JP3964438B2 - Semiconductor device and manufacturing method of semiconductor device - Google Patents

Semiconductor device and manufacturing method of semiconductor device Download PDF

Info

Publication number
JP3964438B2
JP3964438B2 JP2005187175A JP2005187175A JP3964438B2 JP 3964438 B2 JP3964438 B2 JP 3964438B2 JP 2005187175 A JP2005187175 A JP 2005187175A JP 2005187175 A JP2005187175 A JP 2005187175A JP 3964438 B2 JP3964438 B2 JP 3964438B2
Authority
JP
Japan
Prior art keywords
substrate
semiconductor device
resin
mold
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005187175A
Other languages
Japanese (ja)
Other versions
JP2007005730A (en
Inventor
好美 高橋
正純 雨海
Original Assignee
日本テキサス・インスツルメンツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本テキサス・インスツルメンツ株式会社 filed Critical 日本テキサス・インスツルメンツ株式会社
Priority to JP2005187175A priority Critical patent/JP3964438B2/en
Priority to US11/426,622 priority patent/US7520052B2/en
Publication of JP2007005730A publication Critical patent/JP2007005730A/en
Application granted granted Critical
Publication of JP3964438B2 publication Critical patent/JP3964438B2/en
Priority to US12/400,474 priority patent/US7971351B2/en
Priority to US13/114,554 priority patent/US8304883B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/3201Structure
    • H01L2224/32012Structure relative to the bonding area, e.g. bond pad
    • H01L2224/32013Structure relative to the bonding area, e.g. bond pad the layer connector being larger than the bonding area, e.g. bond pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/4824Connecting between the body and an opposite side of the item with respect to the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73215Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • H01L2924/1533Connection portion the connection portion being formed on the die mounting surface of the substrate the connection portion being formed both on the die mounting surface of the substrate and outside the die mounting surface of the substrate
    • H01L2924/15331Connection portion the connection portion being formed on the die mounting surface of the substrate the connection portion being formed both on the die mounting surface of the substrate and outside the die mounting surface of the substrate being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device manufacturing method which can individually mold a plurality of semiconductor chips mounted on a single face of a substrate. <P>SOLUTION: The semiconductor device manufacturing method consists of steps of arranging a plurality of semiconductor elements 102 on the surface of a substrate 100; fixing the rear face side of the substrate 100 on a lower metal mold 130; supplying a liquid resin 114 to each semiconductor element 102 from a nozzle 112 so that at least part of each semiconductor element 102 is covered by the liquid resin 114; pressing an upper metal mold formed with a plurality of cavities 144 on one surface against the lower metal mold and then molding the liquid resin 114 by these cavities 144 at a predetermined temperature; and separating the cavities 144 of the upper metal mold 140 from the substrate to form a plurality of individual mold resins, as a lump on the substrate. <P>COPYRIGHT: (C)2007,JPO&amp;INPIT

Description

本発明は、基板上の一面に搭載された複数の半導体チップを樹脂封止するための方法に関し、特に、半導体装置の小型化、薄型化に適応することができるモールド方法に関する。   The present invention relates to a method for resin-sealing a plurality of semiconductor chips mounted on one surface of a substrate, and more particularly to a molding method that can be adapted to miniaturization and thinning of a semiconductor device.

携帯電話、携帯型コンピュータ、その他の小型電子機器の普及に伴って、これらに搭載する半導体装置の小型化・薄型化の要求が高まっている。こうした要求に応えるべく、BGAパッケージやCSPパッケージが開発され、実用化されている。   With the widespread use of cellular phones, portable computers, and other small electronic devices, there is an increasing demand for smaller and thinner semiconductor devices mounted on them. In order to meet these requirements, BGA packages and CSP packages have been developed and put into practical use.

特許文献1は、BGAパッケージに関する。図13に示すように、ポリイミド製の絶縁フィルム基板3の表面には、半導体チップ2と半田バンプ7とを電気的に接続するための多数の銅パターン4が形成されている。各銅パターン4の一端は、絶縁基板3に形成されたビアホール3aを介して半田バンプ7と接続され、銅パターン4の他端は、半導体チップ2の電極パッド2aから伸びる導体ワイヤ5の一端が接続されている。銅パターン4を含む絶縁基板3上には、エポキシ系樹脂からなる半田レジスト6が塗布されている。半導体チップ2は、ダイアタッチテープ8上に接着され、そして、トランスファーモールド法により成型されたモールド樹脂9内に封止されている。   Patent Document 1 relates to a BGA package. As shown in FIG. 13, a large number of copper patterns 4 for electrically connecting the semiconductor chip 2 and the solder bumps 7 are formed on the surface of the polyimide insulating film substrate 3. One end of each copper pattern 4 is connected to a solder bump 7 through a via hole 3a formed in the insulating substrate 3. The other end of the copper pattern 4 is one end of a conductor wire 5 extending from the electrode pad 2a of the semiconductor chip 2. It is connected. On the insulating substrate 3 including the copper pattern 4, a solder resist 6 made of an epoxy resin is applied. The semiconductor chip 2 is bonded onto the die attach tape 8 and sealed in a mold resin 9 molded by a transfer molding method.

また、特許文献2は、基板の一方の面に複数の半導体チップがマトリクス状に搭載された被成形品を樹脂モールドするモールド金型及び該モールド金型を用いた樹脂モールド方法に関するものである。図14(b)は、QFN(Quad Flat Non-leaded)タイプの半導体パッケージを例示したものである。被成形品であるリードフレーム56の一方の面にはダイパッド部57に半導体チップ52がマトリクス状に搭載されている。各半導体チップ52と周囲のリード部58とがワイヤボンディングされて、半導体チップ52の電極部と端子接続部となるリード部58の一方の面とがボンディングワイヤ54により電気的に接続されている。樹脂基板51やリードフレーム56は下型59に搭載された際に、キャビティ凹部60にマトリクス状に搭載された半導体チップ52が収容される。樹脂基板51やリードフレーム56は、上型61と下型59とで基板周縁部がクランプされ、モールド樹脂が下型ランナゲート62を通じてキャビティ凹部60に充填されて一方の面が一括して樹脂モールドされる。樹脂モールド後、成形品(樹脂基板51やリードフレーム56)は、半導体チップ毎にダイシングされて個片に切断されて半導体装置が製造される。Cがダイサーカットラインである。   Patent Document 2 relates to a mold for resin-molding a molded product in which a plurality of semiconductor chips are mounted in a matrix on one surface of a substrate, and a resin molding method using the mold. FIG. 14B illustrates a QFN (Quad Flat Non-leaded) type semiconductor package. A semiconductor chip 52 is mounted in a matrix on a die pad portion 57 on one surface of a lead frame 56 that is a molded product. Each semiconductor chip 52 and the surrounding lead portion 58 are wire-bonded, and the electrode portion of the semiconductor chip 52 and one surface of the lead portion 58 serving as a terminal connection portion are electrically connected by a bonding wire 54. When the resin substrate 51 and the lead frame 56 are mounted on the lower mold 59, the semiconductor chips 52 mounted in a matrix in the cavity recesses 60 are accommodated. The resin substrate 51 and the lead frame 56 are clamped at the periphery of the substrate by the upper mold 61 and the lower mold 59, and the mold resin is filled into the cavity recess 60 through the lower mold runner gate 62, so that one surface is collectively molded into the resin mold. Is done. After the resin molding, the molded product (the resin substrate 51 and the lead frame 56) is diced for each semiconductor chip and cut into individual pieces to manufacture a semiconductor device. C is a dicer cut line.

特開2000−31327号JP 2000-31327 A 特開2003−234365号JP 2003-234365 A

しかしながら、上記従来のモールド方法には次のような課題がある。図14に示すように、基板の一面に搭載された複数の半導体チップを一括してモールドした場合、ダイサーカットCの線上でモールド樹脂を切断するため、モールド樹脂の切断面にクラックが生じたり、また、切断に伴いパーティクル等が発生してしまう。さらに、複数の半導体チップを一括してモールドするに際し、隣接する半導体チップ間にまで不必要な樹脂を供給しなければならず、使用する樹脂に無駄が生じている。このことは、モールド樹脂の外形の小型化、薄型化にとっての障害にもなり得る。   However, the conventional molding method has the following problems. As shown in FIG. 14, when a plurality of semiconductor chips mounted on one surface of the substrate are molded together, the mold resin is cut on the dicer cut C line, so that a crack occurs on the cut surface of the mold resin, In addition, particles and the like are generated along with the cutting. Furthermore, when molding a plurality of semiconductor chips at a time, an unnecessary resin must be supplied between adjacent semiconductor chips, and the resin used is wasted. This can be an obstacle to downsizing and thinning of the outer shape of the mold resin.

また、ICパッケージを積み重ねる部品実装形態が普及しつつある。積み重ねたICパッケージは、マザー基板に実装される際にリフロー炉を通るため、高温に晒され、これが原因で、パッケージに使用されている主材料の熱膨張係数の差により機械的な反りが発生する。この反りによりパッケージの端子(はんだボール)がマザー基板の端子と接触する機会を失い、接合不良となる不具合が発生している。   In addition, component mounting forms in which IC packages are stacked are becoming widespread. Stacked IC packages pass through a reflow oven when mounted on a mother board, and are therefore exposed to high temperatures. This causes mechanical warping due to differences in the thermal expansion coefficients of the main materials used in the package. To do. Due to this warpage, the package terminal (solder ball) loses the opportunity to contact the mother board terminal, resulting in a problem of poor bonding.

積層されるICパッケージは、一般的にトランスファーモールドが用いられているが、この工法では、高温時に液化した樹脂をゲートと呼ばれる注入口から注入し、樹脂の仮硬化後にゲートを機械的に切断し、単体のモールド成形部が構成される。ゲートは機械的に切断されるので、パッケージの外形寸法精度や外観に不具合をもたらす。さらに、樹脂封止後に、樹脂残りが発生し、ICパッケージを積層する際に実装不良の要因となり得る課題を有していた。   Generally, transfer molds are used for stacked IC packages. In this method, resin liquefied at high temperatures is injected from an injection port called a gate, and the gate is mechanically cut after the resin is temporarily cured. A single molded part is formed. Since the gate is mechanically cut, it causes defects in the external dimension accuracy and appearance of the package. Furthermore, after resin sealing, a resin residue is generated, which has a problem that may cause a mounting failure when stacking IC packages.

本発明は、上記従来の課題を解決し、基板の一面に搭載された複数の半導体チップを個別にモールドすることが可能な半導体装置の製造方法を提供することを目的とする。
さらに本発明の目的は、基板の一面に搭載された複数の半導体チップのモールド樹脂を小型化、薄型化することができる半導体装置の製造方法を提供する。
さらに本発明の目的は、モールド樹脂が形成された基板の一面上に他の表面実装型の半導体装置を積層することができる半導体装置およびその製造方法を提供することを目的とする。
An object of the present invention is to solve the above conventional problems and to provide a method for manufacturing a semiconductor device capable of individually molding a plurality of semiconductor chips mounted on one surface of a substrate.
Furthermore, the objective of this invention provides the manufacturing method of the semiconductor device which can reduce in size and thickness the mold resin of the several semiconductor chip mounted in the one surface of a board | substrate.
Another object of the present invention is to provide a semiconductor device in which another surface-mount type semiconductor device can be stacked on one surface of a substrate on which a mold resin is formed, and a method for manufacturing the same.

本発明に係る、基板上に搭載された半導体素子を樹脂封止する半導体装置の製造方法は、基板の第1の主面上に複数の半導体素子を配し、基板の第1の主面と対向する第2の主面を支持部材(下部金型)上に固定し、各半導体素子の少なくとも1部を覆うように、各半導体素子のそれぞれに液状樹脂を供給し、一面に複数の凹部(キャビティ)が形成された型形成部材(上部金型)を支持部材に対して押圧し、一定の温度下において各凹部により各半導体素子の液状樹脂をモールドし、型形成部材の凹部を基板から離脱させるステップを含み、液状樹脂のガラス転移点が100〜160℃であり、ガラス転移点以下の温度領域での線膨張係数(CTE1)が20〜30ppm、ガラス転移点を越える温度領域での線膨張係数(CTE2)が80〜120ppm、ガラス転移点以下の温度領域での縦弾性率(YM1)が1〜20GPa、ガラス転移点を越える温度領域での縦弾性率(YM2)が0.1〜1.0GPaである。また、ガラス転移点、CTE1、CTE2、YM1、YM2は、それぞれ、130〜160℃、24〜25ppm、90〜100ppm、9〜11GPa、0.2〜0.5GPaであることが好ましい。好ましくは、基板の線膨張係数は、30〜200℃の温度範囲において約17ppmである。   According to the present invention, a method of manufacturing a semiconductor device for resin-sealing a semiconductor element mounted on a substrate includes arranging a plurality of semiconductor elements on a first main surface of the substrate, The opposing second main surface is fixed on a support member (lower mold), liquid resin is supplied to each of the semiconductor elements so as to cover at least one part of each semiconductor element, and a plurality of concave portions ( The mold forming member (upper mold) in which the cavity is formed is pressed against the support member, the liquid resin of each semiconductor element is molded by each recess at a constant temperature, and the recess of the mold forming member is detached from the substrate. The glass transition point of the liquid resin is 100 to 160 ° C., the linear expansion coefficient (CTE1) in the temperature region below the glass transition point is 20 to 30 ppm, and the linear expansion in the temperature region exceeding the glass transition point. The coefficient (CTE2) is 8 ~120Ppm, longitudinal elastic modulus at a temperature region below the glass transition point (YM1) is 1~20GPa, longitudinal elastic modulus at a temperature region exceeding the glass transition point (YM2) is 0.1~1.0GPa. Moreover, it is preferable that glass transition point, CTE1, CTE2, YM1, and YM2 are 130-160 degreeC, 24-25 ppm, 90-100 ppm, 9-11 GPa, and 0.2-0.5 GPa, respectively. Preferably, the linear expansion coefficient of the substrate is about 17 ppm in the temperature range of 30-200 ° C.

製造方法はさらに、モールドされた半導体素子の領域に応して基板を切断するステップ、基板の第2の主面に接続端子を取り付けるステップ、基板の第1の主面上に他の半導体装置を積層するステップ、基板の第2の主面に接続された接続端子をマザー基板に接続するステップを含むものであってもよい。   The manufacturing method further includes a step of cutting the substrate in accordance with a region of the molded semiconductor element, a step of attaching a connection terminal to the second main surface of the substrate, and another semiconductor device on the first main surface of the substrate. The step of laminating may include a step of connecting a connection terminal connected to the second main surface of the substrate to the mother substrate.

好ましくは、本発明に係る半導体装置は、上記製造方法で製造されたモールド樹脂を含む基板と、モールド樹脂内に封止された半導体素子とを含む。半導体装置は、基板の第1の主面上には配線パターンが形成され、他の半導体装置の裏面に形成された複数の接続端子が前記配線パターンに電気的に接続される、POP構造とすることができる。他の半導体装置の接続端子は、モールド樹脂の外周に配され、モールド樹脂は、当該基板と他の半導体装置との間に配されている。   Preferably, a semiconductor device according to the present invention includes a substrate including a mold resin manufactured by the above manufacturing method and a semiconductor element sealed in the mold resin. The semiconductor device has a POP structure in which a wiring pattern is formed on the first main surface of the substrate, and a plurality of connection terminals formed on the back surface of the other semiconductor device are electrically connected to the wiring pattern. be able to. The connection terminals of the other semiconductor devices are arranged on the outer periphery of the mold resin, and the mold resin is arranged between the substrate and the other semiconductor device.

好ましくは、液状樹脂が成型されたときのモールド樹脂の占有面積は、基板表面の面積の少なくとも61%以下である。例えば、基板上のモールドするエリアが、10.9×10.9mm、パッケージサイズが14×14mmの比から算出される。   Preferably, the area occupied by the mold resin when the liquid resin is molded is at least 61% of the area of the substrate surface. For example, the area to be molded on the substrate is calculated from a ratio of 10.9 × 10.9 mm and the package size is 14 × 14 mm.

支持部材または型形成部材の温度を約150度に保持し、液状樹脂をモールドする。この際、型形成部材の複数の凹部に、可撓性のリリースフィルムを密着させるようにしてもよい。リリースフィルムは、モールド樹脂の離形材として機能する。フィルムの軟化温度は、液状樹脂をモールドするときの温度に近いものとすることが望ましい。さらに、フィルムの複数の凹部に接する面は、粗さ加工が施されている。また、フィルムは、基板に形成された段差を被覆できるように、少なくとも50μmの厚さを有することが望ましい。フィルムは、例えば熱可塑性フッ素樹脂(ETFE)である。   The temperature of the support member or mold forming member is maintained at about 150 degrees, and the liquid resin is molded. At this time, a flexible release film may be brought into close contact with the plurality of concave portions of the mold forming member. The release film functions as a mold resin release material. The softening temperature of the film is desirably close to the temperature at which the liquid resin is molded. Furthermore, the surface which contacts the some recessed part of a film is roughened. Further, it is desirable that the film has a thickness of at least 50 μm so as to cover the step formed on the substrate. The film is, for example, a thermoplastic fluororesin (ETFE).

製造方法はさらに、型形成部材の凹部により液状樹脂をモールドする前に、液状樹脂の雰囲気を真空に引くステップを有することが望ましい。半導体素子の雰囲気を真空にすることで、モールド樹脂内に気泡やボイドなどの発生を抑制することができる。絶対真空度は、少なくとも5キロパスカル[kPa]である。   It is desirable that the manufacturing method further includes a step of evacuating the atmosphere of the liquid resin before molding the liquid resin by the concave portion of the mold forming member. By making the atmosphere of the semiconductor element a vacuum, it is possible to suppress the generation of bubbles and voids in the mold resin. The absolute vacuum is at least 5 kilopascals [kPa].

本発明によれば、基板の一面に形成された複数の半導体素子を一括して、かつ個別に樹脂封止することができるため、より薄型化、小型化の半導体装置を提供することができる。さらに、複数の半導体素子を個別に樹脂封止するので、モールド樹脂の無駄をなくすことができる。同時に、モールド樹脂をダイシングすることなく個別の半導体装置を得ることができるため、モールド樹脂に切断時のせん断応力等が直接印加されることがない。従って、モールド樹脂にクラック等が生じることがなく、モールド樹脂の寸法精度を安定化させ、外観を高品質に保つことができる。   According to the present invention, since a plurality of semiconductor elements formed on one surface of a substrate can be collectively and individually resin-sealed, a thinner and smaller semiconductor device can be provided. Furthermore, since a plurality of semiconductor elements are individually resin-sealed, it is possible to eliminate the waste of mold resin. At the same time, an individual semiconductor device can be obtained without dicing the mold resin, so that shear stress or the like during cutting is not directly applied to the mold resin. Therefore, cracks or the like do not occur in the mold resin, the dimensional accuracy of the mold resin can be stabilized, and the appearance can be kept high.

以下、本発明の最良の実施形態について図面を参照して詳細に説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the best embodiment of the present invention will be described in detail with reference to the drawings.

図1(a)は、複数の半導体チップを搭載した基板の平面図、図1(b)は、そのA−A線断面図である。本実施例では、基板100の一面に複数の半導体チップがマトリックス状に配置されている。基板100は、その構成を特に限定するものではないが、多層配線基板やフィルム基板を用いることができる。例えば、ガラスエポキシ樹脂、ポリイミド樹脂等の絶縁基板を用いる。半導体チップ102は、ダイアタッチ等を介して基板100の所定位置に取り付けられる。半導体チップ102の電極は、ボンディングワイヤ104により基板100の表面に形成された銅パターンに接続されている。   FIG. 1A is a plan view of a substrate on which a plurality of semiconductor chips are mounted, and FIG. 1B is a cross-sectional view taken along line AA. In this embodiment, a plurality of semiconductor chips are arranged in a matrix on one surface of the substrate 100. Although the board | substrate 100 does not specifically limit the structure, a multilayer wiring board and a film board | substrate can be used. For example, an insulating substrate such as glass epoxy resin or polyimide resin is used. The semiconductor chip 102 is attached to a predetermined position of the substrate 100 via a die attach or the like. The electrodes of the semiconductor chip 102 are connected to a copper pattern formed on the surface of the substrate 100 by bonding wires 104.

次に、図1に示す基板上に搭載された半導体チップ102を一括に、かつ個別にモールドする方法について説明する。図2に示すように、液状樹脂を充填した供給部110を基板100の長手方向Pに走査し、先端のノズル112から液状樹脂114を基板100上に供給する。このとき、ノズル112からは、個々の半導体チップ102の表面を覆うように液状樹脂114が断続的に供給される。これにより、半導体チップ102の隣接する領域116には、液状樹脂114が供給されず、そこから基板が露出される。液状樹脂114の供給量は、モールド樹脂の寸法精度を左右するものであるから、非常に精度良く制御する必要がある。好ましくは、後述する上部金型140のキャビティ144の体積の±3%の範囲内で液状樹脂114が供給される。   Next, a method for molding the semiconductor chips 102 mounted on the substrate shown in FIG. 1 collectively and individually will be described. As shown in FIG. 2, the supply unit 110 filled with the liquid resin is scanned in the longitudinal direction P of the substrate 100, and the liquid resin 114 is supplied onto the substrate 100 from the nozzle 112 at the tip. At this time, the liquid resin 114 is intermittently supplied from the nozzle 112 so as to cover the surface of each semiconductor chip 102. Thereby, the liquid resin 114 is not supplied to the adjacent region 116 of the semiconductor chip 102, and the substrate is exposed therefrom. Since the supply amount of the liquid resin 114 affects the dimensional accuracy of the mold resin, it needs to be controlled with very high accuracy. Preferably, the liquid resin 114 is supplied within a range of ± 3% of the volume of the cavity 144 of the upper mold 140 described later.

液状樹脂114の特性として、室温では液状であり、その粘度は、約30〜150パスカル秒[Pa s]である。より望ましくは45パスカル秒である。液状樹脂114に一定の粘度を持たせることで、ノズルから供給された液状樹脂114が半導体チップ102の全体を好適に被覆することができる。液状樹脂114は、例えば、エポキシ樹脂を用いることができ、速乾性を有するものであってもよい。   The liquid resin 114 is liquid at room temperature and has a viscosity of about 30 to 150 Pascal seconds [Pa s]. More desirably, it is 45 Pascal seconds. By giving the liquid resin 114 a certain viscosity, the liquid resin 114 supplied from the nozzle can suitably cover the entire semiconductor chip 102. For example, an epoxy resin can be used as the liquid resin 114, and the liquid resin 114 may have a quick drying property.

次に、図3に示すように、基板100を下部金型130上にセットする。下部金型130には、好ましくは、基板100を位置決めするためのピン等が設けられている。本実施例では、半導体チップ102上に液状樹脂114を供給した基板を下部金型130にセットするようにしたが、これに限らず、下部金型130に基板102をセットした状態で、液状樹脂114を半導体チップ102上に供給するようにしてもよい。   Next, as shown in FIG. 3, the substrate 100 is set on the lower mold 130. The lower mold 130 is preferably provided with pins or the like for positioning the substrate 100. In this embodiment, the substrate supplied with the liquid resin 114 on the semiconductor chip 102 is set in the lower mold 130. However, the present invention is not limited to this, and the liquid resin is set in a state where the substrate 102 is set in the lower mold 130. 114 may be supplied onto the semiconductor chip 102.

次に、上部金型140の押圧面側にリリースフィルム142が準備される。上部金型140の押圧面側には、複数の凹部すなわちキャビティ144が形成されている。これらのキャビティ144は、下部金型に固定された基板上の半導体チップ102の位置に対応している。各キャビティ144内には押圧部材146が収容され、押圧部材146はバネ148により弾性的に支持されている。キャビティ144は、脚部152の側面と押圧部材146の押圧面によって包囲された矩形状の窪みであって、成型されるモールド樹脂の外形を規定する。脚部152の側面および押圧部材146の押圧面によって包囲されたキャビティ144の寸法は、例えば、幅10.9mm、奥行き10.9mm、高さ0.27mmである。また、半導体チップ102の寸法は、例えば、幅8.8mm、奥行き8.6mm、高さ0.1mmである。   Next, a release film 142 is prepared on the pressing surface side of the upper mold 140. A plurality of recesses, that is, cavities 144 are formed on the pressing surface side of the upper mold 140. These cavities 144 correspond to the position of the semiconductor chip 102 on the substrate fixed to the lower mold. A pressing member 146 is accommodated in each cavity 144, and the pressing member 146 is elastically supported by a spring 148. The cavity 144 is a rectangular recess surrounded by the side surface of the leg portion 152 and the pressing surface of the pressing member 146, and defines the outer shape of the molded resin to be molded. The dimensions of the cavity 144 surrounded by the side surface of the leg 152 and the pressing surface of the pressing member 146 are, for example, a width of 10.9 mm, a depth of 10.9 mm, and a height of 0.27 mm. The dimensions of the semiconductor chip 102 are, for example, a width of 8.8 mm, a depth of 8.6 mm, and a height of 0.1 mm.

さらに上部金型140には、各キャビティ144に連通する吸気孔150が形成されている。この吸気孔150から空気を吸気させることで、リリースフィルム142が、上部金型140のキャビティ144の押圧面に倣うように吸着または密着される。   Further, the upper mold 140 is formed with intake holes 150 communicating with the cavities 144. By sucking air from the suction holes 150, the release film 142 is adsorbed or brought into close contact with the pressing surface of the cavity 144 of the upper mold 140.

リリースフィルム142は、リール154から供給され、リール156によって巻き取られるようになっている(図3を参照)。リリースフィルム142は、可撓性および耐熱性を有し、加熱された上部金型140の温度よりも低い温度で軟化する性質を有することが望ましい。本実施例では、上部金型140は、約150度に加熱されるため、リリースフィルム142の軟化温度は150度に近いものが選択される。例えば、熱可塑性フッ素樹脂(ETFE)の可撓性フィルムを用いることができる。   The release film 142 is supplied from the reel 154 and is wound up by the reel 156 (see FIG. 3). The release film 142 desirably has flexibility and heat resistance, and has a property of softening at a temperature lower than the temperature of the heated upper mold 140. In this embodiment, since the upper mold 140 is heated to about 150 degrees, the softening temperature of the release film 142 is selected to be close to 150 degrees. For example, a thermoplastic fluororesin (ETFE) flexible film can be used.

また、リリースフィルム142は、少なくとも50μm程度の厚さを有することが望ましい。これは、後述するように、液状樹脂114の成型に際し、リリースフィルム142が脚部152によって基板100に押圧されるが、このとき、液状樹脂114がリリースフィルム142と基板100の接触面から外部へはみ出さないようにするためである。基板100の表面には、銅パターンおよびソルダレジストが形成され、これらの基板表面からの段差は約20μmある。この段差を被覆できるようにリリースフィルム142の厚さが50μm以上に選択される。さらに好ましくは、リリースフィルム142の一面は、粗さ加工が施される。粗さは、例えば、Rz:15μmである。粗さ加工が施された面は、上部金型140に接触される。これにより、液状樹脂の成型後に、上部金型140からリリースフィルム142が容易に離脱され、リール156により巻き取られる。   Further, it is desirable that the release film 142 has a thickness of at least about 50 μm. As will be described later, when the liquid resin 114 is molded, the release film 142 is pressed against the substrate 100 by the legs 152. At this time, the liquid resin 114 is released from the contact surface between the release film 142 and the substrate 100 to the outside. This is to prevent it from protruding. A copper pattern and a solder resist are formed on the surface of the substrate 100, and the step from the substrate surface is about 20 μm. The thickness of the release film 142 is selected to be 50 μm or more so that this step can be covered. More preferably, one surface of the release film 142 is roughened. The roughness is, for example, Rz: 15 μm. The surface subjected to the roughness processing is brought into contact with the upper mold 140. Thereby, after the liquid resin is molded, the release film 142 is easily detached from the upper mold 140 and wound around the reel 156.

次に、図4に示すように、上部金型140を下部金型130に向けて接近させる。一定の距離まで接近すると、上部金型140が下部金型130の図示しないオーリングと接触し、それぞれのキャビティ142内の空気が排出され、キャビティ142内が真空状態に引かれる。絶対真空度は、5キロパスカル[kPa]以上であることが望ましい。また、上部金型140および下部金型130は、約150度に加熱されている。   Next, as shown in FIG. 4, the upper mold 140 is moved toward the lower mold 130. When approaching a certain distance, the upper mold 140 comes into contact with an O-ring (not shown) of the lower mold 130, the air in each cavity 142 is discharged, and the inside of the cavity 142 is evacuated. The absolute degree of vacuum is desirably 5 kilopascals [kPa] or more. The upper mold 140 and the lower mold 130 are heated to about 150 degrees.

次に、図5に示すように、上部金型140が降下され、脚部152が基板100に一定の接圧で当接する。これにより、基板上の各半導体チップを含む領域上に密閉空間が形成される。各キャビティ144内の押圧部材146は、リリースフィルム142を介して弾性的に液状樹脂114を加圧成型し、この状態を約100秒間保つ。この間に、脚部152が一定の接圧で基板100に接触しているため、キャビティ144から液状樹脂114が外部へはみ出すことはない。こうして、一定温度下で液状樹脂114が加圧成型されることで、キャビティ144の形状を反映した形状のモールド樹脂が成型される。   Next, as shown in FIG. 5, the upper mold 140 is lowered, and the legs 152 abut against the substrate 100 with a constant contact pressure. As a result, a sealed space is formed on a region including each semiconductor chip on the substrate. The pressing member 146 in each cavity 144 press-molds the liquid resin 114 elastically via the release film 142 and keeps this state for about 100 seconds. During this time, since the leg 152 is in contact with the substrate 100 with a constant contact pressure, the liquid resin 114 does not protrude from the cavity 144 to the outside. In this way, the liquid resin 114 is pressure-molded at a constant temperature, so that a mold resin having a shape reflecting the shape of the cavity 144 is molded.

次に、図6に示すように、上部金型140を下部金型130から離間させる。リリースフィルム142は、上部金型140の押圧面から離脱され、リール146に巻き取られる。同時に、基板上のモールド樹脂160がリリースフィルム142から離脱される。基板100上には、半導体チップの数に相当する数のモールド樹脂160が形成され、モールド樹脂160は、半導体チップ102およびボンディングワイヤ104を含む領域を封止する。   Next, as shown in FIG. 6, the upper mold 140 is separated from the lower mold 130. The release film 142 is detached from the pressing surface of the upper mold 140 and wound around the reel 146. At the same time, the mold resin 160 on the substrate is released from the release film 142. A number of mold resins 160 corresponding to the number of semiconductor chips are formed on the substrate 100, and the mold resin 160 seals a region including the semiconductor chips 102 and the bonding wires 104.

次に、図7に示すように、下部金型130から基板100が取り外される。基板100上には、半導体チップ102を封止する非常に薄く、かつ小さな占有面積のモールド樹脂160が形成されている。   Next, as shown in FIG. 7, the substrate 100 is removed from the lower mold 130. On the substrate 100, an extremely thin mold resin 160 having a small occupied area for sealing the semiconductor chip 102 is formed.

以降の工程として、基板100の裏面に接続端子としてのはんだボールを接続する工程、および基板をダイシングする工程が行われる。ダイシング工程では、モールド樹脂160とモールド樹脂160の間に設定されたダイシングラインCに沿って基板が切断される。つまり、ダイシング工程においてモールド樹脂160が切断されることがないため、モールド樹脂160の外形は、キャビティの形状を反映したままの形状で残すことができるため、パーティクルやモールド樹脂のクラック等の発生を抑制することができる。   As subsequent steps, a step of connecting solder balls as connection terminals to the back surface of the substrate 100 and a step of dicing the substrate are performed. In the dicing process, the substrate is cut along a dicing line C set between the mold resin 160 and the mold resin 160. In other words, since the mold resin 160 is not cut in the dicing process, the outer shape of the mold resin 160 can be left in a shape that reflects the shape of the cavity. Can be suppressed.

次に、本発明の第2の実施例について説明する。上記実施例では、上部金型140のキャビティ(凹部)144の内部形状を矩形状としたが、第2の実施例では、キャビティ144のコーナーにチャンファー(面取り)にエアポケットを形成している。   Next, a second embodiment of the present invention will be described. In the above embodiment, the internal shape of the cavity (recess) 144 of the upper mold 140 is rectangular, but in the second embodiment, air pockets are formed in the chamfer (chamfer) at the corner of the cavity 144. .

図8(a)は、上部金型140の1つの押圧部分を裏面側から見たときの模式的な平面図であり、図8(b)は、チャンファー部分の断面を示す図である。上部金型140のキャビティ144の各コーナーには、チャンファー170が形成されている。さらに、チャンファー170には、対角線状に延びる、一定の閉じた内部空間であるエアポケット180が連通されている。各コーナーのエアポケット180は、真空状態において液状樹脂を成型するときに、ボイドを吸収する機能を有する。すなわち、キャビティ144内が真空に引かれた状態から、液状樹脂が加圧成型されると、液状樹脂内の気泡等のボイドがエアポケット180の方向に押しやられるため、成型後のモールド樹脂内にボイドが残存し難くなる。   FIG. 8A is a schematic plan view when one pressing portion of the upper mold 140 is viewed from the back side, and FIG. 8B is a diagram showing a cross section of the chamfer portion. A chamfer 170 is formed at each corner of the cavity 144 of the upper mold 140. In addition, the chamfer 170 communicates with an air pocket 180 that is a certain closed internal space extending diagonally. The air pocket 180 at each corner has a function of absorbing voids when a liquid resin is molded in a vacuum state. That is, when the liquid resin is pressure-molded from a state in which the inside of the cavity 144 is evacuated, voids such as bubbles in the liquid resin are pushed in the direction of the air pocket 180, so that the mold resin is molded. Voids are difficult to remain.

図9は、第2の実施例に係る上部金型を用いて半導体素子をモールド成型したときの平面図である。ここでは、便宜上、基板上の単一の領域を示している。基板100の上面には、銅パターンに接続される複数のランド182が形成されている。ランド182は、基板100に形成されたスルーホールを介して、基板裏面のはんだボールに接続される領域である。基板100上の各半導体素子は、モールド樹脂184によってそれぞれ封止されている。モールド樹脂184は、上部金型140のキャビティ144を反映し、そのコーナーにはチャンファー186が形成されている。さらに、モールド樹脂184のチャンファー186には、エアポケット180に相当する微小な突起188が形成されている。   FIG. 9 is a plan view when a semiconductor element is molded using the upper mold according to the second embodiment. Here, for convenience, a single region on the substrate is shown. A plurality of lands 182 connected to the copper pattern are formed on the upper surface of the substrate 100. The land 182 is an area connected to a solder ball on the back surface of the substrate through a through hole formed in the substrate 100. Each semiconductor element on the substrate 100 is sealed with a mold resin 184. The mold resin 184 reflects the cavity 144 of the upper mold 140, and a chamfer 186 is formed at the corner. Further, a minute protrusion 188 corresponding to the air pocket 180 is formed on the chamfer 186 of the mold resin 184.

本実施例では、エアポケット180を設けることで、モールド樹脂184へのボイドの発生を抑制することができるため、パッケージの歩留まりを向上させることができる。エアポケット180の大きさは、ボイドを吸収するために一定の容積を必要とするが、その許容される大きさは、微小な突起188がランド182から一定距離Dだけ離れる必要がある。   In this embodiment, by providing the air pocket 180, generation of voids in the mold resin 184 can be suppressed, so that the package yield can be improved. The size of the air pocket 180 requires a certain volume to absorb the void, but the allowable size requires that the minute protrusion 188 be separated from the land 182 by a certain distance D.

次に、本発明の第3の実施例について説明する。図10は、第1の実施例によるモールド方法を用いて形成された第1の半導体装置上に、第2の半導体装置が積層されたPOP(パッケージ・オン・パッケージ)構造を示す断面図である。   Next, a third embodiment of the present invention will be described. FIG. 10 is a cross-sectional view showing a POP (package on package) structure in which a second semiconductor device is stacked on a first semiconductor device formed by using the molding method according to the first embodiment. .

第1の半導体装置200は、厚さが0.3mmの多層配線基板202と、多層配線基板202の裏面に形成された、高さが0.23mmの複数のはんだボール204と、多層配線基板202の上面に形成されたモールド樹脂206とを備えたBGAパッケージを有している。基板202の上面にダイアタッチ208を介して半導体チップ210が取り付けられ、半導体チップ210の電極はボンディングワイヤ212により基板上の銅パターン214に接続されている。半導体チップ210およびボンディングワイヤ212を含む領域がモールド樹脂206によって封止されている。ボンディングワイヤ212のチップ表面からのループ高さは、約0.05mmであり、ボンディングワイヤ212からモールド樹脂206の表面までの距離が約0.095mmであり、第1の半導体装置のパッケージ全体の高さは、0.8mmである。   The first semiconductor device 200 includes a multilayer wiring board 202 having a thickness of 0.3 mm, a plurality of solder balls 204 having a height of 0.23 mm formed on the back surface of the multilayer wiring board 202, and the multilayer wiring board 202. A BGA package including a mold resin 206 formed on the upper surface of the BGA package. A semiconductor chip 210 is attached to the upper surface of the substrate 202 via a die attach 208, and electrodes of the semiconductor chip 210 are connected to a copper pattern 214 on the substrate by bonding wires 212. A region including the semiconductor chip 210 and the bonding wire 212 is sealed with a mold resin 206. The loop height of the bonding wire 212 from the chip surface is about 0.05 mm, the distance from the bonding wire 212 to the surface of the mold resin 206 is about 0.095 mm, and the height of the entire package of the first semiconductor device is high. The thickness is 0.8 mm.

第1の半導体装置200上に、第2の半導体装置300が積層されている。第2の半導体装置300は、例えば基板302の上面に半導体チップ304、306を積層し、これらの半導体チップ304、306がモールド樹脂308によって封止されている。このモールド樹脂308は、トランスファーモールドによるものであってもよい。基板302の裏面には、その4方向に2列のはんだボール310が形成されている。   A second semiconductor device 300 is stacked on the first semiconductor device 200. In the second semiconductor device 300, for example, semiconductor chips 304 and 306 are stacked on the upper surface of the substrate 302, and these semiconductor chips 304 and 306 are sealed with a mold resin 308. The mold resin 308 may be a transfer mold. Two rows of solder balls 310 are formed on the back surface of the substrate 302 in the four directions.

第2の半導体装置300を第1の半導体装置200上に積層したとき、はんだボール310は、モールド樹脂206を取り囲むように配置される。第2の半導体装置のはんだボール310は、第1の半導体装置200の基板202の上面に形成された電極216に接続される。モールド樹脂206の基板202の表面からの高さは、約270μmであり、はんだボール310の基板302からの高さは、これより若干大きくなっている。これにより、基板302の裏面とモールド樹脂206の間には僅かな間隙が形成されている。   When the second semiconductor device 300 is stacked on the first semiconductor device 200, the solder balls 310 are disposed so as to surround the mold resin 206. The solder ball 310 of the second semiconductor device is connected to the electrode 216 formed on the upper surface of the substrate 202 of the first semiconductor device 200. The height of the mold resin 206 from the surface of the substrate 202 is about 270 μm, and the height of the solder ball 310 from the substrate 302 is slightly larger than this. Thereby, a slight gap is formed between the back surface of the substrate 302 and the mold resin 206.

このように、第1の実施例に係る製造方法を用いた場合、極薄かつ小型のモールド樹脂206を含む第1の半導体装置200上に第2の半導体装置を積層することで、薄型のPOP構造を得ることができる。同様に第2の実施例に係る製造方法により薄型のPOP構造を得ることができる。   As described above, when the manufacturing method according to the first embodiment is used, a thin POP is formed by stacking the second semiconductor device on the first semiconductor device 200 including the extremely thin and small mold resin 206. A structure can be obtained. Similarly, a thin POP structure can be obtained by the manufacturing method according to the second embodiment.

次に、本発明の第4の実施例について説明する。第1の実施例に係る方法により製造された半導体装置200(図10を参照)をマザー基板に実装するとき、リフロー炉内を通すことで高温に晒され、基板に反りが発生する。図11は、半導体装置の反りをモデル化した図であり、同図(a)に示すように、基板400およびモールド樹脂410が凹状になるプラスの反りと、同図(b)に示すように、凸状になるマイナスの反りがある。基板400の最下面からモールド樹脂410の最上面までの大きさをh1、h2としたとき、h1、h2の大きさが150μmを超えると、はんだボールとマザー基板との間に接合不良が生じ易い。   Next, a fourth embodiment of the present invention will be described. When the semiconductor device 200 (see FIG. 10) manufactured by the method according to the first embodiment is mounted on a mother substrate, the substrate is warped by passing through a reflow furnace and being exposed to a high temperature. FIG. 11 is a diagram in which the warpage of the semiconductor device is modeled. As shown in FIG. 11A, as shown in FIG. There is a negative warpage that becomes convex. When the size from the lowermost surface of the substrate 400 to the uppermost surface of the mold resin 410 is h1 and h2, if the sizes of h1 and h2 exceed 150 μm, poor bonding is likely to occur between the solder balls and the mother substrate. .

本実施例では、基板の反りh1、h2を低減させるため、図12に示すような特性の液状樹脂を選択する。CTE1は、ガラス転移点以下の温度領域での線膨張係数であり、CTE2は、ガラス転移点を越える温度領域での線膨張係数である。YM1は、ガラス転移点以下の温度領域での縦弾性率(ヤング率)であり、YM2は、ガラス転移点を越える温度領域での縦弾性率(ヤング率)である。図12(a)には、2種類の条件A、Bを示しているが、条件Bの液状樹脂を用いることが好ましい。また、半導体装置200の構成を図12(b)に示す。半導体チップは、シリコンチップであり、幅8.8mm、奥行き8.6mm、高さ0.1mmである。また、多層配線基板は、その材質がBTであり、その線膨張係数が30〜200℃の温度範囲で約17ppmであり、サイズは、幅1.4mm、奥行き1.4mm、高さ0.3mmである。   In this embodiment, in order to reduce the warpage h1 and h2 of the substrate, a liquid resin having characteristics as shown in FIG. 12 is selected. CTE1 is a linear expansion coefficient in a temperature region below the glass transition point, and CTE2 is a linear expansion coefficient in a temperature region exceeding the glass transition point. YM1 is the longitudinal elastic modulus (Young's modulus) in the temperature region below the glass transition point, and YM2 is the longitudinal elastic modulus (Young's modulus) in the temperature region exceeding the glass transition point. FIG. 12A shows two types of conditions A and B, but it is preferable to use a liquid resin under condition B. The configuration of the semiconductor device 200 is shown in FIG. The semiconductor chip is a silicon chip, and has a width of 8.8 mm, a depth of 8.6 mm, and a height of 0.1 mm. The multilayer wiring board is made of BT and has a linear expansion coefficient of about 17 ppm in the temperature range of 30 to 200 ° C. The size is 1.4 mm in width, 1.4 mm in depth, and 0.3 mm in height. It is.

このような構成により、室温(例えば、25℃)での半導体装置の反りの大きさh1、h2をそれぞれ80μm以下、高温(例えば、260℃)での半導体装置の反りの大きさh1、h2をそれぞれ110μm以下にすることができ、これにより、基板実装時に良好なはんだ接合が可能となる。   With such a configuration, the warp magnitudes h1 and h2 of the semiconductor device at room temperature (eg, 25 ° C.) are 80 μm or less, respectively, and the warp magnitudes h1 and h2 of the semiconductor device at a high temperature (eg, 260 ° C.) are respectively set. Each of the thicknesses can be 110 μm or less, which makes it possible to achieve good solder bonding during board mounting.

本発明の好ましい実施の形態について詳述したが、本発明に係る特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。   Although the preferred embodiment of the present invention has been described in detail, the present invention is not limited to the specific embodiment according to the present invention, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. It can be changed.

上記実施例では、BGAまたはCSPタイプの半導体装置の製造方法を示したが、勿論、これ以外の半導体装置であってもよい。要は、基板の一面に搭載された半導体チップを樹脂封止するものであれば、特に、パッケージの構成が限定されるものではない。さらに、半導体チップの基板上への実装方法は、ワイヤボンディングによる接続以外にも、フェースダウンによる接続等であってもよい。さらに上部金型に形成されるキャビティを矩形状としたが、樹脂モールドの側面が傾斜するようにキャビティの側面に傾斜を持たせるようにしてもよい。   In the above-described embodiment, the manufacturing method of the BGA or CSP type semiconductor device has been described. However, other semiconductor devices may be used as a matter of course. In short, the configuration of the package is not particularly limited as long as the semiconductor chip mounted on one surface of the substrate is resin-sealed. Furthermore, the mounting method of the semiconductor chip on the substrate may be face-down connection or the like in addition to connection by wire bonding. Furthermore, although the cavity formed in the upper mold is rectangular, the side surface of the cavity may be inclined so that the side surface of the resin mold is inclined.

本発明に係る半導体チップのモールド方法は、従来のトランスファーモールド工法やポッティング工法に置き換え可能であり、本発明のモールド方法を用いることにより超小型、超極薄の寸法精度の安定した半導体装置を提供することができる。特に、表面実装型の半導体装置の超薄型化を実現することができる。   The semiconductor chip molding method according to the present invention can be replaced with a conventional transfer molding method or potting method, and by using the molding method according to the present invention, an ultra-small and ultra-thin semiconductor device with stable dimensional accuracy is provided. can do. In particular, an ultra-thin surface-mount type semiconductor device can be realized.

図1(a)は、複数の半導体チップが搭載された基板の平面図、図1(b)はA−A線断面図である。FIG. 1A is a plan view of a substrate on which a plurality of semiconductor chips are mounted, and FIG. 1B is a cross-sectional view taken along line AA. 本発明の実施例に係るモールド方法の工程を示す図である。It is a figure which shows the process of the molding method which concerns on the Example of this invention. 本発明の実施例に係るモールド方法の工程を示す図である。It is a figure which shows the process of the molding method which concerns on the Example of this invention. 本発明の実施例に係るモールド方法の工程を示す図である。It is a figure which shows the process of the molding method which concerns on the Example of this invention. 本発明の実施例に係るモールド方法の工程を示す図である。It is a figure which shows the process of the molding method which concerns on the Example of this invention. 本発明の実施例に係るモールド方法の工程を示す図である。It is a figure which shows the process of the molding method which concerns on the Example of this invention. 本発明の実施例に係るモールド方法の工程を示す図であり、同図(a)はモールド樹脂が形成された基板の平面図、同図(b)はA1−A1断面図である。It is a figure which shows the process of the molding method which concerns on the Example of this invention, The figure (a) is a top view of the board | substrate with which mold resin was formed, The figure (b) is A1-A1 sectional drawing. 本発明の第2の実施例に係る上部金型を示し、図8(a)は、上部金型を裏面側からみた平面図、図8(b)は、チャンファー部分の断面図である。The upper metal mold | die which concerns on the 2nd Example of this invention is shown, Fig.8 (a) is the top view which looked at the upper metal mold | die from the back surface side, FIG.8 (b) is sectional drawing of a chamfer part. 第2の実施例によるモールド樹脂の外形を示す図である。It is a figure which shows the external shape of the mold resin by a 2nd Example. 半導体装置の積層構造を示す概略断面図である。It is a schematic sectional drawing which shows the laminated structure of a semiconductor device. 半導体装置の反りを説明する図である。It is a figure explaining the curvature of a semiconductor device. 液状樹脂の樹脂特性および半導体装置の主要部のサイズを示す表である。It is a table | surface which shows the resin characteristic of liquid resin, and the size of the principal part of a semiconductor device. 従来のBGAパッケージの一部断面を含む斜視図である。It is a perspective view containing the partial cross section of the conventional BGA package. 従来のマトリックス基板のモールド方法を説明する図である。It is a figure explaining the molding method of the conventional matrix substrate.

符号の説明Explanation of symbols

100:基板
102、210、304、306:半導体チップ
104、212:ボンディングワイヤ
110:供給部
112:ノズル
114:液状樹脂
130:下部金型
140:上部金型
142:リリースフィルム
144:キャビティ
146:押圧部材
150:吸気孔
152:脚部
160、184、206、410:モールド樹脂
170、186:チャンファー
180:エアポケット
182:ランド
188:突起
200:第1の半導体装置
202:多層配線基板
204:はんだボール
208:ダイアタッチ
300:第2の半導体装置
100: Substrate 102, 210, 304, 306: Semiconductor chip 104, 212: Bonding wire 110: Supply unit 112: Nozzle 114: Liquid resin 130: Lower mold 140: Upper mold 142: Release film 144: Cavity 146: Press Member 150: Air intake hole 152: Legs 160, 184, 206, 410: Mold resin 170, 186: Chamfer 180: Air pocket 182: Land 188: Projection 200: First semiconductor device 202: Multilayer wiring board 204: Solder Ball 208: Die attach 300: Second semiconductor device

Claims (12)

基板上に搭載された半導体素子を樹脂封止する半導体装置の製造方法であって、
基板の第1の主面上に複数の半導体素子を配し、
基板の第1の主面と対向する第2の主面を支持部材上に固定し、
各半導体素子の少なくとも1部を覆うように、各半導体素子のそれぞれに液状樹脂を供給し、
一面に複数の凹部が形成された型形成部材を支持部材に対して押圧し、一定の温度下において各凹部により各半導体素子の液状樹脂をモールドし、
型形成部材の凹部を基板から離脱させるステップを含み、
液状樹脂のガラス転移点が100〜160℃であり、ガラス転移点以下の温度領域での線膨張係数が20〜30ppm、ガラス転移点を越える温度領域での線膨張係数が80〜120ppm、ガラス転移点以下の温度領域での縦弾性率が1〜20GPa、ガラス転移点を越える温度領域での縦弾性率が0.1〜1.0GPaである、
半導体装置の製造方法。
A method of manufacturing a semiconductor device for resin-sealing a semiconductor element mounted on a substrate,
Arranging a plurality of semiconductor elements on the first main surface of the substrate;
Fixing a second main surface opposite to the first main surface of the substrate on the support member;
Supplying a liquid resin to each of the semiconductor elements so as to cover at least a part of each semiconductor element;
A mold forming member having a plurality of recesses formed on one surface is pressed against the support member, and a liquid resin of each semiconductor element is molded by each recess under a certain temperature.
Detaching the recess of the mold forming member from the substrate,
The glass transition point of the liquid resin is 100 to 160 ° C., the linear expansion coefficient in the temperature region below the glass transition point is 20 to 30 ppm, the linear expansion coefficient in the temperature region exceeding the glass transition point is 80 to 120 ppm, and the glass transition. The longitudinal elastic modulus in the temperature region below the point is 1 to 20 GPa, and the longitudinal elastic modulus in the temperature region exceeding the glass transition point is 0.1 to 1.0 GPa.
A method for manufacturing a semiconductor device.
基板上に搭載された半導体素子を樹脂封止する半導体装置の製造方法であって、
基板の第1の主面上に複数の半導体素子を配し、
基板の第1の主面と対向する第2の主面を支持部材上に固定し、
各半導体素子の少なくとも1部を覆うように、各半導体素子のそれぞれに液状樹脂を供給し、
一面に複数の凹部が形成された型形成部材を支持部材に対して押圧し、一定の温度下において各凹部により各半導体素子の液状樹脂をモールドし、
型形成部材の凹部を基板から離脱させるステップを含み、
液状樹脂のガラス転移点が130〜160℃であり、ガラス転移点以下の温度領域での線膨張係数が24〜25ppm、ガラス転移点を越える温度領域での線膨張係数が90〜100ppm、ガラス転移点以下の温度領域での縦弾性率が9〜11GPa、ガラス転移点を越える温度領域での縦弾性率が0.2〜0.5GPaである、
半導体装置の製造方法。
A method of manufacturing a semiconductor device for resin-sealing a semiconductor element mounted on a substrate,
Arranging a plurality of semiconductor elements on the first main surface of the substrate;
Fixing a second main surface opposite to the first main surface of the substrate on the support member;
Supplying a liquid resin to each of the semiconductor elements so as to cover at least a part of each semiconductor element;
A mold forming member having a plurality of recesses formed on one surface is pressed against the support member, and a liquid resin of each semiconductor element is molded by each recess under a certain temperature.
Detaching the recess of the mold forming member from the substrate,
The glass transition point of the liquid resin is 130 to 160 ° C., the linear expansion coefficient in the temperature range below the glass transition point is 24 to 25 ppm, the linear expansion coefficient in the temperature range exceeding the glass transition point is 90 to 100 ppm, and the glass transition. The longitudinal elastic modulus in the temperature region below the point is 9 to 11 GPa, and the longitudinal elastic modulus in the temperature region exceeding the glass transition point is 0.2 to 0.5 GPa.
A method for manufacturing a semiconductor device.
基板の線膨張係数は、30〜200℃の温度範囲において約17ppmである、請求項1または2に記載の製造方法。 The manufacturing method according to claim 1 or 2, wherein the linear expansion coefficient of the substrate is about 17 ppm in a temperature range of 30 to 200 ° C. 製造方法はさらに、モールドされた半導体素子の領域に応じて基板を切断するステップを含む、請求項1または2に記載の製造方法。 The manufacturing method according to claim 1, further comprising a step of cutting the substrate in accordance with a region of the molded semiconductor element. 製造方法はさらに、基板の第2の主面に接続端子を取り付けるステップを含む、請求項1または2に記載の製造方法。 The manufacturing method according to claim 1, further comprising a step of attaching a connection terminal to the second main surface of the substrate. 製造方法はさらに、基板の第1の主面上に他の半導体装置を積層するステップを含む、請求項1ないし5いずれか1つに記載の製造方法。 6. The manufacturing method according to claim 1, further comprising a step of stacking another semiconductor device on the first main surface of the substrate. 製造方法はさらに、基板の第2の主面に接続された接続端子をマザー基板に接続するステップを含む、請求項5に記載の製造方法。 The manufacturing method according to claim 5, further comprising connecting a connection terminal connected to the second main surface of the substrate to the mother substrate. 請求項1ないし7のいずれか1つに記載された製造方法によって製造されたモールド樹脂を含む基板と、モールド樹脂内に封止された半導体素子とを含む、半導体装置。 A semiconductor device comprising: a substrate including a mold resin manufactured by the manufacturing method according to claim 1; and a semiconductor element sealed in the mold resin. 基板の第1の主面上には配線パターンが形成され、他の半導体装置の裏面に形成された複数の接続端子が前記配線パターンに電気的に接続される、請求項8に記載の半導体装置。 9. The semiconductor device according to claim 8, wherein a wiring pattern is formed on the first main surface of the substrate, and a plurality of connection terminals formed on the back surface of another semiconductor device are electrically connected to the wiring pattern. . 他の半導体装置の接続端子は、モールド樹脂の外周に配され、モールド樹脂は、当該基板と他の半導体装置との間に配されている、請求項9に記載の半導体装置。 10. The semiconductor device according to claim 9, wherein connection terminals of the other semiconductor device are arranged on an outer periphery of the mold resin, and the mold resin is arranged between the substrate and the other semiconductor device. 液状樹脂が成型されたときのモールド樹脂の占有面積は、基板表面の面積の少なくとも61%以下である、請求項8または9に記載の半導体装置。 The semiconductor device according to claim 8 or 9, wherein an area occupied by the mold resin when the liquid resin is molded is at least 61% or less of an area of the substrate surface. 半導体装置の基板の反りは、110μm以下である、請求項8ないし11いずれか1つに記載の半導体装置。 The semiconductor device according to claim 8, wherein a warp of the substrate of the semiconductor device is 110 μm or less.
JP2005187175A 2005-06-27 2005-06-27 Semiconductor device and manufacturing method of semiconductor device Expired - Fee Related JP3964438B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005187175A JP3964438B2 (en) 2005-06-27 2005-06-27 Semiconductor device and manufacturing method of semiconductor device
US11/426,622 US7520052B2 (en) 2005-06-27 2006-06-27 Method of manufacturing a semiconductor device
US12/400,474 US7971351B2 (en) 2005-06-27 2009-03-09 Method of manufacturing a semiconductor device
US13/114,554 US8304883B2 (en) 2005-06-27 2011-05-24 Semiconductor device having multiple semiconductor elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005187175A JP3964438B2 (en) 2005-06-27 2005-06-27 Semiconductor device and manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2007005730A JP2007005730A (en) 2007-01-11
JP3964438B2 true JP3964438B2 (en) 2007-08-22

Family

ID=37691003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005187175A Expired - Fee Related JP3964438B2 (en) 2005-06-27 2005-06-27 Semiconductor device and manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP3964438B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013220790A1 (en) * 2013-10-15 2015-04-16 Osram Opto Semiconductors Gmbh Production of an optoelectronic component

Also Published As

Publication number Publication date
JP2007005730A (en) 2007-01-11

Similar Documents

Publication Publication Date Title
US8304883B2 (en) Semiconductor device having multiple semiconductor elements
US6566168B2 (en) Semiconductor package having implantable conductive lands and method for manufacturing the same
KR101076537B1 (en) Multiple chip package module having inverted package stacked over die
US6818980B1 (en) Stacked semiconductor package and method of manufacturing the same
US20040051168A1 (en) Semiconductor device and method for manufacturing the same
CN104584209A (en) Thin substrate pop structure
US8803304B2 (en) Semiconductor package and manufacturing method thereof
JP4408874B2 (en) Manufacturing method of semiconductor device for POP
US6225703B1 (en) Semiconductor device
JP4001608B2 (en) Semiconductor device and manufacturing method of semiconductor device
US7687920B2 (en) Integrated circuit package-on-package system with central bond wires
JP4626445B2 (en) Manufacturing method of semiconductor package
US6897566B2 (en) Encapsulated semiconductor package free of chip carrier
JP3879823B2 (en) Thin semiconductor device molding method and mold
US20090321920A1 (en) Semiconductor device and method of manufacturing the same
US8198141B2 (en) Intermediate structure of semiconductor device and method of manufacturing the same
KR100850213B1 (en) Semiconductor package having molded balls and method of fabricating the same
JP3964438B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP4823161B2 (en) Semiconductor device
JP5561072B2 (en) Manufacturing method of semiconductor device
US8878070B2 (en) Wiring board and method of manufacturing a semiconductor device
KR100564623B1 (en) Semiconductor package and manufacturing method preventing a package crack defects
US20060091567A1 (en) Cavity-down Package and Method for Fabricating the same
KR20080061963A (en) Semiconductor package and method for manufacturing semiconductor package
US8399967B2 (en) Package structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070523

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees