JP3963670B2 - Glass-based antibacterial agent with excellent durability - Google Patents

Glass-based antibacterial agent with excellent durability Download PDF

Info

Publication number
JP3963670B2
JP3963670B2 JP2001233202A JP2001233202A JP3963670B2 JP 3963670 B2 JP3963670 B2 JP 3963670B2 JP 2001233202 A JP2001233202 A JP 2001233202A JP 2001233202 A JP2001233202 A JP 2001233202A JP 3963670 B2 JP3963670 B2 JP 3963670B2
Authority
JP
Japan
Prior art keywords
glass
antibacterial
resin
antibacterial agent
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001233202A
Other languages
Japanese (ja)
Other versions
JP2003048807A (en
Inventor
晃治 杉浦
則幸 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Takara Standard Co Ltd
Original Assignee
Toagosei Co Ltd
Takara Standard Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd, Takara Standard Co Ltd filed Critical Toagosei Co Ltd
Priority to JP2001233202A priority Critical patent/JP3963670B2/en
Publication of JP2003048807A publication Critical patent/JP2003048807A/en
Application granted granted Critical
Publication of JP3963670B2 publication Critical patent/JP3963670B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties
    • C03C2204/02Antibacterial glass, glaze or enamel

Description

【0001】
【発明の属する技術分野】
本発明は亜鉛を含有するリン酸塩系ガラスからなる抗菌剤に関する。
本発明の抗菌剤は、抗菌効果の耐久性に優れ、且つ加工時、保存時及び使用時に経時的に変色が極めて少なく、各種高分子化合物に配合して、防かび性、防藻性及び抗菌性を有する抗菌性樹脂組成物とし、これを加工して繊維製品、塗料製品、成形製品等に使用可能なものである。
【0002】
【従来の技術】
従来から無機系の抗菌剤として、銀や銅等の抗菌性金属をアパタイト、ゼオライト、ガラス、リン酸ジルコニウム、シリカゲル等に担持させたものが知られている。これらは有機系の抗菌剤と比較して、安全性が高いうえ、揮発及び分解しないため抗菌効果の持続性が長く、しかも耐熱性にすぐれる特徴を有している。そのため、これらの抗菌剤と各種高分子化合物とを混合し得られた抗菌性樹脂組成物を用いて繊維状、フィルム状又は各種成形体等に加工した抗菌加工製品として、各種用途に用いられている。
【0003】
なかでも、銀、銅又は亜鉛等の抗菌性金属を含有するガラスからなる抗菌剤は、ガラスの粒度、屈折率及び抗菌性金属の溶出性等を目的に応じて容易に制御することができる特性を活かし、各種用途の抗菌性樹脂組成物中に配合され、利用されている。
【0004】
例えば、銀を含有するガラスからなる抗菌剤として特公平4−74453号が提案され、亜鉛を含有するガラスからなる抗菌剤として特開平7−257938号が提案されている。
しかし、従来の銀含有ガラスからなる抗菌剤は、抗菌効果が高い利点を有する反面、樹脂に練り込み加工する際の熱や樹脂加工後の紫外線暴露等の影響で、樹脂自体の変質や劣化を促進したり、樹脂加工製品が変色するなど、樹脂加工製品の本来の優れた特性を損なうことが多いという問題があった。
【0005】
一方、従来の亜鉛含有ガラスからなる抗菌剤は、樹脂に練り込み加工した際に樹脂の変質、劣化および変色は極めて少ないものの、銀を含有するガラスと比較して抗菌性が低いため、樹脂組成物において抗菌効果を十分発揮させようとすると、樹脂への添加量を多くせざるを得ず、やはり本来の樹脂物性を低下させてしまう問題があった。
【0006】
これらの問題を解決するために高濃度で亜鉛を含有するガラスからなる抗菌剤や、亜鉛と銀を同時に配合したガラスからなる抗菌剤が提案されている。
例えば、特開平11−100227号公報には、P25を5〜50モル%、ZnOを46〜80モル%、B23+SiO2を0〜30モル%、RO(ROはMgO、CaO、SrO、BaOの中から選ばれる1種以上)を0〜40モル%、R2O(R2OはLi2O、Na2O、K2Oの中から選ばれる1種以上)を0〜20モル%を含むガラスからなる抗菌剤が、また、特開2001−26439号公報には、B23を20〜40モル%、ZnOを50〜70モル%、P25を1〜5モル%、SiO2を0〜20モル%、アルカリ金属酸化物を0〜1モル%を含むガラスからなる抗菌剤が提案されている。
【0007】
しかし、これらの抗菌剤はいずれも亜鉛を高濃度で含有させているためガラスの屈折率が高くなり、樹脂に練り込み加工した成形品の白色度が増加してしまう。従って、透明性の高い樹脂にこの抗菌剤を配合した場合、樹脂本来の透明性を損い白濁してしまうため、透明性を必要とする用途の成形品の場合には好ましくない。そして透明性を要する用途以外でも、着色した樹脂成形品に配合した場合に鮮明な色彩が出しにくく、色合わせが難しいなどの問題が生じる。また、B23を主成分とするガラスはP25を主成分として含有するガラスよりも硬度が高いため、このガラス系抗菌剤を樹脂に混合し練り込み加工する際に用いるステンレス製混合機や樹脂成形機の金属表面を研磨し、削れた金属粉が樹脂組成物中に混合することによって、最終樹脂製品を暗色化するという問題が生じる。
【0008】
一方、特開平8−175843号公報にはP25を40〜55モル%、ZnOを35〜45モル%、Al23を5〜15モル%、B23を1〜10モル%含むガラス100重量部に対して、Ag2Oを0.01〜1.0重量%含有する抗菌剤が提案されている。しかし、ここに示される抗菌剤において十分な抗菌性を発揮させるために加えられているAg2Oは、銀イオンに起因する変色を抑制するため添加量が制限されており、実質的には抗菌性が満足できるものではない。
さらに、従来のガラス系抗菌剤を樹脂に練り込み加工した樹脂加工製品は、加工直後の抗菌効果は十分あるが、加工製品を使用する際の水や特に市販洗剤等の薬品に触れることにより効果が極めて低下する問題があり、抗菌効果の耐久性の点では十分でないという問題もあった。
【0009】
【発明が解決しようとする課題】
本発明は、樹脂に配合して優れた抗菌性を発揮すると共に耐変色性、耐着色性、抗菌効果の耐久性にも優れたガラスからなる抗菌剤を提供することを課題とするものである。
【0010】
【課題を解決するための手段】
本発明者らは、上記の課題を解決するために鋭意検討した結果、P25を高濃度で含有し、さらにZnO、Al23、SiO2およびMgO+CaOの含有量を適度に調製した特定組成のガラスは、抗菌効果の耐久性に優れ、しかも耐変色性および耐着色性に優れることを見出し、本発明を完成するに至った。
即ち、本発明は、ZnOを25〜40モル%、P25を45〜55モル%、Al23を1〜4モル%、SiO2を1〜10モル%、及びMgOとCaOをそれらの合計濃度で1〜15モル%含有するガラスからなる抗菌剤である。
【0011】
【発明の実施の形態】
以下、本発明について詳細に説明する。
○抗菌剤
本発明の抗菌剤は、ZnOを25〜40モル%、P25を45〜55モル%、Al23を1〜4モル%、SiO2を1〜10モル%、及びMgOとCaOをそれらの合計濃度で1〜15モル%含有するガラスからなる抗菌剤である。
【0012】
本発明の抗菌剤に抗菌性能を付与する成分であるZnOの含有割合は、25〜40モル%であり、好ましくは30〜38モル%である。ZnOを40モル%より多く配合すると、ガラスの屈折率が高くなることで、このガラスを樹脂に練り込んだ成形品が白く着色するため、透明性が低下したり、樹脂成形品の色合わせが難しくなる。さらに、ZnOが40%より多いとガラス製造工程中で、安定したガラスが得られにくく、また相対的にP25の配合量が減少してしまうことでガラスの溶解性が低下し、結果としてガラス系抗菌剤を配合した樹脂加工品の抗菌作用の耐水性、耐久性が不十分となる問題を生じる。
一方、ZnOが25モル%より少ないと本発明のガラスの抗菌性が不十分となる。
【0013】
本発明の抗菌剤中のP25成分はガラスの骨格を形成する成分である。本発明のガラス中のP25の含有割合は45〜55モル%であり、好ましくは47〜53モル%である。P25を55モル%を超えて多く配合すると、ガラスの吸湿性が高まり、経時的に潮解し固まってしまうため抗菌剤粉末として使用できなくなるという問題がある。一方、P25が45モル%より少ない場合には、ガラスの溶解性が低下し、これを配合した樹脂加工製品の抗菌作用の耐久性が得られにくいという問題がある。
【0014】
本発明のガラス系抗菌剤中のAl23の含有割合は1〜4モル%である。一般に本発明のようなP25を多く含有するガラスは吸湿性が高く、空気中の水分を吸収し凝集しやすい傾向があるが、ガラスの骨格を形成する成分であるAl23を含有することでガラスの吸湿性を低下し凝集しにくい安定な骨格を形成することが可能となる。しかし、Al23が1モル%未満ではこの効果が不十分となる。また、Al23を4モル%を超えて配合すると、ガラス化しにくくなるという問題が生じる。
【0015】
本発明のガラス系抗菌剤中のSiO2の含有割合は1〜10モル%であり、好ましい割合は3〜7モル%である。SiO2もガラスの骨格を形成する成分である。Al23の含有割合が4モル%より少ない場合には、Al23だけで強固なガラス骨格を形成するには不十分であるが、SiO2を配合することによりガラス化を容易とする。しかも、SiO2の配合はガラスの屈折率を低下させ、それによって樹脂の白色度を低下させる効果が期待できる。SiO2の含有割合が10モル%より多いと、ガラスの溶解性が低下し、ガラスを配合した樹脂成形品の抗菌性の耐久性が得られないという問題があり、一方1モル%より少ないとガラスの潮解性が高くなるという問題がある。
【0016】
本発明におけるMgOとCaOはガラス化する際の溶融温度範囲を調整するために配合する。ZnOおよびP25を多量に含有する本発明のガラス組成物は、原料混合物を溶融しガラス化させる温度条件が狭くなる傾向があるが、これにMgOまたはCaOを配合することで溶融温度を低下させガラス化範囲が広がり製造がしやすくなる。本発明のガラス系抗菌剤中のMgOとCaOの合計含有割合は、1モル%〜15モル%で、好ましくは3〜10モル%である。MgO+CaOの合計含有割合が1モル%より少ないとガラス化範囲を十分広げることができず、10モル%を超えると、本発明の抗菌剤におけ抗菌効果の耐久性が損なわれてしまう。
【0017】
本発明における必須のガラス形成成分は、P25、ZnO、Al23、SiO2およびMgO+CaOであるが、上記各ガラス成分が本発明の組成範囲内であれば、所望によりその他のガラス形成成分を追加することができる。その好ましい例として、ZrO2、TiO2等がある。又、所望により、Li2O、Na2O、K2O、F2等の所謂「修飾成分」も適宜含有させることができる。これら修飾成分は、ガラスの溶融や成形性を容易にするのに有効であるが、ガラス形成成分も合せて多量に含有させると、ガラスの耐水性が低下したり本発明における特徴が損なわれる恐れがあるので、多くとも2モル%以下とするのが好ましく、より好ましくは1モル%以下である。
【0018】
本発明のガラス系抗菌剤は樹脂に配合する際、通常粉末状で使用され、一般的には樹脂への分散加工上、平均粒径で20μm以下のものが好ましく、特に繊維製品や塗料、フィルム等に加工する場合には、物性低下を生じさせないために平均粒径5μm以下、最大粒径20μm以下のものが好ましい。
【0019】
本発明のガラス系抗菌剤の製造に当たっては、既知の製造方法を採用できる。一般には、ガラスの原料調合物を溶融釜で1000〜2000℃で溶融した後、溶融物を急冷して、得られた塊状ガラスを粉砕することにより所望のガラス粉末を得ることができる。
【0020】
本発明の抗菌剤は、従来と比較して優れた抗菌性を発揮させるために、P25の濃度が従来のガラス系抗菌剤に比較して高いので、ガラス化が難しい。適当な溶融温度で溶解し、溶融物の冷却特性に合った急冷手段を用いる必要があり、急冷が遅いと一部ガラス成分が析出することで部分的にガラスでなくなり不均一な組成物となってしまう場合がある。
【0021】
急冷効果を高めるには、溶融物と冷却体との接触面積を大きくすることが有効であり、例えば水等の冷媒で冷却された2個の回転する金属ローラー間にガラスの溶融物を高速で通すことにより、極めて大きな冷却効果が得られ、この冷却方法を用いれば、ガラス化は容易である。又、この方法により冷却すると、ローラー間から出たガラスは薄い板状に成形されているので、粉末状に粉砕することも極めて容易に行うことができる。
【0022】
本発明の抗菌剤を樹脂に練り込んだ場合、抗菌性能は樹脂成形品の表面に存在する抗菌剤により発現するが、樹脂成形品を摩擦、洗浄、洗濯等する際に、この抗菌剤が樹脂成形品の表面から脱落することがある。脱落が著しい場合には抗菌効果が低下し、極めて短期間に効果が消失してしまう場合もある。
本発明の抗菌剤を樹脂等に練り込み加工する場合に、抗菌剤の分散性を向上させたり、樹脂組成物表面からの抗菌剤の脱落を防止するために抗菌剤と樹脂との密着性または接着性を向上させることによって、シランカップリング剤やシリコーンオイル等表面処理剤によりガラス系抗菌剤粉末の表面を処理することが好ましい。
【0023】
本発明に用いられる表面処理剤は、用途や樹脂種類、加工方法等により適宜最適なものを選択すればよく、従来より無機粉体の表面処理に用いられる処理剤であればいずれも使用可能であり、特に制限はない。
表面処理剤の具体例としてビニルトリエトキシシランやビニルトリメトキシシランなどのビニルシラン、γ-(メタクリロキシプロピル)トリメトキシシランやγ-グリシドキシプロピルトリメトキシシランなどの(メタ)アクリロキシシラン、又はグリシドキシシラン、テトラエトキシシラン、テトライソプロポキシチタン、アルミニウムエチラート等のカップリング剤、ジメチルシリコーン、メチルフェニルシリコーン、メチルハイドロジェンシリコーン、反応性シリコーン、非反応性シリコーン等のシリコーンオイル等が挙げられる。
【0024】
表面処理の方法は、特に制限はなく、従来より無機系紛体の表面処理法として知られているいかなる方法でもよい。例えば、乾式法、湿式法、スプレー法、ガス化法等がある。効率的な表面処理方法としては、ガラスを粉末状に粉砕する際に塊状のガラスと一緒に表面処理剤を混合したものを粉砕機で粉砕すると表面処理も同時に実施することができる。
【0025】
本発明の抗菌剤は、単独で用いることができるが、銀系無機抗菌剤を併用すると、その抗菌性を一層高めることができる。
本発明の抗菌剤と併用する銀系無機抗菌剤は、銀イオンを担持させた無機化合物が好ましく、銀イオンを担持させる無機化合物としては、例えば以下のものがある。即ち、活性アルミナ、シリカゲル等の無機系吸着剤、ゼオライト、リン酸カルシウム、リン酸ジルコニウム、リン酸チタン、チタン酸カリウム、含水酸化ビスマス、含水酸化ジルコニウム、ハイドロタルサイト等の無機イオン交換体がある。
【0026】
本発明の抗菌剤には、樹脂への練り込み加工性やその他の物性を改善するために、必要に応じて種々の他の添加剤を混合することもできる。具体例としては顔料、染料、酸化防止剤、耐光安定剤、難燃剤、帯電防止剤、発泡剤、耐衝撃強化剤、ガラス繊維、金属石鹸等の滑剤、防湿剤及び増量剤、カップリング剤、核剤、流動性改良剤、消臭剤、木粉、防汚剤、防錆剤、酸化亜鉛、金属粉、紫外線吸収剤、紫外線遮蔽剤、などがある。
【0027】
また、有機系抗菌・防カビ剤をさらに添加することにより、効果の速効性、防かび効果向上をはかることもできる。
本発明の抗菌剤に混合する有機系抗菌防カビ化合物の好ましい例として、第4アンモニウム塩系化合物、脂肪酸エステル系化合物、ビグアナイド類化合物、ブロノポ−ル、フェノ−ル系化合物、アニリド系化合物、ヨウ素系化合物、イミダゾ−ル系化合物、チアゾ−ル系化合物、イソチアゾロン系化合物、トリアジン系化合物、ニトリル系化合物、フッ素系化合物、キトサン、トロポロン系化合物及び有機金属系化合物(ジンクピリチオン、OBPA)等がある。
【0028】
本発明の抗菌剤を樹脂と配合することにより抗菌性樹脂組成物を容易に得ることができる。用いることができる樹脂の種類に制限はなく、天然樹脂、合成樹脂、半合成樹脂のいずれであってもよく、また熱可塑性樹脂、熱硬化性樹脂のいずれであってもよい。具体的な樹脂としては成形用樹脂、繊維用樹脂、ゴム状樹脂のいずれであってもよく、例えば、ポリエチレン、ポリプロピレン、塩化ビニル、ABS樹脂、AS樹脂、ナイロン樹脂、ポリエステル、ポリ塩化ビニリデン、ポリスチレン、ポリアセタ−ル、ポリカ−ボネイト、PBT、アクリル樹脂、フッ素樹脂、ポリウレタンエラストマ−、ポリエステルエラストマ−、メラミン、ユリア樹脂、四フッ化エチレン樹脂、不飽和ポリエステル樹脂、レ−ヨン、アセテ−ト、アクリル、ポリビニルアルコ−ル、キュプラ、トリアセテ−ト、ビニリデン等の成形用または繊維用樹脂、天然ゴム、シリコ−ンゴム、スチレンブタジエンゴム、エチレンプロピレンゴム、フッ素ゴム、ニトリルゴム、クロルスルホン化ポリエチレンゴム、ブタジエンゴム、合成天然ゴム、ブチルゴム、ウレタンゴムおよびアクリルゴム等のゴム状樹脂がある。
【0029】
本発明の抗菌剤の抗菌性樹脂組成物における配合割合は、抗菌性樹脂組成物100質量部に対して0.1〜10質量部が好ましく、0.2〜3質量部がより好ましい。0.1部より少ないと抗菌性樹脂組成物の抗菌性が不充分であり、一方10部より多く配合しても抗菌効果の向上がほとんどなく非経済的な上、樹脂物性の低下が著しくなる。
【0030】
本発明の抗菌剤を樹脂へ配合し樹脂成形品とする加工方法は、公知の方法がどれも採用できる。例えば、▲1▼抗菌剤の粉末と樹脂とを付着しやすくするための添着剤や抗菌剤粉末の分散性を向上させるための分散剤を使用し、ペレット状樹脂またはパウダー状樹脂とミキサーで直接混合する方法、▲2▼前記のようにして混合して、押し出し成形機にてペレット状に成形した後、その成形物をペレット状樹脂に配合する方法、▲3▼抗菌剤をワックスを用いて高濃度でペレット状に成形後、そのペレット状成形物をペレット状樹脂に配合する方法、▲4▼抗菌剤をポリオ−ル等の高粘度の液状物に分散混合したペ−スト状組成物を調製後、このペーストをペレット状樹脂に配合する方法等がある。
【0031】
上記の抗菌性樹脂組成物の成形には、各種樹脂の特性に合わせてあらゆる公知の加工技術と機械が使用可能であり、適当な温度又は圧力で加熱及び加圧又は減圧しながら混合、混入又は混練りの方法によって容易に調製することができ、それらの具体的操作は常法により行えば良く、塊状、スポンジ状、フィルム状、シート状、糸状またはパイプ状或いはこれらの複合体等の種々の形態に成形加工できる。
【0032】
この様にして得られた抗菌性樹脂成形品は、その配合成分である抗菌剤が優れた抗菌性と耐変色性を有しているため、抗菌剤と樹脂との混合時、及びその後の抗菌性樹脂組成物の保存時又は使用時に劣化することがない。
【0033】
本発明の抗菌剤の使用形態には特に制限はなく、樹脂成形品や高分子化合物に配合することに限定されることはない。防黴性、防藻性および抗菌性が必要とされる用途に応じて適宜他の成分と混合したり、他の材料と複合させることができる。例えば、粉末状、粉末分散液状、粒状、エアゾ−ル状等の種々の形態で用いることができる。
【0034】
○用途
本発明の抗菌剤は、防かび、防藻及び抗菌性を必要とされる種々の分野、即ち電化製品、台所製品、繊維製品、住宅建材製品、トイレタリー製品、紙製品、玩具、皮革製品、文具およびその他の製品として利用することができる。
さらに具体的用途を例示すると、電化製品としては食器洗浄機、食器乾燥機、冷蔵庫、洗濯機、ポット、テレビ、パソコン、CDラジカセ、カメラ、ビデオカメラ、浄水器、炊飯器、野菜カッタ−、レジスタ−、布団乾燥器、FAX、換気扇、エア−コンデショナ−等があり、台所製品としては、食器、まな板、押し切り、トレ−、箸、給茶器、魔法瓶、包丁、おたまの柄、フライ返し、弁当箱、しゃもじ、ボ−ル、水切り篭、三角コ−ナ−、タワシいれ、ゴミ篭、水切り袋等がある。
【0035】
繊維製品としては、シャワ−カ−テン、布団綿、エアコンフィルタ−、パンスト、靴下、おしぼり、シ−ツ、布団側地、枕、手袋、エプロン、カ−テン、オムツ、包帯、マスク、スポ−ツウェア等があり、住宅・建材製品としては、化粧板、壁紙、床板、窓用フィルム、取っ手、カ−ペット、マット、人工大理石、手摺、目地、タイル、ワックス等がある。またトイレタリー製品としては、便座、浴槽、タイル、おまる、汚物いれ、トイレブラシ、風呂蓋、軽石、石鹸容器、風呂椅子、衣類篭、シャワ−、洗面台等があり、紙製品としては、薬包紙、薬箱、スケッチブック、カルテ、ノート、折り紙等があり、玩具としては、人形、ぬいぐるみ、紙粘土、ブロック、パズル等がある。
【0036】
さらに皮革製品としては、靴、鞄、ベルト、時計バンド、内装、椅子、グロ−ブ、吊革等があり、文具としては、ボ−ルペン、シャ−プペン、鉛筆、消しゴム、クレヨン、用紙、手帳、フロッピ−ディスク、定規、ポストイット、ホッチキス等がある。その他の製品としてはインソ−ル、化粧容器、タワシ、化粧用パフ、補聴器、楽器、タバコフィルタ−、掃除用粘着紙シ−ト、吊革握り、スポンジ、キッチンタオル、カ−ド、マイク、理容用品、自販機、カミソリ、電話機、体温計、聴診器、スリッパ、衣装ケ−ス、歯ブラシ、砂場の砂、食品包装フィルム、抗菌スプレ−等がある。
【0037】
【作用】
本発明の抗菌剤が優れた抗菌効果の耐久性、耐変色性及び耐着色性を有する機構について以下のように推定される。高濃度のP25を含むとともに適度なZnOを含有する溶融固化物は抗菌効果の耐久性に優れる抗菌剤として期待できる可能性を持つものである。しかし、これら2成分ではガラス化は不可能で、適当な成分および含有割合を選定しないとガラスが形成されないし、吸湿性(凝集性)と屈折率の増加による問題で抗菌剤として好ましい性能が発現しない。そこで、適度な溶解性を有したまま吸湿性(凝集性)および屈折率の増加を抑制する成分としてAl23およびSiO2を選択しその配合量を調整することで問題点を解決し、同時に樹脂に練り込み加工した樹脂成形品の着色に関する問題の発生を防いでいると推測される。さらにMgOとCaOの混合成分は、ガラス化範囲を広げることでガラス製造をより容易にする作用効果を発揮していると思われる。
【0038】
【実施例】
以下、本発明を実施例によりさらに具体的に説明する。
○実施例(ガラス系抗菌剤の調製)
表1に示した実施例1〜3の組成からなる各原料調合物を1000〜1300℃で加熱溶融後冷却し、得られたガラスをボ−ルミルにて乾式粉砕して平均粒径約5μmのガラス系抗菌剤粉末を得た。
【0039】
○比較例(ガラス系抗菌剤の調製)
表1の比較例1〜5において、表1に示した組成の各原料調合物を用いた以外は実施例1と同様の製造方法によりガラス系抗菌剤を得た。また、表1の比較例6〜7では、表1に示した組成の原料調合物を用いた以外は実施例1と同様の操作を行い製造を試みたが、ガラス化しなかった。なお、比較例3〜5のガラス試料は数週間室内で保管中に、ガラス粉末が固まって凝集を起こした。
【0040】
【表1】

Figure 0003963670
【0041】
試験例1(試験用成形プレートの調製、着色性、抗菌性試験、耐久性試験)
テクノポリマー株式会社製透明性ABS樹脂(商品名JSR55)に対し、ガラス系抗菌剤(実施例1〜3及び比較例1〜5で得たもの)を0.6質量%配合し、名機製作所株式会社製射出成形機M−50AII−DMを用いて成形温度240℃で射出成形し、11cm×11cm×2mmの評価用成形プレート(試作No.1〜8)を作製した(但し、各試作番号の成形プレートは試作番号と同じ試料番号の試料を用いたものであり、以下同じ)。
【0042】
比較のため、ガラスを一切配合せずABS樹脂のみの比較用成形プレート(試作No.0)を同様に射出成形した。
また、作製した各種ABS成形プレートの着色性を評価するため樹脂の暗色化傾向を目視で観察するとともにヘイズを日本電色工業(株)製SZ−Σ80を用いて測定した。ヘイズ値は小さいほど透明性が高く、大きいと白濁していることを示している。また、同成形プレートの抗菌力(初期抗菌効果)を、JIS Z2801に準拠して評価した。
【0043】
ABS樹脂成形プレートを5cm×5cmに切断し、その表面をエタノールで拭いたものを評価用検体とした。被検菌には大腸菌を用い、滅菌水を用いて普通ブイヨン培地を500分の1に希釈した溶液に菌数が2.5〜10×105個/mlとなるように調整したものを菌液として用いた。菌液0.4mlを検体表面に滴下し、その上から4.0cm×4.0cmのポリエチレン製フィルムを被せ、表面に一様に接触させ、温度35℃、湿度95RH%で24時間保存した。保存開始から0時間後(理論添加菌数)及び24時間保存した後に、菌数測定用培地(SCDLP液体培地)10mlで検体上の生残菌を洗い出し、この洗液について、標準寒天培地を用いる混釈平板培養法(37℃2日間)により生菌数を測定して、検体1枚当りの生菌数に換算した。上記のようにして得られた抗菌評価結果を各成形プレートの生菌数の対数値を比較用成形プレートNo.0の生菌数の対数値との差である増減値差で表記し表2に示した。増減値差は値が大きいほど抗菌効果が高いことを示している。なお、理論添加菌数は検体1枚あたり2.5×105、比較用成形プレートNo.0の生菌数は1.6×107であった。
【0044】
さらに花王(株)製浴室用洗剤バスマジックリンに8時間浸漬後の成形プレートを検体として用いて、同様に抗菌力を評価した結果を表2に示した。初期効果と比較し、薬品浸漬後の抗菌効果の低下度合いにより抗菌効果の耐久性を判定した。
【0045】
【表2】
Figure 0003963670
【0046】
本発明の実施例1〜3のガラスからなる抗菌剤を配合した成形プレート(試作No.1〜3)は抗菌性、耐変色性、耐着色性とも優れた性能を有している。
本発明の抗菌剤に比べ、ZnOの含有割合が高くP25が少ない比較例1のガラスからなる抗菌剤を配合した成形プレート(試作No.4)は成形プレートの透明性がかなり低下し、抗菌効果の耐久性も著しく低下している。さらにP25を含まずZnOとB23を多く含有する比較例2のガラスからなる抗菌剤を配合した成形プレート(試作No.5)は、成形プレートの透明性が低下すると共に暗色化し、抗菌効果の耐久性も著しく低下している。
【0047】
本発明の抗菌剤よりP25の含有割合を増やした配合の比較例3のガラスからなる抗菌剤を配合した成形プレート(試作No.6)は透明性の低下等の着色性においては問題ないが、抗菌効果の耐久性が低く、また抗菌剤自体を数週間保管した後に抗菌剤が固まって凝集し粉末状でなくなる問題があった。本発明のガラス組成において、SiO2の代わりにB23を配合した比較例4のガラスからなる抗菌剤を配合した成形プレート(試作No.7)は、成形プレートの透明性が若干低下し、僅かに暗色化している傾向もあり、抗菌効果の耐久性も低い。Al23を含まない比較例5のガラスからなる抗菌剤は経時的に抗菌剤が凝集しやすく、成形したプレ−ト(試作No.8)はやや暗色化するとともに抗菌効果の耐久性も低い。
【0048】
【発明の効果】
本発明の抗菌剤は、優れた抗菌効果の耐久性、耐変色性及び耐着色性を有しており、抗菌効果を長時間持続させることができる抗菌剤として極めて有用である。本発明の抗菌剤を樹脂に配合しすることにより、抗菌性、耐変色性及び耐着色性に優れた抗菌性樹脂組成物を容易に得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an antibacterial agent comprising a phosphate glass containing zinc.
The antibacterial agent of the present invention is excellent in durability of antibacterial effect, and has very little discoloration with time during processing, storage and use, and is blended with various polymer compounds to prevent fungicide, algae and antibacterial The antibacterial resin composition having properties can be processed and used for fiber products, paint products, molded products and the like.
[0002]
[Prior art]
Conventionally known inorganic antibacterial agents are those in which an antibacterial metal such as silver or copper is supported on apatite, zeolite, glass, zirconium phosphate, silica gel or the like. These have higher safety compared to organic antibacterial agents, and have long-lasting antibacterial effects because they do not volatilize or decompose, and also have excellent heat resistance. Therefore, it is used for various applications as an antibacterial processed product processed into a fiber, film or various molded articles using an antibacterial resin composition obtained by mixing these antibacterial agents and various polymer compounds. Yes.
[0003]
Among them, the antibacterial agent made of glass containing an antibacterial metal such as silver, copper or zinc can easily control the particle size, refractive index, and elution property of the antibacterial metal according to the purpose. It is blended and used in antibacterial resin compositions for various purposes.
[0004]
For example, Japanese Patent Publication No. 4-74453 is proposed as an antibacterial agent made of glass containing silver, and Japanese Patent Application Laid-Open No. 7-257938 is proposed as an antibacterial agent made of glass containing zinc.
However, the conventional antibacterial agent made of silver-containing glass has the advantage of high antibacterial effect, but on the other hand, the resin itself is altered or deteriorated due to the heat of kneading into the resin and the exposure to ultraviolet rays after the resin processing. There is a problem that the original excellent characteristics of the resin processed product are often impaired, such as promotion or discoloration of the resin processed product.
[0005]
On the other hand, the antibacterial agent made of conventional zinc-containing glass has a very low antibacterial property compared to glass containing silver, although it has very little deterioration, deterioration and discoloration of the resin when kneaded into the resin. If the antibacterial effect is to be sufficiently exerted on the product, the amount added to the resin must be increased, and the original physical properties of the resin are deteriorated.
[0006]
In order to solve these problems, antibacterial agents made of glass containing zinc at a high concentration and antibacterial agents made of glass containing zinc and silver at the same time have been proposed.
For example, Japanese Patent Laid-Open No. 11-100287 discloses P 2 O Five 5 to 50 mol%, ZnO 46 to 80 mol%, B 2 O Three + SiO 2 0 to 30 mol%, RO (RO is one or more selected from MgO, CaO, SrO, BaO) 0 to 40 mol%, R 2 O (R 2 O is Li 2 O, Na 2 O, K 2 An antibacterial agent made of glass containing 0 to 20 mol% of one or more selected from O) is disclosed in JP-A No. 2001-26439. 2 O Three 20 to 40 mol%, ZnO 50 to 70 mol%, P 2 O Five 1-5 mol%, SiO 2 An antibacterial agent made of glass containing 0 to 20 mol% of an alkali metal oxide and 0 to 1 mol% of an alkali metal oxide has been proposed.
[0007]
However, since these antibacterial agents all contain zinc at a high concentration, the refractive index of the glass increases, and the whiteness of the molded product kneaded into the resin increases. Therefore, when this antibacterial agent is blended with a highly transparent resin, the original transparency of the resin is impaired and it becomes cloudy, which is not preferable in the case of a molded product for use requiring transparency. Even in applications other than those requiring transparency, there are problems such as difficulty in producing clear colors and difficulty in color matching when blended into colored resin molded products. B 2 O Three The glass whose main component is P 2 O Five Because the glass has higher hardness than glass containing as a main component, the metal surface of a stainless steel mixer or resin molding machine used when mixing and kneading this glass-based antibacterial agent with a resin is polished and shaved. When mixed into the resin composition, there arises a problem of darkening the final resin product.
[0008]
On the other hand, JP-A-8-175743 discloses P. 2 O Five 40-55 mol%, ZnO 35-45 mol%, Al 2 O Three 5 to 15 mol%, B 2 O Three To 100 parts by weight of glass containing 1 to 10 mol% of Ag 2 An antibacterial agent containing 0.01 to 1.0% by weight of O has been proposed. However, Ag added to exert sufficient antibacterial properties in the antibacterial agents shown here 2 O is added in a limited amount in order to suppress discoloration caused by silver ions, and the antibacterial property is not substantially satisfied.
In addition, resin processed products that have been processed by kneading conventional glass antibacterial agents with resin have sufficient antibacterial effects immediately after processing, but they are effective by touching water and chemicals such as commercial detergents when using processed products. However, there is also a problem that the durability of the antibacterial effect is not sufficient.
[0009]
[Problems to be solved by the invention]
An object of the present invention is to provide an antibacterial agent composed of glass that exhibits excellent antibacterial properties when blended with a resin and has excellent discoloration resistance, coloring resistance, and durability of an antibacterial effect. .
[0010]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have determined that P 2 O Five In a high concentration, ZnO, Al 2 O Three , SiO 2 And the glass of the specific composition which prepared moderately content of MgO + CaO discovered that it was excellent in durability of an antibacterial effect, and was excellent in discoloration resistance and coloring resistance, and came to complete this invention.
That is, the present invention includes ZnO in an amount of 25 to 40 mol%, P 2 O Five 45 to 55 mol%, Al 2 O Three 1-4 mol%, SiO 2 Is an antibacterial agent composed of glass containing 1 to 10 mol% of MgO and CaO in a total concentration of 1 to 15 mol%.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
○ Antimicrobial agents
The antibacterial agent of the present invention contains 25-40 mol% ZnO, P 2 O Five 45 to 55 mol%, Al 2 O Three 1-4 mol%, SiO 2 Is an antibacterial agent composed of glass containing 1 to 10 mol% of MgO and CaO in a total concentration of 1 to 15 mol%.
[0012]
The content rate of ZnO which is a component which provides antimicrobial performance to the antibacterial agent of this invention is 25-40 mol%, Preferably it is 30-38 mol%. If ZnO is added in an amount of more than 40 mol%, the refractive index of the glass increases, and the molded product obtained by kneading this glass into the resin is colored white, so that the transparency is lowered or the color matching of the resin molded product is reduced. It becomes difficult. Furthermore, if ZnO is more than 40%, it is difficult to obtain a stable glass during the glass production process. 2 O Five As a result, the solubility of the glass decreases, resulting in a problem that the water resistance and durability of the antibacterial action of the resin processed product containing the glass antibacterial agent are insufficient.
On the other hand, when ZnO is less than 25 mol%, the antibacterial property of the glass of the present invention becomes insufficient.
[0013]
P in the antibacterial agent of the present invention 2 O Five The component is a component that forms a glass skeleton. P in the glass of the present invention 2 O Five The content ratio is 45 to 55 mol%, preferably 47 to 53 mol%. P 2 O Five If more than 55 mol% is added, the hygroscopicity of the glass increases, and there is a problem that it cannot be used as an antibacterial powder because it deliquesces and solidifies over time. On the other hand, P 2 O Five Is less than 45 mol%, the solubility of the glass is lowered, and there is a problem that it is difficult to obtain the durability of the antibacterial action of the resin processed product containing the glass.
[0014]
Al in the glass-based antibacterial agent of the present invention 2 O Three Is 1 to 4 mol%. Generally P as in the present invention 2 O Five Glass containing a large amount of water has a high hygroscopic property and tends to absorb moisture in the air and easily aggregate, but Al is a component that forms the skeleton of the glass. 2 O Three It becomes possible to form the stable frame | skeleton which falls the hygroscopic property of glass and is hard to aggregate by containing. However, Al 2 O Three Is less than 1 mol%, this effect is insufficient. Al 2 O Three When it exceeds 4 mol%, the problem that it becomes difficult to vitrify arises.
[0015]
SiO in the glass-based antibacterial agent of the present invention 2 The content ratio is 1 to 10 mol%, and the preferred ratio is 3 to 7 mol%. SiO 2 Is also a component that forms the skeleton of glass. Al 2 O Three When the content ratio of Al is less than 4 mol%, Al 2 O Three Alone is not sufficient to form a strong glass skeleton, but SiO 2 Vitrification is facilitated by blending. Moreover, SiO 2 This compound can be expected to reduce the refractive index of the glass and thereby reduce the whiteness of the resin. SiO 2 If the content ratio is more than 10 mol%, the solubility of the glass is lowered, and there is a problem that the antibacterial durability of the resin molded product containing the glass cannot be obtained. There is a problem that deliquescence becomes high.
[0016]
MgO and CaO in this invention are mix | blended in order to adjust the melting temperature range at the time of vitrification. ZnO and P 2 O Five In the glass composition of the present invention containing a large amount, the temperature condition for melting and vitrifying the raw material mixture tends to be narrowed, but by adding MgO or CaO to this, the melting temperature is lowered and the vitrification range is increased. Spread and easy to manufacture. The total content of MgO and CaO in the glass-based antibacterial agent of the present invention is 1 mol% to 15 mol%, preferably 3 to 10 mol%. If the total content of MgO + CaO is less than 1 mol%, the vitrification range cannot be sufficiently expanded, and if it exceeds 10 mol%, the durability of the antibacterial effect in the antibacterial agent of the present invention is impaired.
[0017]
The essential glass forming component in the present invention is P. 2 O Five , ZnO, Al 2 O Three , SiO 2 Although it is MgO + CaO, if each said glass component is in the composition range of this invention, another glass formation component can be added if desired. As a preferred example thereof, ZrO 2 TiO 2 Etc. If desired, Li 2 O, Na 2 O, K 2 O, F 2 So-called “modifying components” such as these can also be contained as appropriate. These modifying components are effective in facilitating the melting and moldability of the glass, but if a large amount of the glass forming component is contained together, the water resistance of the glass may be lowered or the characteristics of the present invention may be impaired. Therefore, it is preferably at most 2 mol%, more preferably at most 1 mol%.
[0018]
The glass-based antibacterial agent of the present invention is usually used in a powder form when blended with a resin, and generally has an average particle size of 20 μm or less in terms of dispersion processing into the resin, and in particular, textile products, paints, and films. In order to prevent physical properties from being deteriorated, those having an average particle size of 5 μm or less and a maximum particle size of 20 μm or less are preferable.
[0019]
In producing the glass-based antibacterial agent of the present invention, a known production method can be employed. In general, a desired glass powder can be obtained by melting a glass raw material formulation in a melting kettle at 1000 to 2000 ° C., and then rapidly cooling the melt and pulverizing the obtained bulk glass.
[0020]
The antibacterial agent of the present invention has a P 2 O Five Vitrification is difficult because the concentration of is higher than that of conventional glass antibacterial agents. It is necessary to use a quenching means that melts at an appropriate melting temperature and matches the cooling characteristics of the melt. If the quenching is slow, some glass components are deposited, resulting in a non-uniform composition that is partially not glass. May end up.
[0021]
In order to enhance the rapid cooling effect, it is effective to increase the contact area between the melt and the cooling body. For example, the glass melt can be put at high speed between two rotating metal rollers cooled by a coolant such as water. By passing through, a very large cooling effect is obtained, and vitrification is easy if this cooling method is used. Further, when cooled by this method, the glass coming out between the rollers is formed into a thin plate shape, so that it can be very easily pulverized into a powder.
[0022]
When the antibacterial agent of the present invention is kneaded into a resin, the antibacterial performance is manifested by the antibacterial agent present on the surface of the resin molded product, but when the resin molded product is rubbed, washed, washed, etc., the antibacterial agent is used as a resin. May fall off the surface of the molded product. When the dropout is remarkable, the antibacterial effect is reduced, and the effect may be lost in a very short time.
When the antibacterial agent of the present invention is kneaded into a resin or the like, the adhesion between the antibacterial agent and the resin is improved in order to improve the dispersibility of the antibacterial agent or prevent the antibacterial agent from falling off from the surface of the resin composition. It is preferable to treat the surface of the glass-based antibacterial agent powder with a surface treating agent such as a silane coupling agent or silicone oil by improving the adhesiveness.
[0023]
The surface treatment agent used in the present invention may be appropriately selected depending on the application, resin type, processing method, etc., and any treatment agent conventionally used for surface treatment of inorganic powders can be used. There are no particular restrictions.
Specific examples of the surface treatment agent include vinyl silanes such as vinyl triethoxysilane and vinyl trimethoxy silane, (meth) acryloxy silanes such as γ- (methacryloxypropyl) trimethoxysilane and γ-glycidoxypropyltrimethoxysilane, or Examples include coupling agents such as glycidoxy silane, tetraethoxy silane, tetraisopropoxy titanium, aluminum ethylate, silicone oils such as dimethyl silicone, methyl phenyl silicone, methyl hydrogen silicone, reactive silicone, and non-reactive silicone. It is done.
[0024]
The surface treatment method is not particularly limited, and any method conventionally known as a surface treatment method for inorganic powders may be used. For example, there are a dry method, a wet method, a spray method, a gasification method, and the like. As an efficient surface treatment method, when the glass is pulverized into a powder, a mixture of the surface treatment agent together with the massive glass is pulverized with a pulverizer, so that the surface treatment can be simultaneously performed.
[0025]
The antibacterial agent of the present invention can be used alone. However, when a silver-based inorganic antibacterial agent is used in combination, the antibacterial property can be further enhanced.
The silver-based inorganic antibacterial agent used in combination with the antibacterial agent of the present invention is preferably an inorganic compound carrying silver ions. Examples of inorganic compounds carrying silver ions include the following. Namely, inorganic adsorbents such as activated alumina and silica gel, and inorganic ion exchangers such as zeolite, calcium phosphate, zirconium phosphate, titanium phosphate, potassium titanate, hydrous bismuth, hydrous zirconium, and hydrotalcite.
[0026]
The antibacterial agent of the present invention can be mixed with various other additives as required in order to improve the kneading processability to the resin and other physical properties. Specific examples include pigments, dyes, antioxidants, light-resistant stabilizers, flame retardants, antistatic agents, foaming agents, impact-resistant reinforcing agents, lubricants such as glass fibers and metal soaps, moisture-proofing agents and extenders, coupling agents, There are nucleating agents, fluidity improvers, deodorants, wood powder, antifouling agents, rust inhibitors, zinc oxide, metal powders, ultraviolet absorbers, ultraviolet shielding agents, and the like.
[0027]
Further, by adding an organic antibacterial / antifungal agent, it is possible to improve the immediate effect and the fungicidal effect.
Preferred examples of the organic antibacterial and antifungal compound to be mixed with the antibacterial agent of the present invention include quaternary ammonium salt compounds, fatty acid ester compounds, biguanides compounds, bronopol, phenolic compounds, anilide compounds, iodine. Compounds, imidazole compounds, thiazole compounds, isothiazolone compounds, triazine compounds, nitrile compounds, fluorine compounds, chitosan, tropolone compounds and organometallic compounds (zinc pyrithione, OBPA).
[0028]
An antibacterial resin composition can be easily obtained by blending the antibacterial agent of the present invention with a resin. There is no restriction | limiting in the kind of resin which can be used, Any of a natural resin, a synthetic resin, and a semi-synthetic resin may be sufficient, and any of a thermoplastic resin and a thermosetting resin may be sufficient. Specific resins may be molding resins, fiber resins, and rubber-like resins. For example, polyethylene, polypropylene, vinyl chloride, ABS resin, AS resin, nylon resin, polyester, polyvinylidene chloride, polystyrene , Polyacetal, Polycarbonate, PBT, Acrylic resin, Fluorine resin, Polyurethane elastomer, Polyester elastomer, Melamine, Urea resin, Tetrafluoroethylene resin, Unsaturated polyester resin, Rayon, Acetate, Acrylic , Polyvinyl alcohol, cupra, triacetate, vinylidene and other molding or fiber resins, natural rubber, silicone rubber, styrene butadiene rubber, ethylene propylene rubber, fluorine rubber, nitrile rubber, chlorosulfonated polyethylene rubber, butadiene Rubber Synthetic natural rubber, butyl rubber, there is a rubber resin such as urethane rubber and acrylic rubber.
[0029]
0.1-10 mass parts is preferable with respect to 100 mass parts of antibacterial resin compositions, and, as for the mixture ratio in the antibacterial resin composition of the antibacterial agent of this invention, 0.2-3 mass parts is more preferable. If it is less than 0.1 part, the antibacterial property of the antibacterial resin composition is insufficient. On the other hand, if it is added more than 10 parts, there is almost no improvement in the antibacterial effect, and it is uneconomical and the physical properties of the resin deteriorate significantly. .
[0030]
Any known method can be adopted as a processing method for blending the antibacterial agent of the present invention into a resin to obtain a resin molded product. For example, (1) using an additive for facilitating adhesion of the antibacterial powder and the resin or a dispersant for improving the dispersibility of the antibacterial powder, and directly using a pellet resin or powder resin and a mixer Method of mixing, (2) Mixing as described above, molding into pellets with an extrusion molding machine, and then blending the molded product into pellet resin, (3) Antibacterial agent using wax A method of blending the pellet-shaped molding into a pellet-shaped resin after molding into a pellet at a high concentration, and (4) a paste-like composition in which an antibacterial agent is dispersed and mixed in a high-viscosity liquid such as polyol. There is a method of blending this paste into a pellet-shaped resin after preparation.
[0031]
For molding the antibacterial resin composition, any known processing technique and machine can be used in accordance with the characteristics of various resins, and mixing, mixing or mixing with heating and pressurizing or depressurizing at an appropriate temperature or pressure. They can be easily prepared by a kneading method, and their specific operation may be performed by a conventional method. Various operations such as lumps, sponges, films, sheets, threads or pipes, or composites thereof are possible. Can be molded into form.
[0032]
The antibacterial resin molded product obtained in this way has an antibacterial property and discoloration resistance, and the antibacterial agent, which is the blending component, has excellent antibacterial properties and discoloration resistance. The resin composition does not deteriorate during storage or use.
[0033]
There is no restriction | limiting in particular in the usage type of the antibacterial agent of this invention, It is not limited to mix | blending with a resin molded product or a high molecular compound. Depending on the application requiring antifungal, antialgal and antibacterial properties, it can be appropriately mixed with other components or combined with other materials. For example, it can be used in various forms such as powder form, powder dispersion liquid form, granular form, and aerosol form.
[0034]
○ Application
The antibacterial agent of the present invention is used in various fields that require antifungal, antialgal and antibacterial properties, that is, electrical appliances, kitchen products, textile products, residential building materials products, toiletry products, paper products, toys, leather products, stationery. And can be used as other products.
To further illustrate specific uses, electrical appliances include dishwashers, dish dryers, refrigerators, washing machines, pots, TVs, personal computers, CD radio cassettes, cameras, video cameras, water purifiers, rice cookers, vegetable cutters, registers -Futon dryer, FAX, ventilation fan, air-conditioner, etc. Kitchen products include tableware, chopping board, push-cut, tray, chopsticks, tea dispenser, thermos, kitchen knife, scallop handle, fry back, lunch box , Rice paddle, bowl, drainer, triangle corner, scrubber, trash can, drainer bag, etc.
[0035]
Textile products include shower curtains, futon cotton, air conditioner filters, pantyhose, socks, towels, sheets, duvet linings, pillows, gloves, apron, curtains, diapers, bandages, masks, sports There are two types of housing and building material products, such as decorative boards, wallpaper, floor boards, window films, handles, carpets, mats, artificial marble, handrails, joints, tiles, waxes and the like. In addition, toiletries include toilet seats, bathtubs, tiles, pots, filth, toilet brushes, bath lids, pumice stones, soap containers, bath chairs, clothing baskets, showers, wash basins, etc. There are medicine boxes, sketch books, medical records, notebooks, origami, and toys include dolls, stuffed animals, paper clay, blocks, puzzles, and the like.
[0036]
In addition, leather products include shoes, bags, belts, watch bands, interiors, chairs, gloves, and hanging leather. Stationery includes ballpoint pens, sharp pens, pencils, erasers, crayons, paper, notebooks, There are floppy disk, ruler, post-it, stapler, etc. Other products include insoles, cosmetic containers, scrubbers, makeup puffs, hearing aids, musical instruments, cigarette filters, cleaning adhesive paper sheets, hanging leather grips, sponges, kitchen towels, cards, microphones, barber supplies Vending machines, razors, telephones, thermometers, stethoscopes, slippers, clothes cases, toothbrushes, sandbox sand, food packaging films, antibacterial sprays, etc.
[0037]
[Action]
It is estimated as follows about the mechanism in which the antibacterial agent of the present invention has excellent antibacterial effect durability, discoloration resistance and coloration resistance. High concentration of P 2 O Five A melt-solidified product containing moderate ZnO and having a possibility of being expected as an antibacterial agent having excellent antibacterial effect durability. However, vitrification is impossible with these two components, and glass will not be formed unless appropriate components and content ratios are selected, and favorable performance as an antibacterial agent will manifest due to problems with hygroscopicity (aggregation) and increased refractive index. do not do. Therefore, as a component that suppresses the increase in hygroscopicity (cohesiveness) and refractive index while maintaining moderate solubility, Al 2 O Three And SiO 2 It is presumed that the problem is solved by adjusting the blending amount and the problem of coloring the resin molded product kneaded into the resin is prevented at the same time. Furthermore, the mixed component of MgO and CaO seems to exhibit the effect of making glass production easier by expanding the vitrification range.
[0038]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
Example (Preparation of glass antibacterial agent)
Each raw material composition having the composition of Examples 1 to 3 shown in Table 1 was heated and melted at 1000 to 1300 ° C. and then cooled, and the obtained glass was dry-ground in a ball mill to have an average particle size of about 5 μm. A glass-based antibacterial powder was obtained.
[0039]
○ Comparative example (preparation of glass antibacterial agent)
In Comparative Examples 1 to 5 in Table 1, glass-based antibacterial agents were obtained by the same production method as in Example 1 except that each raw material formulation having the composition shown in Table 1 was used. Moreover, in Comparative Examples 6-7 of Table 1, it tried to manufacture by performing the same operation as Example 1 except having used the raw material formulation of the composition shown in Table 1, but it did not vitrify. In addition, the glass samples of Comparative Examples 3 to 5 were agglomerated due to solidification of the glass powder during storage in the room for several weeks.
[0040]
[Table 1]
Figure 0003963670
[0041]
Test Example 1 (Preparation of test plate, coloring, antibacterial test, durability test)
Mechano Seisakusho Co., Ltd. was blended with 0.6% by mass of a glass-based antibacterial agent (obtained in Examples 1 to 3 and Comparative Examples 1 to 5) to a transparent ABS resin (trade name JSR55) manufactured by Techno Polymer Co., Ltd. Using an injection molding machine M-50AII-DM manufactured by Co., Ltd., injection molding was carried out at a molding temperature of 240 ° C. to produce 11 cm × 11 cm × 2 mm evaluation molding plates (prototype Nos. 1 to 8) (however, each prototype number) The molding plate of No. 1 uses a sample with the same sample number as the prototype number, and so on).
[0042]
For comparison, a comparative molding plate (prototype No. 0) containing only ABS resin without any glass was injection-molded in the same manner.
Moreover, in order to evaluate the coloring property of the produced various ABS molding plates, the darkening tendency of the resin was visually observed, and the haze was measured using SZ-Σ80 manufactured by Nippon Denshoku Industries Co., Ltd. The smaller the haze value, the higher the transparency, and a larger haze value indicates cloudiness. Further, the antibacterial power (initial antibacterial effect) of the molded plate was evaluated according to JIS Z2801.
[0043]
An ABS resin-molded plate was cut into 5 cm × 5 cm, and the surface was wiped with ethanol as an evaluation sample. Escherichia coli is used as the test bacteria, and the number of bacteria is 2.5 to 10 × 10 in a solution obtained by diluting ordinary bouillon medium to 1/500 with sterilized water. Five What was adjusted so that it might become a piece / ml was used as a microbial solution. 0.4 ml of the bacterial solution was dropped on the sample surface, covered with a 4.0 cm × 4.0 cm polyethylene film, uniformly contacted with the surface, and stored at a temperature of 35 ° C. and a humidity of 95 RH% for 24 hours. After 0 hours (theoretical addition number of bacteria) and 24 hours after the start of storage, the remaining bacteria on the specimen are washed out with 10 ml of the bacterial count measurement medium (SCDLP liquid medium), and a standard agar medium is used for this washing. The viable cell count was measured by the pour plate culture method (2 days at 37 ° C.) and converted to the viable cell count per specimen. The antibacterial evaluation result obtained as described above is used to compare the logarithmic value of the viable cell count of each molded plate with the comparative molded plate No. Table 2 shows the difference in increase / decrease value, which is the difference from the logarithm of the number of viable bacteria of 0. The increase / decrease value difference indicates that the greater the value, the higher the antibacterial effect. The theoretically added number of bacteria is 2.5 x 10 per specimen. Five Comparative plate No. The viable count of 0 is 1.6 × 10 7 Met.
[0044]
Further, Table 2 shows the results of evaluating the antibacterial activity in the same manner using a molded plate immersed in a bath detergent Bath Magiclin manufactured by Kao Corporation for 8 hours as a specimen. Compared with the initial effect, the durability of the antibacterial effect was judged by the degree of decrease in the antibacterial effect after chemical immersion.
[0045]
[Table 2]
Figure 0003963670
[0046]
Molded plates (prototype Nos. 1 to 3) containing the antibacterial agent made of the glass of Examples 1 to 3 of the present invention have excellent antibacterial properties, discoloration resistance, and coloring resistance.
Compared to the antibacterial agent of the present invention, the content ratio of ZnO is high and P 2 O Five The molded plate (prototype No. 4) containing the antibacterial agent made of the glass of Comparative Example 1 with a small amount of glass has a considerably reduced transparency of the molded plate, and the durability of the antibacterial effect is also significantly reduced. Furthermore P 2 O Five Not containing ZnO and B 2 O Three The molding plate (trial manufacture No. 5) which mix | blended the antibacterial agent which consists of glass of the comparative example 2 containing many is darkened while the transparency of a shaping | molding plate falls, and the durability of an antimicrobial effect is also falling remarkably.
[0047]
P from the antibacterial agent of the present invention 2 O Five The molded plate (prototype No. 6) containing the antibacterial agent composed of the glass of Comparative Example 3 with an increased content ratio has no problem in coloring such as a decrease in transparency, but the antibacterial effect has low durability. In addition, after the antibacterial agent itself has been stored for several weeks, there is a problem that the antibacterial agent hardens and aggregates and does not become powdery. In the glass composition of the present invention, SiO 2 Instead of B 2 O Three The molded plate (prototype No. 7) containing the antibacterial agent composed of the glass of Comparative Example 4 blended with the anti-bacterial effect has a tendency that the transparency of the molded plate is slightly lowered and slightly darkened. Is also low. Al 2 O Three The antibacterial agent made of the glass of Comparative Example 5 containing no glass tends to aggregate over time, and the molded plate (prototype No. 8) is slightly darkened and has a low antibacterial effect durability.
[0048]
【The invention's effect】
The antibacterial agent of the present invention has excellent antibacterial effect durability, discoloration resistance and coloring resistance, and is extremely useful as an antibacterial agent capable of maintaining the antibacterial effect for a long time. By blending the antibacterial agent of the present invention into a resin, an antibacterial resin composition excellent in antibacterial properties, discoloration resistance and coloration resistance can be easily obtained.

Claims (1)

ZnOを25〜40モル%、P25を45〜55モル%、Al23を1〜4モル%、SiO2を1〜10モル%、及びMgOとCaOをそれらの合計濃度で1〜15モル%含有するガラスからなる抗菌剤。The ZnO 25 to 40 mole%, P 2 O 5 and 45 to 55 mol%, the Al 2 O 3 1 to 4 mol%, the SiO 2 1 to 10 mol%, and the MgO and CaO in their total concentration 1 Antibacterial agent comprising glass containing ˜15 mol%.
JP2001233202A 2001-08-01 2001-08-01 Glass-based antibacterial agent with excellent durability Expired - Fee Related JP3963670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001233202A JP3963670B2 (en) 2001-08-01 2001-08-01 Glass-based antibacterial agent with excellent durability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001233202A JP3963670B2 (en) 2001-08-01 2001-08-01 Glass-based antibacterial agent with excellent durability

Publications (2)

Publication Number Publication Date
JP2003048807A JP2003048807A (en) 2003-02-21
JP3963670B2 true JP3963670B2 (en) 2007-08-22

Family

ID=19065004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001233202A Expired - Fee Related JP3963670B2 (en) 2001-08-01 2001-08-01 Glass-based antibacterial agent with excellent durability

Country Status (1)

Country Link
JP (1) JP3963670B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105520480A (en) * 2015-06-12 2016-04-27 浙江农林大学 Manufacturing method of mould-proof chopsticks
EP4317568A1 (en) * 2021-03-31 2024-02-07 TOYOBO MC Corporation Three dimensional network structure body
CN113170796A (en) * 2021-06-07 2021-07-27 烟台鲁量新材料科技有限公司 Antibacterial agent for air conditioning system

Also Published As

Publication number Publication date
JP2003048807A (en) 2003-02-21

Similar Documents

Publication Publication Date Title
JP4388282B2 (en) Silver-based glassy antibacterial agent with excellent antibacterial effect
JP4775376B2 (en) Silver inorganic antibacterial agents and antibacterial products
US6475631B1 (en) Antimicrobial agent, antimicrobial resin composition and antimicrobial artificial marble
KR101380905B1 (en) Silver-containing inorganic antibacterial
JP5354012B2 (en) Silver-based inorganic antibacterial agent, method for producing the same, and antibacterial processed product
DK2213173T3 (en) Silver-containing inorganic antibacterial agent
TWI352576B (en)
JP4893184B2 (en) Silver inorganic antibacterial agent
JP2002087842A (en) Antibacterial agent and antibacterial artificial marble
JP3971059B2 (en) Glass antibacterial agent
JP4359943B2 (en) Antibacterial agent, antibacterial agent composition, and transparent resin composition having antibacterial properties
JP3963670B2 (en) Glass-based antibacterial agent with excellent durability
JP3991079B2 (en) Antibacterial agent
JP4037038B2 (en) Glass antibacterial agent
JP4005393B2 (en) Method for producing silver-based glassy antibacterial agent with excellent antibacterial effect
JP3963671B2 (en) Antibacterial composition excellent in durability
JP2002003238A (en) Novel glass-based antibacterial agent
JP2000143420A (en) Antibacterial agent and antibacterial resin composition
JP2002068913A (en) Antimicrobial agent composition
JPH08291229A (en) Antibacterial resin

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070522

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3963670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140601

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees