JP3961219B2 - ガス・蒸気複合タービン設備 - Google Patents

ガス・蒸気複合タービン設備 Download PDF

Info

Publication number
JP3961219B2
JP3961219B2 JP2000560365A JP2000560365A JP3961219B2 JP 3961219 B2 JP3961219 B2 JP 3961219B2 JP 2000560365 A JP2000560365 A JP 2000560365A JP 2000560365 A JP2000560365 A JP 2000560365A JP 3961219 B2 JP3961219 B2 JP 3961219B2
Authority
JP
Japan
Prior art keywords
steam
gas
heat exchanger
air
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000560365A
Other languages
English (en)
Other versions
JP2002520543A (ja
Inventor
シッファース、ウルリッヒ
ハンネマン、フランク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of JP2002520543A publication Critical patent/JP2002520543A/ja
Application granted granted Critical
Publication of JP3961219B2 publication Critical patent/JP3961219B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/067Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification
    • F01K23/068Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification in combination with an oxygen producing plant, e.g. an air separation plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Description

【0001】
本発明は、ガスタービンの燃焼ガス側に廃熱ボイラが後置接続され、この廃熱ボイラの加熱器が蒸気タービンの水・蒸気回路に接続され、ガスタービンの燃焼器に燃料用ガス化装置が前置接続されたガス・蒸気複合タービン設備に関する。
【0002】
化石燃料のガス化装置を一体化したガス・蒸気複合タービン設備は、一般に燃料用ガス化装置を有している。その気化装置は、出口側が多数のガス浄化構成要素を介してガスタービンの燃焼器に接続されている。ガスタービンの燃焼ガス側には廃熱ボイラが後置接続され、このボイラの加熱器は蒸気タービンの水・蒸気回路に接続されている。そのような設備は、例えば英国特許出願公開第2234984号明細書で知られている。
【0003】
更にドイツ特許第3331152号明細書により、燃料気化設備を有するガスタービン設備の運転方法が知られている。その場合、空気分解設備で生ずる無酸素空気は、燃料気化設備に供給される中カロリーの燃料ガスに混入され、低カロリーの燃料ガス・空気混合気は、ガスタービン設備の燃焼器に導入される。ガスタービン設備の圧縮機は、燃焼器の他に空気分解設備にも空気を供給する。米国特許第4677829号および同第4697415号明細書により、空気圧縮機からの圧縮空気を、熱交換器を用いて冷却することが知られている。
【0004】
この設備の場合、ガス化済み化石燃料の燃焼中における有害物質の発生を減少すべく、硫黄含有成分を除去するための装置が設けられている。この装置には、燃焼器に開口しているガス化燃料用の供給管に、飽和器が後置接続されている。この飽和器において、ガス化燃料に有害物質の発生を減少すべく水蒸気が添加される。そのためにガス化燃料は飽和器を、飽和器回路と呼ばれる水回路内を案内される水流と逆向きに貫流する。特に高い効率を得るために、水・蒸気回路からの熱を飽和器回路に入れることが考慮されている。
【0005】
このようなガス・蒸気複合タービン設備のガス化装置には、化石燃料に加えて補助的に、燃料をガス化するために必要な酸素も導入される。この酸素を空気から得るため、通常、ガス化装置の前に空気分解設備が設けられる。空気分解設備には、ガスタービンに付属する空気圧縮機で圧縮された空気の、抽出空気流とも呼ばれる部分流が供給される。
【0006】
圧縮機から流出する空気は、圧縮過程のために比較的高い温度レベルにある。従って一般に、抽出空気とも呼ばれる圧縮空気部分流を、それが空気分解設備に流入する前に冷却する必要がある。抽出空気から取り出された熱は一般に、熱を回収するためおよび高いプラント効率を得るため、飽和器回路に伝達される。このように設計した場合でも、設備の運転状態に応じ、抽出空気をそれが空気分解設備に流入する前に冷却水でさらに冷却する必要がある。
【0007】
しかしそのような抽出空気の冷却構成は、空気を冷却する際の熱回収および飽和器回路における熱需要が互いに十分に調和していることを前提としている。そのような抽出空気の冷却方法は、組み入れ構成に関係して、即ち空気分解設備に対する空気の供給様式およびその際に採用される構成要素に関係して、普遍的に採用できず、ガス・蒸気複合タービン設備の或る運転状態において、条件つきでしか信頼できない。
【0008】
本発明の課題は、冒頭に述べた形式のガス・蒸気複合タービン設備を、基礎になっている組み入れ構成と無関係に、あらゆる運転状態において、抽出空気が特に単純な構造で確実に冷却されるように改良することにある。
【0009】
この課題は、冒頭に述べた形式のガス・蒸気複合タービン設備において、本発明に基づき、圧縮空気部分流を冷却すべく、空気圧縮機を空気分解設備に接続する抽出空気管に熱交換器の一次側を接続し、この熱交換器の二次側を流れ媒体に対する蒸発器循環路を形成すべく気水分離器に接続することにより解決される。
【0010】
本発明は、組み入れ構成およびガス化すべき燃料と無関係に採用でき且つあらゆる運転状態において確実に抽出空気を冷却すべく、抽出空気から取り出された熱を固定設定熱需要と無関係に排出しようという考えから出発している。従って、抽出空気の冷却を飽和器回路への入熱と切り離さねばならない。その代わりに抽出空気の冷却は、流れ媒体との熱交換によって行われる。単純な構造において、特に運転安定性を高め且つ抽出空気から取り出された熱を設備プロセスに良好に結合すべく、流れ媒体の蒸発に利用することが考慮され、その熱交換器は中圧蒸発器として形成される。
【0011】
抽出空気を種々の運転状態に簡単に、特に柔軟に適合させて冷却すべく、抽出空気管における熱交換器に、二次側が流れ媒体に対する蒸発器として形成されたもう1つの熱交換器を後置接続し、この熱交換器を低圧蒸発器として構成すると有利である。
【0012】
その場合、中圧の蒸発器として構成された熱交換器は、流れ媒体側が蒸気タービンの中圧段に付属する廃熱ボイラ内の加熱器に接続されていると有利である。低圧蒸発器として形成された熱交換器は同じような配置で、流れ媒体側が蒸気タービンの低圧段に付属する廃熱ボイラ内の加熱器に接続される。しかし低圧蒸発器として形成された熱交換器は、流れ媒体側が蒸気・副次的負荷、例えばガス化装置あるいはこれに後置接続されたガス処理系に接続すると有利である。そのような配置の場合、特に簡単に、副次的負荷へのプロセス蒸気あるいは加熱蒸気の確実な供給が保証される。
【0013】
本発明の有利な実施態様において、一方あるいは各熱交換器の二次側が蒸発器循環路を形成すべくそれぞれ気水分離器に接続される。
【0014】
蒸発器循環路は強制循環路として形成できる。特に有利な実施態様において、各蒸発器循環路は自然循環路として形成され、その場合、流れ媒体の循環は、蒸発過程で生ずる差圧および/又は蒸発器と気水分離器の測地学的配置によって保証される。そのような配置では、蒸発器循環路の始動のために、非常に小形の循環ポンプしか必要とされない。それぞれの気水分離器は、廃熱ボイラ内に配置された複数の加熱器に接続すると有利である。
【0015】
抽出空気管における熱交換器に、二次側が廃熱ボイラに付属する給水タンクに接続された補助熱交換器が後置接続されていると有利である。このような配置によって、組み入れ構成と無関係な特に良好な飽和器回路への結合が達成される。つまり飽和器回路への結合は、一次側が給水タンクから取り出された加熱済み給水で貫流される熱交換器によって行われる。飽和器回路への結合によって冷却され、この熱交換器から出る給水は、抽出空気管に接続された補助熱交換器に導入され、そこで抽出空気の再冷却によって再加熱される。従って、飽和器回路への結合は、給水の大きな熱損失なしに達成される。
【0016】
ガスタービンのタービン翼を確実に冷却するため、本発明の有利な実施態様においては、圧縮空気部分流の流れ方向に見て第1熱交換器の下流ないし第1、第2の両熱交換器の下流において、抽出空気管から冷却空気管が分岐し、この冷却空気管を通してガスタービンに、冷却済み圧縮空気部分流の一部がタービン翼冷却用の冷却空気として導入される。
【0017】
本発明によって得られる利点は特に、流れ媒体に対する蒸発器として形成された複数の熱交換器において抽出空気を冷却することにより、ガス・蒸気複合タービン設備を、特に高いプラント効率を達成した状態で、種々の組み入れ構成に柔軟に適合させられることにある。蒸発器として形成された熱交換器による抽出空気からの熱の取り出しは、飽和器回路への結合と無関係である。従って、ガス・蒸気複合タービン設備は、種々の運転状態においても特に確実に採用できる。更にそれぞれの熱交換器の蒸発器としての形成は、副次的負荷へのプロセス蒸気あるいは加熱蒸気の特に簡単な供給を可能にする。かかる副次的負荷として、特にガス化装置あるいはこれに後置接続されたガス処理構成要素が考えられる。各蒸発器循環路の貯蔵容量は比較的大きいので、その副次的負荷におけるプロセス蒸気あるいは加熱蒸気の消費量が変動する場合も、運転に支障は生じない。
【0018】
以下図を参照して本発明の実施例を詳細に説明する。
【0019】
図1におけるガス・蒸気複合タービン設備1は、ガスタービン設備1aおよび蒸気タービン設備1bを備える。ガスタービン設備1aは、空気圧縮機4が連結されたガスタービン2と、このガスタービン2に前置接続された燃焼器6とを有する。この燃焼器6は、圧縮機4の圧縮空気管8に接続されている。ガスタービン2、空気圧縮機4および発電機10は、共通の軸12上に置かれている。
【0020】
蒸気タービン設備1bは発電機22が連結された蒸気タービン20を有し、更にその水・蒸気回路24に、蒸気タービン20に後置接続された復水器26および廃熱ボイラ30を備えている。蒸気タービン20は第1圧力段である高圧部20a、第2圧力段である中圧部20bおよび第3圧力段である低圧部20cから成り、これらの圧力段20a、20b、20cは共通の軸32を介して発電機22を駆動する。
【0021】
ガスタービン2で膨張した作動媒体AMあるいは燃焼ガスを廃熱ボイラ30に導入するため、排気管34が廃熱ボイラ30の入口30aに接続されている。ガスタービン2からの膨張した作動媒体AMは、廃熱ボイラ30からその出口30bを通り煙突(図示せず)に向かって流れ出る。
【0022】
廃熱ボイラ30は復水加熱器40を備える。この復水加熱器40の入口側に復水管42を通して復水Kが供給される。復水管42には復水ポンプ44が接続されている。復水加熱器40の出口側は、配管45を介して給水タンク46に接続されている。復水加熱器40を必要に応じて迂回するため、復水管42はバイパス管(図示せず)を通して直に給水タンク46に接続される。給水タンク46は配管47を介して、中圧抽出口付きの高圧給水ポンプ48に接続されている。
【0023】
この高圧給水ポンプ48は、給水タンク46から流出する給水Sを、蒸気タービン20の高圧部に付属する水・蒸気回路24の高圧段50に適する圧力レベルにする。その加圧状態の給水Sは、給水加熱器52を介して高圧段50に導入される。この給水加熱器52は出口側が弁54で遮断できる給水管56を介して高圧ドラム(気水分離器)58に接続されている。この高圧ドラム58は廃熱ボイラ30内に配置された高圧蒸発器60に水・蒸気循環路62を形成すべく接続されている。高圧ドラム58は、主蒸気Fを排出すべく廃熱ボイラ30内に配置された高圧過熱器64に接続されている。この高圧過熱器64は、出口側が蒸気タービン20の高圧部20aの蒸気入口66に接続されている。
【0024】
蒸気タービン20の高圧部20aの蒸気出口68は、再熱器70を介して蒸気タービン20の中圧部20bの蒸気入口72に接続されている。蒸気出口74は蒸気転流管76を介して蒸気タービン20の低圧部20cの蒸気入口78に、そして蒸気タービン20の低圧部20cの蒸気出口80は蒸気管82を介して復水器26に接続されている。これに伴い水・蒸気の閉回路24が生じている。
【0025】
高圧給水ポンプ48から、復水Kが中間圧に達する抽出口で、分岐管84が分岐している。この分岐管84は他の給水加熱器86あるいは中圧エコノマイザを介して蒸気タービン20の中圧部20bに付属する水・蒸気回路24の中圧段90に接続されている。そのため、第2給水加熱器86は出口側が弁92で遮断できる給水管94を介して中圧段90の中圧ドラム96に接続されている。中圧ドラム96は廃熱ボイラ30内に配置され中圧蒸発器として構成された加熱器98に水・蒸気循環路100を形成すべく接続されている。中圧・主蒸気F′を排出すべく、中圧ドラム96は蒸気管102を介して再熱器70に接続され、従って蒸気タービン20の中圧部20bの蒸気入口72に接続されている。
【0026】
給水タンク46からの配管47から、低圧給水ポンプ107を備え、弁108で遮断できるもう1つの配管110が分岐している。この分岐配管110は蒸気タービン20の低圧部20cに付属する水・蒸気回路24の低圧段120に接続されている。この低圧段120は低圧ドラム122を有し、この低圧ドラム122は廃熱ボイラ30内に配置され低圧蒸発器として構成された加熱器124に水・蒸気循環路126を形成すべく接続されている。低圧・主蒸気F″を排出するため、低圧ドラム122が、低圧過熱器129が接続された蒸気管128を介して、転流管76に接続されている。従ってこの実施例において、ガス・蒸気複合タービン設備1の水・蒸気回路24は、3つの圧力段50、90、120を有している。しかしまた、より少数の、例えば2つの圧力段にすることもできる。
【0027】
ガスタービン設備1aは化石燃料Bのガス化によって発生された気化合成ガスによる運転に対して設計されている。合成ガスとして、例えば石炭ガスあるいは油ガスが考慮される。そのためにガスタービン2の燃焼器6は入口側が燃料管130を介してガス化装置132に接続されている。このガス化装置132には、装填装置134を介し化石燃料Bとして石炭あるいは油が供給される。
【0028】
化石燃料Bのガス化に必要な酸素O2を供給するため、ガス化装置132に酸素管136を介して空気分解設備138が前置接続されている。この空気分解設備138は入口側に空気圧縮機4で圧縮された空気の部分流Tが供給される。そのために空気分解設備138は入口側が、圧縮空気管8から分岐個所142において分岐している抽出空気管140に接続されている。この抽出空気管140には更に、補助空気圧縮機144が接続されたもう1つの空気管143が開口している。従ってこの実施例において、空気分解設備138に流入する全空気流Lは、圧縮空気管8から分岐した部分流Tと、補助空気圧縮機144で搬送される空気流とから成っている。このような回路構成は部分一体設備構成と呼ばれる。異なった形態、所謂完全一体設備構成において、空気管143を補助空気圧縮機144と共に省くこともでき、その場合、空気分解設備138への空気の供給は、圧縮空気管8から取り出された部分流Tで完全に行われる。
【0029】
空気分解設備138における空気流Lの分解時、酸素O2に加えて補助的に得られる窒素N2は、空気分解設備138に接続された窒素管145を介して混合装置146に導かれ、そこで合成ガスSGと混合される。混合装置146は窒素N2と合成ガスSGとを、特に一様に、偏りなく混合すべく構成される。
【0030】
ガス化装置132から流出する合成ガスSGは、燃料管130を介してまず原ガス・廃熱ボイラ147に送られ、ここで流れ媒体との熱交換によって、合成ガスSGの冷却が行われる。この熱交換で発生した高圧蒸気は、図示しない方法で水・蒸気回路24の高圧段50に導入される。
【0031】
合成ガスSGの流れ方向に見て原ガス・廃熱ボイラ147の下流および混合装置146の上流において、燃料管130に合成ガスSG用の集塵装置148および脱硫装置149が接続されている。異なる実施例において、特に燃料として油をガス化する際、集塵装置148の代りに洗浄装置を設けることもできる。
【0032】
燃焼器6内において気化燃料が燃焼する際の有害物質の発生を特に少なくすべく、ガス化燃料が燃焼器6に流入する前に水蒸気を添加する。これは熱力学的に特に有利に飽和器系において行われる。そのため、燃料管130に飽和器150が接続され、この飽和器150内で、ガス化燃料が加熱済みの飽和器の水と対向流で導かれる。飽和器の水は飽和器150に接続された飽和器回路152内を循環する。その飽和器回路152に循環ポンプ154が接続され、且つ飽和器の水を加熱すべく熱交換器156が接続されている。熱交換器156の一次側に水・蒸気回路24の中圧段90からの加熱済み給水が供給される。ガス化燃料が飽和する際に生ずる飽和器の水の損失を補うために、飽和器回路152に給水管158が接続されている。
【0033】
合成ガスSGの流れ方向に見て飽和器150の下流において、燃料管130に原ガス・混合ガス熱交換器として作用する熱交換器159の二次側が接続されている。この熱交換器159の一次側は、集塵設備148の上流個所で同様に燃料管130に接続されているので、集塵設備148に流入する合成ガスSGはその含有熱の一部を、飽和器150から流出する合成ガスSGに伝達する。合成ガスSGを脱硫設備149に流入する前に熱交換器159を介して案内することは、他の構成要素に関して変更された回路構成においても考えられる。
【0034】
飽和器150と熱交換器159との間において、もう1つの熱交換器160の二次側が燃料管130に接続されている。この熱交換器160の一次側で給水が加熱されるか、あるいは蒸気もまた加熱される。原ガス・純ガス熱交換器として構成された熱交換器159および熱交換器160によって、ガス・蒸気複合タービン設備1の種々の運転状態においても、ガスタービン2の燃焼器6に流入する合成ガスSGの特に確実な加熱が保証される。
【0035】
燃焼器6に流入する合成ガスSGに必要に応じて蒸気を添加すべく、燃料管130にもう1つの混合装置161が接続されている。特に運転故障時における確実なガスタービン運転を確保すべく、その混合装置161に蒸気管(図示せず)を介して中圧蒸気が導入される。
【0036】
空気分解設備138に導入すべき、抽出空気とも呼ばれる圧縮空気の部分流Tを冷却するため、熱交換器162の一次側に抽出空気管140が接続され、その二次側は流れ媒体S′に対する中圧蒸発器として構成されている。この熱交換器162は蒸発器循環路163を形成すべく中圧ドラムとして形成された気水分離器164に接続されている。この気水分離器164は、配管166、168を介して水・蒸気循環路100に付属する中圧ドラム96に接続されている。あるいはまた熱交換器162は二次側を中圧ドラム96に直に接続することもできる。即ち、この実施例において気水分離器164は、中圧蒸発器として構成された加熱器98に間接的に接続されている。蒸発した流れ媒体S′を補給すべく、気水分離器164に更に給水管170が接続されている。
【0037】
圧縮空気の部分流Tの流れ方向に見て熱交換器162の下流において、抽出空気管140にもう1つの熱交換器172が接続され、その二次側は流れ媒体S″に対する低圧蒸発器として構成されている。熱交換器172は蒸発器循環路174を形成すべく、低圧ドラムとして形成された気水分離器176に接続されている。この実施例において、気水分離器176は配管178、180を介して、水・蒸気循環路126に付属する低圧ドラム122に接続され、従って低圧蒸発器として構成された加熱器124に間接的に接続されている。あるいはまた気水分離器176は別の適当な方式で接続することもでき、その場合、気水分離器176から取り出された蒸気は、副次的負荷にプロセス蒸気としておよび/又は加熱蒸気として導入される。異なる実施例において、熱交換器172は二次側を低圧ドラム122に直に接続することもできる。気水分離器176は、更に給水管182に接続されている。
【0038】
蒸発器循環路163、174は各々強制循環路として形成でき、その場合、流れ媒体S′、S″の循環は循環ポンプによって保証され、流れ媒体S′、S″は蒸発器として形成された熱交換器162、172において、少なくとも部分的に蒸発される。しかし実施例においては、蒸発器循環路163並びに蒸発器循環路174は自然循環路として形成され、流れ媒体S′、S″の循環は、蒸発過程の際に生ずる差圧によりおよび/又は各熱交換器162、172および各気水分離器164、176の測地学的配置によって保証される。この実施形態において、系統を始動すべく、蒸発器循環路163ないし蒸発器循環路174に各々比較的小形の循環ポンプが接続されている。
【0039】
飽和器回路152に結合すべく、給水加熱器86の下流で分岐された加熱済み給水が供給される熱交換器156に加えて、飽和器の水・熱交換器184が設けられ、その一次側に給水タンク46からの給水Sが供給される。そのために飽和器の水・熱交換器184は一次側において入口側が配管186を介して分岐管84に接続され、出口側が配管188を介して給水タンク46に接続されている。飽和器の水・熱交換器184から流出する冷却済み給水Sを再加熱すべく、配管188に補助熱交換器190が接続されている。この補助熱交換器190は一次側が抽出空気管140における熱交換器172に後置接続されている。このような配置によって、抽出空気からの特に高い熱回収率が得られ、従ってガス・蒸気複合タービン設備1の特に高い効率が得られる。
【0040】
圧縮空気部分流Tの流れ方向に見て熱交換器172と熱交換器190との間において、抽出空気管140から冷却空気管192が分岐している。この冷却空気管192を介してガスタービン2に、冷却済み部分流Tの一部T′がタービン翼冷却用の冷却空気として導入される。
【0041】
燃料側において飽和器150の上流に混合装置146を配置することにより、熱交換器159において、飽和器150に流入する原ガスとも呼ばれる合成ガスSGから、飽和器150から流出する混合ガスとも呼ばれる合成ガスSGに特に良好に熱伝達することができる。その熱交換は、特に熱交換器159が原ガスに含まれる熱を特に大きな混合ガス質量流量に伝達することによって助長される。これに伴い、限られた最終温度においても、飽和器150から流出する混合ガスに比較的大きな熱量が伝達される。従って、ガス・蒸気複合タービン設備1は特に高いプラント効率を有する。
【図面の簡単な説明】
【図1】 本発明に基づくガス・蒸気複合タービン設備の概略配管系統図。
【符号の説明】
1 ガス・蒸気複合タービン設備
2 ガスタービン
6 燃焼器
20 蒸気タービン
24 水・蒸気回路
30 廃熱ボイラ
130 燃料管
132 ガス化装置
138 空気分解設備
140 抽出空気管
162 第1熱交換器
163 蒸発器循環路
172 第2熱交換器
174 蒸発器循環路
S 給水
T 圧縮空気部分流
T′ タービン翼冷却用空気流

Claims (5)

  1. ガスタービン(2)に燃焼ガス側において廃熱ボイラ(30)が後置接続され、この廃熱ボイラ(30)の加熱器が蒸気タービン(20)の水・蒸気回路(24)に接続され、ガスタービン(2)の燃焼器(6)に燃料(B)用ガス化装置(132)が前置接続されているガス・蒸気複合タービン設備(1)において、
    ガス化装置(132)に空気分解設備(138)からの酸素(O2)が導入され、
    空気分解設備(138)の入口側にガスタービン(2)に付属する空気圧縮機(4)で圧縮された空気の部分流(T)が供給され、
    この圧縮空気部分流(T)を冷却すべく、空気圧縮機(4)を空気分解設備(138)に接続する抽出空気管(140)に第1熱交換器(162)の一次側が接続され、この熱交換器(162)の二次側が流れ媒体(S′)に対する蒸発器循環路(163)を形成すべく気水分離器(164)に接続され
    更に抽出空気管(140)における熱交換器(162)に、二次側が廃熱ボイラ(30)に付属された給水タンク(46)に接続された補助熱交換器(190)が後置接続され
    ことを特徴とするガス・蒸気複合タービン設備。
  2. 抽出空気管(140)における第1熱交換器(162)に、二次側が流れ媒体(S″)に対する蒸発器として形成されたもう1つの第2熱交換器(172)が後置接続され、第1熱交換器(162)が中圧蒸発器として形成され、第2熱交換器(172)が低圧蒸発器として形成されたことを特徴とする請求項1記載のガス・蒸気複合タービン設備。
  3. 熱交換器(172)の二次側が蒸発器循環路(174)を形成すべく気水分離器(176)に接続されたことを特徴とする請求項1又は2記載のガス・蒸気複合タービン設備。
  4. 一方あるいは各気水分離器(164、176)が、廃熱ボイラ(30)内に配置された加熱器(98、124)にそれぞれ接続されたことを特徴とする請求項3記載のガス・蒸気複合タービン設備。
  5. 圧縮空気部分流(T)の流れ方向に見て第1熱交換器(162)の下流ないし第1、第2の両熱交換器(162、172)の下流において、抽出空気管(140)から冷却空気管(192)が分岐し、この冷却空気管(192)を通してガスタービンに、冷却済み圧縮空気部分流(T)の一部(T′)がタービン翼冷却用の冷却空気として導入されることを特徴とする請求項1ないし4のいずれか1つに記載のガス・蒸気複合タービン設備。
JP2000560365A 1998-07-17 1999-07-02 ガス・蒸気複合タービン設備 Expired - Fee Related JP3961219B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19832294A DE19832294C1 (de) 1998-07-17 1998-07-17 Gas- und Dampfturbinenanlage
DE19832294.1 1998-07-17
PCT/DE1999/002058 WO2000004285A2 (de) 1998-07-17 1999-07-02 Gas- und dampfturbinenanlage

Publications (2)

Publication Number Publication Date
JP2002520543A JP2002520543A (ja) 2002-07-09
JP3961219B2 true JP3961219B2 (ja) 2007-08-22

Family

ID=7874483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000560365A Expired - Fee Related JP3961219B2 (ja) 1998-07-17 1999-07-02 ガス・蒸気複合タービン設備

Country Status (10)

Country Link
US (1) US6408612B2 (ja)
EP (1) EP1099041B1 (ja)
JP (1) JP3961219B2 (ja)
KR (1) KR100615732B1 (ja)
CN (1) CN1258035C (ja)
CA (1) CA2337524C (ja)
DE (2) DE19832294C1 (ja)
ES (1) ES2212624T3 (ja)
MY (1) MY121866A (ja)
WO (1) WO2000004285A2 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10002084C2 (de) * 2000-01-19 2001-11-08 Siemens Ag Gas- und Dampfturbinenanlage
DE50305418D1 (de) * 2002-03-14 2006-11-30 Alstom Technology Ltd Wärmekraftprozess
PT3078909T (pt) * 2002-10-10 2022-08-16 Lpp Comb Llc Método de vaporização de combustíveis líquidos para combustão
CA2590584C (en) * 2004-12-08 2014-02-11 Lpp Combustion, Llc Method and apparatus for conditioning liquid hydrocarbon fuels
CA2618030C (en) 2005-08-10 2014-07-08 Eribert Benz A method for operating a gas turbine and a gas turbine for implementing the method
US8529646B2 (en) * 2006-05-01 2013-09-10 Lpp Combustion Llc Integrated system and method for production and vaporization of liquid hydrocarbon fuels for combustion
EP2067940B2 (de) 2007-09-07 2023-02-15 General Electric Technology GmbH Verfahren zum Betrieb eines Kombikraftwerks sowie Kombikraftwerk zur Durchführung des Verfahrens
US8069672B2 (en) * 2008-12-22 2011-12-06 General Electric Company Method and systems for operating a combined cycle power plant
US8408022B2 (en) * 2009-03-25 2013-04-02 Harold E. Stockton, JR. Hybrid cascade vapor compression refrigeration system
JP5023101B2 (ja) * 2009-04-22 2012-09-12 株式会社日立製作所 高湿分利用ガスタービンシステム
US20110036096A1 (en) * 2009-08-13 2011-02-17 General Electric Company Integrated gasification combined cycle (igcc) power plant steam recovery system
EP2397671B1 (de) * 2010-06-16 2012-12-26 Siemens Aktiengesellschaft Gas- und Dampfturbinenanlage und zugehöriges Verfahren
US9657937B2 (en) * 2010-08-23 2017-05-23 Saudi Arabian Oil Company Steam generation system having multiple combustion chambers and dry flue gas cleaning
ITMI20120837A1 (it) * 2012-05-15 2013-11-16 Ansaldo Energia Spa Impianto a ciclo combinato per la produzione di energia e metodo per operare tale impianto
DE102013211376B4 (de) * 2013-06-18 2015-07-16 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Regelung der Eindüsung von Wasser in den Rauchgaskanal einer Gas- und Dampfturbinenanlage
EP2863033B1 (en) * 2013-10-21 2019-12-04 Ansaldo Energia IP UK Limited Gas turbine with flexible air cooling system and method for operating a gas turbine
US9404395B2 (en) 2013-11-22 2016-08-02 Siemens Aktiengesellschaft Selective pressure kettle boiler for rotor air cooling applications

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3331152A1 (de) * 1983-08-30 1985-03-07 Brown, Boveri & Cie Ag, 6800 Mannheim Verfahren zum betrieb einer mit einer brennstoffvergasungsanlage kombinierten gasturbinenanlage
ATE34201T1 (de) * 1985-08-05 1988-05-15 Siemens Ag Kombiniertes gas- und dampfturbinenkraftwerk.
DE3668347D1 (de) * 1985-09-02 1990-02-22 Siemens Ag Kombiniertes gas- und dampfturbinenkraftwerk.
US4677829A (en) * 1986-02-07 1987-07-07 Westinghouse Electric Corp. Method for increasing the efficiency of gas turbine generator systems using low BTU gaseous fuels
IE63440B1 (en) * 1989-02-23 1995-04-19 Enserch Int Investment Improvements in operating flexibility in integrated gasification combined cycle power stations

Also Published As

Publication number Publication date
KR100615732B1 (ko) 2006-08-25
JP2002520543A (ja) 2002-07-09
DE19832294C1 (de) 1999-12-30
EP1099041B1 (de) 2003-12-03
KR20010053555A (ko) 2001-06-25
MY121866A (en) 2006-02-28
US6408612B2 (en) 2002-06-25
WO2000004285A2 (de) 2000-01-27
CA2337524A1 (en) 2000-01-27
EP1099041A2 (de) 2001-05-16
US20010023579A1 (en) 2001-09-27
CN1348526A (zh) 2002-05-08
ES2212624T3 (es) 2004-07-16
CN1258035C (zh) 2006-05-31
DE59907949D1 (de) 2004-01-15
CA2337524C (en) 2008-09-02
WO2000004285A3 (de) 2000-03-30

Similar Documents

Publication Publication Date Title
JP3961219B2 (ja) ガス・蒸気複合タービン設備
JP4463423B2 (ja) ガス・蒸気タービン複合設備
JP4081439B2 (ja) ガスタービン用バーナの運転方法と原動所設備
JP3866976B2 (ja) ガス・蒸気複合タービン設備
JP2001514353A (ja) ガス・蒸気複合タービン設備の運転方法とこの方法を実施するためのガス・蒸気複合タービン設備
JP4390391B2 (ja) ガス・蒸気タービン複合設備
JPH08114104A (ja) 複合ガス・蒸気タ−ビン動力プラント
JPH06500374A (ja) ガス・蒸気タービン複合設備
CA2337485C (en) Gas and steam turbine plant
JP3679094B2 (ja) ガス・蒸気複合タービン設備の運転方法とその設備
JP4070821B2 (ja) ガス・蒸気タービン設備とこの設備におけるガスタービンの冷却媒体の冷却方法
CN1006996B (zh) 组合式燃气-蒸汽轮机发电站

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040324

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070516

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140525

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees