UV−C) 0.04
溶媒(Solv−5) 0.09
【0139】
第五層(赤感性乳剤層)
塩臭化銀乳剤C 0.12
ゼラチン 0.59
シアンカプラー(ExC−2) 0.13
シアンカプラー(ExC−3) 0.03
色像安定剤(Cpd−7) 0.01
色像安定剤(Cpd−9) 0.04
色像安定剤(Cpd−15) 0.19
色像安定剤(Cpd−18) 0.04
紫外線吸収剤(UV−7) 0.02
溶媒(Solv−5) 0.09
【0140】
第六層(紫外線吸収層)
ゼラチン 0.32
紫外線吸収剤(UV−C) 0.42
溶媒(Solv−7) 0.08
第七層(保護層)
ゼラチン 0.70
ポリビニルアルコールのアクリル変性共重合体
(変性度17%) 0.04
流動パラフィン 0.01
界面活性剤(Cpd−13) 0.01
ポリジメチルシロキサン 0.01
二酸化珪素 0.003
【0141】
作製された各試料は、実施例1の実験1及び2と同様に露光し、発色現像処理は、以下に示す現像処理Bに従い、超迅速処理を行った。
【0142】
[処理B]
上記の感光材料を127mm幅のロール状に加工し、処理時間、処理温度を変えられるように 富士写真フイルム(株)製ミニラボプリンタープロセッサーPP350を改造した実験処理装置用いて感光材料試料に平均濃度のネガティブフイルムから像様露光を行い、下記処理工程にて使用した発色現像補充液の容量が発色現像タンク容量の0.5倍となるまで連続処理(ランニングテスト)を行った。
【0143】
処理工程 温度 時間 補充量*
発色現像 45.0℃ 15秒 45mL
漂白定着 40.0℃ 15秒 35mL
リンス1 40.0℃ 8秒 −
リンス2 40.0℃ 8秒 −
リンス3** 40.0℃ 8秒 −
リンス4** 38.0℃ 8秒 121mL
乾燥 80℃ 15秒
(注)
* 感光材料1m2 あたりの補充量
**富士写真フイルム(株)製リンスクリーニングシステムRC50Dををリンス(3)に装着し、リンス(3)からリンス液を取り出してポンプにより逆浸透モジュール(RC50D)へ送る。同槽で送られた透過水はリンス(4)に供給し、濃縮液はリンス(3)に戻す。逆浸透モジュールへの透過水量は50〜300mL/分を維持するようにポンプ圧を調整し、1日10時間温調循環させた。リンスは(1)から(4)への4タンク向流方式とした。
【0144】
各処理液の組成は以下の通りである。
[発色現像液] [タンク液] [補充液]
水 800mL 600mL
蛍光増白剤(FL−1) 5.0g 8.5g
トリイソプロパノールアミン 8.8g 8.8g
p−トルエンスルホン酸ナトリウム 20.0g 20.0g
エチレンジアミン4酢酸 4.0g 4.0g
亜硫酸ナトリウム 0.10 g 0.50g
塩化カリウム 10.0g −
4,5−ジヒドロキシベンゼン−
1,3−ジスルホン酸ナトリウム 0.50g 0.50g
ジナトリウム−N,N−ビス(スルホナート
エチル)ヒドロキシルアミン 8.5g 14.5g
4−アミノ−3−メチル−N−エチル−N−
(β−メタンスルホンアミドエチル)アニリン
・3/2硫酸塩・モノハイドレード 10.0g 22.0g
炭酸カリウム 26.3g 26.3g
水を加えて全量 1000mL 1000mL
pH(25℃、硫酸とKOHで調整) 10.35 12.6
【0145】
[漂白定着液] [タンク液] [補充液]
水 800mL 800mL
チオ硫酸アンモニウム(750g/mL) 107mL 214mL
コハク酸 29.5g 59.0g
エチレンジアミン4酢酸鉄(III)
アンモニウム 47.0g 94.0g
エチレンジアミン4酢酸 1.4g 2.8g
硝酸(67%) 17.5g 35.0g
イミダゾール 14.6g 29.2g
亜硫酸アンモニウム 16.0g 32.0g
メタ重亜硫酸カリウム 23.1g 46.2g
水を加えて全量 1000mL 1000mL
pH(25℃、硝酸とアンモニア水で調整) 6.00 6.00
【0146】
[リンス液] [タンク液] [補充液]
塩素化イソシアヌール酸ナトリウム 0.02g 0.02g
脱イオン水(電導度5μS/cm以下) 1000mL 1000mL
pH(25℃) 6.5 6.5
【0147】
【化24】
Figure 0003967166
【0148】
実施例3
実施例2で作製した試料を用いて、レーザー走査露光によって画像形成を行った。
レーザー光源としては、半導体レーザーGaAlAs(発振波長 808.5nm)を励起光源としたYAG固体レーザー(発振波長 946nm)を反転ドメイン構造を有するLiNbO3 のSHG結晶により波長変換して取り出した473nmと、半導体レーザーGaAlAs(発振波長 808.7nm)を励起光源としたYVO4 固体レーザー(発振波長 1064nm)を反転ドメイン構造を有するLiNbO3 のSHG結晶により波長変換して取り出した532nmと、AlGaInP(発振波長 約680nm:松下電産製タイプNo.LN9R20)とを用いた。3色のそれぞれのレーザー光はポリゴンミラーにより走査方向に対して垂直方向に移動し、試料上に、順次走査露光できるようにした。半導体レーザーの温度による光量変動は、ペルチェ素子を利用して温度が一定に保たれることで抑えられている。実効的なビーム径は、80μmで、走査ピッチは42.3μm(600dpi)であり、1画素あたりの平均露光時間は、1.7×10-7秒であった。
露光後、発色現像処理Bにより処理を行ったところ、実施例1、2での高照度露光の結果と同様の結果が得られ、レーザー走査露光を用いた画像形成にも適していることが分かった。
【0149】
実施例4
特開平2001−264912に記載の実施例1に示すA1〜A6の乳剤調製において、N,N−ジメチルセレノ尿素の代わりに本発明の化合物C−41およびC−42を用いて化学増感を行う以外、他の条件を一切変えずに同様の実験を行ったところ、N,N−ジメチルセレノ尿素を用いた時と比べて高感度化が達成され、圧力耐性の向上が見られた。
【0150】
【発明の効果】
本発明の乳剤は、高感度で、かつ露光時の湿度条件の違いによる感度変動が小さく、高照度での相反則特性に優れるハロゲン化銀乳剤である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a silver halide emulsion, and more particularly to a silver halide emulsion having high sensitivity and low fog, small sensitivity fluctuation due to a difference in humidity conditions during exposure, and excellent wet abrasion resistance.
[0002]
[Prior art]
In recent years, there has been an increasing demand for rapid processing with high sensitivity, excellent graininess, gradation and high sharpness, good storage stability, and development progress in silver halide photographic materials. . In particular, there is a strong demand for higher sensitivity with good storage stability while keeping fogging low. There are also increasing demands for performance such as toughness during processing, low fog, high sensitivity and low sensitivity fluctuation during storage, emulsion with little photographic fluctuation due to differences in temperature and humidity conditions during exposure, wet abrasion resistance An emulsion having excellent properties is desired.
[0003]
The silver halide emulsion used in the silver halide photographic light-sensitive material is usually subjected to chemical sensitization using various chemical substances in order to obtain desired sensitivity and gradation. Specific methods include sulfur sensitization, selenium sensitization, chalcogen sensitization such as tellurium sensitization, noble metal sensitization using noble metals such as gold, and reduction sensitization using a reducing agent. Use alone or in combination. Among these, the sulfur sensitization method using an unstable sulfur compound is the most widely used universally and the most basic combination sensitization method. Grafkides, Chimie et Physique Photographic (published by Paul Momtel, 1987, 5th edition), T. et al. H. Edited by James, The Theory of the Photographic Process (published by Macmillian, 1977, 4th edition), H.C. Frieser, Die Grundlagen der Photographischen Proposess mit Silverhalgeniden (Akademische Verlagsgesellschaft, 1968), No. 16240, U.S. Pat. No. 2,728,668, No. 3,189,458, No. 3,513,313, No. 3,656,955, No. 4,030,928, No. 4,054,457, No. 4,067,740, No. 4,266,018, No. 4,810,626, German Patent No. 1,142,869 No. 1572260, No. 228658, No. 235929, British Patent No. 112 No. 9356, No. 99701, No. 1403980, European Patent No. 61446, No. 138622, Japanese Patent Laid-Open Nos. 63-5355, 63-5336, 63-229449, 58-80634. JP-A 1-114839, 1-227140, 5-165135, JP-B 58-30570, 60-24457, 62-17216, Research Disclosure, Vol. 07, 307105, etc. Are listed.
[0004]
By the way, in recent years, high sensitivity while maintaining excellent graininess and high sharpness in silver halide photographic light-sensitive materials, high-speed rapid processing for further increasing processing speed, and push development for high-temperature development (development time is reduced). However, both of these are likely to cause the occurrence of fogging and the softening of gradation, and the sulfur sensitizing method and the sulfur-gold sensitizing method, Improvements in combination sensitization methods based on sulfur sensitization methods such as sulfur-selenium-gold sensitization have been desired.
[0005]
Against this background, the development of a chalcogen sensitizer with a large increase in sensitivity and less fog is still strongly desired.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a silver halide emulsion having high sensitivity, low fog, small sensitivity fluctuation due to a difference in humidity conditions during exposure, and excellent wet abrasion resistance, and a chemical sensitization method for such an emulsion. .
[0007]
[Means for Solving the Problems]
The above object has been achieved by the following means.
[1] A silver halide emulsion which is chemically sensitized with a compound represented by the following general formula (1).
General formula (1)
[0008]
[Chemical 2]
Figure 0003967166
[0009]
  [In the formula (1), Ch represents a sulfur atom, a selenium atom or a tellurium atom. A is O, S, Se, Te or NR4Represents R1~ R4Each represents a hydrogen atom or a substituent. R3Is R1Or R2In addition, a 5- to 7-membered cyclic structure may be formed. M represents a hydrogen atom or a cation. ]
[2]The silver halide emulsion as described in [1], wherein gold sensitization is used in combination with chemical sensitization by the compound represented by the general formula (1).
[3] The silver halide grains having a silver iodochloride phase equivalent to 0.01 to 0.50 mol% per mole of total silver in the shell portion of the silver halide grains, described in [1] Silver halide emulsion.
[4]A method for chemically sensitizing a silver halide emulsion, comprising adding the compound represented by the general formula (1) according to [1].
[5] The method for chemical sensitization of a silver halide emulsion according to [4], wherein the compound represented by the general formula (1) according to [1] and a gold compound are added.
[6In the silver halide photographic light-sensitive material having at least one silver halide emulsion layer on the support, at least one of the silver halide emulsion layers is the above.[1], [2] or [3]A silver halide photographic light-sensitive material comprising the silver halide emulsion described above.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The compound represented by the general formula (1) used in the present invention is described in detail below.
In the formula (1), Ch represents a sulfur atom, a selenium atom or a tellurium atom. In the present invention, Ch is preferably a sulfur atom or a selenium atom, and more preferably a sulfur atom.
In the general formula (1), A is O, S, Se, Te or NR.FourRepresents R1~ RFourEach represents a hydrogen atom or a substituent. In the present invention, A is O, S, or NRFourIs preferable, more preferably O or S, and still more preferably O.
[0011]
R1~ RFourEach represents a hydrogen atom or a substituent, wherein the substituent is a halogen atom, an alkyl group (including a cycloalkyl group or a bicycloalkyl group), an alkenyl group (including a cycloalkenyl group or a bicycloalkenyl group), alkynyl. Group, aryl group, heterocyclic group, cyano group, hydroxyl group, nitro group, carboxyl group, alkoxy group, aryloxy group, silyloxy group, heterocyclic oxy group, acyloxy group, carbamoyloxy group, alkoxycarbonyloxy group, aryloxy Carbonyloxy group, amino group (including anilino group), acylamino group, aminocarbonylamino group, alkoxycarbonylamino group, aryloxycarbonylamino group, sulfamoylamino group, alkyl and arylsulfonylamino group, mercapto group Salt), alkylthio group, arylthio group, heterocyclic thio group, sulfamoyl group, sulfo group, alkyl and arylsulfinyl group, alkyl and arylsulfonyl group, acyl group, aryloxycarbonyl group, alkoxycarbonyl group, carbamoyl group, aryl Examples thereof include a heterocyclic azo group, an imide group, a phosphino group, a phosphinyl group, a phosphinyloxy group, a phosphinylamino group, and a silyl group.
More specifically, a halogen atom (for example, a chlorine atom, a bromine atom, an iodine atom), an alkyl group [represents a linear, branched, or cyclic substituted or unsubstituted alkyl group. An alkyl group (preferably an alkyl group having 1 to 30 carbon atoms, for example, methyl, ethyl, n-propyl, isopropyl, t-butyl, n-octyl, eicosyl, 2-chloroethyl, 2-cyanoethyl, 2-ethylhexyl), cycloalkyl A group (preferably a substituted or unsubstituted cycloalkyl group having 3 to 30 carbon atoms, such as cyclohexyl, cyclopentyl, 4-n-dodecylcyclohexyl), a bicycloalkyl group (preferably a substituted or unsubstituted group having 5 to 30 carbon atoms). A substituted bicycloalkyl group, that is, a monovalent group obtained by removing one hydrogen atom from a bicycloalkane having 5 to 30 carbon atoms, for example, bicyclo [1,2,2] heptan-2-yl, bicyclo [2, 2,2] octane-3-yl), and tricyclo structures with more ring structures That. An alkyl group (for example, an alkyl group of an alkylthio group) in the substituents described below also represents such an alkyl group. ], An alkenyl group [represents a linear, branched or cyclic substituted or unsubstituted alkenyl group. An alkenyl group (preferably a substituted or unsubstituted alkenyl group having 2 to 30 carbon atoms, such as vinyl, allyl, prenyl, geranyl, oleyl), a cycloalkenyl group (preferably a substituted or unsubstituted group having 3 to 30 carbon atoms) A cycloalkenyl group, that is, a monovalent group obtained by removing one hydrogen atom of a cycloalkene having 3 to 30 carbon atoms (for example, 2-cyclopenten-1-yl, 2-cyclohexen-1-yl), a bicycloalkenyl group (Substituted or unsubstituted bicycloalkenyl group, preferably a substituted or unsubstituted bicycloalkenyl group having 5 to 30 carbon atoms, that is, a monovalent group obtained by removing one hydrogen atom of a bicycloalkene having one double bond. For example, bicyclo [2,2,1] hept-2-en-1-yl, bicyclo [2,2, Oct-2-en-4-yl)], alkynyl group (preferably a substituted or unsubstituted alkynyl group having 2 to 30 carbon atoms, such as ethynyl, propargyl, trimethylsilylethynyl group, aryl group (preferably carbon number) 6-30 substituted or unsubstituted aryl groups such as phenyl, p-tolyl, naphthyl, m-chlorophenyl, o-hexadecanoylaminophenyl), heterocyclic groups (preferably 5 or 6 membered substituted or unsubstituted A monovalent group obtained by removing one hydrogen atom from an aromatic or non-aromatic heterocyclic compound, more preferably a 5- or 6-membered aromatic heterocyclic group having 3 to 30 carbon atoms. For example, 2-furyl, 2-thienyl, 2-pyrimidinyl, 2-benzothiazolyl), cyano group, hydroxyl group, nitro A carboxyl group, an alkoxy group (preferably a substituted or unsubstituted alkoxy group having 1 to 30 carbon atoms, such as methoxy, ethoxy, isopropoxy, t-butoxy, n-octyloxy, 2-methoxyethoxy), aryloxy A group (preferably a substituted or unsubstituted aryloxy group having 6 to 30 carbon atoms such as phenoxy, 2-methylphenoxy, 4-t-butylphenoxy, 3-nitrophenoxy, 2-tetradecanoylaminophenoxy), A silyloxy group (preferably a silyloxy group having 3 to 20 carbon atoms, such as trimethylsilyloxy, t-butyldimethylsilyloxy), a heterocyclic oxy group (preferably a substituted or unsubstituted heterocyclic oxy group having 2 to 30 carbon atoms) The group, 1-phenyltetrazole-5-oxy, 2-tetrahydropyranyloxy), acyloxy group (preferably formyloxy group, substituted or unsubstituted alkylcarbonyloxy group having 2 to 30 carbon atoms, substituted or unsubstituted arylcarbonyloxy group having 6 to 30 carbon atoms, for example, , Formyloxy, acetyloxy, pivaloyloxy, stearoyloxy, benzoyloxy, p-methoxyphenylcarbonyloxy), a carbamoyloxy group (preferably a substituted or unsubstituted carbamoyloxy group having 1 to 30 carbon atoms, for example, N, N -Dimethylcarbamoyloxy, N, N-diethylcarbamoyloxy, morpholinocarbonyloxy, N, N-di-n-octylaminocarbonyloxy, Nn-octylcarbamoyloxy), alkoxycarbonyloxy group (preferably Alternatively, a substituted or unsubstituted alkoxycarbonyloxy group having 2 to 30 carbon atoms such as methoxycarbonyloxy, ethoxycarbonyloxy, t-butoxycarbonyloxy, n-octylcarbonyloxy), aryloxycarbonyloxy group (preferably carbon A substituted or unsubstituted aryloxycarbonyloxy group of 7 to 30, for example, phenoxycarbonyloxy, p-methoxyphenoxycarbonyloxy, pn-hexadecyloxyphenoxycarbonyloxy), an amino group (preferably an amino group, A substituted or unsubstituted alkylamino group having 1 to 30 carbon atoms, a substituted or unsubstituted anilino group having 6 to 30 carbon atoms, such as amino, methylamino, dimethylamino, anilino, N-methyl-anilino, diph Nylamino), acylamino group (preferably formylamino group, substituted or unsubstituted alkylcarbonylamino group having 1 to 30 carbon atoms, substituted or unsubstituted arylcarbonylamino group having 6 to 30 carbon atoms such as formylamino, Acetylamino, pivaloylamino, lauroylamino, benzoylamino, 3,4,5-tri-n-octyloxyphenylcarbonylamino), aminocarbonylamino group (preferably substituted or unsubstituted aminocarbonylamino having 1 to 30 carbon atoms) , For example, carbamoylamino, N, N-dimethylaminocarbonylamino, N, N-diethylaminocarbonylamino, morpholinocarbonylamino), an alkoxycarbonylamino group (preferably a substituted or unsubstituted amine having 2 to 30 carbon atoms) Lucoxycarbonylamino group, for example, methoxycarbonylamino, ethoxycarbonylamino, t-butoxycarbonylamino, n-octadecyloxycarbonylamino, N-methyl-methoxycarbonylamino), aryloxycarbonylamino group (preferably having 7 carbon atoms) To 30 substituted or unsubstituted aryloxycarbonylamino groups such as phenoxycarbonylamino, p-chlorophenoxycarbonylamino, mn-octyloxyphenoxycarbonylamino), sulfamoylamino groups (preferably having 0 carbon atoms) To 30 substituted or unsubstituted sulfamoylamino groups such as sulfamoylamino, N, N-dimethylaminosulfonylamino, Nn-octylaminosulfonylamino), alkyl and Arylsulfonylamino group (preferably substituted or unsubstituted alkylsulfonylamino having 1 to 30 carbon atoms, substituted or unsubstituted arylsulfonylamino having 6 to 30 carbon atoms, such as methylsulfonylamino, butylsulfonylamino, phenylsulfonyl) Amino, 2,3,5-trichlorophenylsulfonylamino, p-methylphenylsulfonylamino), mercapto groups (and salts thereof). Examples of the salt herein include alkali metal salts such as Li, Na, K, Rb, and Cs, alkaline earth metal salts such as Mg and Ca, and gold salts, and alkylthio groups (preferably having 1 to 1 carbon atoms). 30 substituted or unsubstituted alkylthio groups such as methylthio, ethylthio, n-hexadecylthio), arylthio groups (preferably substituted or unsubstituted arylthio having 6 to 30 carbon atoms such as phenylthio, p-chlorophenylthio, m-methoxy Phenylthio), a heterocyclic thio group (preferably a substituted or unsubstituted heterocyclic thio group having 2 to 30 carbon atoms, such as 2-benzothiazolylthio, 1-phenyltetrazol-5-ylthio), a sulfamoyl group (preferably Is a substituted or unsubstituted sulfamoyl group having 0 to 30 carbon atoms, such as N-ethyl Rufamoyl, N- (3-dodecyloxypropyl) sulfamoyl, N, N-dimethylsulfamoyl, N-acetylsulfamoyl, N-benzoylsulfamoyl, N- (N′-phenylcarbamoyl) sulfamoyl), sulfo group Alkyl and arylsulfinyl groups (preferably substituted or unsubstituted alkylsulfinyl groups having 1 to 30 carbon atoms, substituted or unsubstituted arylsulfinyl groups having 6 to 30 carbon atoms, such as methylsulfinyl, ethylsulfinyl, phenylsulfinyl, p -Methylphenylsulfinyl), alkyl and arylsulfonyl groups (preferably substituted or unsubstituted alkylsulfonyl groups having 1 to 30 carbon atoms, substituted or unsubstituted arylsulfonyl groups having 6 to 30 carbon atoms, such as methylsulfonyl, Tilsulfonyl, phenylsulfonyl, p-methylphenylsulfonyl), acyl group (preferably formyl group, substituted or unsubstituted alkylcarbonyl group having 2 to 30 carbon atoms, substituted or unsubstituted arylcarbonyl group having 7 to 30 carbon atoms) For example, acetyl, pivaloyl, 2-chloroacetyl, stearoyl, benzoyl, pn-octyloxyphenylcarbonyl), an aryloxycarbonyl group (preferably a substituted or unsubstituted aryloxycarbonyl group having 7 to 30 carbon atoms, For example, phenoxycarbonyl, o-chlorophenoxycarbonyl, m-nitrophenoxycarbonyl, pt-butylphenoxycarbonyl), an alkoxycarbonyl group (preferably a substituted or unsubstituted alkoxycarbon group having 2 to 30 carbon atoms) Group such as methoxycarbonyl, ethoxycarbonyl, t-butoxycarbonyl, n-octadecyloxycarbonyl), carbamoyl group (preferably substituted or unsubstituted carbamoyl having 1 to 30 carbon atoms such as carbamoyl, N-methylcarbamoyl) N, N-dimethylcarbamoyl, N, N-di-n-octylcarbamoyl, N- (methylsulfonyl) carbamoyl), aryl and heterocyclic azo group (preferably a substituted or unsubstituted arylazo group having 6 to 30 carbon atoms) A substituted or unsubstituted heterocyclic azo group having 3 to 30 carbon atoms, such as phenylazo, p-chlorophenylazo, 5-ethylthio-1,3,4-thiadiazol-2-ylazo), an imide group (preferably N -Succinimide, N-phthalimide), phos Indino group (preferably a substituted or unsubstituted phosphino group having 2 to 30 carbon atoms, such as dimethylphosphino, diphenylphosphino, methylphenoxyphosphino), phosphinyl group (preferably substituted having 2 to 30 carbon atoms) Or an unsubstituted phosphinyl group such as phosphinyl, dioctyloxyphosphinyl, diethoxyphosphinyl), a phosphinyloxy group (preferably a substituted or unsubstituted phosphinyloxy group having 2 to 30 carbon atoms, For example, diphenoxyphosphinyloxy, dioctyloxyphosphinyloxy), phosphinylamino group (preferably a substituted or unsubstituted phosphinylamino group having 2 to 30 carbon atoms, such as dimethoxyphosphinylamino , Dimethylaminophosphinylamino), silyl group (preferably Properly represents a substituted or unsubstituted silyl group having 3 to 30 carbon atoms, e.g., trimethylsilyl, t- butyl dimethyl silyl, phenyl dimethylsilyl).
Among the above functional groups, those having a hydrogen atom may be substituted with the above groups by removing this.
[0012]
R1~ RFourEach may have a substituent, and examples thereof include the same as those described above. R1~ RFourAmong the substituents that may have, preferably a halogen atom, alkyl group, alkenyl group, alkynyl group, aryl group, heterocyclic group, cyano group, hydroxyl group, carboxyl group, alkoxy group, aryloxy group, hetero Ring oxy group, acyloxy group, carbamoyloxy group, alkoxycarbonyloxy group, aryloxycarbonyloxy group, amino group, acylamino group, aminocarbonylamino group, alkoxycarbonylamino group, aryloxycarbonylamino group, alkyl and arylsulfonylamino group , Alkylthio group, arylthio group, heterocyclic thio group, sulfamoyl group, sulfo group, alkyl and arylsulfonyl group, acyl group, aryloxycarbonyl group, alkoxycarbonyl group, carbamoyl group, imide group Phosphino group, phosphinyl group, phosphinyloxy group, phosphinylamino group, silyl group, etc., more preferably halogen atom, alkyl group, alkenyl group, aryl group, heterocyclic group, cyano group, hydroxyl group, carboxyl Group, alkoxy group, aryloxy group, heterocyclic oxy group, acyloxy group, amino group, acylamino group, alkylthio group, arylthio group, heterocyclic thio group, sulfamoyl group, sulfo group, alkyl and arylsulfonyl group, acyl group, carbamoyl Groups and the like.
[0013]
R in the formula (1)1, R2Are preferably each a hydrogen atom, an alkyl group, an aryl group, a heterocyclic group, a hydroxyl group, an alkoxy group, an aryloxy group, a heterocyclic oxy group, an amino group, a mercapto group (and salts thereof), an alkylthio group, an arylthio group, a hetero group A ring thio group and the like, more preferably a hydrogen atom, an alkyl group, an aryl group, a heterocyclic group and the like, and most preferably a hydrogen atom or an alkyl group.
[0014]
R in the formula (1)ThreeIs preferably a hydrogen atom, an alkyl group, an aryl group, a heterocyclic group or the like, more preferably an alkyl group, an aryl group or a heterocyclic group, and most preferably an alkyl group or an aryl group. R in the formula (1)FourIs preferably a hydrogen atom, alkyl group, alkenyl group, alkynyl group, aryl group, heterocyclic group, amino group, acylamino group, alkyl and arylsulfonylamino group, alkyl and arylsulfonyl group, acyl group, aryloxycarbonyl group, alkoxy A carbonyl group, a carbamoyl group, etc., more preferably a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic group.
[0015]
In formula (1), RThreeIs R1Or R2In addition, a 5- to 7-membered cyclic structure may be formed. The cyclic structure formed at this time becomes a non-aromatic oxygen-containing, sulfur-containing, nitrogen-containing or selenium-containing heterocycle. The cyclic structure may form a condensed ring structure with an aromatic or non-aromatic carbocyclic ring or an aromatic or non-aromatic heterocyclic ring. In the present invention, RThreeIs R1Or R2And a 5- to 7-membered cyclic structure is preferable, a 6-membered cyclic structure is more preferable, and a 6-membered cyclic structure is formed, and A in Formula (1) represents O. preferable. As such a ring structure, glucose, mannose, galactose, growth, xylose, lyxose, arabinose, ribose, fucose, idose, talose, allose, altrose, rhamnose, sorbose, digitoxose, 2-deoxyglucose, 2 -Sugar structures such as deoxygalactose, fructose, glucosamine, galactosamine, glucuronic acid and the like. Among these saccharides, glucose, mannose, galactose, xylose, arabinose, rhamnose, 2-deoxyglucose, 2-deoxygalactose or glucosamine are more preferable, glucose, mannose, galactose, xylose or glucosamine is more preferable, and glucose is the most preferable. In these sugar structures, there are α isomers and β isomers having different stereostructures at the 1-position, and D isomers and L isomers in the relationship of enantiomers. In the present invention, these isomers are distinguished from each other. Absent.
[0016]
In the formula (1), M represents a hydrogen atom or a cation. The cation here is an inorganic cation such as an alkali metal such as Li, Na, K, Rb, or Cs, or an alkaline earth metal such as Mg, Ca, or Ba, or a substituted or unsubstituted ammonium ion or phosphonium ion. Represents an organic cation. However, in the present invention, when M is an inorganic cation, M is Au.+Or Ag+Is not represented. In addition, when M represents a cation, Ch in the formula (1) is an anion species of a chalcogen atom (-S-, -Se-Or -Te-). In the present invention, M is preferably a hydrogen atom, an alkali metal cation, an alkaline earth metal cation, or a substituted or unsubstituted ammonium ion, and a hydrogen atom, an alkali metal cation, or a substituted or unsubstituted ammonium ion. More preferred is an alkali metal cation or a substituted or unsubstituted ammonium ion.
[0017]
In the present invention, among the compounds represented by the formula (1), preferable ones are that Ch represents a sulfur atom or a selenium atom, A represents O or S, and R1, R2Are each a hydrogen atom, alkyl group, aryl group, heterocyclic group, alkoxy group, aryloxy group, heterocyclic oxy group, alkylthio group, arylthio group, heterocyclic thio group, and RThreeIs a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic group, and RFourIs a hydrogen atom, alkyl group, aryl group, heterocyclic group, amino group, acylamino group, alkyl and arylsulfonylamino group, alkyl and arylsulfonyl group, or acyl group, and M is a hydrogen atom, an alkali metal cation, It represents a cation of an alkaline earth metal, or a substituted or unsubstituted ammonium ion. More preferably, Ch represents a sulfur atom or a selenium atom, A represents O or S, and R1, R2Are each a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic group, and RThreeIs an alkyl group, an aryl group, or a heterocyclic group, and RFourIs a hydrogen atom, an alkyl group, an aryl group, a heterocyclic group, or an acyl group, and M represents a hydrogen atom, an alkali metal cation, or a substituted or unsubstituted ammonium ion. Most preferably Ch represents a sulfur atom, A represents O or S, R1, R2Are each a hydrogen atom, an alkyl group, or an aryl group, and RThreeIs an alkyl group or an aryl group, and RFourIs a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic group, and M represents an alkali metal cation or a substituted or unsubstituted ammonium ion. Of these, R is particularly preferred in the present invention.ThreeIs R1Or R2The cyclic structure formed together with glucose, mannose, galactose, growth, xylose, lyxose, arabinose, ribose, fucose, idose, talose, allose, altrose, rhamnose, sorbose, digitoxose, 2-deoxyglucose, 2-deoxygalactose , Fructose, glucosamine, galactosamine, glucuronic acid and other sugar derivatives (when A in formula (1) is O) and sulfur analogues (when A in formula (1) is S). Among these saccharides, glucose, mannose, galactose, xylose, arabinose, rhamnose, 2-deoxyglucose, 2-deoxygalactose or glucosamine are more preferable, glucose, mannose, galactose, xylose or glucosamine is more preferable, and glucose is the most preferable. In these sugar structures, there are α isomers and β isomers having different stereostructures at the 1-position, and D isomers and L isomers which are in the relationship of enantiomers. Absent.
[0018]
Next, specific examples of the compound represented by the general formula (1) are shown below. However, the present invention is not limited to these. In addition, the three-dimensional structure of a compound in which a plurality of stereoisomers can exist is not limited.
[0019]
[Chemical 3]
Figure 0003967166
[0020]
[Formula 4]
Figure 0003967166
[0021]
[Chemical formula 5]
Figure 0003967166
[0022]
The compound represented by the general formula (1) of the present invention can be synthesized by various known methods. Since an optimum synthesis method is selected depending on individual compounds, a general synthesis method cannot be mentioned. Among them, a useful synthesis route will be described.
[0023]
(Synthesis of Exemplary Compound C-1)
Exemplary compound C-1 was synthesized according to Scheme 1.
Scheme 1
[0024]
[Chemical 6]
Figure 0003967166
(Synthesis of Synthesis Intermediate 1)
200 mL of hydrogen bromide 25% acetic acid solution was added to 156.1 g of pentaacetyl-β-D-glucose. After stirring at room temperature for 3 hours, 800 mL of ethyl acetate and 800 mL of ice water were added for liquid separation. The organic layer was washed with 200 mL of a saturated aqueous solution of sodium bicarbonate and then with 200 mL of ice water, dried over sodium sulfate, and concentrated under reduced pressure to obtain 164 g of synthetic intermediate 1.
(Synthesis of Synthesis Intermediate 2)
164 g of synthetic intermediate 1 and 30 g of thiourea were added to 400 mL of acetone, and the mixture was refluxed for 2 hours under a nitrogen atmosphere. After adding 100 mL of ethyl acetate to the reaction solution, the mixture was ice-cooled, and the precipitated crystals were collected by filtration to obtain 125 g of synthetic intermediate 2.
(Synthesis of Exemplary Compound C-1)
124 g of synthetic intermediate 2 was added to 250 mL of methanol, and sodium methoxide 28% methanol solution was added dropwise. After stirring at room temperature for 3 hours, 57 g of Exemplified Compound C-1 was obtained by filtering the precipitated crystals.
[0026]
(Synthesis of Exemplified Compound C-2)
Exemplified Compound C-2 could be obtained in the same manner as Exemplified Compound C-1, except that a 10% aqueous solution of potassium disulfite was used instead of the 28% sodium methoxide methanol solution.
[0027]
(Synthesis of Exemplified Compound C-42)
Exemplified compound C-42 could be obtained by performing the same procedure in the synthesis of exemplified compound C-2 except that selenourea was used instead of thiourea.
[0028]
(Synthesis of Exemplary Compound C-49)
J. et al. Chem. Soc. Chem. Commun. , No. 11, page 693 (1985), 1.0 g of bis (tetra-O-acetyl-β-D-glucopyranosyl) ditelluride, which can be synthesized by the method described in Example 1, is dissolved in 10 mL of methanol and cooled to 0 ° C. Slowly add 110 mg of sodium borohydride. After stirring at 0 ° C. for 30 minutes, 100 mL of ethanol is added, and the precipitated crystals can be collected by filtration to obtain Exemplified Compound C-49.
[0029]
The amount of the compound represented by the general formula (1) of the present invention can vary widely depending on the case, but it is 1 × 10 5 per mole of silver halide.-7~ 5x10-3Mole, preferably 5 × 10-7~ 5x10-FourIs a mole.
[0030]
The compound represented by the general formula (1) of the present invention is water or alcohols (methanol, ethanol, etc.), ketones (acetone, etc.), amides (dimethylformamide, etc.), glycols (methylpropylene glycol, etc.) , And esters (such as ethyl acetate) may be added as a solvent.
[0031]
Although the compound represented by the general formula (1) of the present invention can be added at any stage during the production of the emulsion, it is preferably added after the formation of the silver halide grains until the end of the chemical sensitization step. .
[0032]
The silver halide grains in the silver halide emulsion used in the present invention are preferably substantially cubic or tetradecahedral crystal grains having {100} faces (these grains have rounded vertices and higher order faces. Or tabular grains having an aspect ratio of 2 or more in which 50% or more of the total projected area is composed of {100} faces or {111} faces. The aspect ratio is a value obtained by dividing the diameter of a circle corresponding to the projected area by the thickness of the particle. In the present invention, cubic particles, tabular grains having a {100} plane as a main plane, or tabular grains having a {111} plane as a main plane are preferably applied.
[0033]
As the silver halide emulsion used in the present invention, silver chloride, silver bromide, silver iodobromide, silver salt (iodo) bromide emulsion, etc. are used. From the viewpoint of rapid processability, the silver chloride content is low. A silver chloride, silver chlorobromide, silver chloroiodide or silver chlorobromoiodide emulsion of 90 mol% or more is preferred, more preferably a silver chloride content of 95 mol% or more, still more preferably 98 mol% or more. Silver, silver chlorobromide, silver chloroiodide, or silver chlorobromoiodide emulsions are preferred. Among such silver halide emulsions, in the present invention, 0.01 to 0.50 mol%, more preferably 0.05 to 0.40 mol% per mol of total silver in the shell portion of silver halide grains. Those having a silver iodochloride phase are preferred because high sensitivity is obtained and they are excellent in high illumination exposure suitability. Further, a silver halide grain having a silver bromide localized phase of 0.2 to 5 mol% per mol of total silver, more preferably 0.5 to 3 mol% per mol of silver gives high sensitivity, and This is particularly preferable because the photographic performance can be stabilized.
[0034]
When the emulsion of the present invention contains silver iodide, the introduction of iodide ions may be carried out by adding an iodide salt solution alone or in combination with addition of a silver salt solution and a high chloride salt solution. A solution may be added. In the latter case, the iodide salt solution and the high chloride salt solution may be added separately or as a mixed solution of the iodide salt and the high chloride salt. The iodide salt is added in the form of a soluble salt such as an alkali or alkaline earth iodide salt. Alternatively, iodide can be introduced by cleaving iodide ions from organic molecules described in US Pat. No. 5,389,508. As another iodide ion source, fine silver iodide grains can be used.
[0035]
The addition of the iodide salt solution may be concentrated at one time of grain formation or may be performed over a certain period. The position of introduction of iodide ions into the high chloride emulsion is limited in obtaining an emulsion with high sensitivity and low covering. Iodide ions are introduced more into the emulsion grains and the increase in sensitivity is smaller. Therefore, the iodide salt solution is preferably added outside 50% of the grain volume, more preferably outside 70%, and most preferably outside 80%. The addition of the iodide salt solution is preferably completed within 98% of the grain volume, and most preferably within 96%. The addition of the iodide salt solution is completed slightly inside from the grain surface, so that an emulsion with higher sensitivity and lower covering can be obtained.
[0036]
The distribution of iodide ion concentration in the depth direction in the grain can be measured by etching / TOF-SIMS (Time of Flight-Secondary Ion Mass Spectrometry) method, for example, using TRIFT II type TOF-SIMS manufactured by Phi Evans. The TOF-SIMS method is specifically described in “Surface Analysis Technology Selection, Secondary Ion Mass Spectrometry” Maruzen Co., Ltd. (1999), edited by the Surface Science Society of Japan. When the emulsion grains are analyzed by the etching / TOF-SIMS method, it is possible to analyze that iodide ions ooze out toward the grain surface even when the addition of the iodide salt solution is finished inside the grains. When the emulsion of the present invention contains silver iodide, the iodide ion has a concentration maximum on the grain surface and the iodide ion concentration is attenuated inward by analysis by etching / TOF-SIMS method. Is preferred.
[0037]
When the emulsion of the present invention contains a silver bromide localized phase, it is preferable to produce a silver bromide localized phase having a silver bromide content of at least 10 mol% or more by epitaxial growth on the grain surface. The silver bromide content of the silver bromide localized phase is preferably in the range of 10 to 60 mol%, and most preferably in the range of 20 to 50 mol%. The silver bromide localized phase is preferably composed of 0.1 to 5 mol% of silver constituting the silver halide grains in the present invention, and is preferably composed of 0.3 to 4 mol% of silver. More preferably, it is configured. In the silver bromide localized phase, primary iridium (III) chloride, primary iridium bromide (III), secondary iridium chloride (IV), sodium hexachloroiridium (III), potassium hexachloroiridium (IV) It is preferable to contain a Group VIII metal complex ion such as hexaammineiridium (IV) salt, trioxalatoiridium (III) salt, or trioxalatoiridium (IV) salt. The amount of these compounds added varies over a wide range depending on the purpose, but it is 10 per mol of silver halide.-9-10-2Mole is preferred.
[0038]
In the present invention, transition metal ions can be added in the process of forming and / or growing silver halide grains, and the metal ions can be incorporated into and / or on the surface of the silver halide grains. As the metal ion to be used, a transition metal ion is preferable, and iron, ruthenium, iridium, osmium, lead, cadmium, or zinc is particularly preferable. Further, these metal ions are more preferably used as a hexacoordinate octahedral complex with a ligand. When an inorganic compound is used as a ligand, cyanide ion, halide ion, thiocyan, hydroxide ion, peroxide ion, azide ion, nitrite ion, water, ammonia, nitrosyl ion, or thiol It is preferable to use a nitrosyl ion, and it is also preferable to use it in coordination with any of the above metal ions of iron, ruthenium, iridium, osmium, lead, cadmium, or zinc, and a plurality of types of ligands are used as one complex. It is also preferred to use it in the molecule. An organic compound can also be used as the ligand, and preferred organic compounds include a chain compound having 5 or less carbon atoms in the main chain and / or a 5-membered or 6-membered heterocyclic compound. . More preferred organic compounds are compounds having a nitrogen atom, phosphorus atom, oxygen atom or sulfur atom in the molecule as a coordination atom to the metal, most preferably furan, thiophene, oxazole, isoxazole, thiazole, isothiazole. , Imidazole, pyrazole, triazole, furazane, pyran, pyridine, pyridazine, pyrimidine, and pyrazine, and compounds in which these compounds are used as a basic skeleton and substituents are introduced into them are also preferable.
[0039]
A combination of metal ions and ligands is preferably a combination of iron ions, ruthenium ions and cyanide ions. In these compounds, cyanide ions preferably account for a majority of the coordination number to iron or ruthenium as the central metal, and the remaining coordination sites are thiocyanate, ammonia, water, nitrosyl ion, dimethyl sulfoxide, pyridine, pyrazine. Or preferably 4,4′-bipyridine. Most preferably, all six coordination sites of the central metal are occupied by cyanide ions to form a hexacyanoiron complex or a hexacyanoruthenium complex. These complexes with cyanide ions as ligands are 1 × 10 5 per mole of silver during grain formation.-8Mol ~ 1 × 10-2Mole addition is preferred, 1 × 10-6Mol ~ 5x10-FourMost preferably, it is added in a molar amount. When iridium is used as the central metal, the ligand is preferably a fluoride ion, a chloride ion, a bromide ion, or an iodide ion, and among them, a chloride ion or a bromide ion is preferably used. Specifically preferred as the iridium complex is [IrCl6]3-, [IrCl6]2-, [IrClFive(Thiazole)]2-, [IrClFive(5-CHThree-Thiazole)]2-, [IrClFive(H2O)]2-, [IrClFive(H2O)]-, [IrClFour(H2O)2]-, [IrClFour(H2O)2]0, [IrClThree(H2O)Three]0, [IrClThree(H2O)Three]+, [IrBr6]3-, [IrBr6]2-, [IrBrFive(H2O)]2-, [IrBrFive(H2O)]-, [IrBrFour(H2O)2]-, [IrBrFour(H2O)2]0, [IrBrThree(H2O)Three]0, And [IrBrThree(H2O)Three]+It is. These iridium complexes are 1 × 10 5 per mole of silver during grain formation.-TenFrom mole to 1 × 10-3Mole addition is preferred, 1 × 10-8From mole to 1 × 10-FiveMost preferably, it is added in a molar amount. When ruthenium and osmium are used as the central metals, it is also preferable to use nitrosyl ions, thionitrosyl ions, or water molecules and chloride ions as ligands. More preferably, a pentachloronitrosyl complex, a pentachlorothionitrosyl complex, or a pentachloroaqua complex is formed, and a hexachloro complex is also preferably formed. These complexes are 1 x 10 per mole of silver during grain formation.-TenFrom mole to 1 × 10-6It is preferable to add a molar amount, more preferably 1 × 10-9From mole to 1 × 10-6The molar addition.
[0040]
In the present invention, the above complex is added directly to the reaction solution at the time of silver halide grain formation, added to an aqueous halide solution for forming silver halide grains, or added to other solutions to obtain a grain formation reaction. It is preferably incorporated into the silver halide grains by adding to the solution. Furthermore, it is also preferable that these methods are combined and contained in the silver halide grains.
[0041]
When these complexes are incorporated into silver halide grains, it is preferable that they be uniformly present inside the grains, but these are disclosed in JP-A-4-208936, JP-A-2-125245, and JP-A-3-188437. As described above, it is also preferable to make it exist only in the particle surface layer, and it is also preferable to add a layer containing no complex only on the particle surface and containing no complex on the particle surface. Further, as disclosed in US Pat. Nos. 5,252,451 and 5,256,530, the particle surface phase may be modified by physical ripening with fine particles incorporating the complex in the particles. preferable. Furthermore, these methods can be used in combination, and a plurality of types of complexes may be incorporated in one silver halide grain. The halogen composition at the position where the above complex is contained is not particularly limited, and the silver chloride layer, the silver chlorobromide layer, the silver bromide layer, the silver iodochloride layer, and the silver iodobromide layer should each contain the complex. Is also preferable.
[0042]
The average grain size of the silver halide grains contained in the silver halide emulsion used in the present invention (the grain size is defined by the diameter of a circle equivalent to the projected area of the grains and the number average thereof) is 0.1 μm to 2 μm. Is preferred.
The particle size distribution is preferably a so-called monodispersed material having a coefficient of variation (the standard deviation of the particle size distribution divided by the average particle size) of 20% or less, desirably 15% or less, more preferably 10% or less. . At this time, for the purpose of obtaining a wide latitude, it is preferable to use two or more types of monodispersed emulsions having different average grain sizes by blending them in the same layer or coating them in multiple layers.
[0043]
Various compounds or precursors thereof are added to the silver halide emulsion used in the present invention for the purpose of preventing fogging during the production process, storage or photographic processing of the light-sensitive material, or stabilizing the photographic performance. be able to. Specific examples of these compounds are preferably those described in pages 39 to 72 of the above-mentioned JP-A-62-215272. Further, 5-arylamino-1,2,3,4-thiatriazole compounds described in EP 0447647 (the aryl residue has at least one electron-withdrawing group) are also preferably used.
[0044]
In the present invention, in order to improve the storage stability of the silver halide emulsion, the hydroxamic acid derivative described in JP-A No. 11-109576 and the carbonyl group described in JP-A No. 11-327094 are adjacent to both ends of an amino group. Alternatively, cyclic ketones having a double bond substituted with a hydroxyl group (particularly those represented by the general formula (S1), paragraph numbers 0036 to 0071 can be incorporated in the specification of the present application), JP-A-11 -143011, sulfo-substituted catechol and hydroquinones (for example, 4,5-dihydroxy-1,3-benzenedisulfonic acid, 2,5-dihydroxy-1,4-benzenedisulfonic acid, 3,4-dihydroxybenzene) Sulfonic acid, 2,3-dihydroxybenzenesulfonic acid, 2,5-dihydroxybenzenesulfonic acid, 3,4 5-trihydroxybenzenesulfonic acid and salts thereof), hydroxylamines represented by general formula (A) of US Pat. No. 5,556,741 (column 4, US Pat. No. 5,556,741) The description of the 56th line to the 11th column of the 22nd line is preferably applied to the present application and is incorporated as a part of the specification of the present application), and general formulas (I) to (III) of JP-A-11-102045. Is preferably used also in the present invention.
[0045]
Spectral sensitization is performed for the purpose of imparting spectral sensitivity to a desired light wavelength range for each layer of emulsion in the light-sensitive material of the present invention.
Examples of spectral sensitizing dyes used for spectral sensitization in the blue, green and red regions in the light-sensitive material of the present invention include F.I. M.M. Examples include those described in Harmer's Heterocyclic compounds-Cyanine dyes and related compounds (John Wiley & Sons [New York, London, 1964)]. As specific examples of compounds and spectral sensitization, those described in JP-A-62-215272, page 22, right upper column to page 38 are preferably used. In particular, as a red-sensitive spectral sensitizing dye for silver halide emulsion grains having a high silver chloride content, the spectral sensitizing dye described in JP-A-3-123340 is stable, the strength of adsorption, and the exposure temperature. This is very preferable from the viewpoint of dependency and the like.
[0046]
The addition amount of these spectral sensitizing dyes varies widely depending on the case, and 0.5 × 10 5 per mol of silver halide.-6Mol ~ 1.0 × 10-2A molar range is preferred. More preferably, 1.0 × 10-6Mol ~ 5.0 × 10-3The range of moles.
[0047]
The silver halide grains used in the present invention are not only treated with the compounds according to the present invention, but also have conventional metal sensitization such as sulfur sensitization, selenium sensitization and tellurium sensitization, gold sensitization and palladium sensitization. At least one of sensitization and reduction sensitization can be applied in any step of the silver halide emulsion production process. It is preferable to combine two or more sensitization methods. Various types of emulsions can be prepared depending on which step is used for chemical sensitization. There are a type that embeds chemical sensitization nuclei inside the particle, a type that embeds in a shallow position from the particle surface, or a type that creates chemical sensitization nuclei on the surface. In the emulsion of the present invention, the location of chemical sensitization nuclei can be selected according to the purpose, but generally preferred is the case where at least one chemical sensitization nucleus is formed in the vicinity of the surface.
[0048]
One chemical sensitization that can be preferably used in combination is chalcogenide sensitization and noble metal sensitization, either alone or in combination, by TH James, The Photographic Process, 4th edition, published by Macmillan, 1977, (TH James, The Theory of the Photographic Process, 4th ed, McMillan, 1977), which can be performed using active gelatin, as well as research disclosure. Volume 120, April 1974, 12008; Research Disclosure Volume 34, June 1975, 13452, U.S. Pat. Nos. 2,642,361, 3,297,446, 3,772,031, 3,857,711, 3,901,71 No. 4,266,018 and 3,904,415, and British Patent 1,315,755 at pAg 5-10, pH 5-8 and temperature 30-80 ° C. Sulfur, selenium, tellurium, gold, platinum, palladium, iridium or a combination of these sensitizers can be used. In the noble metal sensitization, noble metal salts such as gold, platinum, palladium, iridium and the like can be used, and among them, gold sensitization, palladium sensitization, and a combination of both are preferable.
[0049]
As the selenium sensitizer that can be used in combination, selenium compounds disclosed in conventionally known patents can be used. Usually, unstable selenium compounds and / or non-labile selenium compounds are used by adding them and stirring the emulsion at a high temperature, preferably 40 ° C. or higher, for a predetermined time. As the unstable selenium compound, compounds described in JP-B Nos. 44-15748, 43-13489, JP-A-4-25832, JP-A-4-109240, and the like are preferably used. The amount of the selenium sensitizer used in the present invention varies depending on the activity of the selenium sensitizer used, the type and size of the silver halide, the ripening temperature and time, etc., but preferably the silver halide 1 2 x 10 per mole-6More than mole 5 × 10-6It is as follows. The temperature of chemical sensitization when a selenium sensitizer is used is preferably 40 ° C. or higher and 80 ° C. or lower. pAg and pH are arbitrary. For example, with respect to pH, the effects of the present invention can be obtained in a wide range from 4 to 9. As a gold sensitizer for gold sensitization that can be used in combination with this, the gold oxidation number may be either +1 or +3, and a gold compound that is usually used as a gold sensitizer can be used. Typical examples include chloroaurate, potassium chloroaurate, auric trichloride, potassium auric thiocyanate, potassium iodoaurate, tetracyanoauric acid, ammonium aurothiocyanate, pyridyltrichlorogold, gold sulfide, gold selenide. Can be mentioned. The amount of the gold sensitizer added varies depending on various conditions, but as a guide, it is 1 × 10 6 per mole of silver halide.-7More than 5 moles and 5 × 10-FiveMolar or less is preferable.
[0050]
In the chemical sensitization of the present invention, it is desirable to use conventionally known sulfur sensitization in combination. For sulfur sensitization, those known as sulfur sensitizers can be used. For example, thiosulfate, allylthiocarbamide thiourea, allyl isothiocyanate, cystine, p-toluenethiosulfonate, rhodanine and the like can be mentioned. In addition, for example, U.S. Pat. Nos. 1,574,944, 2,410,689, 2,278,947, 2,728,668, 3,501,313, No. 3,656,955, German Patent 1,422,869, Japanese Examined Patent Publication No. 56-24937, and Japanese Unexamined Patent Publication No. 55-4516 can also be used. The amount of sulfur sensitizer added may be sufficient to effectively increase the sensitivity of the emulsion. This amount varies over a considerable range under various conditions such as pH, temperature, silver halide grain size, etc., but is 1 × 10 6 per mole of silver halide.-7More than mole 5 × 10-FiveMolar or less is preferable.
[0051]
In the chemical sensitization of the silver halide emulsion of the present invention, gold sensitization known in the art can be further used in combination. By giving the gold sensitization, the emulsion can be increased in sensitivity, and fluctuations in photographic performance when scanning exposure is performed with a laser beam or the like can be reduced. As gold sensitization that can be used in combination, gold sulfide colloid sensitization, gold (I) complexes having various inorganic gold compounds and inorganic ligands, and gold (I) compounds having organic ligands can be used. As an inorganic gold compound, for example, chloroauric acid or a salt thereof, and a gold (I) complex having an inorganic ligand, for example, gold dithiocyanate such as gold (I) potassium dithiocyanate or gold (I) dithiosulfate 3 Compounds such as gold dithiosulfate compounds such as sodium can be used.
[0052]
Examples of the gold (I) compound having an organic ligand include bisgold (I) mesoionic heterocycles described in JP-A-4-267249, such as gold (I) tetrafluoroborate bis (1,4,5- Trimethyl-1,2,4-triazolium-3-thiolate), organomercaptogold (I) complexes described in JP-A-11-218870, such as potassium bis (1- [3- (2-sulfonatebenzoamido) phenyl] -5-mercaptotetrazole potassium salt) orate (I) pentahydrate, gold (I) compound coordinated with nitrogen compound anion described in JP-A-4-268550, for example, bis (1-methylhydantoinato) Gold (I) sodium salt tetrahydrate can be used. Further, gold (I) thiolate compounds described in US Pat. No. 3,503,749, gold compounds described in JP-A-8-69074, JP-A-8-69075, and JP-A-9-269554, The compounds described in Japanese Patent Nos. 5620841, 5912112, 5620841, 5939245, and 5912111 can also be used.
The amount of these compounds added may vary widely depending on the case, but is 5 × 10 5 per mole of silver halide.-7~ 5x10-3Mole, preferably 5 × 10-6~ 5x10-FourIs a mole.
[0053]
Conventionally known photographic materials and additives can be used for the silver halide photographic light-sensitive material of the present invention.
For example, a transmissive support or a reflective support can be used as the photographic support. As the transparent support, transparent films such as cellulose nitrate film and polyethylene terephthalate, polyester of 2,6-naphthalenedicarboxylic acid (NDCA) and ethylene glycol (EG), and polyester of NDCA, terephthalic acid and EG For example, an information recording layer such as a magnetic layer is preferably used. As the reflective support, a reflective support that is laminated with a plurality of polyethylene layers or polyester layers and contains a white pigment such as titanium oxide in at least one of such a water-resistant resin layer (laminate layer) is preferable.
[0054]
In the present invention, more preferred reflective supports include those having a polyolefin layer having fine pores on the paper substrate on the side on which the silver halide emulsion layer is provided. The polyolefin layer may consist of multiple layers, in which case the polyolefin layer adjacent to the gelatin layer on the silver halide emulsion layer side preferably has no micropores (eg polypropylene, polyethylene) and is close to the paper substrate More preferred is a polyolefin (for example, polypropylene or polyethylene) having micropores on the side. The density of the multi-layer or single-layer polyolefin layer located between the paper substrate and the photographic constituent layer is preferably 0.40 to 1.0 g / ml, more preferably 0.50 to 0.70 g / ml. In addition, the thickness of the multilayer or single polyolefin layer located between the paper substrate and the photographic constituent layer is preferably 10 to 100 μm, more preferably 15 to 70 μm. Further, the ratio of the thickness of the polyolefin layer to the paper substrate is preferably 0.05 to 0.2, more preferably 0.1 to 0.5.
[0055]
In addition, it is also preferable to provide a polyolefin layer on the opposite side (back surface) to the photographic constituent layer of the paper substrate from the viewpoint of increasing the rigidity of the reflective support. In this case, the back surface polyolefin layer has a matte polyethylene surface. Alternatively, polypropylene is preferable, and polypropylene is more preferable. The polyolefin layer on the back surface is preferably 5 to 50 μm, more preferably 10 to 30 μm, and further preferably the density is 0.7 to 1.1 g / ml. In the reflective support of the present invention, preferred embodiments relating to the polyolefin layer provided on the paper substrate are described in JP-A Nos. 10-333277, 10-333278, 11-52513, 11-65024, EP0880065, and Examples are described in EP 0880066.
[0056]
Furthermore, it is preferable to contain a fluorescent brightening agent in the water-resistant resin layer. Further, the fluorescent brightener may be dispersed in the hydrophilic colloid layer of the photosensitive material. As the fluorescent whitening agent, benzoxazole-based, coumarin-based, and pyrazoline-based compounds can be preferably used, and benzoxazolylnaphthalene-based and benzoxazolyl stilbene-based fluorescent whitening agents are more preferable. The amount used is not particularly limited, but is preferably 1 to 100 mg / m.2It is. The mixing ratio in the case of mixing with a water resistant resin is preferably 0.0005 to 3 mass%, more preferably 0.001 to 0.5 mass%, based on the resin.
The reflective support may be a transmissive support or a reflective colloid coated with a hydrophilic colloid layer containing a white pigment.
Further, the reflective support may be a support having a specular reflective or second-type diffuse reflective metallic surface.
[0057]
The support used for the light-sensitive material according to the present invention is a support provided on a support having a white polyester-based support or a layer containing a white pigment on the side having a silver halide emulsion layer. It may be used. In order to further improve the sharpness, an antihalation layer is preferably coated on the silver halide emulsion layer coating side or the back surface of the support. In particular, the transmission density of the support is preferably set in the range of 0.35 to 0.8 so that the display can be viewed with either reflected light or transmitted light.
[0058]
In the light-sensitive material according to the present invention, for the purpose of improving the sharpness of an image or the like, a dye which can be decolored by processing as described in pages 27 to 76 of European Patent EP0,337,490A2 is added to a hydrophilic colloid layer (among others) However, an oxonol dye) is added so that the optical reflection density at 680 nm of the photosensitive material is 0.70 or more, or a divalent to tetravalent alcohol (for example, trimethylolethane) is added to the water-resistant resin layer of the support. ) Etc. It is preferable to contain 12% by mass or more (more preferably 14% by mass or more) of titanium oxide surface-treated.
[0059]
The photosensitive material according to the present invention has a hydrophilic colloid layer for preventing irradiation and halation or improving safety light safety, etc., described on pages 27 to 76 of EP 0337490A2, It is preferable to add a dye (in particular, an oxonol dye or a cyanine dye) that can be decolored by treatment. Furthermore, the dyes described in European Patent EP0819977 are also preferably added to the present invention.
Some of these water-soluble dyes degrade color separation and safelight safety when the amount used is increased. As the dye that can be used without deteriorating color separation, water-soluble dyes described in JP-A Nos. 5-127324, 5-127325, and 5-216185 are preferable.
[0060]
In the present invention, a colored layer that can be decolored by treatment in place of the water-soluble dye or in combination with the water-soluble dye is used. The colored layer that can be decolored by the treatment used may be in direct contact with the emulsion layer, or may be disposed so as to be in contact with an intermediate layer containing a treatment color mixing inhibitor such as gelatin or hydroquinone. This colored layer is preferably placed under the emulsion layer (support side) that develops the same primary color as the colored color. It is possible to install all the colored layers corresponding to each primary color individually, or to select and install only some of them. It is also possible to install a colored layer that has been colored corresponding to a plurality of primary color gamuts. The optical reflection density of the colored layer is the wavelength having the highest optical density in the wavelength range used for exposure (visible light range of 400 nm to 700 nm for normal printer exposure, wavelength of the scanning exposure light source used for scanning exposure). The optical density value at is preferably 0.2 or more and 3.0 or less. More preferably, it is 0.5 or more and 2.5 or less, and particularly preferably 0.8 or more and 2.0 or less.
[0061]
In order to form the colored layer, a conventionally known method can be applied. For example, the dyes described in JP-A-2-282244, page 3, upper right column to page 8 and those described in JP-A-3-7931, page 3, upper right column to page 11, lower left column, can be used for solid fine particle dispersions. Described in JP-A-1-239544, a method of incorporating a hydrophilic colloid layer in a state, a method of mordanting an anionic dye into a cationic polymer, a method of adsorbing a dye to fine particles such as silver halide and fixing it in the layer Such as using colloidal silver. As a method of dispersing a fine powder of a pigment in a solid state, for example, a method of containing a fine powder dye which is substantially water-insoluble at least at pH 6 or less but is substantially water-soluble at least at pH 8 or more is disclosed in Japanese Patent Application Laid-Open No. Hei. 2-308244, pages 4-13. Further, for example, a method for mordanting an anionic dye into a cationic polymer is described on pages 18 to 26 of JP-A-2-84737. US Pat. Nos. 2,688,601 and 3,459,563 show methods for preparing colloidal silver as a light absorber. Among these methods, a method of containing a fine powder dye and a method of using colloidal silver are preferable.
[0062]
The silver halide photographic light-sensitive material of the present invention is used for a color negative film, a color positive film, a color reversal film, a color reversal photographic paper, a color photographic paper, etc., among which it is preferably used as a color photographic paper.
The color photographic paper preferably has at least one yellow color-developing silver halide emulsion layer, magenta color-developing silver halide emulsion layer, and cyan color-developing silver halide emulsion layer. The silver halide emulsion layer is a yellow color forming silver halide emulsion layer, a magenta color forming silver halide emulsion layer, and a cyan color forming silver halide emulsion layer in order from the support.
[0063]
However, a different layer structure may be used.
The silver halide emulsion layer containing the yellow-coupler may be disposed at any position on the support. If the yellow coupler-containing layer contains silver halide tabular grains, a magenta coupler-containing halogenated emulsion layer may be used. It is preferably coated at a position farther from the support than at least one silver emulsion layer or cyan coupler-containing silver halide emulsion layer. From the viewpoint of promoting color development, promoting desilvering, and reducing residual color by sensitizing dye, the yellow coupler-containing silver halide emulsion layer is located farthest from the support than the other silver halide emulsion layers. It is preferable that it is coated. Further, from the viewpoint of reducing Blix fading, the cyan coupler-containing silver halide emulsion layer is preferably the center layer of other silver halide emulsion layers, and from the viewpoint of reducing photobleaching, the cyan coupler-containing silver halide emulsion layer is The lowest layer is preferred. Further, each of the color forming layers of yellow, magenta and cyan may be composed of two layers or three layers. For example, as described in JP-A-4-75055, 9-1114035, 10-246940, US Pat. No. 5,576,159, etc., a coupler layer containing no silver halide emulsion is used as a silver halide. It is also preferable to provide a color developing layer adjacent to the emulsion layer.
[0064]
As silver halide emulsions and other materials (additives, etc.) and photographic composition layers (layer arrangement, etc.) applied in the present invention, and processing methods and processing additives applied to process this photosensitive material, JP-A-62-215272, JP-A-2-33144, and those described in European Patent EP0,355,660A2, particularly those described in European Patent EP0,355,660A2 are preferably used. . Furthermore, JP-A-5-34889, JP-A-4-359249, JP-A-4-313733, JP-A-4-270344, JP-A-5-66527, JP-A-4-34548, JP-A-4-145433, JP-A-2-854. The silver halide color photographic light-sensitive materials and the processing methods thereof described in JP-A Nos. 1-158431, 2-90145, 3-194539, 2-93641, and European Patent Publication No. 0520457A2 are also preferable.
[0065]
In particular, in the present invention, the above-mentioned reflective support and silver halide emulsion, further different metal ion species doped in silver halide grains, storage stabilizer or antifoggant for silver halide emulsion, chemical enhancement, Sensitization method (sensitizer), spectral sensitization method (spectral sensitizer), cyan, magenta, yellow coupler and its emulsifying dispersion method, color image preservability improving agent (stain inhibitor and anti-fading agent), dye (coloring) As for the layer), gelatin type, layer structure of the photosensitive material, and coating pH of the photosensitive material, those described in each part of the patent shown in Table 1 below are particularly preferably applied.
[0066]
[Table 1]
Figure 0003967166
[0067]
Other examples of the cyan, magenta and yellow couplers used in the present invention include those described in JP-A-62-215272, page 91, upper right column, line 4 to page 121, upper left column, line 6; JP-A-2-33144, No. 3; Page 14 upper right column 14th line to 18th page upper left column last line, page 30 upper right column 6th line to page 35 lower right column 11th line, EP0355,660A2 page 4, 15th line to 27th line, 5th page Couplers described on page 30 to the end of page 28, page 45, line 29 to line 31, page 47, line 23 to page 63, line 50 are also useful.
In the present invention, compounds represented by general formulas (II) and (III) of WO-98 / 33760 and general formula (D) of JP-A No. 10-221825 may be added.
[0068]
More specific description will be given below.
As the cyan coupler that can be used in the present invention, a pyrrolotriazole coupler is preferably used. A coupler represented by the general formula (I) or (II) of JP-A-5-313324 and a general coupler of JP-A-6-347960 can be used. The couplers represented by formula (I) and the exemplified couplers described in these patents are particularly preferred.
Phenol-based and naphthol-based cyan couplers are also preferable. For example, cyan couplers represented by the general formula (ADF) described in JP-A-10-333297 are preferable.
Other cyan couplers include pyrroloazole type cyan couplers described in European Patents EP 0488248 and EP 0491197A1, 2,5-diacylaminophenol couplers described in US Pat. No. 5,888,716, US Pyrazoloazole type cyan couplers having an electron withdrawing group and a hydrogen bonding group at the 6-position described in Japanese Patent Nos. 4,873,183 and 4,916,051, particularly JP-A-8-171185, Pyrazoloazole type cyan couplers having a carbamoyl group at the 6-position described in JP-A Nos. 8-311360 and 8-339060 are also preferable.
[0069]
In addition to diphenylimidazole cyan couplers described in JP-A-2-33144, 3-hydroxypyridine cyan couplers described in European Patent EP 0333185A2 (among others, couplers (42) listed as specific examples) And a cyclic active methylene-based cyan coupler described in JP-A No. 64-32260, which is obtained by adding a chlorine-eliminating group to a 4-equivalent coupler, and couplers (6) and (9) are particularly preferable. Of these, coupler examples 3, 8, and 34 listed as specific examples are particularly preferred), pyrrolopyrazole type cyan couplers described in EP 0456226A1 and pyrroloimidazole type cyan couplers described in EP 0484909 are used. You can also.
[0070]
Of these cyan couplers, pyrroloazole-based cyan couplers represented by the general formula (I) described in JP-A No. 11-282138 are particularly preferred. Descriptions of paragraph numbers 0012 to 0059 of the patent are exemplary cyan couplers. (1) to (47) are applied to the present application as they are, and are preferably incorporated as part of the specification of the present application.
[0071]
As the magenta coupler used in the present invention, 5-pyrazolone-based magenta couplers and pyrazoloazole-based magenta couplers described in the above-mentioned publicly known documents are used, and among them, hue, image stability, color developability, etc. A pyrazolotriazole coupler in which a secondary or tertiary alkyl group is directly connected to the 2, 3 or 6 position of the pyrazolotriazole ring as described in JP-A-61-65245, JP-A-61-65246 A pyrazoloazole coupler having a sulfonamide group in the molecule as described in JP-A-61-147254, a pyrazoloazole coupler having an alkoxyphenylsulfonamide ballast group as described in JP-A No. 61-147254, and European Patent No. 226. , 849A and 294,785A, the 6-position is an alkoxy group or aryloxy. Use of pyrazoloazole couplers having a group.
In particular, the magenta coupler is preferably a pyrazoloazole coupler represented by the general formula (M-I) described in JP-A-8-122984. Paragraph Nos. 0009 to 0026 of the patent are directly applied to the present application. Incorporated as part of the specification.
In addition, pyrazoloazole couplers having sterically hindered groups at both the 3-position and the 6-position described in European Patent Nos. 854384 and 844640 are also preferably used.
[0072]
Further, as yellow couplers, in addition to the compounds described in the above table, acylacetamide type yellow couplers having a 3- to 5-membered cyclic structure in the acyl group described in European Patent EP 0447969A1, European Patent EP 0482552A1 Malondianilide-type yellow couplers having the cyclic structure described in European Patent Nos. 935870A1, 953871A1, 953872A1, 953873A1, 953874A1, 953875A1, etc. Pyrrol-2 or 3-yl or indol-2 or 3-ylcarbonylacetic acid anilide type couplers, acylacetamide type yellow couplers having a dioxane structure described in US Pat. No. 5,118,599 are preferably used. Among them, the use of an acylacetamide type yellow coupler in which the acyl group is a 1-alkylcyclopropane-1-carbonyl group and a malondianilide type yellow coupler in which one of the anilides constitutes an indoline ring is particularly preferred. These couplers can be used alone or in combination.
[0073]
The coupler used in the present invention is impregnated with a loadable latex polymer (eg, US Pat. No. 4,203,716) in the presence (or absence) of the high boiling organic solvent described in the above table, Alternatively, it is preferably dissolved together with a water-insoluble and organic solvent-soluble polymer and emulsified and dispersed in a hydrophilic colloid aqueous solution.
Water-insoluble and organic solvent-soluble polymers that can be preferably used are described in U.S. Pat. No. 4,857,449, columns 7 to 15, and International Publication WO 88/00723, pages 12 to 30. The homopolymers or copolymers mentioned are mentioned. More preferably, use of a methacrylate or acrylamide polymer, particularly an acrylamide polymer is preferred in view of color image stability.
[0074]
In the present invention, known color mixing inhibitors can be used, and among them, those described in the following patents are preferable.
For example, high molecular weight redox compounds described in JP-A-5-333501, phenidone and hydrazine compounds described in WO98 / 33760, U.S. Pat. No. 4,923,787, JP-A-5-249637, White couplers described in JP-A-10-282615 and German Patent No. 19629142A1 can be used. In particular, in the case of increasing the pH of the developer to speed up the development, German Patent No. 19618786A1, European Patent No. 839623A1, European Patent No. 842975A1, German Patent No. 19804646A1 and French Patent No. 2760460A1 It is also preferable to use the redox compound described in the above.
[0075]
In the present invention, a compound having a triazine skeleton with a high molar extinction coefficient is preferably used as the ultraviolet absorber, and for example, compounds described in the following patents can be used. These are preferably added to the photosensitive layer and / or non-photosensitive.
JP-A-46-3335, JP-A-55-152776, JP-A-5-197004, JP-A-5-232630, JP-A-5-307232, JP-A-6-21813, JP-A-8-53427, JP-A-8-234364 No. 8-239368, No. 9-31067, No. 10-115898, No. 10-147777, No. 10-182621, German Patent No. 19739797A, European Patent No. 711804A, and Japanese Patent Laid-Open No. 8-501291. It is a compound described in No. etc.
[0076]
As the binder or protective colloid that can be used in the light-sensitive material according to the present invention, it is advantageous to use gelatin, but other hydrophilic colloids can be used alone or together with gelatin. As a preferable gelatin, the heavy metal contained as impurities such as iron, copper, zinc and manganese is preferably 5 ppm or less, more preferably 3 ppm or less.
The amount of calcium contained in the photosensitive material is preferably 20 mg / m.2Or less, more preferably 10 mg / m2Or less, most preferably 5 mg / m2It is as follows.
In the present invention, an antibacterial / antifungal agent as described in JP-A-63-271247 is added in order to prevent various wrinkles and bacteria that propagate in the hydrophilic colloid layer and degrade the image. Is preferred.
Further, the film pH of the photosensitive material is preferably 4.0 to 7.0, more preferably 4.0 to 6.5.
[0077]
In the present invention, a surfactant can be added to the photosensitive material from the viewpoints of improving the coating stability of the photosensitive material, preventing the generation of static electricity, and adjusting the charge amount. Examples of the surfactant include an anionic surfactant, a cationic surfactant, a betaine surfactant, and a nonionic surfactant, and examples thereof include those described in JP-A-5-333492. The surfactant used in the present invention is preferably a fluorine atom-containing surfactant. In particular, a fluorine atom-containing surfactant can be preferably used.
[0078]
The amount of these surfactants added to the light-sensitive material is not particularly limited, but is generally 1 × 10.-Five~ 1g / m2, Preferably 1 × 10-Four~ 1x10-1g / m2More preferably 1 × 10-3~ 1x10-2g / m2It is.
These fluorine atom-containing surfactants may be used alone or in combination with other conventionally known surfactants, but are preferably used in combination with other conventionally known surfactants.
[0079]
The photosensitive material of the present invention is suitable for a scanning exposure system using a cathode ray (CRT) in addition to being used in a printing system using a normal negative printer. The cathode ray tube exposure apparatus is simpler and more compact and less expensive than an apparatus using a laser. Also, the adjustment of the optical axis and color is easy.
As the cathode ray tube used for image exposure, various light emitters that emit light in the spectral region are used as necessary. For example, any one of red light emitters, green light emitters, and blue light emitters, or a mixture of two or more thereof may be used. The spectral region is not limited to the above red, green, and blue, and a phosphor that emits light in the yellow, orange, purple, or infrared region is also used. In particular, a cathode ray tube that emits white light by mixing these light emitters is often used.
[0080]
When the photosensitive material has a plurality of photosensitive layers having different spectral sensitivity distributions, and the cathode tube also has a phosphor exhibiting light emission in a plurality of spectral regions, a plurality of colors are exposed at the same time, that is, a plurality of colors are applied to the cathode ray tube. It is also possible to emit light from the tube surface by inputting a color image signal. A method of sequentially inputting image signals for each color, causing each color to emit light sequentially, and exposing through a film that cuts colors other than that color (surface sequential exposure) may be employed. However, since a high-resolution cathode ray tube can be used, it is preferable for improving image quality.
[0081]
The photosensitive material of the present invention is a monochromatic high light source such as a gas laser, a light emitting diode, a semiconductor laser, a semiconductor laser, or a second harmonic light source (SHG) using a combination of a solid state laser using a semiconductor laser and a nonlinear optical crystal. A digital scanning exposure method using density light is preferably used. In order to make the system compact and inexpensive, it is preferable to use a second harmonic generation light source (SHG) that combines a semiconductor laser, a semiconductor laser, or a solid-state laser and a nonlinear optical crystal. In particular, in order to design a compact, inexpensive, long-life and high-stability device, it is preferable to use a semiconductor laser, and at least one of the exposure light sources is preferably a semiconductor laser.
[0082]
When such a scanning exposure light source is used, the spectral sensitivity maximum wavelength of the photosensitive material of the present invention can be arbitrarily set according to the wavelength of the scanning exposure light source to be used. In a solid laser using a semiconductor laser as an excitation light source or an SHG light source obtained by combining a semiconductor laser and a nonlinear optical crystal, the oscillation wavelength of the laser can be halved, so that blue light and green light can be obtained. Therefore, the spectral sensitivity maximum of the photosensitive material can be given to the usual three wavelength regions of blue, green, and red.
When the exposure time in such scanning exposure is defined as the exposure time of the pixel size when the pixel density is 400 dpi, the preferable exposure time is 10-FourSeconds or less, more preferably 10-6Less than a second.
[0083]
Preferred scanning exposure methods applicable to the present invention are described in detail in the patents listed in the table above.
In order to process the light-sensitive material of the present invention, JP-A-2-207250, page 26, lower right column, line 1 to page 34, upper-right column, line 9 and JP-A-4-97355, page 5, upper left column. The processing materials and processing methods described in the 17th line to the 18th page, lower right column, 20th line are preferably applicable. Further, as the preservative used in the developer, compounds described in the patents listed in the above table are preferably used.
[0084]
The present invention is preferably applied to a light-sensitive material having rapid processing suitability.
The color development time refers to the time from when the light-sensitive material enters the color developer until it enters the bleach-fixing solution in the next processing step. For example, when processed by an automatic developing machine, the time during which the photosensitive material is immersed in the color developer (so-called submerged time) and the photosensitive material leaves the color developer and is bleach-fixed in the next processing step. The total of both the time during which air is conveyed toward the bath (so-called air time) is called color development time. Similarly, the bleach-fixing time refers to the time from when the photosensitive material enters the bleach-fixing solution until the next washing or stabilizing bath. The water washing or stabilization time refers to the time (so-called liquid time) that the photosensitive material is in the liquid for the drying process after entering the water washing or stabilizing liquid.
[0085]
When rapid processing is carried out in the present invention, the color development time is preferably 60 seconds or shorter, more preferably 50 seconds or shorter and 6 seconds or longer, more preferably 30 seconds or shorter and 6 seconds or longer. Similarly, the bleach-fixing time is preferably 60 seconds or shorter, more preferably 50 seconds or shorter and 6 seconds or longer, more preferably 30 seconds or shorter and 6 seconds or longer. Further, the washing time or stabilization time is preferably 150 seconds or shorter, more preferably 130 seconds or shorter and 6 seconds or longer.
[0086]
The light-sensitive material of the present invention can be developed after exposure using a conventional developing method containing an alkali agent and a developing agent, an activator such as an alkaline solution containing the developing agent in the photosensitive material and not containing the developing agent. In addition to a wet method such as a method of developing with a beta solution, a thermal development method that does not use a processing solution can be used. In particular, the activator method is a preferable method from the viewpoint of environmental protection because it does not contain a developing agent in the processing solution, so that the processing solution can be easily managed and handled, and the load during processing of the waste liquid is small. In the activator method, examples of the developing agent incorporated in the light-sensitive material or a precursor thereof include, for example, JP-A-8-234388, JP-A-9-152686, JP-A-9-152893, JP-A-9-212814, and JP-A-9 The hydrazine type compound described in -160193 is preferable.
[0087]
Further, a developing method in which the amount of silver applied to the photosensitive material is reduced and image amplification processing (compensation processing) using hydrogen peroxide is preferably used. In particular, it is preferable to use this method for the activator method. Specifically, an image forming method using an activator solution containing hydrogen peroxide described in JP-A-8-297354 and 9-152695 is preferably used.
In the activator method, desilvering is usually performed after processing with an activator solution, but in the image amplification processing method using a low silver amount of light-sensitive material, desilvering is omitted, and simple washing such as washing or stabilization is performed. The method can be done. Further, in a method of reading image information from a photosensitive material with a scanner or the like, it is possible to adopt a processing form that does not require a desilvering process even when a high silver amount photosensitive material such as a photographic photosensitive material is used.
[0088]
For the activator solution, desilvering solution (bleaching / fixing solution), water washing and stabilizing solution used in the present invention, known materials and methods can be used. Preferably, those described in Research Disclosure Item 36544 (September 1994), pages 536 to 541 and JP-A-8-234388 can be used.
[0089]
When the light-sensitive material of the present invention is subjected to printer exposure, it is preferable to use a band stop filter described in US Pat. No. 4,880,726. This removes light color mixing and remarkably improves color reproducibility.
In the present invention, as described in European Patents EP0789270A1 and EP0789480A1, before giving image information, a yellow microdot pattern may be pre-exposed and copy restrictions may be applied.
[0090]
The light-sensitive material of the present invention can be preferably used in combination with the exposure and development systems described in the following known materials.
-Automatic printing and developing system described in JP-A-10-333253
-Photosensitive material conveying apparatus described in JP-A-2000-10206
A recording system including an image reading device described in JP-A-11-215312
An exposure system comprising a color image recording system described in JP-A-11-88619 and JP-A-10-202950
A digital photo print system including a remote diagnosis system described in JP-A-10-210206
[0091]
【Example】
The present invention will be described in more detail below based on examples, but the scope of the invention is not limited thereto.
Example 1
(Preparation of emulsion A used for blue-sensitive emulsion layer)
Emulsion A was prepared by adjusting a 1: 1 mixture (silver mole ratio) of a cubic large-size emulsion A1 having an average grain size of 0.70 μm and small-size emulsion A2 having a 0.50 μm average size.
The coefficient of variation of the grain size distribution of emulsions A1 and A2 was 0.09 and 0.11, respectively. In each size emulsion, 0.5 mol% of silver bromide was locally contained in a part of the surface of the grain based on silver chloride. In a portion corresponding to 10% by volume from the outermost layer of this grain, 0.1 mol% of iodine ions are present with respect to the total halogen, and 1 × 10 6 with respect to 1 mol of silver halide.-6mol KFourRu (CN)6, 1 × 10 for 1 mole of silver halide-7mol of yellow blood salt, 1 × 10 to 1 mol of silver halide-8Mole K2IrClFive(H2O) was present.
In this emulsion, the blue-sensitive sensitizing dyes A and B described below were used in an amount of 3.2.times.10.sup.9 per silver mole of the emulsion A1.-FourMol and 4.4 × 10 respectively for Emulsion A2-FourMole was added and spectral sensitization was performed.
[0092]
[Chemical 7]
Figure 0003967166
[0093]
(Preparation of emulsions Cl-B and IB used for green sensitive emulsion layers)
A cubic emulsion C1-B having an average grain size of 0.40 [mu] m and having no silver iodochloride phase in the shell was prepared. The coefficient of variation of the particle size distribution is 0.09 respectively. 0.4 mol% of silver bromide was localized on the grain surface. Similarly to Emulsion A, KFourRu (CN)6, Yellow blood salt, K2IrClFive(H2O) was present. Emulsion Cl-B was prepared as described above.
Further, Emulsion IB having a silver iodochloride phase in the shell portion was prepared in the same manner as Emulsion Cl-B except that 0.1 mol% of silver iodide was contained in the vicinity of the grain surface.
Sensitizing dye D is 3.3 × 10 5 per mole of silver halide.-FourMole, and 5 × 10 5 of sensitizing dye E per mole of silver halide.-FiveMol, and the sensitizing dye F is 2.3 × 10 6 per mol of silver halide.-FourMole was added.
[0094]
[Chemical 8]
Figure 0003967166
[0095]
(Preparation of emulsion C used for red-sensitive emulsion layer)
A 1: 1 mixture (silver molar ratio) of a large-size emulsion C1 having an average grain size of 0.40 μm and a small-size emulsion C2 having a 0.30 μm average grain size was prepared. The coefficient of variation of the particle size distribution is 0.09 and 0.11, respectively. In each size emulsion and each size emulsion, 0.1 mol% of silver iodide was contained in the vicinity of the grain surface, and 0.8 mol% of silver bromide was localized in the grain surface. Similarly to Emulsion A, KFourRu (CN)6, Yellow blood salt, K2IrClFive(H2O) was present.
Sensitizing dyes G and H, respectively, per mole of silver halide, 8.0 x 10 for large size emulsions-Five10.7 × 10 for small, small emulsions-FiveMole was added. Further, the following compound I was added to the red-sensitive emulsion layer at 3.0 × 10 6 per mole of silver halide.-3Mole was added.
[0096]
[Chemical 9]
Figure 0003967166
[0097]
[Chemical Formula 10]
Figure 0003967166
[0098]
(Adjustment of color photographic materials and coated samples)
After the corona discharge treatment is applied to the surface of the support formed by coating both sides of the paper with polyethylene resin, a gelatin subbing layer containing sodium dodecylbenzenesulfonate is provided. The layers were sequentially coated to prepare a sample (101) of a silver halide color photographic light-sensitive material having the following layer structure. The coating solution for each photographic constituent layer was prepared as follows.
[0099]
First layer coating preparation
57 g of yellow coupler (ExY), 7 g of color image stabilizer (Cpd-1), 4 g of color image stabilizer (Cpd-2), 7 g of color image stabilizer (Cpd-3), 2 g of color image stabilizer (Cpd-8) Is dissolved in 21 g of a solvent (Solv-1) and 80 ml of ethyl acetate, and this liquid is emulsified and dispersed in 220 g of a 23.5% by weight gelatin aqueous solution containing 4 g of sodium dodecylbenzenesulfonate with a high-speed stirring emulsifier (dissolver). 900 g of emulsified dispersion A was prepared by adding water.
On the other hand, the emulsified dispersion A and the emulsion A were mixed and dissolved, and a first layer coating solution was prepared so as to have the composition described later. The emulsion coating amount indicates the silver coating amount.
[0100]
The coating solutions for the second to seventh layers were prepared in the same manner as the first layer coating solution. As the gelatin hardener for each layer, sodium (2,4-dichloro-6-oxide-1,3,5-triazine) (H-1), (H-2), (H-3) was used. Moreover, the total amount of Ab-1, Ab-2, Ab-3, and Ab-4 is 15.0 mg / m in each layer.260.0 mg / m25.0 mg / m2And 10.0 mg / m2It added so that it might become.
[0101]
Embedded image
Figure 0003967166
[0102]
Embedded image
Figure 0003967166
[0103]
Next, the chemical sensitization process will be described. The emulsion was heated to 40 ° C., chloroauric acid and sodium thiosulfate were added, then heated at 60 ° C. for 40 minutes, the sensitizing dye was added, cooled to 40 ° C., and 1- (3- Methylureidophenyl) -5-mercaptotetrazole, 3.3 × 10 3 per mole of silver halide, respectively-FourMol, 1.0 × 10-3Moles and 5.9 × 10-FourMole was added. As shown in Table 2 later, the emulsion of the present invention was prepared by changing the sodium thiosulfate to the compound of the present invention and performing chemical sensitization.
[0104]
Also, 1- (3-methylureidophenyl) -5-mercaptotetrazole is
The second layer, the fourth layer, the sixth layer, and the seventh layer are each 0.2 mg / m.20.2 mg / m20.6 mg / m20.1 mg / m2It added so that it might become.
[0105]
In addition, 4-hydroxy-6-methyl-1,3,3a, 7-tetrazaindene is added to the blue-sensitive emulsion layer and the green-sensitive emulsion layer, respectively at 1 × 10 6 per mole of silver halide.-FourMol, 2 × 10-FourMole was added.
Further, a copolymer latex of methacrylic acid and butyl acrylate (mass ratio 1: 1, average molecular weight 200000-400000) is 0.05 g / m on the red sensitive emulsion layer.2Was added.
Further, disodium catechol-3,5-disulfonate was added to the second layer, the fourth layer, and the sixth layer, respectively, at 6 mg / m.26 mg / m218 mg / m2It added so that it might become.
In order to prevent irradiation, the following dyes were added (the amount in parentheses represents the coating amount).
[0106]
Embedded image
Figure 0003967166
[0107]
(Layer structure)
The structure of each layer is shown below. Numbers are application amount (g / m2). The silver halide emulsion represents a coating amount in terms of silver.
Support Polyethylene resin laminated paper
[White pigment (TiO 2 on the first layer side polyethylene resin)2Content 16% by mass, ZnO; content 4% by mass) and optical brightener (4,4′-bis (5-methylbenzoxazolyl) stilbene, content 0.03% by mass), bluish dye (Including ultramarine)]
First layer (blue sensitive emulsion layer)
Emulsion A 0.24
Gelatin 1.25
Yellow coupler (ExY) 0.57
Color image stabilizer (Cpd-1) 0.07
Color image stabilizer (Cpd-2) 0.04
Color image stabilizer (Cpd-3) 0.07
Color image stabilizer (Cpd-8) 0.02
Solvent (Solv-1) 0.21
[0108]
Second layer (color mixing prevention layer)
Gelatin 0.99
Color mixing inhibitor (Cpd-4) 0.09
Color image stabilizer (Cpd-5) 0.018
Color image stabilizer (Cpd-6) 0.13
Color image stabilizer (Cpd-7) 0.01
Solvent (Solv-1) 0.06
Solvent (Solv-2) 0.22
[0109]
Third layer (green sensitive emulsion layer)
Emulsion Cl-B in Table 2 0.14
Gelatin 1.36
Magenta coupler (ExM) 0.15
Ultraviolet absorber (UV-A) 0.14
Color image stabilizer (Cpd-2) 0.02
Color image stabilizer (Cpd-4) 0.002
Color image stabilizer (Cpd-6) 0.09
Color image stabilizer (Cpd-8) 0.02
Color image stabilizer (Cpd-9) 0.03
Color image stabilizer (Cpd-10) 0.01
Color image stabilizer (Cpd-11) 0.0001
Solvent (Solv-3) 0.11
Solvent (Solv-4) 0.22
Solvent (Solv-5) 0.20
[0110]
Fourth layer (color mixing prevention layer)
Gelatin 0.71
Color mixing prevention layer (Cpd-4) 0.06
Color image stabilizer (Cpd-5) 0.013
Color image stabilizer (Cpd-6) 0.10
Color image stabilizer (Cpd-7) 0.007
Solvent (Solv-1) 0.04
Solvent (Solv-2) 0.16
[0111]
5th layer (red-sensitive emulsion layer)
Emulsion C 0.12
Gelatin 1.11
Cyan coupler (ExC-2) 0.13
Cyan coupler (ExC-3) 0.03
Color image stabilizer (Cpd-1) 0.05
Color image stabilizer (Cpd-6) 0.06
Color image stabilizer (Cpd-7) 0.02
Color image stabilizer (Cpd-9) 0.04
Color image stabilizer (Cpd-10) 0.01
Color image stabilizer (Cpd-14) 0.01
Color image stabilizer (Cpd-15) 0.12
Color image stabilizer (Cpd-16) 0.03
Color image stabilizer (Cpd-17) 0.09
Color image stabilizer (Cpd-18) 0.07
Solvent (Solv-5) 0.15
Solvent (Solv-8) 0.05
[0112]
Sixth layer (UV absorbing layer)
Gelatin 0.46
Ultraviolet absorber (UV-B) 0.45
Compound (S1-4) 0.0015
Solvent (Solv-7) 0.25
Seventh layer (protective layer)
Gelatin 1.00
Acrylic-modified copolymer of polyvinyl alcohol
(Degree of modification 17%) 0.04
Liquid paraffin 0.02
Surfactant (Cpd-13) 0.01
[0113]
Embedded image
Figure 0003967166
[0114]
Embedded image
Figure 0003967166
[0115]
Embedded image
Figure 0003967166
[0116]
Embedded image
Figure 0003967166
[0117]
Embedded image
Figure 0003967166
[0118]
Embedded image
Figure 0003967166
[0119]
Embedded image
Figure 0003967166
[0120]
Embedded image
Figure 0003967166
[0121]
Embedded image
Figure 0003967166
[0122]
Embedded image
Figure 0003967166
[0123]
Instead of the emulsion Cl-B of the sample (101), the chemical sensitization step was changed to the emulsion described in Table 2 using the compounds shown in Table 2 described later, and the remaining samples were replaced in the same manner as the sample (101). Produced.
[0124]
In order to examine the photographic characteristics of these samples, the following experiment was conducted.
Experiment 1 Sensitometry (low and high illumination)
Each coated sample was subjected to gradation exposure for sensitometry using a sensitometer (FWH type manufactured by Fuji Photo Film Co., Ltd.). An SP-2 filter was attached, and exposure was performed for 10 seconds with a low illuminance at an exposure amount of 200 lx · sec (lux · second).
Further, gradation exposure for sensitometry was given using a high-illuminance exposure photometer (HIE type manufactured by Yamashita Denso Co., Ltd.). With SP-2 filter, high illuminance 10-FourFor 2 seconds.
After the exposure, a color development process A described later was performed.
[0125]
The magenta color density of each sample after processing was measured, and the 10 seconds exposure low illumination sensitivity, 10-FourSecond exposure high illuminance sensitivity was obtained. The sensitivity was defined by the reciprocal of the exposure amount giving a color density 1.5 higher than the minimum color density, and the relative value with the developed sensitivity of the sample (107) as 100 was defined as the relative sensitivity. Further, the gradation was obtained from the slope of the straight line between the sensitivity point and the sensitivity point at a density of 1.5.
[0126]
Experiment 2 Exposure humidity dependence of sensitivity
The relative humidity at which each sample was exposed was set to 55% and 80%. Processing A was performed after the exposure for 1/10 second, and the magenta color density of each sample was measured. The sensitivity was defined by the reciprocal of the exposure amount giving a color density 0.5 higher than the minimum color density, and the relative value when the sensitivity of the sample (107) was 100 was defined as the relative sensitivity. A difference (hereinafter referred to as dS) obtained by subtracting the relative sensitivity when exposed at 80% humidity from the relative sensitivity when exposed at 55% humidity was obtained.
[0127]
The results of Experiment 1 and Experiment 2 are summarized in Table 2.
[0128]
[Table 2]
Figure 0003967166
[0129]
Table 2 shows the following.
Emulsions using the compounds of the present invention are more sensitive than conventional emulsions using thiosulfates such as sodium thiosulfate. 10-FourSimilarly, it is highly sensitive during second exposure (high illumination exposure) and has excellent reciprocity characteristics. In addition, conventional emulsions using sodium thiosulfate such as sodium thiosulfate have the problem that the sensitivity is likely to change due to humidity fluctuations during exposure, whereas the emulsion of the present invention has the advantage that sensitivity fluctuations are extremely small. It was found to have.
The difference due to the sensitization method as described above was particularly remarkable when the silver halide emulsion grains contained silver iodide rather than when the silver halide emulsion grains did not contain silver iodide.
[0130]
The processing steps are shown below.
[Processing A]
The photosensitive material 101 is processed into a 127 mm wide roll, and after imagewise exposure using a mini lab printer processor PP1258AR manufactured by Fuji Photo Film Co., Ltd. Processing (running test) was performed. The treatment using this running liquid was designated as treatment A.
Processing temperature Temperature Time Replenishment amount*
Color development 38.5 ° C 45 seconds 45 ml
Bleach fixing 38.0 ° C 45 seconds 35 ml
Rinse (1) 38.0 ° C. 20 seconds −
Rinse (2) 38.0 ° C. 20 seconds −
Rinse (3) ** 38.0 ° C 20 seconds-
Rinse (4) ** 38.0 ° C 30 seconds 121 ml
* Photosensitive material 1m2Replenishment amount per
** A phosphorus screening system RC50D manufactured by Fuji Photo Film Co., Ltd. is installed in the rinse (3), the rinse solution is taken out from the rinse (3), and sent to the reverse osmosis membrane module (RC50D) by a pump. The permeated water obtained in the tank is supplied to the rinse (4), and the concentrated water is returned to the rinse (3). The pump pressure was adjusted so that the amount of permeated water to the reverse osmosis module was maintained at 50 to 300 ml / min, and the temperature was circulated for 10 hours a day.
(The rinsing was a counter-current tank system from (1) to (4).)
[0131]
The composition of each treatment liquid is as follows.
Figure 0003967166
[0132]
Figure 0003967166
[0133]
Figure 0003967166
[0134]
Example 2
Using the emulsion prepared in Example 1, the sample 201 was prepared by changing the layer configuration from (101) as follows. A sample was prepared by replacing the emulsion Cl-B in the third layer with the emulsion prepared in Example 1. Experiments 1 and 2 of Example 1 were performed on these samples.
The layer configuration is indicated by sample (201).
The result was the same as the result of Example 1, and the effect of the present invention was confirmed even by ultra-rapid processing of the thinned sample.
[0135]
Preparation of sample 201
First layer (blue sensitive emulsion layer)
Emulsion A 0.24
Gelatin 1.25
Yellow coupler (ExY) 0.57
Color image stabilizer (Cpd-1) 0.07
Color image stabilizer (Cpd-2) 0.04
Color image stabilizer (Cpd-3) 0.07
Color image stabilizer (Cpd-8) 0.02
Solvent (Solv-1) 0.21
[0136]
Second layer (color mixing prevention layer)
Gelatin 0.60
Color mixing inhibitor (Cpd-19) 0.09
Color image stabilizer (Cpd-5) 0.007
Color image stabilizer (Cpd-7) 0.007
Ultraviolet absorber (UV-C) 0.05
Solvent (Solv-5) 0.11
[0137]
Third layer (green sensitive emulsion layer)
Silver chlorobromide emulsion Cl-B (the same emulsion as Sample 201) 0.14
Gelatin 0.73
Magenta coupler (ExM) 0.15
Ultraviolet absorber (UV-A) 0.05
Color image stabilizer (Cpd-2) 0.02
Color image stabilizer (Cpd-7) 0.008
Color image stabilizer (Cpd-8) 0.07
Color image stabilizer (Cpd-9) 0.03
Color image stabilizer (Cpd-10) 0.009
Color image stabilizer (Cpd-11) 0.0001
Solvent (Solv-3) 0.06
Solvent (Solv-4) 0.11
Solvent (Solv-5) 0.06
[0138]
Fourth layer (color mixing prevention layer)
Gelatin 0.48
Color mixing prevention layer (Cpd-4) 0.07
Color image stabilizer (Cpd-5) 0.006
Color image stabilizer (Cpd-7) 0.006
UV absorber (UV-C) 0.04
Solvent (Solv-5) 0.09
[0139]
5th layer (red-sensitive emulsion layer)
Silver chlorobromide emulsion C 0.12
Gelatin 0.59
Cyan coupler (ExC-2) 0.13
Cyan coupler (ExC-3) 0.03
Color image stabilizer (Cpd-7) 0.01
Color image stabilizer (Cpd-9) 0.04
Color image stabilizer (Cpd-15) 0.19
Color image stabilizer (Cpd-18) 0.04
UV absorber (UV-7) 0.02
Solvent (Solv-5) 0.09
[0140]
Sixth layer (UV absorbing layer)
Gelatin 0.32
Ultraviolet absorber (UV-C) 0.42
Solvent (Solv-7) 0.08
Seventh layer (protective layer)
Gelatin 0.70
Acrylic-modified copolymer of polyvinyl alcohol
(Degree of modification 17%) 0.04
Liquid paraffin 0.01
Surfactant (Cpd-13) 0.01
Polydimethylsiloxane 0.01
Silicon dioxide 0.003
[0141]
Each of the prepared samples was exposed in the same manner as in Experiments 1 and 2 of Example 1, and the color development processing was performed in an ultra-rapid manner according to the following development processing B.
[0142]
[Process B]
The above photosensitive material is processed into a 127 mm wide roll, and the processing time and processing temperature can be changed. Using an experimental processing device modified from Fuji Photo Film's minilab printer processor PP350, the photosensitive material sample has an average density. Imagewise exposure was performed from the negative film, and continuous processing (running test) was performed until the volume of the color developer replenisher used in the following processing steps was 0.5 times the volume of the color developer tank.
[0143]
Processing temperature Temperature Time Replenishment amount *
Color development 45.0 ℃ 15 seconds 45mL
Bleach fixing 40.0 ℃ 15 seconds 35mL
Rinse 1 40.0 ° C 8 seconds-
Rinse 2 40.0 ° C 8 seconds-
Rinse 3 ** 40.0 ° C 8 seconds-
Rinse 4 ** 38.0 ° C 8 seconds 121mL
Drying 80 ℃ 15 seconds
(note)
* Photosensitive material 1m2Replenishment amount per
** Attach a rinse screening system RC50D manufactured by Fuji Photo Film Co., Ltd. to the rinse (3), take out the rinse solution from the rinse (3), and send it to the reverse osmosis module (RC50D) by a pump. The permeated water sent in the tank is supplied to the rinse (4), and the concentrate is returned to the rinse (3). The pump pressure was adjusted so that the amount of permeated water to the reverse osmosis module was maintained at 50 to 300 mL / min, and the temperature was circulated for 10 hours per day. The rinsing was a 4-tank countercurrent system from (1) to (4).
[0144]
The composition of each treatment liquid is as follows.
[Color developer] [Tank solution] [Replenisher]
Water 800mL 600mL
Optical brightening agent (FL-1) 5.0 g 8.5 g
Triisopropanolamine 8.8g 8.8g
Sodium p-toluenesulfonate 20.0 g 20.0 g
Ethylenediaminetetraacetic acid 4.0 g 4.0 g
Sodium sulfite 0.10 g 0.50 g
Potassium chloride 10.0 g −
4,5-dihydroxybenzene-
Sodium 1,3-disulfonate 0.50 g 0.50 g
Disodium-N, N-bis (sulfonate
Ethyl) hydroxylamine 8.5 g 14.5 g
4-Amino-3-methyl-N-ethyl-N-
(Β-Methanesulfonamidoethyl) aniline
・ 3/2 sulfate ・ Monohydrate 10.0g 22.0g
Potassium carbonate 26.3g 26.3g
Add water for a total volume of 1000 mL 1000 mL
pH (adjusted with sulfuric acid and KOH at 25 ° C.) 10.35 12.6
[0145]
[Bleaching Fixer] [Tank Solution] [Replenisher]
800 ml of water 800 ml
Ammonium thiosulfate (750 g / mL) 107 mL 214 mL
Succinic acid 29.5g 59.0g
Ethylenediaminetetraacetic acid iron (III)
Ammonium 47.0g 94.0g
Ethylenediaminetetraacetic acid 1.4 g 2.8 g
Nitric acid (67%) 17.5g 35.0g
Imidazole 14.6g 29.2g
Ammonium sulfite 16.0 g 32.0 g
Potassium metabisulfite 23.1g 46.2g
Add water for a total volume of 1000 mL 1000 mL
pH (adjusted with 25 ° C, nitric acid and aqueous ammonia) 6.00 6.00
[0146]
[Rinse solution] [Tank solution] [Replenisher solution]
Chlorinated isocyanurate sodium 0.02g 0.02g
Deionized water (conductivity 5μS / cm or less) 1000mL 1000mL
pH (25 ° C.) 6.5 6.5
[0147]
Embedded image
Figure 0003967166
[0148]
Example 3
Image formation was performed by laser scanning exposure using the sample prepared in Example 2.
As a laser light source, a YAG solid-state laser (oscillation wavelength 946 nm) using a semiconductor laser GaAlAs (oscillation wavelength 808.5 nm) as an excitation light source is a LiNbO having an inverted domain structure.ThreeYVO using an excitation light source of 473 nm extracted by wavelength conversion using SHG crystal and a semiconductor laser GaAlAs (oscillation wavelength 808.7 nm)FourLiNbO with an inversion domain structure from a solid state laser (oscillation wavelength 1064 nm)ThreeAnd 532 nm extracted by wavelength conversion using SHG crystal and AlGaInP (oscillation wavelength of about 680 nm: type No. LN9R20 manufactured by Matsushita Electric). The laser beams of the three colors are moved in the direction perpendicular to the scanning direction by a polygon mirror so that the sample can be sequentially scanned and exposed. The light quantity fluctuation due to the temperature of the semiconductor laser is suppressed by keeping the temperature constant using a Peltier element. The effective beam diameter is 80 μm, the scanning pitch is 42.3 μm (600 dpi), and the average exposure time per pixel is 1.7 × 10.-7Second.
After the exposure, the color development processing B was performed. As a result, the same results as those of the high illuminance exposure in Examples 1 and 2 were obtained, and it was found that it was suitable for image formation using laser scanning exposure. It was.
[0149]
Example 4
In the emulsion preparation of A1 to A6 shown in Example 1 described in JP-A No. 2001-264912, chemical sensitization is performed using compounds C-41 and C-42 of the present invention instead of N, N-dimethylselenourea. When the same experiment was conducted without changing any other conditions, higher sensitivity was achieved than when N, N-dimethylselenourea was used, and pressure resistance was improved.
[0150]
【The invention's effect】
The emulsion of the present invention is a silver halide emulsion having high sensitivity, small sensitivity fluctuations due to differences in humidity conditions during exposure, and excellent reciprocity characteristics at high illuminance.

Claims (5)

下記一般式(1)で表される化合物により化学増感されたことを特徴とするハロゲン化銀乳剤。
一般式(1)
Figure 0003967166
[式(1)において、Chは硫黄原子、セレン原子またはテルル原子を表す。AはO、S、Se、TeまたはNRを表し、R〜Rは各々水素原子または置換基を表す。RはRまたはRと共に5〜7員の環状構造を形成してもよい。Mは水素原子またはカチオンを表す。]
A silver halide emulsion which is chemically sensitized with a compound represented by the following general formula (1).
General formula (1)
Figure 0003967166
[In the formula (1), Ch represents a sulfur atom, a selenium atom or a tellurium atom. A represents O, S, Se, Te or NR 4 , and R 1 to R 4 each represents a hydrogen atom or a substituent. R 3 may form a 5- to 7-membered cyclic structure together with R 1 or R 2 . M represents a hydrogen atom or a cation. ]
請求項1に記載の一般式(1)で表される化合物による化学増感に金増感を併用したことを特徴とする請求項1に記載のハロゲン化銀乳剤。The silver halide emulsion according to claim 1, wherein gold sensitization is used in combination with chemical sensitization by the compound represented by formula (1) according to claim 1. ハロゲン化銀粒子のシェル部分に、全銀モルあたり0.01〜0.50モル%相当の沃塩化銀相を有するハロゲン化銀粒子を含有することを特徴とする請求項1に記載のハロゲン化銀乳剤。2. The silver halide grain according to claim 1, wherein silver halide grains having a silver iodochloride phase equivalent to 0.01 to 0.50 mol% per total silver mole are contained in the shell portion of the silver halide grains. Silver emulsion. 請求項1に記載の一般式(1)で表される化合物を添加することを特徴とするハロゲン化銀乳剤の化学増感方法。A chemical sensitization method for a silver halide emulsion, comprising adding the compound represented by the general formula (1) according to claim 1 . 請求項1に記載の一般式(1)で表される化合物と金化合物とを添加することを特徴とする請求項4に記載のハロゲン化銀乳剤の化学増感方法。5. The method for chemical sensitization of a silver halide emulsion according to claim 4, wherein the compound represented by the general formula (1) according to claim 1 and a gold compound are added.
JP2002088786A 2002-03-27 2002-03-27 Silver halide emulsion and chemical sensitization method Expired - Fee Related JP3967166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002088786A JP3967166B2 (en) 2002-03-27 2002-03-27 Silver halide emulsion and chemical sensitization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002088786A JP3967166B2 (en) 2002-03-27 2002-03-27 Silver halide emulsion and chemical sensitization method

Publications (2)

Publication Number Publication Date
JP2003287842A JP2003287842A (en) 2003-10-10
JP3967166B2 true JP3967166B2 (en) 2007-08-29

Family

ID=29234549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002088786A Expired - Fee Related JP3967166B2 (en) 2002-03-27 2002-03-27 Silver halide emulsion and chemical sensitization method

Country Status (1)

Country Link
JP (1) JP3967166B2 (en)

Also Published As

Publication number Publication date
JP2003287842A (en) 2003-10-10

Similar Documents

Publication Publication Date Title
JP2003172990A (en) Silver halide emulsion and silver halide photographic sensitive material
JP4252745B2 (en) Silver halide color photographic light-sensitive material and image forming method using the same
JP4460864B2 (en) Silver halide color photographic material and cyanine compound
JP3967166B2 (en) Silver halide emulsion and chemical sensitization method
JP4267840B2 (en) Dye-forming coupler, silver halide photographic material and azomethine dye compound
JP4280435B2 (en) Silver halide color photographic light-sensitive material
JP4079863B2 (en) Dye-forming coupler and silver halide color photographic material
US20040002025A1 (en) Silver halide photographic emulsion, silver halide photosensitive material, and novel iridium complex and preparation process thereof
JP4153231B2 (en) Silver halide color photographic light-sensitive material
JP4291522B2 (en) Silver halide color photographic light-sensitive material
JP2002155055A (en) Method for producing iridium complex having heterocyclic compound and silver halide photographic emulsion added with the complex
JP4022417B2 (en) Silver halide photographic material
JP4068469B2 (en) Silver halide color photographic light-sensitive material and color image forming method
JP2002268170A (en) Silver halide photographic sensitive material
JP4478353B2 (en) Dye-forming coupler, silver halide photographic material, and method for producing azomethine dye
JP4090832B2 (en) Dye-forming coupler and silver halide color photographic material
JP4174200B2 (en) Silver halide photographic emulsion and silver halide photographic light-sensitive material
JP4381596B2 (en) Disulfide compound and method for producing the same, silver halide emulsion, and silver halide photographic light-sensitive material
JP4116358B2 (en) Silver halide emulsion
JP4149952B2 (en) Image forming method using silver halide color photographic light-sensitive material
JP4280430B2 (en) Silver halide emulsion and silver halide color photographic material using the same
JP2003287841A (en) Silver halide emulsion and chemical sensitization method
JP2003287837A (en) Silver halide color photographic sensitive material, image forming method, and method for improving humidity dependence in exposure
JP2002357879A (en) Silver halide emulsion and iridium complex useful for the same
JP2003233158A (en) Dye forming coupler and silver halide photographic sensitive material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040316

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070530

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees