JP3964516B2 - Motor control device - Google Patents

Motor control device Download PDF

Info

Publication number
JP3964516B2
JP3964516B2 JP29887797A JP29887797A JP3964516B2 JP 3964516 B2 JP3964516 B2 JP 3964516B2 JP 29887797 A JP29887797 A JP 29887797A JP 29887797 A JP29887797 A JP 29887797A JP 3964516 B2 JP3964516 B2 JP 3964516B2
Authority
JP
Japan
Prior art keywords
unit
integrating
motor
integrated value
primary storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29887797A
Other languages
Japanese (ja)
Other versions
JPH11136996A (en
Inventor
茂樹 晴山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP29887797A priority Critical patent/JP3964516B2/en
Publication of JPH11136996A publication Critical patent/JPH11136996A/en
Application granted granted Critical
Publication of JP3964516B2 publication Critical patent/JP3964516B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Numerical Control (AREA)
  • Control Of Multiple Motors (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、例えば産業用ロボットの軸のアーム駆動用モータを制御するモータ制御装置に関する。
【0002】
【従来の技術】
複数軸を有する産業用ロボットは、各軸のアーム駆動用として複数のモータを備え、さらに、これらモータの駆動制御用としてモータ制御装置を備える。
このモータ制御装置の例として、特開平3-222696号公報に示されるように、複数のモータの移動量を一定周期で設定し、これら移動量を各モータ制御ユニットに送り、各モータ制御ユニットでは送られた移動量に応じて各モータを駆動するものがある。また、図4に示すものがある。
【0003】
図4において、1は数値演算ユニットで、数値演算部2、複数の一次記憶部3、通信制御部4、および主制御部5を備える。
数値演算部2は、後述する複数のモータ10のそれぞれ移動量(アームの絶対移動位置に相当)を一定周期たとえば24msecごとに演算して同時設定する。
【0004】
一次記憶部3は、 6個のバッファメモリ3a,…3fを有し、数値演算部2で設定される移動量を 6分割して各バッファメモリに順次記憶する。
通信制御部4は、各一次記憶部3内のそれぞれ 6個の分割移動量を 4msecごとに各シリアル信号ライン6に順次に送出する( 6個の分割移動量の全ての送出にかかる時間は24msec)。
【0005】
主制御部5は、数値演算部2、各一次記憶部3、通信制御部4のそれぞれ作動タイミングを制御する。
上記各シリアル信号ライン6は 4個のモータ制御ユニット11に接続される。各モータ制御ユニット11は、通信制御部12、一次記憶部13、積算カウンタ14、モータ駆動部15、および主制御部16を備える。
【0006】
通信制御部12は、シリアル信号ライン6から 4msecごとに送られてくる 6個の分割移動量を順次に取込む。
一次記憶部13は、 4個のバッファメモリ13a,…13dを有し、通信制御部12で順次に取込まれる分割移動量を逐次に 4分割して各バッファメモリに順次記憶する。
【0007】
積算カウンタ14は、バッファメモリ13a,…13d内の再分割移動量を 1msecごとに積算する。
モータ駆動部15は、積算カウンタ14の積算値を 1msecごとに参照してその積算値に応じた位置にアームが到達するよう、モータ10を駆動する。モータ 10は、産業用ロボットの各軸のアームを駆動する。
主制御部16は、通信制御部12、一次記憶部13、積算カウンタ14、モータ駆動部15のそれぞれ作動タイミングを制御する。
【0008】
【発明が解決しようとする課題】
図4のモータ制御装置では、数値演算ユニット1の数値演算部2による移動量の設定周期が24msec、数値演算ユニット1とモータ制御ユニット11との間のシリアル信号ライン6を介した通信周期が 4msec(分割移動量の全ての通信にかかる時間は24msec)であり、移動量設定周期とユニット間通信周期との間に、移動量設定周期を整数で割った数値(除算値)がユニット間通信周期になるという関係がある。
【0009】
このため、何らかの理由で、ユニット間通信周期として 4msecより長い例えば 8msecを採用するような仕様変更が必要になった場合、それに伴い、移動量設定周期として24msecより長い例えば32msecを採用しなければならない。逆に、移動量設定周期を変更しようとすると、それに連動して、ユニット間通信周期も変更しなければならない。つまり、1つの仕様変更が必要になると、それが数値演算ユニット1および各モータ制御ユニット11の全ての構成変更へと波及してしまう。
【0010】
この発明は上記の事情を考慮したもので、その目的とするところは、移動量設定周期およびユニット間通信周期のいずれか一方の変更が必要となっても、その変更を一方のみにとどめて他方の変更を回避することができる柔軟性および汎用性にすぐれたモータ制御装置を提供することにある。
【0012】
【課題を解決するための手段】
の発明(請求項)のモータ制御装置は、複数のモータの移動量を一定周期で同時設定する設定手段、この設定手段で設定した各移動量を所定数分割して記憶する複数の記憶手段、この各記憶手段内のそれぞれ分割移動量を順次積算する複数の積算手段、この各積算手段の積算値をそれぞれ一定時間ごとに送出する送出手段を有する第1ユニットと、上記各モータに対応して設けられ、上記送出手段から送出される積算値の変化量を検出する検出手段、この検出手段で検出した変化量を所定数分割して記憶する記憶手段、この記憶手段内の各分割値を順次積算する積算手段、この積算手段の積算値に応じて対応するモータを駆動するモータ駆動手段を有する複数の第2ユニットと、を備える。
【0013】
の発明(請求項)のモータ制御装置は、複数のモータの移動量を一定周期Nで同時設定する設定手段、この設定手段で設定した各移動量をそれぞれN分割して一次記憶する複数の一次記憶手段、この各一次記憶手段内のN個の分割移動量を一定時間ta ごとに順次積算する複数の積算手段、この各積算手段の積算値Aをそれぞれ一定時間tb ごとに送出する送出手段を有する第1ユニットと、上記各モータに対応して設けられ、上記送出手段から送出される積算値Aの変化量を検出する検出手段、この検出手段で検出した変化量を所定数M分割して一次記憶する一次記憶手段、この一次記憶手段内のM個の分割値を一定時間tc ごとに積算する積算手段、この積算手段の積算値Bに応じて対応するモータを駆動するモータ駆動手段を有する複数の第2ユニットと、を備える。
の発明(請求項)のモータ制御装置は、第3の発明において、モータ駆動手段が、一定時間tc ごとに作動する。
【0014】
【発明の実施の形態】
以下、この発明の一実施例について図面を参照して説明する。
図1において、21は数値演算ユニット(第1ユニット)で、数値演算部22、複数の一次記憶部(記憶手段)23、複数の積算カウンタ(積算手段)24、通信制御部(送出手段)25、および主制御部26を備える。
【0015】
数値演算部22は、複数のモータ10のそれぞれ移動量(アームの絶対移動位置に相当)Lを一定周期Nmsecごとに演算して同時設定する。一定周期Nmsecの“N”は所定値である。
【0016】
一次記憶部23は、所定数たとえば一定周期Nmsecの“N”にそのまま対応するN個のバッファメモリ23a,…23nを有し、数値演算部22で設定される移動量LをN分割して各バッファメモリに順次に一次記憶する。
【0017】
積算カウンタ24は、バッファメモリ23a,…23n内のN個の分割移動量(=L/N)を一定時間ta たとえば 1msecごとに順次積算する。
通信制御部25は、各積算カウンタ24の積算値Aを一定時間tb たとえば 10msecごとに各シリアル信号ライン27に順次に送出する。
【0018】
主制御部26は、数値演算部22、各一次記憶部23、積算カウンタ24、通信制御部25のそれぞれ作動タイミングを制御する。
上記各シリアル信号ライン27は複数個のモータ制御ユニット(第2ユニット)31に接続される。
【0019】
各モータ制御ユニット31は、通信制御部32、減算部(変化量の検出手段)33、一次記憶部(記憶手段)34、積算カウンタ(積算手段)35、モータ駆動部36、および主制御部37を備える。
【0020】
通信制御部32は、シリアル信号ライン27から10msecごとに送られてくる積算値Aを順次に取込む。
減算部33は、通信制御部32で順次に取込まれる積算値Aから積算カウンタ35の積算値Bを逐次に減算するもので、これにより積算値Aの変化量(=A−B)が逐次に検出される。
【0021】
一次記憶部34は、所定数M個たとえば10個のバッファメモリ34a,…34jを有し、減算部33で検出される変化量(=A−B)を所定数M(=10)分割して各バッファメモリに順次に一次記憶する。
【0022】
積算カウンタ35は、バッファメモリ34a,…34j内のM個の分割値を一定時間tc たとえば 1msecごとに順次積算する。
モータ駆動部36は、積算カウンタ35の積算値Bを 1msec(=tc )ごとに参照してその積算値Bに応じた位置にアームが到達するようモータ10を駆動する。
【0023】
主制御部37は、通信制御部32、減算部33、一次記憶部34、積算カウンタ35、モータ駆動部36のそれぞれ作動タイミングを制御する。
つぎに、上記の構成の作用を図2および図3のフローチャートを参照して説明する。
【0024】
数値演算ユニット21の数値演算部22において、一定周期Nmsecごとに、各モータ10の移動量(アームの絶対移動位置に相当)Lが同時設定される(ステップ101 )。設定された各移動量Lは、それぞれN分割され、各一次記憶部23のバッファメモリ23a,…23nに格納される(ステップ102 )。
【0025】
各一次記憶部23のバッファメモリ23a,…23nに格納されたN個の分割移動量(=L/N)は、 1msecごとに各積算カウンタ24に送られ積算される(ステップ103 )。
【0026】
各積算カウンタ24の積算値Aは、通信制御部25により、10msecごとに各シリアル信号ライン27に順次に送出される(ステップ104 )。
一方、モータ制御ユニット31では、シリアル信号ライン27から10msecごとに送られてくる積算値Aが通信制御部32により順次に取込まれる(ステップ 201 )。
【0027】
取込まれる積算値Aは減算部33に送られ、そこで積算値Aから積算カウンタ35の積算値Bが減算されることにより、積算値Aの変化量(=A−B)が検出される(ステップ202 )。
【0028】
検出された変化量は一次記憶部34で10分割され、バッファメモリ34a,…34jに格納される(ステップ203 )。
バッファメモリ34a,…34j内の分割値は、 1msecごとに順次に積算カウンタ35に送られ積算される(ステップ204 )。
【0029】
そして、積算カウンタ35の積算値Bが 1msecごとにモータ駆動部36に送られ(ステップ205 )、その積算値Bに応じた位置にモータ10が作動する(ステップ206 )。この作動により、上記設定された移動量Lに対応する絶対移動位置にアームが到達する。
【0030】
このような構成において、数値演算ユニット21の数値演算部22による移動量Lの設定周期はNmsecであり、数値演算ユニット21とモータ制御ユニット 31との間のシリアル信号ライン27を介した通信周期はtb たとえば10msecであり、従来のように移動量設定周期を整数で割った数値(除算値)がユニット間通信周期になるという特別の関係は存在しない。
【0031】
すなわち、移動量設定手段とユニット間通信手段との間に積算カウンタ24が介在することにより、何らかの理由でユニット間通信周期を変更する必要が生じても、移動量設定周期を変更する必要はまったくない。逆に、移動量設定周期を変更する必要が生じても、ユニット間通信周期を変更する必要はまったくない。
【0032】
1つの仕様変更が数値演算ユニット21および各モータ制御ユニット31の全ての構成変更へと波及する事態を回避することができ、汎用性および柔軟性にすぐれたものとなる。
【0033】
また、各モータ制御ユニット31では、取込んだ積算値Aの変化量を検出し、その変化量分だけ、モータ駆動部36が逐次にモータ駆動を行なう構成としているので、モータ駆動の制御が単純となる。よって、モータ駆動の制御周期を短縮するような必要が生じた場合でも、適正なアーム駆動が可能である。
なお、この発明は上記実施例に限定されるものではなく、要旨を変えない範囲で種々変形実施可能である。
【0034】
【発明の効果】
以上述べたようにこの発明によれば移動量設定周期およびユニット間通信周期のいずれか一方の変更が必要となっても、その変更を一方のみにとどめて他方の変更を回避することができる柔軟性および汎用性にすぐれたモータ制御装置を提供できる。
【図面の簡単な説明】
【図1】本発明の一実施例の構成を示すブロック図。
【図2】同実施例の数値演算ユニットの作用を説明するためのフローチャート。
【図3】同実施例のモータ制御ユニットの作用を説明するためのフローチャート。
【図4】従来装置の構成を示すブロック図。
【符号の説明】
10…モータ
21…数値演算ユニット
22…数値演算部
23…一次記憶部(一次記憶手段)
24…積算カウンタ(積算手段)
25…通信制御部
26…主制御部
27…シリアル信号ライン
31…モータ制御ユニット
32…通信制御部
33…減算部(変化量の検出手段)
34…一次記憶部(一次記憶手段)
35…積算カウンタ(積算手段)
36…モータ制御部
37…主制御部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a motor control device that controls, for example, an arm drive motor for an axis of an industrial robot.
[0002]
[Prior art]
An industrial robot having a plurality of axes includes a plurality of motors for driving the arms of each axis, and further includes a motor control device for controlling the driving of these motors.
As an example of this motor control device, as shown in Japanese Patent Laid-Open No. 3-222696, the movement amounts of a plurality of motors are set at a constant cycle, and these movement amounts are sent to each motor control unit. There is one that drives each motor according to the amount of movement sent. Moreover, there exists what is shown in FIG.
[0003]
In FIG. 4, reference numeral 1 denotes a numerical operation unit, which includes a numerical operation unit 2, a plurality of primary storage units 3, a communication control unit 4, and a main control unit 5.
The numerical calculation unit 2 calculates and sets simultaneously the movement amounts (corresponding to the absolute movement positions of the arms) of a plurality of motors 10 to be described later at regular intervals, for example, every 24 msec.
[0004]
The primary storage unit 3 includes six buffer memories 3a,... 3f, and divides the movement amount set by the numerical value calculation unit 2 into six, and sequentially stores them in each buffer memory.
The communication control unit 4 sequentially sends each of the six divided movement amounts in each primary storage unit 3 to each serial signal line 6 every 4 msec (the time taken to send all six divided movement amounts is 24 msec). ).
[0005]
The main control unit 5 controls the operation timing of the numerical calculation unit 2, each primary storage unit 3, and the communication control unit 4.
Each serial signal line 6 is connected to four motor control units 11. Each motor control unit 11 includes a communication control unit 12, a primary storage unit 13, an integration counter 14, a motor drive unit 15, and a main control unit 16.
[0006]
The communication control unit 12 sequentially captures six divided movement amounts sent from the serial signal line 6 every 4 msec.
The primary storage unit 13 has four buffer memories 13a,... 13d, and sequentially divides the divided movement amount sequentially taken in by the communication control unit 12 into four and stores them in each buffer memory.
[0007]
The integration counter 14 integrates the re-division movement amount in the buffer memories 13a,... 13d every 1 msec.
The motor drive unit 15 drives the motor 10 so that the arm reaches a position corresponding to the integrated value by referring to the integrated value of the integrated counter 14 every 1 msec. The motor 10 drives the arm of each axis of the industrial robot.
The main control unit 16 controls the operation timings of the communication control unit 12, the primary storage unit 13, the integration counter 14, and the motor drive unit 15.
[0008]
[Problems to be solved by the invention]
In the motor control device of FIG. 4, the movement amount setting period by the numerical value calculation unit 2 of the numerical value calculation unit 1 is 24 msec, and the communication period between the numerical value calculation unit 1 and the motor control unit 11 via the serial signal line 6 is 4 msec. (The time required for all communications of the divided movement amount is 24 msec), and the value obtained by dividing the movement amount setting period by an integer (division value) between the movement amount setting period and the inter-unit communication period is the inter-unit communication period. There is a relationship that becomes.
[0009]
For this reason, if for some reason it is necessary to change the specification such as using 8 msec longer than 4 msec as the communication cycle between units, it is necessary to adopt 32 msec longer than 24 msec as the movement amount setting cycle. . Conversely, if the movement amount setting cycle is to be changed, the inter-unit communication cycle must be changed accordingly. That is, if one specification change is required, it will spread to all the configuration changes of the numerical operation unit 1 and each motor control unit 11.
[0010]
The present invention takes the above circumstances into consideration, and the object of the present invention is to change only one of the movement amount setting cycle and the inter-unit communication cycle, and change the change to only one. It is an object of the present invention to provide a motor controller excellent in flexibility and versatility capable of avoiding the above change.
[0012]
[Means for Solving the Problems]
A motor control device according to a first aspect of the present invention (invention 1 ) is a setting means for simultaneously setting movement amounts of a plurality of motors at a constant period, and a plurality of movement amounts set by the setting means are divided into a predetermined number and stored. A first unit having storage means, a plurality of integration means for sequentially integrating the divided movement amounts in the storage means, a sending means for sending the integrated values of the integration means at regular intervals, and the motors Correspondingly provided detection means for detecting the change amount of the integrated value sent from the sending means, storage means for storing the change amount detected by the detection means by dividing it into a predetermined number, and each division in the storage means And a plurality of second units having a motor driving unit that drives a corresponding motor in accordance with an integration value of the integration unit.
[0013]
The motor control apparatus according to the second aspect of the present invention (claim 2 ) is a setting means for simultaneously setting the movement amounts of a plurality of motors at a constant period N, and each movement amount set by the setting means is divided into N and temporarily stored. A plurality of primary storage means, a plurality of integration means for sequentially integrating the N divided movement amounts in each primary storage means every fixed time ta, and an integrated value A of each integrated means is sent out every fixed time tb. A first unit having a sending means, a detecting means provided corresponding to each of the motors and detecting the change amount of the integrated value A sent from the sending means, and the change amount detected by the detecting means is a predetermined number M. Primary storage means for dividing and storing primary data, integration means for integrating the M divided values in the primary storage means at regular time intervals tc, and motor drive for driving the corresponding motor according to the integrated value B of the integration means Have means A plurality of second units.
According to a third aspect of the present invention (invention 3 ), in the third aspect of the present invention, the motor drive means operates at regular time intervals tc.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
In FIG. 1, reference numeral 21 denotes a numerical operation unit (first unit), which is a numerical operation unit 22, a plurality of primary storage units (storage means) 23, a plurality of integration counters (integration means) 24, and a communication control unit (sending means) 25. And a main control unit 26.
[0015]
The numerical calculation unit 22 calculates and simultaneously sets the movement amount (corresponding to the absolute movement position of the arm) L of each of the plurality of motors 10 for each constant period Nmsec. “N” in the fixed period Nmsec is a predetermined value.
[0016]
The primary storage unit 23 has N buffer memories 23a,..., 23n that directly correspond to a predetermined number, for example, “N” of a fixed period Nmsec, and divides the movement amount L set by the numerical calculation unit 22 into N parts. Primary storage is sequentially performed in the buffer memory.
[0017]
The integration counter 24 sequentially integrates the N divided movement amounts (= L / N) in the buffer memories 23a,... 23n every predetermined time ta, for example, 1 msec.
The communication control unit 25 sequentially sends the accumulated value A of each accumulation counter 24 to each serial signal line 27 every predetermined time tb, for example, 10 msec.
[0018]
The main control unit 26 controls the operation timing of the numerical calculation unit 22, each primary storage unit 23, the integration counter 24, and the communication control unit 25.
Each serial signal line 27 is connected to a plurality of motor control units (second units) 31.
[0019]
Each motor control unit 31 includes a communication control unit 32, a subtraction unit (change amount detection unit) 33, a primary storage unit (storage unit) 34, an integration counter (integration unit) 35, a motor drive unit 36, and a main control unit 37. Is provided.
[0020]
The communication control unit 32 sequentially captures the integrated value A sent from the serial signal line 27 every 10 msec.
The subtracting unit 33 sequentially subtracts the integrated value B of the integrating counter 35 from the integrated value A that is sequentially taken in by the communication control unit 32, whereby the change amount (= A−B) of the integrated value A is sequentially determined. Detected.
[0021]
The primary storage unit 34 has a predetermined number M, for example, 10 buffer memories 34a,... 34j, and divides the amount of change (= A−B) detected by the subtracting unit 33 into a predetermined number M (= 10). Primary storage is sequentially performed in each buffer memory.
[0022]
The integration counter 35 sequentially integrates the M divided values in the buffer memories 34a,... 34j every certain time tc, for example, 1 msec.
The motor drive unit 36 refers to the integrated value B of the integrated counter 35 every 1 msec (= tc), and drives the motor 10 so that the arm reaches a position corresponding to the integrated value B.
[0023]
The main control unit 37 controls the operation timing of the communication control unit 32, the subtraction unit 33, the primary storage unit 34, the integration counter 35, and the motor drive unit 36.
Next, the operation of the above configuration will be described with reference to the flowcharts of FIGS.
[0024]
In the numerical value calculation unit 22 of the numerical value calculation unit 21, the movement amount (corresponding to the absolute movement position of the arm) L of each motor 10 is simultaneously set at every fixed period Nmsec (step 101). Each set movement amount L is divided into N parts and stored in the buffer memories 23a,... 23n of the primary storage units 23 (step 102).
[0025]
N divided movement amounts (= L / N) stored in the buffer memories 23a,..., 23n of each primary storage unit 23 are sent to each integration counter 24 every 1 msec and integrated (step 103).
[0026]
The integrated value A of each integration counter 24 is sequentially sent to each serial signal line 27 every 10 msec by the communication control unit 25 (step 104).
On the other hand, in the motor control unit 31, the integrated value A sent from the serial signal line 27 every 10 msec is sequentially taken in by the communication control unit 32 (step 201).
[0027]
The acquired integrated value A is sent to the subtracting unit 33, where the integrated value B of the integrated counter 35 is subtracted from the integrated value A, whereby a change amount (= AB) of the integrated value A is detected ( Step 202).
[0028]
The detected change amount is divided into 10 by the primary storage unit 34 and stored in the buffer memories 34a,... 34j (step 203).
The divided values in the buffer memories 34a,... 34j are sequentially sent to the integration counter 35 every 1 msec and integrated (step 204).
[0029]
Then, the integrated value B of the integrated counter 35 is sent to the motor drive unit 36 every 1 msec (step 205), and the motor 10 is operated at a position corresponding to the integrated value B (step 206). By this operation, the arm reaches the absolute movement position corresponding to the set movement amount L.
[0030]
In such a configuration, the setting period of the movement amount L by the numerical calculation unit 22 of the numerical calculation unit 21 is Nmsec, and the communication cycle between the numerical calculation unit 21 and the motor control unit 31 via the serial signal line 27 is tb For example, 10 msec, and there is no special relationship that a value obtained by dividing the movement amount setting period by an integer (division value) becomes the inter-unit communication period as in the conventional case.
[0031]
That is, since the integration counter 24 is interposed between the movement amount setting means and the inter-unit communication means, even if it is necessary to change the inter-unit communication cycle for some reason, it is absolutely unnecessary to change the movement amount setting cycle. Absent. Conversely, even if it is necessary to change the movement amount setting cycle, there is no need to change the inter-unit communication cycle.
[0032]
It is possible to avoid a situation in which one specification change spills over to all the configuration changes of the numerical operation unit 21 and each motor control unit 31, and the versatility and flexibility are excellent.
[0033]
In addition, each motor control unit 31 detects the amount of change in the integrated value A that has been taken in, and the motor drive unit 36 is configured to sequentially drive the motor by the amount of change, so motor drive control is simple. It becomes. Therefore, even when it becomes necessary to shorten the control period of motor driving, proper arm driving is possible.
In addition, this invention is not limited to the said Example, A various deformation | transformation implementation is possible in the range which does not change a summary.
[0034]
【The invention's effect】
As described above, according to the present invention, even if any one of the movement amount setting cycle and the inter-unit communication cycle needs to be changed, the change can be limited to only one and the other change can be avoided. A motor control device with excellent flexibility and versatility can be provided.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of an embodiment of the present invention.
FIG. 2 is a flowchart for explaining the operation of the numerical operation unit of the embodiment;
FIG. 3 is a flowchart for explaining the operation of the motor control unit of the embodiment;
FIG. 4 is a block diagram showing a configuration of a conventional apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Motor 21 ... Numerical value calculation unit 22 ... Numerical value calculation part 23 ... Primary storage part (primary storage means)
24 ... Integration counter (integration means)
25 ... Communication control unit 26 ... Main control unit 27 ... Serial signal line 31 ... Motor control unit 32 ... Communication control unit 33 ... Subtraction unit (change amount detecting means)
34 ... Primary storage unit (primary storage means)
35 ... Integration counter (integration means)
36 ... Motor control unit 37 ... Main control unit

Claims (3)

複数のモータの移動量を一定周期で同時設定する設定手段、この設定手段で設定した各移動量を所定数分割して記憶する複数の記憶手段、この各記憶手段内のそれぞれ分割移動量を順次積算する複数の積算手段、この各積算手段の積算値をそれぞれ一定時間ごとに送出する送出手段、を有する第1ユニットと、
前記各モータに対応して設けられ、前記送出手段から送出される積算値の変化量を検出する検出手段、この検出手段で検出した変化量を所定数分割して記憶する記憶手段、この記憶手段内の各分割値を順次積算する積算手段、この積算手段の積算値に応じて対応するモータを駆動するモータ駆動手段、を有する複数の第2ユニットと、
を具備したことを特徴とするモータ制御装置。
Setting means for simultaneously setting the movement amounts of a plurality of motors at a constant period, a plurality of storage means for storing each movement amount set by the setting means by dividing it into a predetermined number, and sequentially dividing the movement amounts in the respective storage means A first unit having a plurality of integrating means for integrating, and sending means for sending the integrated value of each integrating means at regular intervals;
Detection means provided corresponding to each of the motors for detecting the change amount of the integrated value sent from the sending means, storage means for storing the change amount detected by the detection means by dividing it into a predetermined number, and this storage means A plurality of second units having integrating means for sequentially integrating the divided values therein, and motor driving means for driving a motor corresponding to the integrated value of the integrating means;
A motor control device comprising:
複数のモータの移動量を一定周期Nで同時設定する設定手段、この設定手段で設定した各移動量をそれぞれN分割して一次記憶する複数の一次記憶手段、この各一次記憶手段内のN個の分割移動量を一定時間ta ごとに順次積算する複数の積算手段、この各積算手段の積算値Aをそれぞれ一定時間tb ごとに送出する送出手段、を有する第1ユニットと、
前記各モータに対応して設けられ、前記送出手段から送出される積算値Aの変化量を検出する検出手段、この検出手段で検出した変化量を所定数M分割して一次記憶する一次記憶手段、この一次記憶手段内のM個の分割値を一定時間tc ごとに積算する積算手段、この積算手段の積算値Bに応じて対応するモータを駆動するモータ駆動手段、を有する複数の第2ユニットと、
を具備したことを特徴とするモータ制御装置。
Setting means for simultaneously setting the movement amounts of a plurality of motors at a constant period N, a plurality of primary storage means for primarily storing the movement amounts set by the setting means by dividing each into N, and N pieces in each primary storage means A first unit having a plurality of integrating means for sequentially integrating the divided movement amounts for each predetermined time ta, and a sending means for sending the integrated value A of each integrating means for each predetermined time tb;
Detection means provided corresponding to each of the motors and detecting a change amount of the integrated value A sent from the sending means, and a primary storage means for temporarily storing the change amount detected by the detection means by dividing it into a predetermined number M. A plurality of second units each having an integration means for integrating the M divided values in the primary storage means every predetermined time tc, and a motor drive means for driving a motor corresponding to the integration value B of the integration means. When,
A motor control device comprising:
請求項に記載のモータ制御装置において、
前記モータ駆動手段は、一定時間tc ごとに作動することを特徴とするモータ制御装置。
The motor control device according to claim 2 ,
The motor control device according to claim 1, wherein the motor driving means operates at regular time intervals tc.
JP29887797A 1997-10-30 1997-10-30 Motor control device Expired - Fee Related JP3964516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29887797A JP3964516B2 (en) 1997-10-30 1997-10-30 Motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29887797A JP3964516B2 (en) 1997-10-30 1997-10-30 Motor control device

Publications (2)

Publication Number Publication Date
JPH11136996A JPH11136996A (en) 1999-05-21
JP3964516B2 true JP3964516B2 (en) 2007-08-22

Family

ID=17865343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29887797A Expired - Fee Related JP3964516B2 (en) 1997-10-30 1997-10-30 Motor control device

Country Status (1)

Country Link
JP (1) JP3964516B2 (en)

Also Published As

Publication number Publication date
JPH11136996A (en) 1999-05-21

Similar Documents

Publication Publication Date Title
CN109709929B (en) Control system
JP3964516B2 (en) Motor control device
EP0965895A2 (en) Control System with an input/output card interface
JPS63148881A (en) Speed control device for servo motor
JP2786874B2 (en) Movable position control device
JP3203999B2 (en) Robot control device
JP3873685B2 (en) Multi-axis synchronous control device, multi-axis synchronous control method, and multi-axis synchronous control program
JP4318120B2 (en) Pulse output IC for motor drive and electronic cam control system
JPH07271441A (en) Motor controller
JPH03222696A (en) Motor controller and control method
JP2019188549A (en) Control system, control method and control program
JPH0683433A (en) Positioning controller
JPH09205793A (en) Motor controller
JP2000084878A (en) Control device for robot
JPH03218501A (en) Numerical controller
JPH07299792A (en) Double-armed robot system and its controlling method
JPH0198017A (en) Printer controller
CN113946156A (en) Motion path teaching control method and control system of wheeled robot
JP2953925B2 (en) Control device for driving parts
JPS594593A (en) Position setter
JP2000250610A (en) Sequence control device and method and recording medium recording sequence control program
SU636076A1 (en) Apparatus for position-wise control of manipulator robot
JPH0410107A (en) Monitor method for sequence control
JP2021072496A (en) Control method of stereo camera
JPH0527825A (en) Industrial robot

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041025

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070524

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees