JP3961868B2 - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
JP3961868B2
JP3961868B2 JP2002106639A JP2002106639A JP3961868B2 JP 3961868 B2 JP3961868 B2 JP 3961868B2 JP 2002106639 A JP2002106639 A JP 2002106639A JP 2002106639 A JP2002106639 A JP 2002106639A JP 3961868 B2 JP3961868 B2 JP 3961868B2
Authority
JP
Japan
Prior art keywords
signal
current
output
value
minimum value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002106639A
Other languages
Japanese (ja)
Other versions
JP2003304634A (en
Inventor
康裕 安東
昌樹 柳川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Toshiba Plant Systems and Services Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Toshiba Plant Systems and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp, Toshiba Plant Systems and Services Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2002106639A priority Critical patent/JP3961868B2/en
Publication of JP2003304634A publication Critical patent/JP2003304634A/en
Application granted granted Critical
Publication of JP3961868B2 publication Critical patent/JP3961868B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Inverter Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、出力ケーブルの断線検出機能を備えた電力変換装置に関する。
【0002】
【従来の技術】
従来の電力変換装置としては、図8に示す構成のものがよく知られている。同図において、直流電源1からの直流電圧は、インバータ回路2により任意の周波数の(通常は3相)交流電圧に変換され、負荷としての電動機3に可変周波数の交流電力が供給されるようになっている。インバータ回路2の出力ケーブルには、出力電流を検出する電流検出器としての変流器5が取り付けられ、変流器5で検出された出力電流信号は、整流器6で整流された後、電動機3の回転数を制御する制御回路7に入力されている。制御回路7には、この整流された出力電流信号と速度設定器4で発生した速度基準信号4aとが入力されている。
【0003】
次に、装置動作を簡単に説明する。制御回路7は、速度設定器4からの速度基準信号4aと整流器6で整流された出力電流信号とから電動機3が所定の回転数となるようにインバータ回路2に制御信号7aを出力する。インバータ回路2は、スイッチング素子として自己消弧型の素子(最近ではIGBTが主流)が使用されており、制御回路7により出力波形及び出力周波数が制御される。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の電力変換装置は、出力ケーブルが断線した場合に運転を継続してしまうという問題があった。
【0005】
本発明は、上記に鑑みてなされたもので、出力ケーブルが断線したとき、これを確実に検出して運転を停止することができ、信頼性を向上させることができる電力変換装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記課題を解決するために、請求項1記載の発明は、出力電流を検出する電流検出手段と、この電流検出手段で検出した出力電流信号を整流する整流手段と、この整流した出力電流信号の最大値及び最小値を演算する電流信号演算手段と、この電流信号演算手段からの最大値と最小値の差が予め定めた電流偏差設定値を一定期間継続して超えたときは偏差大継続信号を出力し、一定期間継続しないときは制御異常信号を出力する制御異常判断手段と、前記最小値が予め定めた所定値以下となったとき低下信号を出力する電流レベル検出手段と、前記偏差大継続信号と前記低下信号の論理積をとって断線検出信号を出力する断線検出手段と、前記断線検出信号により装置動作を停止する制御手段とを有することを要旨とする。この構成により、制御異常判断手段では、出力電流信号の最大値と最小値の差が電流偏差設定値を一定期間継続して超えたとき偏差大継続信号が出力され、一定期間継続しないときは制御異常信号が出力される。偏差大継続信号が出力されたときは、これと低下信号の論理積をとることで出力ケーブルの断線が検出されて運転が停止される。一方、制御異常信号が出力されたときは、出力ケーブルの断線ではなく、制御上の不安定と判断される。
【0010】
請求項記載の発明は、出力電流を検出する電流検出手段と、この電流検出手段で検出した出力電流信号を整流する整流手段と、この整流した出力電流信号の最大値及び最小値を演算する電流信号演算手段と、前記出力電流信号の最大値から最小値までの時間と出力周波数の周期とを比較し、前記最大値から最小値までの時間が前記出力周波数の周期に対し所定値以上となったときピーク到達時間検出信号を出力するピーク到達時間検出手段と、前記最小値が予め定めた所定値以下となったとき低下信号を出力する電流レベル検出手段と、前記ピーク到達時間検出信号と前記低下信号の論理積をとって断線検出信号を出力する断線検出手段と、前記断線検出信号により装置動作を停止する制御手段とを有することを要旨とする。この構成により、出力ケーブルが断線したとき、出力電流信号の最大値から最小値までの時間は、出力周波数の周期以下となる。リップル周期検出手段では、この最大値から最小値までの時間と出力周波数の周期とが比較され、最大値から最小値までの時間が出力周波数の周期に対し所定値以上となったときピーク到達時間検出信号が出力される。このピーク到達時間検出信号と低下信号の論理積をとることで、出力ケーブルの断線が確実に検出されて運転が停止される。
【0011】
請求項記載の発明は、請求項1または2に記載の電力変換装置において、負荷として複数台の電動機を駆動することを要旨とする。この構成により、負荷である電動機が複数台になっても、出力ケーブルの断線時には出力電流信号の最小値が低下するため、出力ケーブルの断線を確実に検出して運転を停止することが可能となる。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
【0013】
図1及び図2は、本発明の第1の実施の形態を示す図である。まず、図1を用いて、本実施の形態の電力変換装置の構成を説明する。同図において、直流電源1からの直流電圧は、インバータ回路2により任意の周波数の(通常は3相)交流電圧に変換され、電動機3に可変周波数の交流電力が供給されるようになっている。インバータ回路2の出力ケーブルには、出力電流を検出する電流検出手段としての変流器5が取り付けられ、変流器5で検出された出力電流信号は、整流手段としての整流器6で整流された後、電動機3の回転数を制御する制御手段としての制御回路7に入力されている。制御回路7には、この整流された出力電流信号6aと速度設定器4で発生した速度基準信号4aが入力されている。制御回路7は、速度設定器4で設定された速度基準で電動機3が回転するように、整流された出力電流信号6aをフィードバックしつつインバータ回路2に対して位相制御信号7aを出力して制御する。
【0014】
そして、本実施の形態では、さらに整流器6の出力端子に電流信号演算手段としての電流信号演算器8が接続され、電流信号演算器8の出力端子に電流偏差検出手段としての電流偏差検出器9と電流レベル検出手段としての電流レベル検出器10が並列に接続されている。これら電流偏差検出器9と電流レベル検出器10の各出力は断線検出手段としての断線検出器11に入力され、断線検出器11の出力は制御回路7に入力されている。電流信号演算器8は、整流器6から整流された出力電流信号6aを入力し、その出力電流信号6aの最大値と最小値を演算する。電流偏差検出器9は、電流信号演算器8から最大値8aと最小値8bを入力し、最大値8aと最小値8bの差が予め定めた電流偏差設定値を超えたときに偏差大信号9aを出力する。電流レベル検出器10は、電流信号演算器8から最小値8bを入力し、その最小値8bが予め設定した所定値以下になったときに低下信号10aを出力する。断線検出器11は、電流偏差検出器9から偏差大信号9aを入力し、電流レベル検出器10から低下信号10aを入力して偏差大信号9aと低下信号10aの論理積をとり、断線検出信号11aを出力する。制御回路7は、断線検出器11からの断線検出信号11aが入力された場合に装置の停止動作を行う。
【0015】
次に、図2を用いて、出力ケーブル断線時の制御動作を説明する。出力ケーブル断線時は、整流器6から出力される整流された出力電流信号6aが低下する。したがって、電流信号演算器8から出力される最小値8bが低下する。電流偏差検出器9に入力される最小値8bが低下することで、最大値8aと最小値8bの差が大きくなって予め定めた電流偏差設定値を超え、電流偏差検出器9は、偏差大信号9aを出力する。また、電流レベル検出器10に入力される最小値8bも低下することで、最小値8bが予め設定した所定値以下になり、電流レベル検出器10は低下信号10aを出力する。この結果、断線検出器11に、偏差大信号9aと低下信号10aが入力され、断線検出器11は、これら両信号9a,10aの論理積をとって出力ケーブルの断線(3相の場合は欠相を含む)を検出し、断線検出信号11aを出力する。そして、制御回路7には、断線検出器11から断線検出信号11aが入力され、運転停止動作が行われる。出力電流信号6aの最大値8aと最小値8bの差のみから、出力ケーブルの断線(又は欠相)を検出したのでは、制御切り替えによる再始動時に誤検出するおそれがある。これに対し、本実施の形態では、上述したように、最小値8bが所定値以下になった場合も判定資料に加味し、偏差大信号9aと低下信号10aの論理積をとることで、出力ケーブルの断線(又は欠相)を確実に検出することができる。
【0016】
図3には、本発明の第2の実施の形態を示す。なお、図3及び後述の各実施の形態を示す図において前記図1における構成要素と同一ないし均等のものは、前記と同一符号を以って示し、重複した説明を省略する。本実施の形態では、整流器6と整流偏差検出器9との間に平均値検出手段としての平均値検出器12が接続されている。
【0017】
平均値検出器12は、整流器6からの整流された出力電流信号6aを入力し、その出力電流信号6aの平均値12aを算出して出力する。電流偏差検出器9は、平均値検出器12からの平均値12aを入力し、この平均値12aに応じて電流偏差設定値に対して補正(調整)を行う。負荷量が変化すると、出力電流信号6aの平均値が変化する。そこで、この平均値12aを算出し、この平均値12aに応じて電流偏差設定値を補正することで、負荷量の変化に対しても、出力ケーブルの断線(又は欠相)を確実に検出することができる。
【0018】
図4には、本発明の第3の実施の形態を示す。本実施の形態は、図1に示した電流偏差検出器9に代えて、電流信号演算器8と断線検出器11の間に制御異常判断手段としての制御異常判断器13が接続されている。制御異常判断器13は2つの出力端子を備え、一方の出力端子は断線検出器11に接続され、他方の出力端子は制御回路7に接続されている。
【0019】
制御異常判断器13は、電流信号演算器8から出力電流信号6aの最大値8aと最小値8bを入力し、その最大値8aと最小値8bの差が予め定めた電流偏差設定値を超え、これが一定期間継続したとき偏差大継続信号13aを断線検出器11に出力し、一定期間継続しないときは、制御異常信号13bを制御回路7に出力する。偏差大継続信号13aが出力されたときは、断線検出器11により、この偏差大継続信号13aと低下信号10aの論理積をとることで、出力ケーブルの断線(又は欠相)が検出され、制御回路7により運転停止が行われる。一方、制御異常信号13bが出力されたときは、出力ケーブルの断線ではなく、制御上の不安定と判断される。
【0020】
図5には、本発明の第4の実施の形態を示す。本実施の形態は、図1に示した電流偏差検出器9に代えて、電流信号演算器8と断線検出器11の間にリップル周期検出手段としてのリップル周期検出器14が接続されている。リップル周期検出器14は、出力線と入力線を備え、出力線は断線検出器11に接続され、入力線により制御回路7から出力周波数信号7bを入力するようになっている。
【0021】
出力ケーブルが断線(又は欠相)としたとき、出力電流信号6aの最大値8aと最小値8bの差が最大となるリップル周期は、出力周波数の周期以下(3相の場合、リップル周期は出力周波数の周期の略3分の1以下)となる。リップル周期検出器14は、電流信号演算器8から出力電流信号6aの最大値8aと最小値8bを入力し、制御回路7からは出力周波数信号7bを入力する。そして、最大値8aと最小値8bの差が最大となるリップル周期と出力周波数の周期とを比較し、リップル周期が出力周波数の周期に対し所定値以となったときに、リップル周期検出信号14aを断線検出器11に出力する。断線検出器11では、リップル周期検出信号14aと低下信号10aの論理積をとることで、出力ケーブルの断線(又は欠相)を検出し、制御回路7により運転停止が行われる。
【0022】
図6には、本発明の第5の実施の形態を示す。本実施の形態は、図1に示した電流偏差検出器9に代えて、電流信号演算器8と断線検出器11の間にピーク到達時間検出手段としてのピーク到達時間検出器15が接続されている。ピーク到達時間検出器15は、出力線と入力線を備え、出力線は断線検出器11に接続され、入力線により制御回路7から出力周波数信号7bを入力するようになっている。
【0023】
出力ケーブルが断線(又は欠相)したとき、出力電流信号6aの最大値8aから最小値8bになるまでの時間は、出力周波数の周期以下となる。ピーク到達時間検出器15は、電流信号演算器8から出力電流信号6aの最大値8aと最小値8bを入力し、制御回路7からは出力周波数信号7bを入力する。そして、最大値8aから最小値8bになるまでの時間と出力周波数の周期とを比較し、最大値8aから最小値8bになるまでの時間が出力周波数の周期に対し所定値以となったときに、ピーク到達時間検出信号15aを断線検出器11に出力する。断線検出器11では、ピーク到達時間検出信号15aと低下信号10aの論理積をとることで、出力ケーブルの断線(又は欠相)を検出し、制御回路7により運転停止が行われる。
【0024】
図7には、本発明の第6の実施の形態を示す。本実施の形態では、負荷として複数台の電動機3,3,…を駆動するようになっている。
【0025】
複数台の電動機3,3,…を駆動する場合であっても、出力ケーブルの断線時には出力電流信号6aの最小値8bが低下するため、出力ケーブル断線を検出することが可能である。
【0026】
【発明の効果】
以上説明したように、請求項1〜記載の発明によれば、出力ケーブルが断線したとき、これを確実に検出して運転を停止することができ、信頼性を向上させることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態である電力変換装置のブロック図である。
【図2】上記第1の実施の形態における出力ケーブル断線時の制御動作を説明するための出力電流信号波形図である。
【図3】本発明の第2の実施の形態のブロック図である。
【図4】本発明の第3の実施の形態のブロック図である。
【図5】本発明の第4の実施の形態のブロック図である。
【図6】本発明の第5の実施の形態のブロック図である。
【図7】本発明の第6の実施の形態のブロック図である。
【図8】従来の電力変換装置のブロック図である。
【符号の説明】
2 インバータ回路
3 電動機
5 変流器(電流検出手段)
6 整流器(整流手段)
7 制御回路(制御手段)
8 電流信号演算器(電流信号演算手段)
9 電流偏差検出器(電流偏差検出手段)
10 電流レベル検出器(電流レベル検出手段)
11 断線検出器(断線検出手段)
12 平均値検出器(平均値検出手段)
13 制御異常判断器(制御異常判断手段)
14 リップル周期検出器(リップル周期検出手段)
15 ピーク到達時間検出器(ピーク到達時間検出手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power conversion device having an output cable disconnection detection function.
[0002]
[Prior art]
As a conventional power converter, the one shown in FIG. 8 is well known. In the figure, the DC voltage from the DC power source 1 is converted into an AC voltage having an arbitrary frequency (usually three phases) by the inverter circuit 2 so that variable frequency AC power is supplied to the motor 3 as a load. It has become. A current transformer 5 as a current detector for detecting an output current is attached to the output cable of the inverter circuit 2. The output current signal detected by the current transformer 5 is rectified by the rectifier 6, and then the motor 3 Is input to the control circuit 7 for controlling the number of rotations. The control circuit 7 receives the rectified output current signal and the speed reference signal 4 a generated by the speed setter 4.
[0003]
Next, the operation of the apparatus will be briefly described. The control circuit 7 outputs a control signal 7a to the inverter circuit 2 from the speed reference signal 4a from the speed setter 4 and the output current signal rectified by the rectifier 6 so that the motor 3 has a predetermined rotational speed. In the inverter circuit 2, a self-extinguishing element (in recent years, IGBT is mainly used) is used as a switching element, and an output waveform and an output frequency are controlled by the control circuit 7.
[0004]
[Problems to be solved by the invention]
However, the conventional power conversion device has a problem that the operation is continued when the output cable is disconnected.
[0005]
The present invention has been made in view of the above, and provides a power conversion device that can reliably detect and stop operation when an output cable is disconnected, and can improve reliability. With the goal.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention according to claim 1 is characterized in that a current detecting means for detecting an output current, a rectifying means for rectifying an output current signal detected by the current detecting means, and a rectified output current signal Current signal calculation means for calculating the maximum and minimum values, and a large deviation continuation signal when the difference between the maximum and minimum values from the current signal calculation means exceeds a predetermined current deviation set value for a certain period of time. Control abnormality determining means for outputting a control abnormality signal when the constant value does not continue for a certain period of time, current level detecting means for outputting a decrease signal when the minimum value falls below a predetermined value, and the large deviation The gist of the invention is to include a disconnection detecting means for taking a logical product of the continuation signal and the lowering signal and outputting a disconnection detection signal, and a control means for stopping the operation of the apparatus by the disconnection detection signal. With this configuration, the control abnormality determination means outputs a large deviation continuation signal when the difference between the maximum value and the minimum value of the output current signal exceeds the current deviation set value for a certain period, and controls when the difference does not continue for a certain period. An abnormal signal is output. When the large deviation continuation signal is output, the disconnection of the output cable is detected by taking the logical product of this and the decrease signal, and the operation is stopped. On the other hand, when the control abnormality signal is output, it is determined that the output cable is not disconnected and that the control is unstable.
[0010]
According to the second aspect of the present invention, the current detection means for detecting the output current, the rectification means for rectifying the output current signal detected by the current detection means, and the maximum value and the minimum value of the rectified output current signal are calculated. A current signal calculation means, comparing the time from the maximum value to the minimum value of the output current signal with the cycle of the output frequency, and the time from the maximum value to the minimum value is a predetermined value or more with respect to the cycle of the output frequency A peak arrival time detection means for outputting a peak arrival time detection signal when the current value reaches, a current level detection means for outputting a decrease signal when the minimum value is equal to or less than a predetermined value, and the peak arrival time detection signal; The gist of the invention is to include a disconnection detection means for taking a logical product of the lowering signals and outputting a disconnection detection signal, and a control means for stopping the operation of the apparatus by the disconnection detection signal. With this configuration, when the output cable is disconnected, the time from the maximum value to the minimum value of the output current signal is equal to or less than the period of the output frequency. In the ripple period detection means, the time from the maximum value to the minimum value is compared with the period of the output frequency, and the peak arrival time when the time from the maximum value to the minimum value exceeds the predetermined value with respect to the period of the output frequency A detection signal is output. By taking the logical product of the peak arrival time detection signal and the decrease signal, the disconnection of the output cable is reliably detected and the operation is stopped.
[0011]
The gist of the invention described in claim 3 is that, in the power converter according to claim 1 or 2 , a plurality of electric motors are driven as loads. With this configuration, even if there are multiple electric motors as loads, the minimum value of the output current signal decreases when the output cable is disconnected, so it is possible to reliably detect the disconnection of the output cable and stop operation. Become.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0013]
1 and 2 are diagrams showing a first embodiment of the present invention. First, the configuration of the power conversion device according to the present embodiment will be described with reference to FIG. In the figure, a DC voltage from a DC power source 1 is converted into an AC voltage having an arbitrary frequency (usually three phases) by an inverter circuit 2, and AC power having a variable frequency is supplied to the motor 3. . The output cable of the inverter circuit 2 is attached with a current transformer 5 as current detection means for detecting output current, and the output current signal detected by the current transformer 5 is rectified by a rectifier 6 as rectification means. Thereafter, it is inputted to a control circuit 7 as a control means for controlling the rotation speed of the electric motor 3. The control circuit 7 receives the rectified output current signal 6 a and the speed reference signal 4 a generated by the speed setter 4. The control circuit 7 outputs and controls the phase control signal 7a to the inverter circuit 2 while feeding back the rectified output current signal 6a so that the motor 3 rotates with the speed reference set by the speed setter 4. To do.
[0014]
In this embodiment, a current signal calculator 8 as a current signal calculator is further connected to the output terminal of the rectifier 6, and a current deviation detector 9 as a current deviation detector is connected to the output terminal of the current signal calculator 8. And a current level detector 10 as a current level detecting means are connected in parallel. The outputs of the current deviation detector 9 and the current level detector 10 are input to a disconnection detector 11 as disconnection detection means, and the output of the disconnection detector 11 is input to the control circuit 7. The current signal calculator 8 receives the output current signal 6a rectified from the rectifier 6, and calculates the maximum value and the minimum value of the output current signal 6a. The current deviation detector 9 receives the maximum value 8a and the minimum value 8b from the current signal calculator 8, and a large deviation signal 9a when the difference between the maximum value 8a and the minimum value 8b exceeds a predetermined current deviation set value. Is output. The current level detector 10 receives the minimum value 8b from the current signal calculator 8, and outputs a decrease signal 10a when the minimum value 8b becomes equal to or less than a predetermined value set in advance. The disconnection detector 11 receives the large deviation signal 9a from the current deviation detector 9, receives the decrease signal 10a from the current level detector 10, and takes the logical product of the large deviation signal 9a and the decrease signal 10a to generate the disconnection detection signal. 11a is output. The control circuit 7 stops the apparatus when the disconnection detection signal 11a from the disconnection detector 11 is input.
[0015]
Next, the control operation when the output cable is disconnected will be described with reference to FIG. When the output cable is disconnected, the rectified output current signal 6a output from the rectifier 6 decreases. Therefore, the minimum value 8b output from the current signal calculator 8 decreases. As the minimum value 8b input to the current deviation detector 9 decreases, the difference between the maximum value 8a and the minimum value 8b increases and exceeds a predetermined current deviation setting value. The current deviation detector 9 The signal 9a is output. Further, the minimum value 8b input to the current level detector 10 also decreases, so that the minimum value 8b becomes equal to or less than a predetermined value set in advance, and the current level detector 10 outputs a decrease signal 10a. As a result, the large deviation signal 9a and the decrease signal 10a are input to the disconnection detector 11, and the disconnection detector 11 calculates the logical product of these two signals 9a and 10a to disconnect the output cable (in the case of three phases, the disconnection signal is missing. Including a phase), and a disconnection detection signal 11a is output. The control circuit 7 receives the disconnection detection signal 11a from the disconnection detector 11, and the operation stop operation is performed. If the disconnection (or phase loss) of the output cable is detected only from the difference between the maximum value 8a and the minimum value 8b of the output current signal 6a, there is a risk of erroneous detection at the time of restart due to control switching. On the other hand, in the present embodiment, as described above, even when the minimum value 8b is equal to or less than the predetermined value, it is added to the determination material, and the logical product of the large deviation signal 9a and the decrease signal 10a is taken to obtain an output. The disconnection (or phase loss) of the cable can be reliably detected.
[0016]
FIG. 3 shows a second embodiment of the present invention. In FIG. 3 and the drawings showing the respective embodiments to be described later, the same or equivalent components as those in FIG. 1 are denoted by the same reference numerals as those in FIG. In the present embodiment, an average value detector 12 as an average value detecting means is connected between the rectifier 6 and the rectification deviation detector 9.
[0017]
The average value detector 12 receives the rectified output current signal 6a from the rectifier 6 and calculates and outputs an average value 12a of the output current signal 6a. The current deviation detector 9 receives the average value 12a from the average value detector 12, and corrects (adjusts) the current deviation set value according to the average value 12a. When the load amount changes, the average value of the output current signal 6a changes. Therefore, the average value 12a is calculated, and the current deviation set value is corrected according to the average value 12a, so that the disconnection (or phase loss) of the output cable can be reliably detected even when the load amount changes. be able to.
[0018]
FIG. 4 shows a third embodiment of the present invention. In this embodiment, instead of the current deviation detector 9 shown in FIG. 1, a control abnormality determination unit 13 as a control abnormality determination unit is connected between the current signal calculator 8 and the disconnection detector 11. The control abnormality determination unit 13 includes two output terminals, one output terminal is connected to the disconnection detector 11, and the other output terminal is connected to the control circuit 7.
[0019]
The control abnormality determiner 13 receives the maximum value 8a and the minimum value 8b of the output current signal 6a from the current signal calculator 8, and the difference between the maximum value 8a and the minimum value 8b exceeds a predetermined current deviation set value, When this continues for a certain period, a large deviation continuation signal 13a is output to the disconnection detector 11, and when it does not continue for a certain period, a control abnormality signal 13b is output to the control circuit 7. When the deviation large continuation signal 13a is output, the disconnection detector 11 detects the disconnection (or phase loss) of the output cable by taking the logical product of the deviation large continuation signal 13a and the decrease signal 10a. The operation is stopped by the circuit 7. On the other hand, when the control abnormality signal 13b is output, it is determined that the output cable is not disconnected and that the control is unstable.
[0020]
FIG. 5 shows a fourth embodiment of the present invention. In the present embodiment, instead of the current deviation detector 9 shown in FIG. 1, a ripple period detector 14 as a ripple period detecting means is connected between the current signal calculator 8 and the disconnection detector 11. The ripple period detector 14 includes an output line and an input line, and the output line is connected to the disconnection detector 11 so that the output frequency signal 7b is input from the control circuit 7 through the input line.
[0021]
When the output cable is disconnected (or open phase), the ripple cycle at which the difference between the maximum value 8a and the minimum value 8b of the output current signal 6a is the maximum is less than the cycle of the output frequency (in the case of three phases, the ripple cycle is output Or less than about one third of the frequency period). The ripple period detector 14 receives the maximum value 8a and the minimum value 8b of the output current signal 6a from the current signal calculator 8, and receives the output frequency signal 7b from the control circuit 7. Then, compared with the period of maximum 8a and the minimum value ripple period difference 8b becomes maximum output frequency, when the ripple period becomes to the period of the output frequency and the predetermined value or more, the ripple period detecting signal 14 a is output to the disconnection detector 11. The disconnection detector 11 detects the disconnection (or phase loss) of the output cable by taking the logical product of the ripple period detection signal 14 a and the drop signal 10 a, and the operation is stopped by the control circuit 7.
[0022]
FIG. 6 shows a fifth embodiment of the present invention. In this embodiment, instead of the current deviation detector 9 shown in FIG. 1, a peak arrival time detector 15 as a peak arrival time detector is connected between the current signal calculator 8 and the disconnection detector 11. Yes. The peak arrival time detector 15 includes an output line and an input line. The output line is connected to the disconnection detector 11, and the output frequency signal 7b is input from the control circuit 7 through the input line.
[0023]
When the output cable is disconnected (or lost phase), the time from the maximum value 8a to the minimum value 8b of the output current signal 6a is less than the cycle of the output frequency. The peak arrival time detector 15 receives the maximum value 8a and the minimum value 8b of the output current signal 6a from the current signal calculator 8, and receives the output frequency signal 7b from the control circuit 7. Then, compared with the period of time and the output frequency from the maximum value 8a until a minimum value 8b, the time from the maximum value 8a until a minimum value 8b reaches to the period of the output frequency and the predetermined value or more Sometimes, the peak arrival time detection signal 15 a is output to the disconnection detector 11. The disconnection detector 11 detects the disconnection (or phase loss) of the output cable by taking the logical product of the peak arrival time detection signal 15a and the decrease signal 10a, and the control circuit 7 stops the operation.
[0024]
FIG. 7 shows a sixth embodiment of the present invention. In this embodiment, a plurality of electric motors 3, 3,... Are driven as loads.
[0025]
Even when driving a plurality of electric motors 3, 3,..., The output cable disconnection can be detected because the minimum value 8b of the output current signal 6a decreases when the output cable is disconnected.
[0026]
【The invention's effect】
As described above, according to the first to third aspects of the present invention, when the output cable is disconnected, this can be reliably detected and the operation can be stopped, and the reliability can be improved.
[Brief description of the drawings]
FIG. 1 is a block diagram of a power conversion apparatus according to a first embodiment of the present invention.
FIG. 2 is an output current signal waveform diagram for explaining a control operation when the output cable is disconnected in the first embodiment.
FIG. 3 is a block diagram of a second exemplary embodiment of the present invention.
FIG. 4 is a block diagram of a third embodiment of the present invention.
FIG. 5 is a block diagram of a fourth embodiment of the present invention.
FIG. 6 is a block diagram of a fifth embodiment of the present invention.
FIG. 7 is a block diagram of a sixth embodiment of the present invention.
FIG. 8 is a block diagram of a conventional power conversion device.
[Explanation of symbols]
2 Inverter circuit 3 Electric motor 5 Current transformer (current detection means)
6 Rectifier (rectifying means)
7 Control circuit (control means)
8 Current signal calculator (current signal calculator)
9 Current deviation detector (Current deviation detection means)
10 Current level detector (current level detection means)
11 Disconnection detector (disconnection detection means)
12 Average value detector (mean value detection means)
13 Control abnormality judgment device (control abnormality judgment means)
14 Ripple period detector (ripple period detection means)
15 Peak arrival time detector (peak arrival time detection means)

Claims (3)

出力電流を検出する電流検出手段と、この電流検出手段で検出した出力電流信号を整流する整流手段と、この整流した出力電流信号の最大値及び最小値を演算する電流信号演算手段と、この電流信号演算手段からの最大値と最小値の差が予め定めた電流偏差設定値を一定期間継続して超えたときは偏差大継続信号を出力し、一定期間継続しないときは制御異常信号を出力する制御異常判断手段と、前記最小値が予め定めた所定値以下となったとき低下信号を出力する電流レベル検出手段と、前記偏差大継続信号と前記低下信号の論理積をとって断線検出信号を出力する断線検出手段と、前記断線検出信号により装置動作を停止する制御手段とを有することを特徴とする電力変換装置。  Current detection means for detecting the output current, rectification means for rectifying the output current signal detected by the current detection means, current signal calculation means for calculating the maximum value and the minimum value of the rectified output current signal, and the current When the difference between the maximum value and the minimum value from the signal calculation means exceeds the preset current deviation setting value for a certain period, a large deviation continuation signal is output, and when it does not continue for a certain period, a control abnormality signal is output. Control abnormality determination means, current level detection means for outputting a decrease signal when the minimum value is equal to or less than a predetermined value, and a disconnection detection signal obtained by ANDing the deviation large continuation signal and the decrease signal A power conversion apparatus comprising: a disconnection detection means for outputting; and a control means for stopping the operation of the apparatus by the disconnection detection signal. 出力電流を検出する電流検出手段と、この電流検出手段で検出した出力電流信号を整流する整流手段と、この整流した出力電流信号の最大値及び最小値を演算する電流信号演算手段と、前記出力電流信号の最大値から最小値までの時間と出力周波数の周期とを比較し、前記最大値から最小値までの時間が前記出力周波数の周期に対し所定値以上となったときピーク到達時間検出信号を出力するピーク到達時間検出手段と、前記最小値が予め定めた所定値以下となったとき低下信号を出力する電流レベル検出手段と、前記ピーク到達時間検出信号と前記低下信号の論理積をとって断線検出信号を出力する断線検出手段と、前記断線検出信号により装置動作を停止する制御手段とを有することを特徴とする電力変換装置。  Current detection means for detecting an output current; rectification means for rectifying an output current signal detected by the current detection means; current signal calculation means for calculating a maximum value and a minimum value of the rectified output current signal; and the output Comparing the time from the maximum value to the minimum value of the current signal with the cycle of the output frequency, and when the time from the maximum value to the minimum value is equal to or greater than the predetermined value with respect to the cycle of the output frequency, the peak arrival time detection signal A logical product of the peak arrival time detection signal and the decrease signal, a peak level arrival time detection means for outputting the current value, a current level detection means for outputting a decrease signal when the minimum value falls below a predetermined value. And a control means for stopping the operation of the apparatus in response to the disconnection detection signal. 負荷として複数台の電動機を駆動することを特徴とする請求項1または2に記載の電力変換装置。The power converter according to claim 1 or 2 , wherein a plurality of electric motors are driven as a load.
JP2002106639A 2002-04-09 2002-04-09 Power converter Expired - Lifetime JP3961868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002106639A JP3961868B2 (en) 2002-04-09 2002-04-09 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002106639A JP3961868B2 (en) 2002-04-09 2002-04-09 Power converter

Publications (2)

Publication Number Publication Date
JP2003304634A JP2003304634A (en) 2003-10-24
JP3961868B2 true JP3961868B2 (en) 2007-08-22

Family

ID=29390899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002106639A Expired - Lifetime JP3961868B2 (en) 2002-04-09 2002-04-09 Power converter

Country Status (1)

Country Link
JP (1) JP3961868B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4682746B2 (en) * 2005-08-17 2011-05-11 富士電機システムズ株式会社 Electric motor control device
JP5584994B2 (en) * 2009-04-09 2014-09-10 日産自動車株式会社 Inverter fault diagnosis device
CN102478614B (en) * 2010-11-30 2015-04-29 西门子公司 Current transformer disconnection detecting method and device, and relay protecting equipment
WO2014013614A1 (en) 2012-07-20 2014-01-23 三菱電機株式会社 Control device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6070920A (en) * 1983-09-22 1985-04-22 日本電気株式会社 Defective phase detecting circuit of 3- phase ac
JPS6258830A (en) * 1985-09-03 1987-03-14 富士電機株式会社 Missed phase detector
JP2595802B2 (en) * 1990-10-17 1997-04-02 ダイキン工業株式会社 Inverter device
JPH04367356A (en) * 1991-06-12 1992-12-18 Kobe Steel Ltd Instrument for detecting phase interruption in low frequency power source for electromagnetic stirring device
JPH11206003A (en) * 1998-01-13 1999-07-30 Fuji Electric Co Ltd Inverter device
JPH11215686A (en) * 1998-01-23 1999-08-06 Mitsubishi Electric Corp Feeding device
JP3290949B2 (en) * 1998-03-20 2002-06-10 三菱電機株式会社 Vehicle control device

Also Published As

Publication number Publication date
JP2003304634A (en) 2003-10-24

Similar Documents

Publication Publication Date Title
JP4349465B1 (en) Power converter
US8098035B2 (en) Motor control unit
JP5429205B2 (en) Method and apparatus for protecting PWM rectifier circuit
JP3409327B2 (en) Inverter device
WO2006114843A1 (en) Servo motor controller
US9825577B2 (en) Drive control device of a brushless DC motor
US11374397B2 (en) Power supply device and abnormality detection method for AC power supply
WO2001048904A1 (en) Portable generator
JP3961868B2 (en) Power converter
JPH11103585A (en) Inverter protector
JP2001320882A (en) Power supply apparatus, inverter and air conditioner
JP2011036000A (en) Inverter apparatus
WO2021049230A1 (en) Power conversion device and method for controlling power conversion device
US6646896B2 (en) Controller of AC machine
JP4077326B2 (en) Method of processing regenerative power of inverter device and inverter device used in this method
JP2004056893A (en) Fault detection method for power converter
JP5873287B2 (en) Inverter device
KR102530374B1 (en) Power transforming apparatus and air conditioner including the same
WO2021084584A1 (en) Converter and motor control system
JP2002247895A (en) Power output device, abnormality detection device therefor, and abnormality detection method
KR101199327B1 (en) Phase current detecting apparatus and method of motor
JPH10323083A (en) Voltage type inverter equipment
KR20200054767A (en) Apparatus for controlling switching module, power transforming apparatus and method for preventing malfunction of power transforming apparatus
JP2006296155A (en) Power failure detection apparatus
JP2007300697A (en) Power supply circuit controller

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040319

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040922

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070517

R150 Certificate of patent or registration of utility model

Ref document number: 3961868

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140525

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term