JP3966254B2 - Secondary battery with surface mount terminals - Google Patents

Secondary battery with surface mount terminals Download PDF

Info

Publication number
JP3966254B2
JP3966254B2 JP2003297120A JP2003297120A JP3966254B2 JP 3966254 B2 JP3966254 B2 JP 3966254B2 JP 2003297120 A JP2003297120 A JP 2003297120A JP 2003297120 A JP2003297120 A JP 2003297120A JP 3966254 B2 JP3966254 B2 JP 3966254B2
Authority
JP
Japan
Prior art keywords
battery
secondary battery
terminal
positive electrode
niobium pentoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003297120A
Other languages
Japanese (ja)
Other versions
JP2005071683A (en
Inventor
忠義 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003297120A priority Critical patent/JP3966254B2/en
Publication of JP2005071683A publication Critical patent/JP2005071683A/en
Application granted granted Critical
Publication of JP3966254B2 publication Critical patent/JP3966254B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、電池容器を兼ねる少なくとも一方の電極端子に機器への接続用端子を装着した二次電池であり、高容量を有すると共に、機器への電池装着に伴う熱的影響を排除し、信頼性を向上させた端子付き二次電源に関する。   The present invention is a secondary battery in which a terminal for connecting to a device is mounted on at least one electrode terminal that also serves as a battery container, has a high capacity, and eliminates the thermal effect associated with the mounting of the battery on the device. The present invention relates to a secondary power supply with a terminal that has improved performance.

近年、小型のコイン型リチウム二次電池は携帯電話や携帯端末、情報機器等のメモリーバックアップ用電源として利用されるようになった。コイン型リチウム二次電池システムとしては、正極にリチウムマンガン複合酸化物と負極にリチウムアルミニウム合金を組合せ、放電電圧が3V程度(以下、3V級とし、他の放電電圧においても同様とする)のリチウム二次電池や、正極に五酸化二オブと負極にリチウムアルミニウム合金を組合せた2.5V級のリチウム二次電池が挙げられる。   In recent years, small coin-type lithium secondary batteries have come to be used as a memory backup power source for mobile phones, mobile terminals, information devices, and the like. As a coin-type lithium secondary battery system, a lithium manganese composite oxide is combined with a positive electrode and a lithium aluminum alloy is combined with a negative electrode, and the discharge voltage is about 3V (hereinafter referred to as 3V class, the same applies to other discharge voltages). A secondary battery or a 2.5 V class lithium secondary battery in which niobium pentoxide is combined in the positive electrode and a lithium aluminum alloy in the negative electrode is used.

電池を機器の回路基板へ実装する方法としては、手作業によるハンダ付け、或いは回路基板上に予め実装された電池ホルダーへの挿入する方法等が採用されている。最近では、機器及び電池の小型化、高密度での実装に対応してリフロー法による自動実装も採用されている。このリフロー法は、前記の回路基板、電池の端子部分にハンダクリームを供給し、電池及び基板を高温雰囲気に通過させてハンダを溶融させることで電池と基板の接続を確保している。従前の鉛を含むハンダを用いる場合には、リフロー法を含む工程(以下、リフロー工程)では最高温度が220℃〜240℃程度に達し、環境対応の面で主流となっている鉛フリーハンダの場合には、250〜260℃にまで達してしまう。   As a method of mounting the battery on the circuit board of the device, manual soldering or a method of inserting the battery into a battery holder previously mounted on the circuit board is employed. Recently, automatic mounting by a reflow method has been adopted in response to miniaturization of devices and batteries and mounting at high density. In this reflow method, solder cream is supplied to the circuit board and the terminal portion of the battery, and the battery and the board are passed through a high temperature atmosphere to melt the solder, thereby ensuring the connection between the battery and the board. In the case of using conventional lead-containing solder, the maximum temperature reaches about 220 ° C. to 240 ° C. in the process including the reflow method (hereinafter referred to as the reflow process). In some cases, the temperature reaches 250 to 260 ° C.

リフロー工程における課題を解決するために、電池の構成材料に高沸点の有機電解液や耐熱性の材料を用い、電池全体として耐熱性を付与することで、リフロー法を用いた基板への自動実装を可能にしたリチウム二次電池が種々提案されており、一例としては有機溶媒として沸点が260℃以上のスルホラン、3メチルスルホラン、テトラグライムを使用することが提案されている。   In order to solve the problems in the reflow process, high-boiling organic electrolytes and heat-resistant materials are used as the constituent materials of the battery, and heat resistance is given to the entire battery, so that it can be automatically mounted on a substrate using the reflow method. Various lithium secondary batteries have been proposed, and as an example, it is proposed to use sulfolane having a boiling point of 260 ° C. or higher, 3 methylsulfolane, and tetraglyme as an organic solvent.

しかしながら、正負極の電極材料と有機電解液の組合せによっては、高温雰囲気下に晒された場合に両者が反応することで生ずる有機電解液の分解、この分解に起因するガス発生による液漏れ、電極材料の劣化による容量低下などの問題を生じてしまう。これらの問題は、通常の温度領域では認められず、リフロー工程に特有のものである。   However, depending on the combination of the positive and negative electrode materials and the organic electrolyte, the decomposition of the organic electrolyte caused by the reaction between the two when exposed to a high temperature atmosphere, leakage due to gas generation due to this decomposition, the electrode Problems such as capacity reduction due to deterioration of the material will occur. These problems are not observed in the normal temperature range and are unique to the reflow process.

例えば、特許文献1は、正極に五酸化二オブを用いた電池における高温雰囲気下でのガス発生、及び容量低下の抑制を目的として、酸化ホウ素とを混合して焼成し、酸化ホウ素が五酸化二オブ表面の一部を被覆することで有機電解液との接触面積を低下させて、有機電解液の分解を抑制し、ガス発生を軽減することを開示している。
特開2002−203545号公報
For example, Patent Document 1 discloses that a battery using niobium pentoxide as a positive electrode is mixed and fired with boron oxide for the purpose of suppressing gas generation under a high temperature atmosphere and capacity reduction. It discloses that covering a part of the surface of the niobium reduces the contact area with the organic electrolyte, suppresses decomposition of the organic electrolyte, and reduces gas generation.
JP 2002-203545 A

然し乍、上記の正極に五酸化二オブを用いた電池は、通常の温度領域においても酸化ホウ素が正極表面を被覆され、電解液と正極との接触面積が減少した状態を維持することから、電極反応の低下を招き、電池特性を悪化させてしまう。また、酸化ホウ素による正極の被覆が均一に成されず、表面の一部のみが酸化ホウ素で被覆され、高温雰囲気でのガス発生を十分に抑制できない。特に、リフロー工程の条件(温度、時間)や電解液の種類によっては、電解液の分解反応が認められ、根本的な解決にはなっていない。   However, in the battery using niobium pentoxide for the positive electrode, boron oxide is coated on the positive electrode surface even in a normal temperature range, and the state in which the contact area between the electrolytic solution and the positive electrode is reduced is maintained. The electrode reaction is lowered and the battery characteristics are deteriorated. Further, the positive electrode is not uniformly coated with boron oxide, and only a part of the surface is coated with boron oxide, and gas generation in a high temperature atmosphere cannot be sufficiently suppressed. In particular, depending on the conditions (temperature, time) of the reflow process and the type of the electrolytic solution, a decomposition reaction of the electrolytic solution is recognized, which is not a fundamental solution.

本発明は、上記従来の状況に鑑みて成されたものであり、高容量、且つ信頼性に優れ、リフロー法による表面実装に適した端子付き二次電池を提供することを目的とする。   The present invention has been made in view of the above-described conventional situation, and an object thereof is to provide a secondary battery with a terminal that has a high capacity and excellent reliability and is suitable for surface mounting by a reflow method.

本発明者らは、上記目的を達成するために高温雰囲気下での五酸化二オブと有機電解液の反応を抑制することについて鋭意検討を行った。   In order to achieve the above-mentioned object, the present inventors diligently studied to suppress the reaction between niobium pentoxide and an organic electrolyte under a high temperature atmosphere.

その結果、正極に単斜晶系の五酸化ニオブを、負極にリチウムアルミニウム合金を用いた電池において、リフロー工程の実施に先立って電池電圧を1.7V以下とすることで、リフロー時の高温雰囲気下での電解液の分解反応を抑制できることを見出した。   As a result, in a battery using monoclinic niobium pentoxide for the positive electrode and a lithium aluminum alloy for the negative electrode, the battery voltage is set to 1.7 V or less prior to the reflow process, so that a high temperature atmosphere during reflow can be obtained. It was found that the decomposition reaction of the electrolyte below can be suppressed.

本発明により、鉛フリーハンダを用いた高温雰囲気下のリフロー工程に電池を供した場合であっても、有機電解液と五酸化二オブが安定に存在し、高容量で信頼性に優れた表面実装用の端子付き二次電池を提供することができる。   Even when the battery is subjected to a reflow process in a high-temperature atmosphere using lead-free solder according to the present invention, the organic electrolyte and niobium pentoxide are stably present, and the surface has high capacity and excellent reliability. A secondary battery with a terminal for mounting can be provided.

以下、本発明の好ましい実施形態について説明する。   Hereinafter, preferred embodiments of the present invention will be described.

本願の請求項1に記載の発明は、正負極、セパレータ及び有機電解液からなる発電要素
を電池容器に収容し、前記電池容器の少なくも一方の電極に接続用端子を設けてなり、前記接続用端子がリフロー法により機器に装着される二次電池であって、前記正極に単斜晶系の五酸化ニオブを、前記負極にリチウムアルミニウム合金を用いてなり、前記機器への装着前における電池電圧を1.7V以下とした表面実装用端子付き二次電池。
The invention according to claim 1 of the present application is configured such that a power generation element composed of positive and negative electrodes, a separator, and an organic electrolyte is housed in a battery container, and a connection terminal is provided on at least one electrode of the battery container. A secondary battery mounted on a device by a reflow method, using a monoclinic niobium pentoxide for the positive electrode and a lithium aluminum alloy for the negative electrode, and the battery before mounting on the device A secondary battery with a surface-mounting terminal having a voltage of 1.7 V or less.

五酸化二オブにはその焼成温度により、低温域では六方晶、中温域では斜方晶、高温域では単斜晶系の構造をとる。充放電サイクル性能や容量の点から、高温域で焼成した単斜晶系が最も優れている。   Depending on the firing temperature, niobium pentoxide has a hexagonal structure in the low temperature range, an orthorhombic structure in the intermediate temperature range, and a monoclinic structure in the high temperature range. From the viewpoint of charge / discharge cycle performance and capacity, the monoclinic system fired in a high temperature range is the most excellent.

高温域で焼成した場合には、五酸化二オブの酸素分圧により表面に多くの酸素欠陥が発生する。焼成後には、五酸化二オブ表面にバルクとは異なるX線回折により同定できない薄い酸素欠陥が多い結晶層が形成される。酸素雰囲気で焼成した場合でも、完全にはこの酸素欠陥を抑制することは不可能である。   When fired in a high temperature region, many oxygen defects are generated on the surface due to the oxygen partial pressure of niobium pentoxide. After firing, a crystal layer having many thin oxygen defects that cannot be identified by X-ray diffraction different from bulk is formed on the surface of niobium pentoxide. Even when firing in an oxygen atmosphere, it is impossible to completely suppress this oxygen defect.

この表面層の反応性は内部のバルクに比べて高く、200℃以上の高温雰囲気下では電解液の分解によるガス発生反応が進行する。五酸化二オブの理論容量に対して10%以上のリチウムを挿入することで、表面層の反応性が低下し、高温雰囲気下でも五酸化ニオブと電解液が安定に存在することを見出した。   The reactivity of this surface layer is higher than that of the internal bulk, and a gas generation reaction due to decomposition of the electrolytic solution proceeds in a high temperature atmosphere of 200 ° C. or higher. It was found that by inserting 10% or more of lithium with respect to the theoretical capacity of niobium pentoxide, the reactivity of the surface layer was lowered, and niobium pentoxide and the electrolyte existed stably even in a high temperature atmosphere.

その手段としては、組立後の電池を定電流または定抵抗放電により放電させる方法、電池作製時に正極にリチウムを圧着して電気化学的ショートさせることで正極へリチウムを挿入する方法、五酸化二オブに所定量の水酸化リチウムや炭酸リチウムなどのリチウム源と焼成してリチウムと五酸化二オブの化合物を得る方法がある。好ましくは、電池作製後に放電を行う方法である。   As the means, a method of discharging the assembled battery by constant current or constant resistance discharge, a method of inserting lithium into the positive electrode by electrochemically shorting lithium to the positive electrode at the time of battery production, niobium pentoxide, There is a method of obtaining a compound of lithium and niobium pentoxide by firing with a predetermined amount of lithium source such as lithium hydroxide or lithium carbonate. Preferably, it is a method of discharging after producing the battery.

負極に用いるリチウムアルミニウム合金については、充放電サイクル性能に優れるα相とβ相の2相の共存するリチウム/アルミニウム(モル比)=1以下が好ましい。
前記モル比のリチウムアルミニウム合金の電位は金属リチウムに対して0.4V程度であり、五酸化二オブにリチウムを理論容量の10%以上挿入させた正極の電位が金属リチウ
ムに対して2.1V以下であり、電池電圧が1.7V以下になるように設定することで、高温での正極と電解液との反応を抑制することが可能である。電池電圧で正極の状態を知ることができ、確認が容易である。
正極材料については容量が減るような処理を施しておらず、高容量化が可能であり、また、酸化ホウ素で一部被覆された五酸化二オブについても同様の効果が得られる。
The lithium aluminum alloy used for the negative electrode is preferably lithium / aluminum (molar ratio) = 1 or less in which two phases of α phase and β phase excellent in charge / discharge cycle performance coexist.
The potential of the lithium aluminum alloy having the molar ratio is about 0.4 V with respect to metallic lithium, and the potential of the positive electrode in which lithium is inserted into niobium pentoxide by 10% or more of the theoretical capacity is 2.1 V with respect to metallic lithium. By setting the battery voltage to 1.7 V or less, it is possible to suppress the reaction between the positive electrode and the electrolytic solution at a high temperature. The state of the positive electrode can be known from the battery voltage, and confirmation is easy.
The positive electrode material is not subjected to a treatment for reducing the capacity, and can be increased in capacity. Further, the same effect can be obtained with niobium pentoxide partially coated with boron oxide.

請求項2に記載の発明は、前記五酸化二オブのBET法により測定した比表面積が3.0m/g以下にする。BET法は、窒素吸着量により比表面積を測定する方法である。3.0m/g以下の比表面積では、電解液との反応面積が減少し、上記の五酸化二オブのリチウム挿入反応と組合せることで電解液との反応を更に抑制することが可能である。 In the invention according to claim 2, the specific surface area of the niobium pentoxide measured by the BET method is 3.0 m 2 / g or less. The BET method is a method for measuring the specific surface area based on the nitrogen adsorption amount. When the specific surface area is 3.0 m 2 / g or less, the reaction area with the electrolytic solution decreases, and the reaction with the electrolytic solution can be further suppressed by combining with the lithium insertion reaction of niobium pentoxide. is there.

請求項3に記載の発明は、有機電解液の有機溶媒にスルホラン、テトラグライムを少なくとも一種含有する。スルホランやテトラグライムの沸点は260℃以上であり、また、他の有機溶媒に比べて五酸化二オブやリチウムアルミニウム合金に対して反応性が低い為、リフロー通過後の特性を維持することができる。また、上記溶媒に1,2ジメトキシエタン、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、ブチルジグライムなどのグライム類や、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどの鎖状カーボネートを混合することで更にリフロー通過後の放電特性や充放電サイクル性能が向上する。   The invention according to claim 3 contains at least one sulfolane or tetraglyme in the organic solvent of the organic electrolyte. Since the boiling point of sulfolane and tetraglyme is 260 ° C. or higher, and the reactivity to niobium pentoxide and lithium aluminum alloy is lower than other organic solvents, the characteristics after passing through reflow can be maintained. . In addition, mixing with the above solvents 1,2 dimethoxyethane, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, butyl diglyme, and other glymes, and chain carbonates such as dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and the like, further reflow passes. Later discharge characteristics and charge / discharge cycle performance are improved.

請求項4に記載の発明は、有機電解液の溶質がLiN(CFSO
LiN(CSOの少なくとも一種含有する。他の溶質に比べて五酸化二オブやリチウムアルミニウム合金に対して反応性が低い為、リフロー通過後の特性を維持することができ、上記有機溶媒と組合せることでさらに良好な結果が得られる。
In the invention according to claim 4, the solute of the organic electrolyte is LiN (CF 3 SO 2 ) 2.
At least one of LiN (C 2 F 5 SO 2 ) 2 is contained. Less reactive to niobium pentoxide and lithium aluminum alloys than other solutes, so the properties after reflow can be maintained, and even better results can be obtained by combining with the above organic solvents .

請求項5に記載の発明は、ポリエーテルエーテルケトン、ポリフェニレンサルファイド、液晶ポリマーの少なくも一種含む有機樹脂からなるガスケットである。ポリエーテルエーテルケトン、ポリフェニレンサルファイド、液晶ポリマーを含むガスケットは、表面実装する際の高温に対して安定で、電池の液封止の重要な役割を果すパッキン材として、電池の封口圧及び内部での内圧上昇に対して安定に封止部分を維持することができる。好ましくは、充填材としてガラス繊維やチタン酸カリウムなどの無機繊維を用いることで樹脂自身の強度が向上し、更に高信頼性の電池が得られる。   The invention according to claim 5 is a gasket made of an organic resin containing at least one of polyetheretherketone, polyphenylene sulfide, and a liquid crystal polymer. Gaskets containing polyetheretherketone, polyphenylene sulfide, and liquid crystal polymer are stable against high temperatures during surface mounting and are used as a packing material that plays an important role in battery liquid sealing. The sealing portion can be stably maintained against an increase in internal pressure. Preferably, by using an inorganic fiber such as glass fiber or potassium titanate as a filler, the strength of the resin itself is improved and a highly reliable battery can be obtained.

請求項6に記載の発明は、ポリフェニレンサルファイドまたはポリフッ化エチレンからなるセパレータである。ポリフェニレンサルファイドまたはポリフッ化エチレンは高温環境下において正極の五酸化二オブ、負極のリチウムアルミニウム、有機溶媒、ガスケットに対して反応せず安定に存在し、電池性能を維持することが可能である。 The invention described in claim 6 is a separator made of polyphenylene sulfide or polyfluorinated ethylene . Polyphenylene sulfide or polyfluorinated ethylene is stable and does not react with niobium pentoxide of the positive electrode, lithium aluminum of the negative electrode, organic solvent, and gasket in a high temperature environment, and can maintain battery performance.

以下、本発明の好ましい実施例を具体的に説明する。図1は、本発明の実施例及び比較例で作製した厚さ1.4mm 、直径4.8mmの端子付き二次電池の断面図である。図1において、発電要素を収容するコイン型の電池容器は、耐食性に優れたステンレス鋼からなる正極缶1と、同様にステンレス鋼の負極缶2、及びガスケット3は正極缶1と負極缶2とを絶縁する機能に加え、物理的に発電要素を電池容器内に封止するための機能を有している。   Hereinafter, preferred embodiments of the present invention will be described in detail. FIG. 1 is a cross-sectional view of a secondary battery with a terminal having a thickness of 1.4 mm and a diameter of 4.8 mm manufactured in Examples and Comparative Examples of the present invention. In FIG. 1, a coin-type battery container that houses a power generation element includes a positive electrode can 1 made of stainless steel having excellent corrosion resistance, a negative electrode can 2 made of stainless steel, and a gasket 3. In addition to the function of insulating the power generation element, the power generation element is physically sealed in the battery container.

正極缶1と負極缶2との間に介在されるガスケット3には、ポリエーテルエーテルケトン(PEEK)樹脂からなるものを使用した。このガスケット3と正極缶1及び負極缶2とガスケット3との間にブチルゴムをトルエンで希釈した溶液を塗布し、トルエンを蒸発
させることによりブチルゴム膜からなるシーラントとした。
正極4は、水酸化二オブを1000℃で焼成して得られた単斜晶の五酸化二オブ(BET比表面積 1.5m/g)を活物質に、導電剤としてカーボンブラック及び結着剤としてフッ素樹脂粉末を混合し、直径2mm、厚さ0.9mmのペレット状に成型した後、250°C中で12時間乾燥したものである。得られたペレット状の正極材料は、正極缶1の内面にカーボン塗料を塗布することで形成された正極集電体7に接触するようにしてある。
負極5は、アルミニウムを直径2.5mm、厚さ0.2mmの円盤状に打ち抜き、負極缶2の内側にリチウム金属のシートをこのアルミニウム表面に圧着してある。電池組立時に、電解液を注入することによりリチウムとアルミニウムがショートした状態になり、電気化学的にリチウムがアルミニウム金属中に吸蔵される。この反応により得られたリチウムアルミニウム合金を負極5とした。また、正極4と負極5との間に配されるセパレータ6には、ポリフェニレンサルファイド(PPS)を使用した。さらに電解液には、LiN(CFSOを溶質としてスルホランを用いた。電池容器に電解液は体積で3μl充填されている。このようにして得られた電池を、正極の理論容量の10%深度まで50μAで放電して本実施例1に係る電池Aとした。電池電圧は1.69Vになった。
The gasket 3 interposed between the positive electrode can 1 and the negative electrode can 2 was made of a polyether ether ketone (PEEK) resin. A solution obtained by diluting butyl rubber with toluene was applied between the gasket 3 and the positive electrode can 1, and the negative electrode can 2 and the gasket 3, and the toluene was evaporated to obtain a sealant made of a butyl rubber film.
The positive electrode 4 is composed of monoclinic niobium pentoxide (BET specific surface area 1.5 m 2 / g) obtained by firing niobium hydroxide at 1000 ° C. as an active material, carbon black and binder as a conductive agent. A fluororesin powder is mixed as an agent, formed into a pellet having a diameter of 2 mm and a thickness of 0.9 mm, and then dried at 250 ° C. for 12 hours. The obtained pellet-like positive electrode material is in contact with the positive electrode current collector 7 formed by applying a carbon paint on the inner surface of the positive electrode can 1.
In the negative electrode 5, aluminum is punched into a disk shape having a diameter of 2.5 mm and a thickness of 0.2 mm, and a lithium metal sheet is pressure-bonded to the aluminum surface inside the negative electrode can 2. When the battery is assembled, by injecting the electrolytic solution, lithium and aluminum are short-circuited, and lithium is occluded electrochemically in the aluminum metal. The lithium aluminum alloy obtained by this reaction was used as the negative electrode 5. In addition, polyphenylene sulfide (PPS) was used for the separator 6 disposed between the positive electrode 4 and the negative electrode 5. Furthermore, for the electrolyte, sulfolane was used with LiN (CF 3 SO 2 ) 2 as a solute. The battery container is filled with 3 μl of electrolyte by volume. The battery thus obtained was discharged at 50 μA to a depth of 10% of the theoretical capacity of the positive electrode to obtain a battery A according to Example 1. The battery voltage was 1.69V.

電池Aに用いた有機電解液の溶媒であるスルホランに代えて、テトラグライムを用いた以外は電池Aと同構成で同じ放電深度の電池Bを作製した。電池電圧は1.67Vになった。   A battery B having the same configuration and the same depth of discharge as the battery A was prepared except that tetraglyme was used in place of sulfolane as the solvent of the organic electrolyte used in the battery A. The battery voltage was 1.67V.

電池Aに用いた有機電解液の溶質であるLiN(CFSOに代えて、LiN(CSOを用いた以外は電池Aと同構成で同じ放電深度の電池Cを作製した。電池電圧は1.68Vになった。
電池Aと同構成で正極の理論容量の25%深度まで50μAで放電して電池Dを得た。電池電圧は1.45Vになった。
正極の理論容量の50%深度まで50μAで放電して電池Eを得た。電池電圧は1.40Vになった。
A battery having the same configuration and the same depth of discharge as battery A except that LiN (C 2 F 5 SO 2 ) 2 was used instead of LiN (CF 3 SO 2 ) 2 which is the solute of the organic electrolyte used for battery A C was produced. The battery voltage was 1.68V.
Battery D was obtained by discharging at 50 μA to the depth of 25% of the theoretical capacity of the positive electrode in the same configuration as battery A. The battery voltage was 1.45V.
Battery E was obtained by discharging at 50 μA to a depth of 50% of the theoretical capacity of the positive electrode. The battery voltage was 1.40V.

電池Aの有機電解液の溶媒であるスルホランに代えて、プロピレンカーボネートを用いた以外は電池Aと同構成で同じ放電深度の比較電池Fを作製した。電池電圧は1.68Vになった。   A comparative battery F having the same configuration and the same depth of discharge as that of the battery A was prepared except that propylene carbonate was used instead of sulfolane as the solvent of the organic electrolyte solution of the battery A. The battery voltage was 1.68V.

電池Aと同構成で未放電状態のものを比較電池Gとした。電池電圧は2.22Vであった。 A battery B having the same configuration as that of battery A but in an undischarged state was designated as comparative battery G. The battery voltage was 2.22V .

電池Aと同構成で正極の理論容量の5%深度まで50μAで放電して比較電池Hを得た。電池電圧は1.80Vになった。   A comparative battery H was obtained by discharging at 50 μA to the depth of 5% of the theoretical capacity of the positive electrode in the same configuration as the battery A. The battery voltage was 1.80V.

電池Aの有機電解液の溶媒であるスルホランに代えて、プロピレンカーボネートを用いた以外は電池Aと同構成で、未放電の比較電池Iを作製した。電池電圧は2.12Vになった。 An undischarged comparative battery I was produced in the same configuration as battery A except that propylene carbonate was used in place of sulfolane as the solvent of the organic electrolyte solution of battery A. The battery voltage was 2.12V .

電池Aの正極の五酸化ニオブに代えて、水酸化二オブを1000℃で焼成して得られた単斜晶の五酸化二オブと酸化ホウ素を95:5の重量比で混合した後、375℃で1時間焼成して得られた酸化ホウ素が表面に付着した五酸化ニオブを用いた以外は電池Aと同構成で、未放電の比較電池Jを作製した。電池電圧は2.18Vになった。

Instead of niobium pentoxide for the positive electrode of battery A, monoclinic niobium pentoxide obtained by firing niobium hydroxide at 1000 ° C. and boron oxide were mixed at a weight ratio of 95: 5, and 375 An undischarged comparative battery J was produced in the same configuration as the battery A except that niobium pentoxide obtained by firing for 1 hour at ° C and having boron oxide adhered to the surface was used. The battery voltage was 2.18V .

得られた実施例の電池A、B、C、D、E、Fと比較電池G、H、I、Jについて、正極端子7と負極端子8をレーザ溶接にて端子溶接した後、リフロー炉中を通過させ、耐高
温環境特性試験を行った。各電池が通過するリフロー炉の内部の温度プロファイルは余熱行程として180°Cの環境下に2分間曝され、引き続き加熱行程として180°C、245°C、180°Cを30秒間で通過した後、室温に至るまで自然冷却される。このリフロー工程を2回通過させた後、漏液の発生状況について検査を行った。その後、充放電を行い、放電容量(負荷2μA―カット電圧1.0V)を調べた。また、2.5−1.0Vの範囲(充電保護抵抗 10kΩ、充電時間:60時間)で充放電試験を行った。容量が0.4mAh以下(設計容量の半分の容量)になったサイクルをサイクル寿命回数とする。表1にリフロー炉通過後の漏液の発生状況、放電容量、充放電サイクル試験の結果を示す。
About the batteries A, B, C, D, E, and F of the obtained examples and the comparative batteries G, H, I, and J, the positive electrode terminal 7 and the negative electrode terminal 8 were terminal welded by laser welding, and then in a reflow furnace The high temperature environment characteristic test was conducted. The temperature profile inside the reflow furnace through which each battery passes is exposed to an environment of 180 ° C. for 2 minutes as a preheating process, and after passing through 180 ° C., 245 ° C. and 180 ° C. for 30 seconds as a heating process. Naturally cooled down to room temperature. After passing through this reflow process twice, it inspected about the generation | occurrence | production state of a liquid leak. Thereafter, charge and discharge were performed, and the discharge capacity (load 2 μA−cut voltage 1.0 V) was examined. In addition, a charge / discharge test was performed in the range of 2.5 to 1.0 V (charge protection resistance 10 kΩ, charge time: 60 hours). The cycle in which the capacity is 0.4 mAh or less (half the design capacity) is defined as the cycle life number. Table 1 shows the state of occurrence of liquid leakage after passing through the reflow furnace, the discharge capacity, and the results of the charge / discharge cycle test.

Figure 0003966254
Figure 0003966254

実施例の電池A〜Fはリフロー通過後に漏液しておらず、比較電池G,H,I,Jではほぼ半数以上が漏液した。また、実施例電池は比較電池に比べて大きな放電容量が得られた。充放電サイクル寿命試験の結果からも、本実施例電池は15サイクル以上であったのに対し、比較電池では10サイクル未満となった。電池電圧を1.7V以下にすることで、正極の五酸化二オブと有機電解液との反応性を低下させることができ、スルホランやテトラグライムなどの高沸点溶媒を組合せることで更に性能が向上した。   The batteries A to F of the examples did not leak after passing through reflow, and almost half or more of the comparative batteries G, H, I, and J leaked. In addition, the battery of the example had a larger discharge capacity than the comparative battery. From the results of the charge / discharge cycle life test, the battery of this example had 15 cycles or more, whereas the comparative battery had less than 10 cycles. By reducing the battery voltage to 1.7 V or less, the reactivity between the positive electrode niobium pentoxide and the organic electrolyte can be reduced, and further performance can be achieved by combining a high boiling point solvent such as sulfolane or tetraglyme. Improved.

正極の五酸化二オブのBET比表面積がそれぞれ10.0、5.0、3.0、1.0m2/gで他の構成は実施例電池Aと同じで電池J、K、L、Mを作製した。電池Aと電池K、L、M、Nを実施例1と同様に端子付け後にリフロー炉を通過させて漏液性能について調べた。また、充放電サイクル試験を行った。リフロー後の漏液発生数と充放電サイクル試験の結果を表2に示す。   The positive electrode niobium pentoxide has a BET specific surface area of 10.0, 5.0, 3.0, and 1.0 m 2 / g, respectively, and the other configurations are the same as those of Example Battery A, and batteries J, K, L, and M are used. Produced. Battery A and batteries K, L, M, and N were terminal-attached in the same manner as in Example 1 and then passed through a reflow furnace to examine the leakage performance. In addition, a charge / discharge cycle test was performed. Table 2 shows the number of leaks after reflow and the results of the charge / discharge cycle test.

Figure 0003966254
Figure 0003966254

表2から明らかなように漏液はすべての電池で見られなかったが、充放電サイクル数は比表面積が小さくなるに伴って向上した。比表面積が大きい場合には五酸化二オブと有機電解液との反応が起こり、電解液が消費されたことにより充放電サイクル寿命が短くなった。比表面積が3.0m/g以下では20サイクル以上の充放電サイクルが可能である。 As is apparent from Table 2, no leakage was observed in all the batteries, but the number of charge / discharge cycles improved as the specific surface area decreased. When the specific surface area was large, the reaction between niobium pentoxide and the organic electrolyte occurred, and the charge / discharge cycle life was shortened due to consumption of the electrolyte. When the specific surface area is 3.0 m 2 / g or less, 20 or more charge / discharge cycles are possible.

本発明は、正極に五酸化二オブを、負極にリチウムアルミニウム合金を組合せた表面実装用端子付き二次電池において、正極の一部をリチウムと反応させ、電池電圧を1.7V以下にすることで、リフローの高温雰囲気下でも五酸化二オブと有機電解液が安定することが可能となり、高容量で信頼性に優れた表面実装用端子付き二次電池を提供することができる。   In the secondary battery with a surface mounting terminal in which niobium pentoxide is combined in the positive electrode and lithium aluminum alloy in the negative electrode, a part of the positive electrode is reacted with lithium so that the battery voltage is 1.7 V or less. Thus, it becomes possible to stabilize the niobium pentoxide and the organic electrolyte even under a reflow high temperature atmosphere, and it is possible to provide a secondary battery with a terminal for surface mounting that has high capacity and excellent reliability.

また、環境対応で必須となった鉛フリーハンダを用いたリフロー法であっても実装が可能となり、その工業的価値は極めて高い。   In addition, even the reflow method using lead-free solder, which is essential for the environment, can be mounted, and its industrial value is extremely high.

本実施例における端子付き二次電池の断面図Sectional drawing of the secondary battery with a terminal in a present Example

符号の説明Explanation of symbols

1 正極缶
2 負極缶
3 ガスケット
4 正極
5 負極
6 セパレータ
7 正極端子
8 負極端子
DESCRIPTION OF SYMBOLS 1 Positive electrode can 2 Negative electrode can 3 Gasket 4 Positive electrode 5 Negative electrode 6 Separator 7 Positive electrode terminal 8 Negative electrode terminal

Claims (6)

正負極、セパレータ及び有機電解液からなる発電要素を電池容器に収容し、前記電池容器の少なくも一方の電極に接続用端子を設けてなり、前記接続用端子がリフロー法により機器に装着される二次電池であって、
前記正極に単斜晶系の五酸化ニオブを、前記負極にリチウムアルミニウム合金を用いてなり、前記機器への装着前における電池電圧を1.7V以下とした表面実装用端子付き二次電池。
A power generation element composed of positive and negative electrodes, a separator, and an organic electrolyte is housed in a battery container, and a connection terminal is provided on at least one electrode of the battery container, and the connection terminal is attached to a device by a reflow method. A secondary battery,
A secondary battery with surface-mounting terminals that uses monoclinic niobium pentoxide for the positive electrode and a lithium aluminum alloy for the negative electrode, and has a battery voltage of 1.7 V or less before being attached to the device.
五酸化二オブが、BET法により測定した比表面積が3.0m2/g以下である請求項1記載の表面実装用端子付き二次電池。 The secondary battery with a terminal for surface mounting according to claim 1, wherein the niobium pentoxide has a specific surface area of 3.0 m 2 / g or less as measured by the BET method. 有機電解液の有機溶媒が、スルホラン、テトラグライムの少なくとも一方を含む請求項1または2記載の表面実装用端子付き二次電池。 The secondary battery with a terminal for surface mounting according to claim 1 or 2, wherein the organic solvent of the organic electrolyte contains at least one of sulfolane and tetraglyme. 有機電解液の溶質が、LiN(CF3SO22、及びLiN(C25SO22の少なくとも一方を含む請求項1〜3の何れか記載の表面実装用端子付き二次電池。 Solute organic electrolyte, LiN (CF 3 SO 2) 2, and LiN (C 2 F 5 SO 2 ) 2 of either surface mounting terminal with the secondary battery according to claim 1 comprising at least one . ガスケットが、ポリエーテルエーテルケトン、ポリフェニレンサルファイド、液晶ポリマーから選択される少なくも一つの有機樹脂からなる請求項1〜4の何れか記載の表面実装用端子付き二次電池。 The secondary battery with a terminal for surface mounting according to any one of claims 1 to 4, wherein the gasket is made of at least one organic resin selected from polyether ether ketone, polyphenylene sulfide, and liquid crystal polymer. セパレ―タが、ポリフェニレンサルファイド、ポリフッ化エチレンの少なくとも一方から形成される請求項1〜5の何れか記載の表面実装用端子付き二次電池。 The secondary battery with a terminal for surface mounting according to any one of claims 1 to 5, wherein the separator is formed of at least one of polyphenylene sulfide and polyfluorinated ethylene .
JP2003297120A 2003-08-21 2003-08-21 Secondary battery with surface mount terminals Expired - Fee Related JP3966254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003297120A JP3966254B2 (en) 2003-08-21 2003-08-21 Secondary battery with surface mount terminals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003297120A JP3966254B2 (en) 2003-08-21 2003-08-21 Secondary battery with surface mount terminals

Publications (2)

Publication Number Publication Date
JP2005071683A JP2005071683A (en) 2005-03-17
JP3966254B2 true JP3966254B2 (en) 2007-08-29

Family

ID=34403064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003297120A Expired - Fee Related JP3966254B2 (en) 2003-08-21 2003-08-21 Secondary battery with surface mount terminals

Country Status (1)

Country Link
JP (1) JP3966254B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4668540B2 (en) * 2003-02-28 2011-04-13 Fdk株式会社 Heat-resistant lithium battery
JP2005222851A (en) * 2004-02-06 2005-08-18 Sii Micro Parts Ltd Electrode active material and electrochemical cell using it
US7622226B2 (en) 2004-11-04 2009-11-24 Panasonic Corporation Secondary battery having a terminal for surface mounting
JP4911938B2 (en) * 2005-09-14 2012-04-04 三洋電機株式会社 Reflow heat-resistant lithium secondary battery
KR100870814B1 (en) * 2006-01-25 2008-11-27 파나소닉 주식회사 Nonaqueous eletrolyte secondary battery, and manufacturing method and mounting method thereof
JP5144944B2 (en) * 2007-03-05 2013-02-13 三洋電機株式会社 Non-aqueous electrolyte battery active material and non-aqueous electrolyte battery using the same
JP2012527737A (en) * 2009-05-20 2012-11-08 インフィニット パワー ソリューションズ, インコーポレイテッド Method for integrating an electrochemical device in and on a fixture
JP6066464B2 (en) * 2012-03-14 2017-01-25 セイコーインスツル株式会社 Electrolytic solution for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JPWO2023042802A1 (en) * 2021-09-15 2023-03-23

Also Published As

Publication number Publication date
JP2005071683A (en) 2005-03-17

Similar Documents

Publication Publication Date Title
JP5022035B2 (en) Secondary battery with surface mount terminals
JP3966254B2 (en) Secondary battery with surface mount terminals
JP4761725B2 (en) Method for producing non-aqueous electrolyte battery
US20040219424A1 (en) Non-aqueous electrolyte secondary battery
WO2001095412A1 (en) Electrochemical device
JP4911938B2 (en) Reflow heat-resistant lithium secondary battery
JP4195949B2 (en) Organic electrolyte battery that can be mounted automatically by reflow method
JP4392189B2 (en) Coin-type non-aqueous electrolyte secondary battery for reflow soldering
JP2006236888A (en) Nonaqueous electrolyte solution battery
JP2007035431A (en) Nonaqueous electrolyte secondary battery
JP4668540B2 (en) Heat-resistant lithium battery
JP2008198552A (en) Coin type electrochemical cell
JP2005332657A (en) Non-aqueous electrolyte secondary battery
JP2001126684A (en) Non-aqueous electrolyte battery
JP2002298911A (en) Organic electrolyte battery
JP4976623B2 (en) Reflow solderable electrochemical cell
KR101073165B1 (en) Heat-Resistant Lithium Battery
JP2004327305A (en) Manufacturing method of lithium secondary battery
JP2003045485A (en) Secondary lithium battery
JP2000040525A (en) Organic electrolyte secondary battery
JP2000138042A (en) Organic electrolyte battery
JP4281428B2 (en) Electrochemical element
JP2000251935A (en) Organic electrolyte battery
JP3230279B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2001273926A (en) Organic electrolytic solution battery

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees