JP3960896B2 - Optical fiber manufacturing method - Google Patents

Optical fiber manufacturing method Download PDF

Info

Publication number
JP3960896B2
JP3960896B2 JP2002296568A JP2002296568A JP3960896B2 JP 3960896 B2 JP3960896 B2 JP 3960896B2 JP 2002296568 A JP2002296568 A JP 2002296568A JP 2002296568 A JP2002296568 A JP 2002296568A JP 3960896 B2 JP3960896 B2 JP 3960896B2
Authority
JP
Japan
Prior art keywords
optical fiber
treatment
time
bobbin
tensile tension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002296568A
Other languages
Japanese (ja)
Other versions
JP2004131324A (en
Inventor
正英 桑原
文雄 高橋
禎則 石田
誠人 奥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2002296568A priority Critical patent/JP3960896B2/en
Priority to CNB031489648A priority patent/CN100367053C/en
Priority to US10/608,031 priority patent/US7079736B2/en
Publication of JP2004131324A publication Critical patent/JP2004131324A/en
Priority to US11/330,091 priority patent/US20060110112A1/en
Application granted granted Critical
Publication of JP3960896B2 publication Critical patent/JP3960896B2/en
Priority to US12/578,260 priority patent/US20100043497A1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は光ファイバの製造方法に関し、更に詳しくは、波長1380〜1400nmの帯域での光伝送特性の長期安定性が確保されている光ファイバの効率的な製造方法に関する。
【0002】
【従来の技術】
光通信システムでは、通常、波長800〜900nmまたは波長1300〜1600nmの赤外光が使用されているが、最近では波長1300〜1600nmの光を有効に利用する動向が進みつつある。
後者の波長帯域において問題となることは、用いる光ファイバに吸収が起こり、その結果、伝送損失の増加が発生するということである。
【0003】
この吸収は、光ファイバの内部に生成するOH基に基因することが知られている。
例えば、高純度シリカを用いて光ファイバを製造した場合であっても、その光ファイバ内には、通常、0.1ppm未満程度のOH基が生成する。
また、線引き後にあってはOH基が少ない光ファイバであっても、それを敷設して実使用していると、環境温度下において、周囲の水素に曝露され、当該水素が光ファイバ内に拡散してOH基を生成し、波長1300〜1600nm、とりわけ波長1380〜1600nmにおける伝送損失が経時的に増加していくことが知られている。この水素の存在によって生ずる伝送損失の経時的変化は、通常、「水素経時変化損失」と呼ばれている。
【0004】
このような水素拡散の影響は、光ファイバを通信ケーブルとして束ねた場合、クラッドを通してさえ観察される。この水素拡散は常温下において、0.01%程度の微量な水素の雰囲気に数日間曝露した場合であっても既に観察されており、例えば、波長1383nmにおいて0.02dB/km〜0.12dB/kmの損失が認められている。
【0005】
ところで、水素は、光ケーブル中に存在する異種金属や周囲の湿気による腐食現象に基づいて発生し、また被覆を構成するシリコーン樹脂が加熱されて発生するものと考えられている。そして、海水中や大気中に敷設される光ファイバの場合は、水素経時変化損失がとくに大きいという問題がある。
このような問題に対しては、光ファイバの実使用に先立ち、重水素(D2)雰囲気に曝露したのち、例えば大気中に放置するというD2処理が提案されている(例えば特許文献1を参照)。
【0006】
この方法、線引き後の光ファイバに存在している構造欠陥やOH基にD2を反応させたのち所定時間放置することにより、実使用時におけるOH基の生成要因を事前に排除して、OH基の生成に基づく伝送損失の増加を防ぐことを目的としている。
【0007】
【特許文献1】
特開2002−148450号公報
【0008】
【発明が解決しようとする課題】
しかしながら、上記した特許文献1に記載のD2処理の場合、D2処理を行う時間が非常に長く、またD2処理によって光ファイバ内に拡散してOH基と未反応状態で残留しているD2分子を光ファイバ外に逃散させるために放置しておく時間も非常に長いという問題がある。そのため、上記先行技術は、実際の工業的な生産においては生産効率が低く、実用上必ずしも満足のいく方法であるとはいいがたい。
【0009】
本発明は、従来のD2処理における上記した問題を解決し、D2処理を迅速かつ効率的に実施して、伝送特性の長期安定性が確保されている光ファイバを製造する方法の提供を目的とする。
【0010】
【課題を解決するための手段】
上記した目的を達成するために、本発明においては、線引きしてボビンに巻き取った直後の光ファイバを重水素ガスを含むガス雰囲気中に曝露したのち、前記光ファイバ中の重水素ガスが抜けきらないうちに、引張張力をかけながら前記光ファイバを別のボビンに巻き返すことを特徴とする光ファイバの製造方法が提供される。
【0011】
そのとき、前記引張張力は、前記光ファイバの伸び値で0.5〜2%に相当する引張張力であることが好ましく、また、前記光ファイバの巻き返し時に、前記光ファイバを長手方向に所望の長さに切断して分割することが好ましい。
【0012】
【発明の実施の形態】
本発明方法においては、まず、常法により光ファイバ母材を線引きして被覆した光ファイバをボビンに巻き取ったのち、ただちにD2処理が施される。
具体的には、密閉容器の中に光ファイバを巻き取った直後のボビンを収納し、そこにD2を含むガスを封入し、所定の時間そのままの状態で放置しておくという態様で実施される。
【0013】
雰囲気ガスとしては、例えば空気または不活性ガス(He,Ar,N2など)とD2の混合ガスが用いられ、その場合、D2を0.01〜100%含むガスであることが好ましい。100%近くD2を含む混合ガスは、短時間の処理であっても伝送損失の増加を抑制することができ、処理効率の点で好適である。
処理時間は、1時間未満ではD2処理の効果は充分に発揮されず、10時間を超えても効果は飽和に達し、徒に生産効率を下げることになるので、1〜10時間程度であればよい。2時間前後であることが好適である。
【0014】
なお、D2処理時における温度が低すぎるとD2処理の反応は遅くなり、また逆に高すぎると、処理時間を短縮することはできるが、他方では被覆の劣化する虞が生じてくるので、処理時の温度は25±3℃の範囲内で管理することが好ましい。
2処理後、ただちに、処理された光ファイバは、別のボビンに巻き返される。このとき、光ファイバには引張張力を印加することが必要である。
【0015】
すなわち、本発明は、従来のように遊離D2分子のガス抜きのためにD2処理後に長時間放置するという工程が省略されていることが大きな特徴である。
この巻き返しは、空調管理された大気中においても、また窒素雰囲気中においても実施可能である。
そして、光ファイバに引張張力を印加することにより、被覆に負荷がかかり、その被覆の屈曲と摩擦のエネルギーにより光ファイバ心線(ガラス)の温度がわずかではあれ上昇する。また光ファイバ心線(ガラス)にも引張張力がかかり、その光ファイバ心線の表面におけるD2濃度はゼロまたは非常に低いので、心線内部の残留D2分子は外部に逃散しやすくなり、ガス抜きに要する時間が短縮される。
【0016】
このときに印加する引張張力は、光ファイバの伸びが0.5〜2.5%になるような引張張力に設定される。伸びが0.5%より小さいような張力印加の場合には、上記した効果が得られず、また伸びが2.5%より大きくなるような張力印加の場合は、被覆にダメージが生ずる可能性があるからである。
また、この巻き返し時には、例えば出荷時の長さのような所望する長さに光ファイバを切断していくと、新たに切り割り工程を設ける必要がなく、効率的である。
【0017】
【実施例】
常法により製造された光ファイバ母材を線引きして光ファイバを製造し、これをボビンに巻き取った。この光ファイバの伝送損失スペクトル図の1例を図1に示す。
図中、波長1380nm付近に現出しているピークA0は、OH基に起因する伝送損失である。
【0018】
ついで、ボビンを密閉容器の中に入れ、D2100%,N20%のガスを封入し、温度25℃で2時間放置してD2処理を行った。
上記条件のD2処理後、72時間放置してから伝送損失を測定した。その結果を図2に示した。
図2の伝送損失スペクトル図から明らかなように、波長1420nm付近に新たなピークA1が認められ、また波長1500nm付近にも新たなブロードピークA2が認められる。前者A1は、光ファイバ内に拡散したD2分子それ自体による吸収損失の発生を原因とする損失の増大であり、後者A2は、D2処理前の構造欠陥にOD基が結合し、そのOD基による吸収損失の発生に基づくものである。
【0019】
ついで、ボビンの光ファイバを大気中で別のボビンに巻き返した。このとき、光ファイバには、伸びが1.1%になるような引張張力を印加し、25.26kmごとに切断して分離した。
そして、D2処理を開始してからの波長1420nmにおける伝送損失を経時的に測定し、それぞれの時点における測定値からD2処理前の伝送損失(図1の1420nmにおける値)を減算し、その変化量とD2処理後の経過時間との関係を調べ、それを図3の−◆−印で示した。
【0020】
また比較のために、別のボビンへの巻き返しを行うことなく、D2処理後の光ファイバをそのまま大気中に放置し、その場合についても伝送損失の変化量とD2処理後の経過時間との関係を調べた。その結果を図3の−×−印で示した。
図3から明らかなように、実施例方法で製造した光ファイバでは、波長1420nm付近で吸収損失を示す遊離D2分子が、比較例方法で製造した光ファイバの場合に比べて、短時間で逃散していることがわかる。
【0021】
【発明の効果】
以上の説明で明らかなように、本発明方法によれば、D2処理によって水素経時変化損失が低下した光ファイバを製造しようとした場合、従来のようにD2処理後に長時間放置しなくても目的を達成することができる。これは、本発明がD2処理後に、ただちに、引張張力を印加しながら切断・分割して巻き返しを行うことがもたらす効果である。
【0022】
したがって、本発明方法によれば、伝送損失が増大しない光ファイバを短時間で生産することができ、また長時間放置工程が不要となるので、切断・分割した光ファイバを巻き取る多数のボビンを長時間滞留させることも必要でなくなり、D2処理の実用化に貢献することが大である。
【図面の簡単な説明】
【図1】D2処理前の光ファイバの伝送損失スペクトル図の1例である。
【図2】D2処理後の光ファイバの伝送損失スペクトル図の1例である。
【図3】D2処理前後の波長1420nmにおける伝送損失の差と、D2処理開始後の経過時間との関係を示すグラフである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical fiber manufacturing method, and more particularly to an efficient optical fiber manufacturing method in which long-term stability of optical transmission characteristics in a wavelength band of 1380 to 1400 nm is ensured.
[0002]
[Prior art]
In an optical communication system, infrared light having a wavelength of 800 to 900 nm or a wavelength of 1300 to 1600 nm is usually used. Recently, a trend to effectively use light having a wavelength of 1300 to 1600 nm is being advanced.
A problem in the latter wavelength band is that absorption occurs in the optical fiber used, resulting in an increase in transmission loss.
[0003]
It is known that this absorption is caused by OH groups generated inside the optical fiber.
For example, even when an optical fiber is manufactured using high-purity silica, an OH group of less than about 0.1 ppm is usually generated in the optical fiber.
In addition, even if an optical fiber with few OH groups is used after drawing, if it is laid and actually used, it will be exposed to ambient hydrogen under the ambient temperature, and the hydrogen will diffuse into the optical fiber. Thus, it is known that OH groups are generated, and transmission loss at wavelengths of 1300 to 1600 nm, particularly at wavelengths of 1380 to 1600 nm, increases with time. This time-dependent change in transmission loss caused by the presence of hydrogen is usually referred to as “hydrogen time-dependent loss”.
[0004]
Such an effect of hydrogen diffusion is observed even through the cladding when optical fibers are bundled as a communication cable. This hydrogen diffusion has already been observed at room temperature even when exposed to an atmosphere of a trace amount of hydrogen of about 0.01% for several days. For example, at a wavelength of 1383 nm, 0.02 dB / km to 0.12 dB / km loss is allowed.
[0005]
By the way, it is considered that hydrogen is generated based on the corrosion phenomenon caused by different metals present in the optical cable and surrounding moisture, and is generated when the silicone resin constituting the coating is heated. And in the case of the optical fiber laid in seawater or the air | atmosphere, there exists a problem that hydrogen aging loss is especially large.
To deal with such a problem, a D 2 treatment has been proposed in which exposure to a deuterium (D 2 ) atmosphere prior to actual use of an optical fiber and then, for example, it is left in the air (for example, Patent Document 1). reference).
[0006]
In this method, by reacting D 2 with structural defects or OH groups present in the optical fiber after drawing, and leaving it for a predetermined time, the generation factor of OH groups during actual use is eliminated in advance. The purpose is to prevent an increase in transmission loss due to the generation of the group.
[0007]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-148450
[Problems to be solved by the invention]
However, in the case of the D 2 treatment described in Patent Document 1 described above, the time for performing the D 2 treatment is very long, and the D 2 treatment diffuses into the optical fiber and remains unreacted with the OH group. There is a problem that the time for leaving the D 2 molecule to escape out of the optical fiber is very long. For this reason, the above prior art has low production efficiency in actual industrial production and is not necessarily a satisfactory method for practical use.
[0009]
The present invention is to solve the above problems of the conventional D 2 process, by carrying out the D 2 treatment quickly and efficiently, to provide a method of manufacturing an optical fiber long-term stability of transmission characteristics is ensured Objective.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention, after exposing an optical fiber immediately after being drawn and wound on a bobbin in a gas atmosphere containing deuterium gas, the deuterium gas in the optical fiber is released. A method for manufacturing an optical fiber is provided, wherein the optical fiber is wound back to another bobbin while applying tensile tension before the end.
[0011]
At that time, the tensile tension is preferably a tensile tension corresponding to 0.5 to 2% in terms of an elongation value of the optical fiber, and when the optical fiber is unwound, the optical fiber is desired in the longitudinal direction. It is preferable to cut and divide into lengths.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In the method of the present invention, first, an optical fiber coated by drawing an optical fiber preform is wound around a bobbin by a conventional method, and then D 2 treatment is performed immediately.
Specifically, the bobbin immediately after winding the optical fiber is housed in a sealed container, and a gas containing D 2 is enclosed therein, and is left as it is for a predetermined time. The
[0013]
As the atmospheric gas, for example, air or a mixed gas of inert gas (He, Ar, N 2, etc.) and D 2 is used, and in this case, a gas containing 0.01 to 100% of D 2 is preferable. A mixed gas containing nearly 100% D 2 can suppress an increase in transmission loss even in a short-time treatment, and is preferable in terms of treatment efficiency.
If the treatment time is less than 1 hour, the effect of the D 2 treatment is not sufficiently exerted, and if it exceeds 10 hours, the effect reaches saturation, and the production efficiency is naturally reduced. That's fine. It is preferable that the time is around 2 hours.
[0014]
If the temperature during the D 2 treatment is too low, the reaction of the D 2 treatment is slow, and conversely, if it is too high, the treatment time can be shortened, but on the other hand, the coating may be deteriorated. The temperature during the treatment is preferably controlled within a range of 25 ± 3 ° C.
Immediately after the D 2 treatment, the treated optical fiber is rewound onto another bobbin. At this time, it is necessary to apply a tensile tension to the optical fiber.
[0015]
That is, the present invention is characterized in that the conventional step of leaving for a long time after the D 2 treatment for degassing free D 2 molecules is omitted.
This rewinding can be carried out in air-controlled air or in a nitrogen atmosphere.
By applying a tensile tension to the optical fiber, a load is applied to the coating, and the temperature of the optical fiber core (glass) slightly increases due to the bending and frictional energy of the coating. Also, tensile tension is applied to the optical fiber core (glass), and the D 2 concentration on the surface of the optical fiber core is zero or very low, so that residual D 2 molecules inside the core can easily escape to the outside. The time required for degassing is shortened.
[0016]
The tensile tension applied at this time is set so that the elongation of the optical fiber is 0.5 to 2.5%. When tension is applied such that the elongation is less than 0.5%, the above-mentioned effect cannot be obtained. When tension is applied such that the elongation is greater than 2.5%, the coating may be damaged. Because there is.
Further, at the time of rewinding, if the optical fiber is cut to a desired length such as the length at the time of shipment, it is efficient because it is not necessary to newly provide a cutting process.
[0017]
【Example】
An optical fiber was manufactured by drawing an optical fiber preform manufactured by a conventional method, and this was wound around a bobbin. An example of a transmission loss spectrum diagram of this optical fiber is shown in FIG.
In the figure, the peak A 0 appearing near the wavelength of 1380 nm is a transmission loss due to the OH group.
[0018]
Next, the bobbin was placed in a sealed container, filled with 100% D 2 and 0% N 2 gas, and left at 25 ° C. for 2 hours for D 2 treatment.
After the D 2 treatment under the above conditions, the transmission loss was measured after being left for 72 hours. The results are shown in FIG.
As is clear from the transmission loss spectrum diagram of FIG. 2, a new peak A 1 is observed near the wavelength of 1420 nm, and a new broad peak A 2 is also observed near the wavelength of 1500 nm. The former A 1 is an increase in loss due to the occurrence of absorption loss due to the D 2 molecule itself diffused in the optical fiber, and the latter A 2 has an OD group bonded to a structural defect before the D 2 treatment, This is based on the occurrence of absorption loss due to the OD group.
[0019]
The bobbin optical fiber was then rewound onto another bobbin in the atmosphere. At this time, tensile tension was applied to the optical fiber so that the elongation was 1.1%, and the optical fiber was cut and separated every 25.26 km.
Then, the transmission loss at a wavelength of 1420 nm after the start of the D 2 process is measured over time, and the transmission loss before the D 2 process (value at 1420 nm in FIG. 1) is subtracted from the measured value at each time point. The relationship between the amount of change and the elapsed time after the D 2 treatment was examined, and this is shown by-♦-in FIG.
[0020]
For comparison, the optical fiber after D 2 treatment is left in the atmosphere as it is without rewinding to another bobbin. In this case, the amount of change in transmission loss and the elapsed time after D 2 treatment I investigated the relationship. The result was shown by -x- mark of FIG.
As is apparent from FIG. 3, in the optical fiber manufactured by the example method, free D 2 molecules exhibiting absorption loss near the wavelength of 1420 nm escape in a shorter time than in the case of the optical fiber manufactured by the comparative example method. You can see that
[0021]
【The invention's effect】
As apparent from the above description, according to the present invention, when attempting to produce an optical fiber with reduced hydrogen aging loss by D 2 treatment, without left for a long time after D 2 processing as in the prior art Can also achieve the purpose. This is an effect that the present invention brings about the rewinding by cutting and dividing immediately after applying the tensile tension after the D 2 treatment.
[0022]
Therefore, according to the method of the present invention, an optical fiber that does not increase transmission loss can be produced in a short time, and a long-time leaving step is not required. Therefore, a large number of bobbins that wind up the cut and divided optical fiber can be formed. It is not necessary to stay for a long time, and it is important to contribute to the practical use of D 2 treatment.
[Brief description of the drawings]
FIG. 1 is an example of a transmission loss spectrum diagram of an optical fiber before D 2 treatment.
FIG. 2 is an example of a transmission loss spectrum diagram of an optical fiber after D 2 treatment.
[3] the difference in transmission loss at D 2 before and after processing wavelength 1420 nm, which is a graph showing the relationship between the elapsed time after D 2 treatment initiation.

Claims (2)

光ファイバの製造方法において、In an optical fiber manufacturing method,
線引きした光ファイバを第1のボビンに巻き取る工程、Winding the drawn optical fiber around a first bobbin;
該第1のボビンに巻き取られている光ファイバを重水素ガス雰囲気中に暴露する重水素処理工程、及びA deuterium treatment step of exposing the optical fiber wound around the first bobbin to a deuterium gas atmosphere; and
該重水素処理後の光ファイバをただちに引張張力をかけながら該第1のボビンから第2のボビンへ巻き返す工程とからなり、A step of rewinding the optical fiber after the deuterium treatment from the first bobbin to the second bobbin while applying tensile tension immediately.
該引張張力は、該光ファイバの伸び値で0.5〜2%に相当する引張張力であることを特徴とする光ファイバの製造方法。The method for producing an optical fiber, wherein the tensile tension is a tensile tension corresponding to 0.5 to 2% in terms of an elongation value of the optical fiber.
前記光ファイバの巻き返し時に、該光ファイバを長手方向に所望の長さに切断して分割している請求項1に記載の光ファイバの製造方法。  The optical fiber manufacturing method according to claim 1, wherein when the optical fiber is wound, the optical fiber is cut into a desired length in the longitudinal direction and divided.
JP2002296568A 2002-06-28 2002-10-09 Optical fiber manufacturing method Expired - Fee Related JP3960896B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002296568A JP3960896B2 (en) 2002-10-09 2002-10-09 Optical fiber manufacturing method
CNB031489648A CN100367053C (en) 2002-06-28 2003-06-30 Optical fibre for wavelength division multiplexed system and manufacturing method thereof
US10/608,031 US7079736B2 (en) 2002-06-28 2003-06-30 Optical fiber for WDM system and manufacturing method thereof
US11/330,091 US20060110112A1 (en) 2002-06-28 2006-01-12 Optical fiber for WDM system and manufacturing method thereof
US12/578,260 US20100043497A1 (en) 2002-06-28 2009-10-13 Optical fiber for wdm system and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002296568A JP3960896B2 (en) 2002-10-09 2002-10-09 Optical fiber manufacturing method

Publications (2)

Publication Number Publication Date
JP2004131324A JP2004131324A (en) 2004-04-30
JP3960896B2 true JP3960896B2 (en) 2007-08-15

Family

ID=32286511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002296568A Expired - Fee Related JP3960896B2 (en) 2002-06-28 2002-10-09 Optical fiber manufacturing method

Country Status (1)

Country Link
JP (1) JP3960896B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090852A (en) * 1983-10-22 1985-05-22 Furukawa Electric Co Ltd:The Treatment of glass for optical fiber
EP0673895A3 (en) * 1994-03-24 1996-01-03 At & T Corp Glass optical waveguides passivated against hydrogen-induced loss increases.
ATE402128T1 (en) * 2000-08-25 2008-08-15 Draka Comteq Bv METHOD FOR REDUCING THE HYDROGEN SENSITIVITY OF GLASS FIBERS AT 1380-1410 NM
JP2003137580A (en) * 2001-11-06 2003-05-14 Sumitomo Electric Ind Ltd Method of processing optical fiber, method of manufacturing optical fiber, and optical fiber

Also Published As

Publication number Publication date
JP2004131324A (en) 2004-04-30

Similar Documents

Publication Publication Date Title
US10474003B2 (en) Lifetime extending and performance improvements of optical fibers via loading
JP4948718B2 (en) Method for reducing hydrogen sensitivity at 1380 nm to 1410 nm of an optical fiber
KR100359230B1 (en) Quartz glass articles and manufacturing method therefor
US20080205835A1 (en) Optical Fiber Having Reduced Hydrogen Induced Loss And The Method For Producing The Same
JPH044988B2 (en)
US6941052B2 (en) Sensitized optical fiber method and article
JP2003137580A (en) Method of processing optical fiber, method of manufacturing optical fiber, and optical fiber
JP3960896B2 (en) Optical fiber manufacturing method
JP4089250B2 (en) Optical fiber processing method
JP2000019334A (en) Formation of fiber grating
US7263264B2 (en) Method of manufacturing optical waveguide
CN100363765C (en) Method and apparatus for the photosensitization of optical fiber
JPH0313563B2 (en)
US5314519A (en) Methods and apparatus for increasing optical fiber draw speed
JP3995000B2 (en) Optical fiber bundle and manufacturing method thereof
JPH0471019B2 (en)
CN1212989C (en) Method of producing optical fiber
JP4062404B2 (en) Optical fiber manufacturing method
JPS63129035A (en) Production of optical fiber
JP2004170978A (en) Coating method for optical fiber
JP2003321248A (en) Uv-transmitting optical fiber and bundle light guide using the same
JP2004212421A (en) Optical fiber
JPH11326651A (en) Packaging method for grating type optical component
JP2003012348A (en) Method for manufacturing optical waveguide
JPH0446913B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040421

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20050909

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070515

R151 Written notification of patent or utility model registration

Ref document number: 3960896

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140525

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees