JP3960791B2 - Plastic substrate for microchip and manufacturing method thereof - Google Patents

Plastic substrate for microchip and manufacturing method thereof Download PDF

Info

Publication number
JP3960791B2
JP3960791B2 JP2001382448A JP2001382448A JP3960791B2 JP 3960791 B2 JP3960791 B2 JP 3960791B2 JP 2001382448 A JP2001382448 A JP 2001382448A JP 2001382448 A JP2001382448 A JP 2001382448A JP 3960791 B2 JP3960791 B2 JP 3960791B2
Authority
JP
Japan
Prior art keywords
substrate
fluorescence
carbon atom
plastic substrate
microchip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001382448A
Other languages
Japanese (ja)
Other versions
JP2003183425A (en
Inventor
博 澤井
兼久 横山
秀行 島岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2001382448A priority Critical patent/JP3960791B2/en
Priority to US10/495,743 priority patent/US20050176003A1/en
Priority to PCT/JP2002/011938 priority patent/WO2003046562A1/en
Publication of JP2003183425A publication Critical patent/JP2003183425A/en
Application granted granted Critical
Publication of JP3960791B2 publication Critical patent/JP3960791B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、マイクロチップ用プラスチック基板及びその製造方法に関するものである。
【0002】
【従来の技術】
近年、様々な遺伝子解析技術が開発され、生命機能の解明に拍車がかかっている。医療において各種疾患と動的に対応する遺伝子多型のデータベースを構築できれば、ターゲットとなる疾患関連遺伝子群の同定が可能となり、さらにはカスタムメイド治療や新しいドラッグデザインによる新薬の開発などを進めることができると考えられている。こうした中で、非常にスモールスケールな抽出、反応、検出など行えるマイクロアレイや、多数の遺伝子、あるいは多数の試料を同時に測定できるということで、遺伝子多型解析の最有力技術としてDNAチップといったようなマイクロチップが注目されている。
【0003】
しかし、マイクロチップにはまだ多くの課題が存在している。DNAチップには数百〜数万種類のDNAがスポッティングで配列されており非常に高価であるが、比較的多く使われているスタンフォード式の基板のスライドガラスに製造、輸送や検査で取扱う過程において落下などの衝撃が加わった場合、非常に破損しやすい難点がある。マイクロアレイもガラスに高度な微細加工技術を用いて精密に加工が施されており、製造コストが非常に高くなってしまう。
【0004】
そのため、医療において広く一般的に用いられるには、患者から試料を採取して行う遺伝子解析の前に行なわれる種々の過程を簡便に実施出来るように現在よりもさらに取り扱いやすく、安価な製品が望まれており、この課題を解決する為に最近では、落下等の衝撃に強く、低価格での供給が可能な基板として、シリコンウェハーやスライドガラスの代わりにプラスチックの成形品を利用する試みが行なわれ始めているところである。さらに基板の材質としてプラスチックを選択することにより、抽出、混合や反応を行なうことが可能な微細加工によるマイクロリアクターの機能を付加した様々な形状を射出成形などの方法によって量産が可能となる利点がある。
またDNAチップでDNAの担体として電極や振動子が用いられている場合でも、核酸を固定するスペーサーとしてプラスチックが用いられる場合もある(特開昭63−501920号公報)。
【0005】
しかし、プラスチックをマイクロアレイやDNAチップの基板として用いる場合、基板を構成する物質の分子構造によっては基板自体が蛍光を放つ。基板から発せられた蛍光はノイズとなって蛍光標識が発する蛍光シグナルと混在する。この蛍光は蛍光標識物質を用いた検出系において検出感度を下げる大きな要因となっている。
【0006】
これらの課題を改善する方法として、極力蛍光を放たないプラスチックとしてn電子やπ電子を持たない高分子ポリマー、例えば特開2001−231556号公報に開示されているように環状オレフィン構造を有する重合体単独または環状オレフィンとα−オレフィンとの共重合体を水素添加した飽和重合体(以下、飽和環状ポリオレフィン系樹脂とする)等、を基板の材料として選択して用いることができる。これに酸化処理を加えたて水酸基を導入した後、特開昭60−15560号公報に開示されているようにアミノシラン化剤をコートしてアミノ基を導入することで、蛍光法を用いた検出方法を行えるプラスチック製の基板を供給することができる。
【0007】
しかし、上記の方法を駆使することで蛍光法を用いた検出方法を行えるようになったが、酸化処理を行うことによって、ある特定の波長では石英ガラス製の基板と比べると蛍光が強く発せられる場合があり、まだ十分な解決策を得るまでに達していなかった。
【0008】
【発明が解決しようとする課題】
本発明の目的は、基板に酸化処理を加えた基板のることによって増大する蛍光を抑制したマイクロチップ用プラスチック基板を提供することである。
【0009】
【課題を解決するための手段】
本発明者らは、これらの課題の解決について鋭意研究を重ねた結果、酸化処理の段階の一つとして、例えばノルボルネン樹脂の基板に酸素ガス低温プラズマ放電処理を行ない、この処理を行った直後に溶媒が水である液体に浸漬することにより、蛍光が酸化処理を行う以前の基板とほぼ同程度であるプラスチック基板を製造できることを見出し、本発明を完成するに至った。
【0010】
即ち本発明は、
(1)ノルボルネンまたはノルボルネン誘導物の少なくとも一つがモノマー単位として含まれている飽和環状ポリオレフィン系樹脂を有するプラスチック基板の表面を酸素又は酸素を含むガス雰囲気下の低温プラズマ放電処理により酸化処理した直後に、純水に浸漬することでラジカル状態あるいはπ結合している炭素原子に水酸基を導入し、基板の表面を構成する分子層に存在する炭素原子で、π結合を有する炭素原子が15%以下であるマイクロチップ用プラスチック基板の製造方法、
である。
【0012】
【発明の実施の形態】
本発明で用いられる飽和環状ポリオレフィン系樹脂は、環状オレフィン構造を有する重合体単独または環状オレフィンとα−オレフィンとの共重合体を水素添加した飽和重合体が好ましい。
前者の例として、例えば、一般式(1)で表されるノルボルネンの開環重合体の水素添加物等が挙げられる。
【0013】
【化1】

Figure 0003960791
(ただし、上記式(1)中、R1およびR2は水素または炭素数1〜10の炭化水素残基でそれぞれ同一または異なっていても良く、また、R1およびR2は互いに環を形成しても良い。)
【0014】
一般式(1)で表せる構造単位を有する重合体は、モノマーとしてノルボルネン、及びそのアルキル又はアルキリデン置換体であり、具体的には、5−メチル−2−ノルボルネン、5,6−ジメチル−2−ノルボルネン、5−エチリデン−2−ノルボルネン等があり、これ以外にもジシクロペンタジエン、2,3−ジヒドロジシクロペンタジエン、及びこれらのメチル、エチル等のアルキル置換体を使用し、開環重合で得られる開環重合体を水素添加して製造される飽和重合体がある。
【0015】
また、一般式(2)で示される環状オレフィン系モノマーの重合体、或いはエチレン、プロピレン、イソプロピレン、1−ブテン、3−メチル−1−ブテン、1−ペンテン、1−ヘキセン等のα−オレフィンと一般式(2)で示される環状オレフィン系モノマーのランダム共重合体を水素添加することにより製造される飽和重合体を用いても良い。
【0016】
【化2】
Figure 0003960791
(ただし、上記式(2)中、R1およびR8は水素及びハロゲン原子及び炭化水素残基よりなる群から選ばれ、R5〜R8は互いに環を形成しても良い。)
【0017】
さらには、一般式(3)で示される環状オレフィン系モノマーの重合体、或いはエチレン、プロピレン、イソプロピレン、1−ブテン、3−メチル−1−ブテン、1−ペンテン、1−ヘキセン等のα−オレフィンと一般式(3)で示される環状オレフィン系モノマーのランダム共重合体を水素添加することにより製造される飽和重合体を用いても良い。
【0018】
【化3】
Figure 0003960791
(ただし、上記式(2)中、R1およびR12は水素及びハロゲン原子及び炭化水素残基よりなる群から選ばれ、R9〜R12は互いに環を形成しても良い。)
【0019】
一般式(1)〜(3)記載の飽和したポリオレフィン系樹脂を原材料としてマイクロチップ用プラスチック基板を成形する上でには、基板の成形方法及び形状には特に制限はない。成形性を考慮すると、押出成形、圧縮成形、射出成形又は、エマルジョン成形等の方法が好適であり、また試験方法やハンドリングを考慮し、フィルムシート、ビーズ、スライド板等が基板の形状として好ましい。
【0020】
次に、これら基板に物理化学的に酸化処理を施して、基板の表面に水酸基を導入する。酸化処理の方法には特に制限はなく、紫外線処理、コロナ放電処理、電子線処理、低周波及び高周波低温プラズマ放電処理、酸化反応剤を含む化学処理溶液を用いる方法等が考えられる。この中でも簡便かつ形状に制限されないで、酸化反応試薬の廃棄処理に問題なく、かつ水酸基の導入密度を調節しやすい、酸素ガス雰囲気下での低温プラズマ放電処理が最も好ましい。
【0021】
上記の方法により、基板の表面に水酸基を導入した直後、さらにラジカル状態あるいはπ結合している炭素原子に水酸基の導入を施した。この段階での水酸基の導入方法は処理及び後処理で水分子と接触する機会があるものが好ましく、過マンガン酸塩の希アルカリ性水溶液、アルコール−水混合溶媒、純水などの溶液に浸漬したり、濃硫酸に浸漬した後に純水に浸漬したり、湿度80〜100%雰囲気と接触させる方法が考えられる。この中でも簡便かつ形状に制限されないで、廃棄処理の問題がない純水に浸漬する方法が最も好適である。
【0022】
酸化処理として酸素ガス低温プラズマ放電処理を行った場合には、基板表面の炭素原子は酸素ラジカルによって炭素原子のラジカル状態やπ結合が生成することが予想される。他の種類の光透過率が高い樹脂であるポリスチレンやポリカーボネートでは元来ポリマーの分子構造に芳香環を含むため樹脂自身の蛍光が強く、酸化処理によって増加する蛍光のノイズとして問題にならなかった。
【0023】
しかし、ノルボルネン樹脂のような飽和環状ポリオレフィン系樹脂の分子構造にはπ結合が含まれておらず、元々の樹脂自身の蛍光は非常に小さい。酸素ガス低温プラズマ放電処理を施した場合、基板表面上に存在する炭素原子の約10〜25%がπ結合を有し、これが酸素ガス低温プラズマ放電処理により基板自体の蛍光増加の要因になったと考えられる。
【0024】
酸素ガス低温プラズマ放電処理による基板自体の蛍光増加は、酸素ガス低温プラズマ放電処理直後に純水に浸漬するだけでも、ラジカル状態の炭素原子に水酸基を導入し、酸化処理による自己蛍光の増加を抑制することが可能である。基板の表面を構成する分子層に存在する炭素原子で、π結合を有する炭素原子の割合が15%以下であれば、自己蛍光によるノイズは測定に支障がない。これより基板の表面を構成する分子層に存在する炭素原子で、π結合を有する炭素原子の割合は15%以下が好ましく、さらに好ましいのは10%以下である。
【0025】
また上記の処理を施すことにより、基板表面に水酸基を多く導入でき、基板に表面処理を加える上で反応部位が増加する効果も得られる。例えば、従来の技術に記載した特開昭60−15560号公報に開示されているようにアミノシラン化剤をコートする場合、基板表面上に水酸基が多く存在するほどアミノシラン化剤を多くコートすることが可能である。後述の実施例のように、飽和環状ポリオレフィン系樹脂の基板に酸素ガス低温プラズマ放電処理を施すだけに比べて、酸素ガス低温プラズマ放電処理直後に純水に浸漬した基板は、基板の表面を構成する分子層に存在する水酸基が約1.5倍多く導入できる。
【0026】
【実施例】
次に本発明について実施例によりさらに詳細に説明する。
(実施例)
エチレンとノルボルネン誘導物であるジシクロペンタジエンのランダム共重合体の水素添加物を用いてスライドを射出成形し、成形品Aを得た。これを減圧下で酸素ガスを通気しながら高周波低温プラズマを発生させて10分間の酸化処理をした。その直後に純水に10秒間浸漬処理を施した。
【0027】
(比較例)
実施例の成形品Aを減圧下で酸素ガスを通気しながら高周波低温プラズマを発生させて10分間の酸化処理を施した。
【0028】
[1]自己蛍光
実施例、比較例のスライドを、落射式蛍光顕微鏡(励起光波長532nm、蛍光波長560nm)で観察した。CCDカメラで蛍光を撮影し画像データより蛍光量を比較評価した。
評価結果を表1に示す。これより本発明の処方を施すことによって、バックグラウンドの蛍光を抑えられることが認められた。
【0029】
[2]ESCA分析
実施例、比較例から切り出した試験片をESCA(機種:FI SURFACE SYSTEMS社製 ESCALAB 220i−XL、分析面積:0.6mmφ、光電子脱出角:90deg、真空度:1.5×10-6Pa、X線原:AlKα線)により表面分析を行ない、基板の表面を構成する分子層に存在する炭素原子の結合状態別の割合を比較評価した。評価結果を表2に示す。これより本発明の処方を施すことによって、水酸基が増加し、π結合を有する炭素原子が減少することが認められた。
【0030】
【表1】
Figure 0003960791
【0031】
【表2】
Figure 0003960791
【0032】
【発明の効果】
本発明の処方により、基板に酸化処理を加えることで増大する基板自身の蛍光を抑制したマイクロチップ用プラスチック基板を製造することが可能である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a plastic substrate for a microchip and a manufacturing method thereof.
[0002]
[Prior art]
In recent years, various gene analysis techniques have been developed, and it has been spurred to elucidate life functions. If a database of gene polymorphisms that dynamically respond to various diseases in medicine can be constructed, it will be possible to identify target disease-related gene groups, and further develop new drugs through custom-made treatments and new drug designs. It is considered possible. Under these circumstances, microarrays that can perform very small-scale extraction, reaction, and detection, and the ability to simultaneously measure a large number of genes or a large number of samples are the most powerful technologies for gene polymorphism analysis, such as microchips such as DNA chips. Chips are drawing attention.
[0003]
However, many challenges still exist with microchips. Hundreds to tens of thousands of DNAs are arranged by spotting on a DNA chip, and it is very expensive. However, in the process of manufacturing, transporting, and inspecting glass slides on a relatively popular Stanford substrate When an impact such as dropping is applied, there is a problem that it is very easy to break. Microarrays are also precisely processed on glass using advanced microfabrication technology, which makes the manufacturing cost very high.
[0004]
For this reason, in order to be widely used in medicine, it is desirable to have a product that is easier to handle and cheaper than the present so that various processes performed before genetic analysis can be performed by collecting samples from patients. Recently, in order to solve this problem, an attempt has been made to use a plastic molded product instead of a silicon wafer or glass slide as a substrate that is resistant to impacts such as dropping and can be supplied at a low price. This is just starting. In addition, by selecting plastic as the material of the substrate, there is an advantage that various shapes with the function of microreactor that can perform extraction, mixing and reaction can be mass-produced by methods such as injection molding. is there.
Even when an electrode or a vibrator is used as a DNA carrier in a DNA chip, plastic may be used as a spacer for immobilizing nucleic acids (Japanese Patent Laid-Open No. 63-501920).
[0005]
However, when plastic is used as a substrate of a microarray or a DNA chip, the substrate itself emits fluorescence depending on the molecular structure of the substance constituting the substrate. The fluorescence emitted from the substrate becomes noise and is mixed with the fluorescence signal emitted by the fluorescent label. This fluorescence is a major factor that lowers the detection sensitivity in a detection system using a fluorescent labeling substance.
[0006]
As a method for improving these problems, as a plastic that emits as little fluorescence as possible, a polymer that does not have n electrons or π electrons, for example, a heavy polymer having a cyclic olefin structure as disclosed in JP-A-2001-231556. A polymer alone or a saturated polymer obtained by hydrogenating a copolymer of a cyclic olefin and an α-olefin (hereinafter referred to as a saturated cyclic polyolefin resin) or the like can be selected and used as a substrate material. This is subjected to an oxidation treatment, and after introducing a hydroxyl group, as disclosed in JP-A-60-15560, an aminosilane agent is coated and an amino group is introduced to detect using a fluorescence method. A plastic substrate capable of performing the method can be provided.
[0007]
However, by making full use of the above method, a detection method using a fluorescence method can be performed. However, by performing an oxidation treatment, fluorescence is emitted more strongly than a quartz glass substrate at a specific wavelength. In some cases, it was not reached yet to get a sufficient solution.
[0008]
[Problems to be solved by the invention]
An object of the present invention is to provide a plastic substrate for a microchip that suppresses fluorescence that increases due to a substrate obtained by oxidizing a substrate.
[0009]
[Means for Solving the Problems]
As a result of intensive research on solving these problems, the inventors of the present invention performed oxygen gas low-temperature plasma discharge treatment on, for example, a norbornene resin substrate as one of the stages of oxidation treatment, immediately after performing this treatment. It has been found that by immersing in a liquid whose solvent is water, it is possible to produce a plastic substrate whose fluorescence is almost the same as that of the substrate before the oxidation treatment, and the present invention has been completed.
[0010]
That is, the present invention
(1) Immediately after oxidizing the surface of a plastic substrate having a saturated cyclic polyolefin resin containing at least one of norbornene or a norbornene derivative as a monomer unit by low-temperature plasma discharge treatment in a gas atmosphere containing oxygen or oxygen , By dipping in pure water, a hydroxyl group is introduced into a carbon atom in a radical state or π bond, and the carbon atom present in the molecular layer constituting the surface of the substrate has a carbon atom having a π bond of 15% or less. A manufacturing method of a plastic substrate for a microchip,
It is.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The saturated cyclic polyolefin resin used in the present invention is preferably a polymer having a cyclic olefin structure or a saturated polymer obtained by hydrogenating a copolymer of a cyclic olefin and an α-olefin.
Examples of the former include a hydrogenated product of a norbornene ring-opening polymer represented by the general formula (1).
[0013]
[Chemical 1]
Figure 0003960791
(However, formation in the above formula (1), R 1 and R 2 may be the same or different each a hydrocarbon residue having 1 to 10 carbon hydrogen or carbon, also, R 1 and R 2 to each other ring You may do it.)
[0014]
The polymer having the structural unit represented by the general formula (1) is norbornene as a monomer and an alkyl or alkylidene substituted product thereof, specifically, 5-methyl-2-norbornene, 5,6-dimethyl-2- There are norbornene, 5-ethylidene-2-norbornene, etc. Other than this, dicyclopentadiene, 2,3-dihydrodicyclopentadiene, and alkyl substituents such as methyl and ethyl are used for ring-opening polymerization. There is a saturated polymer produced by hydrogenating a ring-opened polymer.
[0015]
In addition, a polymer of a cyclic olefin monomer represented by the general formula (2), or an α-olefin such as ethylene, propylene, isopropylene, 1-butene, 3-methyl-1-butene, 1-pentene, 1-hexene And a saturated polymer produced by hydrogenating a random copolymer of cyclic olefin monomers represented by the general formula (2).
[0016]
[Chemical 2]
Figure 0003960791
(However, in the above formula (2), R 1 and R 8 is selected from the group consisting of hydrogen and halogen atoms and hydrocarbon residues, R 5 to R 8 are each may form a ring.)
[0017]
Furthermore, a polymer of a cyclic olefin monomer represented by the general formula (3), or α- such as ethylene, propylene, isopropylene, 1-butene, 3-methyl-1-butene, 1-pentene, 1-hexene. A saturated polymer produced by hydrogenating a random copolymer of an olefin and a cyclic olefin monomer represented by the general formula (3) may be used.
[0018]
[Chemical 3]
Figure 0003960791
(However, in the above formula (2), R 1 and R 12 is selected from the group consisting of hydrogen and halogen atoms and hydrocarbon residues, R 9 to R 12 are each may form a ring.)
[0019]
In molding a plastic substrate for a microchip using the saturated polyolefin resin described in the general formulas (1) to (3) as a raw material, there is no particular limitation on the molding method and shape of the substrate. In consideration of moldability, a method such as extrusion molding, compression molding, injection molding, or emulsion molding is preferable, and a film sheet, a bead, a slide plate, or the like is preferable as a substrate shape in consideration of a test method or handling.
[0020]
Next, these substrates are physicochemically oxidized to introduce hydroxyl groups onto the surfaces of the substrates. There is no particular limitation on the method of oxidation treatment, and ultraviolet treatment, corona discharge treatment, electron beam treatment, low frequency and high frequency low temperature plasma discharge treatment, a method using a chemical treatment solution containing an oxidation reagent, and the like are conceivable. Among these, low-temperature plasma discharge treatment in an oxygen gas atmosphere is most preferable because it is simple and not limited in shape, has no problem in disposal of the oxidation reaction reagent, and easily adjusts the hydroxyl group introduction density.
[0021]
By the above method, immediately after the introduction of the hydroxyl group on the surface of the substrate, the hydroxyl group was further introduced into the radical state or π-bonded carbon atom. The method of introducing a hydroxyl group at this stage is preferably one that has an opportunity to come into contact with water molecules in the treatment and post-treatment, and may be immersed in a solution such as a dilute alkaline aqueous solution of permanganate, an alcohol-water mixed solvent, or pure water. A method of immersing in concentrated sulfuric acid and then immersing in pure water or contacting with an atmosphere having a humidity of 80 to 100% can be considered. Among these, a method of immersing in pure water that is simple and not limited to a shape and has no problem of disposal is most preferable.
[0022]
When oxygen gas low-temperature plasma discharge treatment is performed as the oxidation treatment, it is expected that the carbon atoms on the substrate surface generate radical states or π bonds of carbon atoms by oxygen radicals. Other types of resins with high light transmittance, such as polystyrene and polycarbonate, originally contained an aromatic ring in the molecular structure of the polymer, so the fluorescence of the resin itself was strong, and there was no problem as fluorescence noise increased by oxidation treatment.
[0023]
However, the molecular structure of a saturated cyclic polyolefin resin such as norbornene resin does not include a π bond, and the fluorescence of the original resin itself is very small. When oxygen gas low-temperature plasma discharge treatment is performed, about 10 to 25% of the carbon atoms present on the substrate surface have π bonds, and this is the cause of the increase in fluorescence of the substrate itself due to the oxygen gas low-temperature plasma discharge treatment. Conceivable.
[0024]
The increase in fluorescence of the substrate itself due to the oxygen gas low-temperature plasma discharge treatment suppresses the increase in autofluorescence due to oxidation treatment by introducing hydroxyl groups into the carbon atoms in the radical state even just by immersing in pure water immediately after the oxygen gas low-temperature plasma discharge treatment. Is possible. If the proportion of carbon atoms present in the molecular layer constituting the surface of the substrate and having π bonds is 15% or less, noise due to autofluorescence does not hinder measurement. Accordingly, the proportion of carbon atoms present in the molecular layer constituting the surface of the substrate and having a π bond is preferably 15% or less, and more preferably 10% or less.
[0025]
Further, by performing the above treatment, a large number of hydroxyl groups can be introduced to the substrate surface, and the effect of increasing the reaction site when the surface treatment is applied to the substrate can be obtained. For example, when the aminosilanizing agent is coated as disclosed in Japanese Patent Application Laid-Open No. 60-15560 described in the prior art, the more the aminosilanizing agent is coated, the more hydroxyl groups exist on the substrate surface. Is possible. The substrate immersed in pure water immediately after the oxygen gas low temperature plasma discharge treatment constitutes the surface of the substrate as compared to the case where the oxygen gas low temperature plasma discharge treatment is performed on the substrate of the saturated cyclic polyolefin resin as in the examples described later. About 1.5 times more hydroxyl groups present in the molecular layer can be introduced.
[0026]
【Example】
Next, the present invention will be described in more detail with reference to examples.
(Example)
A slide A was injection-molded using a hydrogenated product of a random copolymer of ethylene and norbornene derived dicyclopentadiene to obtain a molded product A. This was subjected to oxidation treatment for 10 minutes by generating high-frequency and low-temperature plasma while ventilating oxygen gas under reduced pressure. Immediately thereafter, immersion treatment was performed in pure water for 10 seconds.
[0027]
(Comparative example)
The molded product A of the example was subjected to oxidation treatment for 10 minutes by generating high-frequency and low-temperature plasma while oxygen gas was passed under reduced pressure.
[0028]
[1] The slides of the self-fluorescence examples and comparative examples were observed with an epi-fluorescence microscope (excitation light wavelength 532 nm, fluorescence wavelength 560 nm). The fluorescence was photographed with a CCD camera, and the fluorescence amount was compared and evaluated from the image data.
The evaluation results are shown in Table 1. From this, it was confirmed that the background fluorescence can be suppressed by applying the formulation of the present invention.
[0029]
[2] ESCA analysis Examples and comparative specimens were cut out from ESCA (model: FI SURFACE SYSTEMS ESCALAB 220i-XL, analysis area: 0.6 mmφ, photoelectron escape angle: 90 deg, vacuum: 1.5 × Surface analysis was performed using 10 −6 Pa, X-ray source: AlKα ray), and the proportions of carbon atoms present in the molecular layer constituting the surface of the substrate were compared and evaluated. The evaluation results are shown in Table 2. From this, it was confirmed that by applying the formulation of the present invention, the number of hydroxyl groups increased and the number of carbon atoms having π bonds decreased.
[0030]
[Table 1]
Figure 0003960791
[0031]
[Table 2]
Figure 0003960791
[0032]
【The invention's effect】
With the prescription of the present invention, it is possible to produce a plastic substrate for microchip that suppresses the fluorescence of the substrate itself, which increases by adding an oxidation treatment to the substrate.

Claims (1)

ノルボルネンまたはノルボルネン誘導物の少なくとも一つがモノマー単位として含まれている飽和環状ポリオレフィン系樹脂を有するプラスチック基板の表面を酸素又は酸素を含むガス雰囲気下の低温プラズマ放電処理により酸化処理した直後に、純水に浸漬することでラジカル状態あるいはπ結合している炭素原子に水酸基を導入し、基板の表面を構成する分子層に存在する炭素原子で、π結合を有する炭素原子が15%以下であるマイクロチップ用プラスチック基板の製造方法。Immediately after oxidizing the surface of a plastic substrate having a saturated cyclic polyolefin resin containing at least one of norbornene or a norbornene derivative as a monomer unit by a low temperature plasma discharge treatment in a gas atmosphere containing oxygen or oxygen, A microchip in which a hydroxyl group is introduced into a carbon atom in a radical state or π bond by dipping in a carbon atom, and the carbon atom present in the molecular layer constituting the surface of the substrate is 15% or less of the carbon atom having a π bond Of manufacturing plastic substrate for industrial use.
JP2001382448A 2001-11-27 2001-12-17 Plastic substrate for microchip and manufacturing method thereof Expired - Fee Related JP3960791B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001382448A JP3960791B2 (en) 2001-12-17 2001-12-17 Plastic substrate for microchip and manufacturing method thereof
US10/495,743 US20050176003A1 (en) 2001-11-27 2002-11-15 Plastic substrate for microchips
PCT/JP2002/011938 WO2003046562A1 (en) 2001-11-27 2002-11-15 Plastic substrate for microchips

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001382448A JP3960791B2 (en) 2001-12-17 2001-12-17 Plastic substrate for microchip and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003183425A JP2003183425A (en) 2003-07-03
JP3960791B2 true JP3960791B2 (en) 2007-08-15

Family

ID=27592788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001382448A Expired - Fee Related JP3960791B2 (en) 2001-11-27 2001-12-17 Plastic substrate for microchip and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3960791B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4581673B2 (en) * 2004-12-22 2010-11-17 住友ベークライト株式会社 Solid phase carrier and method of use thereof
JP4701739B2 (en) 2005-02-17 2011-06-15 パナソニック株式会社 Fluorescence measuring device
JP4691383B2 (en) * 2005-03-31 2011-06-01 国立大学法人名古屋大学 Nucleic acid microarray and manufacturing method thereof
KR100729953B1 (en) 2005-10-14 2007-06-20 주식회사 엘지생명과학 Method for manufacturing plastics substrate by plasma process and plastics substrate manufactured using the same
WO2007043748A1 (en) * 2005-10-14 2007-04-19 Lg Life Sciences, Ltd. Method of manufacturing plastic substrate using plasma process and plastic substrate manufactured using the method
KR100805816B1 (en) 2006-12-04 2008-02-21 한국전자통신연구원 Surface modification of cycloolefin copolymer substrate
JP5534390B2 (en) * 2009-04-07 2014-06-25 国立大学法人九州大学 Cyclic olefin resin processing method and molded body
US9586810B2 (en) 2010-07-30 2017-03-07 Sony Corporation Polymeric substrate having an etched-glass-like surface and a microfluidic chip made of said polymeric substrate

Also Published As

Publication number Publication date
JP2003183425A (en) 2003-07-03

Similar Documents

Publication Publication Date Title
US6664061B2 (en) Use and evaluation of a [2+2] photoaddition in immobilization of oligonucleotides on a three-dimensional hydrogel matrix
EP4271511A1 (en) Molecular array generation using photoresist
He et al. Preparation of hydrophilic poly (dimethylsiloxane) stamps by plasma-induced grafting
EP1307414A2 (en) The use and evaluation of a 2+2] photocycloaddition in immobilization of oligonucleotides on a three-dimensional hydrogel matrix
JP2008530540A (en) Method for photochemical coupling of biomolecules to a support
JP3960791B2 (en) Plastic substrate for microchip and manufacturing method thereof
WO2004102194A9 (en) Support having selectively bonding substance fixed thereto
Muguruma Plasma‐Polymerized Films for Biochip Design
US20100190654A1 (en) Nanoarrays and methods and materials for fabricating same
EP1820857A1 (en) Dna chain elongation method, dna chain amplification method and microarray for dna chain elongation
JP3877993B2 (en) Biochip substrate and biochip
JP4691383B2 (en) Nucleic acid microarray and manufacturing method thereof
US20050112292A1 (en) Methods for treating at least one member of a microarray structure and methods of using the same
JP6019738B2 (en) Method for producing substrate having hydrophilic layer
JP2006017458A (en) Substrate for biochip, and biochip
JP2003130874A (en) Plastic board for microchip
US20080274917A1 (en) Surface activation methods for polymeric substrates to provide biochip platforms and methods for detection of biomolecules thereon
JP4324707B2 (en) DNA chip and biosensor using the same
WO2003046562A1 (en) Plastic substrate for microchips
EP1435262A1 (en) Method for manufacturing a biosensor via electrophilic polymer layers
US20240076656A1 (en) High definition molecular array feature generation using photoresist
US20240167077A1 (en) Covalent attachment of splint oligonucleotides for molecular array generation using ligation
JP2003286358A (en) Substrate for microchip and method for manufacturing the same
JP2006078197A (en) Immobilized carrier of selectively bindable substance
JP2005010004A (en) Biochip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070208

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070515

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140525

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees