JP3960660B2 - Manufacturing method of lightweight molded product of fiber reinforced thermoplastic resin - Google Patents

Manufacturing method of lightweight molded product of fiber reinforced thermoplastic resin Download PDF

Info

Publication number
JP3960660B2
JP3960660B2 JP17369197A JP17369197A JP3960660B2 JP 3960660 B2 JP3960660 B2 JP 3960660B2 JP 17369197 A JP17369197 A JP 17369197A JP 17369197 A JP17369197 A JP 17369197A JP 3960660 B2 JP3960660 B2 JP 3960660B2
Authority
JP
Japan
Prior art keywords
mold
fiber
thermoplastic resin
molded product
pellet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17369197A
Other languages
Japanese (ja)
Other versions
JPH1119961A (en
Inventor
学 野村
薫 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prime Polymer Co Ltd
Original Assignee
Prime Polymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prime Polymer Co Ltd filed Critical Prime Polymer Co Ltd
Priority to JP17369197A priority Critical patent/JP3960660B2/en
Publication of JPH1119961A publication Critical patent/JPH1119961A/en
Application granted granted Critical
Publication of JP3960660B2 publication Critical patent/JP3960660B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、繊維強化熱可塑性樹脂軽量成形品の製造法に関し、詳しくは特定の繊維強化熱可塑性樹脂ペレットを用いた射出成形により、軽量で、良好な表面状態を有し、高強度、高剛性である繊維強化熱可塑性樹脂軽量成形品を製造する方法に関する。
【0002】
【従来の技術】
引張強度、剛性、耐熱性を向上させる目的のため、従来、樹脂に種々の繊維を配合することが広く行われているが、繊維の配合量を増やした場合、高強度化は達成されるものの、成形品の比重が高くなるという欠点があった。
一方、軽量な成形体を得る方法としては、成形時に発泡剤を用いる発泡射出成形方法が知られている(特開平7−247679号公報等)が、この場合、軽量化を達成するためにはかなりの量の発泡剤を用いなければならないし、また発泡剤を多く用いたとしても発泡倍率を高くすることはそれほど容易ではなく、十分な軽量化はなし得ない。さらには、不均一な発泡のために成形品表面外観が劣ったり、内部に大中空部が生じたりして、強度、剛性の点で満足のいく成形品を得ることができなかった。
【0003】
また、樹脂に繊維を配合しつつ、かつ発泡剤を用いて射出成形を行う場合でも上記と同様に、射出成形時、十分な発泡が得られなかったり、成形品表面にシルバーマークのような不良現象が発生したり、強度の点で問題が多く、実用化には至っていないのが現状である。
【0004】
【発明が解決しようとする課題】
本発明は、繊維長の長い特定の繊維含有熱可塑性樹脂ペレットを用いて表面外観、強度、剛性に優れた、軽量の成形品を発泡剤を多量に用いる必要もなく製造する方法の提供を目的とする。
【0005】
【課題を解決するための手段】
本発明者らは、軽量化と強度を満足し、表面外観にも優れ、さらに成形品のすべての面において十分膨張している繊維強化熱可塑性樹脂軽量成形品を射出成形によって得るべく、鋭意検討した結果、例えば、最終の成形品に相当する金型容積よりも小さくなるように閉じた金型中に溶融樹脂を射出し、樹脂の射出完了前若しくは完了後に金型を最終成形品の容積まで開く方法を採る方法等を、先に提案したが(特願平8−277920号,特願平8−298599号,特願平8−298600号)、これらの特定の成形原料と成形法の組み合わせに加え、さらに特定の金型条件にて成形を行うことにより、上記目的がより効果的に達成できることを見出した。本発明はかかる知見に基づいて完成したものである。
【0006】
即ち、本発明は、以下の繊維強化熱可塑性樹脂軽量成形品の製造法を提供するものである。
(1)ペレット中の繊維の長さが2〜100mmである繊維含有熱可塑性樹脂ペレット(A)、又は該ペレット(A)と熱可塑性樹脂の混合物を成形原料とし、該成形原料中の繊維含有量が5〜80重量%であるものを溶融混練し、最終の成形品に相等する金型容積よりも小さくなるように閉じた金型中に溶融樹脂を射出し、樹脂の射出完了前若しくは完了後に金型を最終成形品の容積まで開くことにより繊維強化熱可塑性樹脂軽量成形品を製造するにあたり、前記金型は、雌型と、この雌型に摺動自在に嵌合する雄型と、を有し、前記雌型と前記雄型とで画成されるキャビティの容積が可変であって、前記雌型の内面において前記雄型が摺動する側面部分が他の部分より高温であることを特徴とする繊維強化熱可塑性樹脂軽量成形品の製造法。
(2)上記(1)と同様の原料を溶融混練し、閉じた金型中に該溶融した原料を射出するにあたり、キャビティ部の容積が射出される該溶融原料の全体積よりも小さくなるように閉じた状態の金型に射出し、しかる後、金型を最終成形品の容積まで開くことにより繊維強化熱可塑性樹脂軽量成形品を製造するにあたり、前記金型は、雌型と、この雌型に摺動自在に嵌合する雄型と、を有し、前記雌型と前記雄型とで画成されるキャビティの容積が可変であって、前記雌型の内面において前記雄型が摺動する側面部分が他の部分より高温であることを特徴とする繊維強化熱可塑性樹脂軽量成形品の製造法。
(3)上記(1)と同様の原料を溶融混練し、キャビティ内に溶融樹脂を射出するのと同時又は射出開始後、可動金型を前進させて一旦圧縮し、しかる後に、金型を最終成形品の容積まで開くことにより繊維強化熱可塑性樹脂軽量成形品を製造するにあたり、前記金型は、雌型と、この雌型に摺動自在に嵌合する雄型と、を有し、前記雌型と前記雄型とで画成されるキャビティの容積が可変であって、前記雌型の内面において前記雄型が摺動する側面部分が他の部分より高温であることを特徴とする繊維強化熱可塑性樹脂軽量成形品の製造法。
(4)上記(1)〜(3)の製造法において、溶融混練に供する材料として、ペレット中の繊維の長さが2〜100mmである繊維含有熱可塑性樹脂ペレット(A)、又は該ペレット(A)と熱可塑性樹脂の混合物を成形原料とし、該成形原料中の繊維含有量が5〜80重量%であるもの100重量部に対し、発泡剤を0.01〜3重量部配合したものを用いることを特徴とする上記(1)〜(3)のいずれかに記載の繊維強化熱可塑性樹脂軽量成形品の製造法。
(5)上記(1)〜(3)における軽量成形品の空隙率が、30〜80%である上記(1)〜(3)のいずれかに記載の繊維強化熱可塑性樹脂軽量成形品の製造法。
【0007】
【発明の実施の形態】
以下に、本発明の実施の形態を説明する。
1.繊維含有熱可塑性樹脂ペレット(A)
本発明の繊維強化熱可塑性樹脂軽量成形品の製造法においては、繊維含有熱可塑性樹脂ペレット(A)が成形原料として用いられる。
(1) 熱可塑性樹脂
ここで用いられる熱可塑性樹脂については特に制限はなく、例えばポリオレフィン系樹脂,ポリスチレン系樹脂,ポリ塩化ビニル系樹脂,ポリアミド系樹脂,ポリエステル系樹脂,ポリアセタール系樹脂,ポリカーボネート系樹脂,ポリ芳香族エーテル又はチオエーテル系樹脂,ポリ芳香族エステル系樹脂,ポリスルホン系樹脂,アクリレート系樹脂などが挙げられる。
【0008】
ポリオレフィン系樹脂としては、例えば、エチレン、プロピレンなどのα−オレフィンの単独重合体やこれらと他の共重合可能な不飽和単量体との共重合体などが挙げられる。
また、スチレン系樹脂としては、例えば、スチレン,α−メチルスチレンなどの単独重合体やこれらと共重合可能な不飽和単量体との共重合体が挙げられる。
【0009】
ポリ塩化ビニル系樹脂としては、例えば、塩化ビニル単独重合体や塩化ビニルと共重合可能な不飽和単量体との共重合体などが挙げられる。
ポリアミド系樹脂としては、例えば、6−ナイロン、12−ナイロン、6,6−ナイロン、6,10−ナイロン、6,12−ナイロン、11−ナイロンなどを挙げることができる。
【0010】
ポリエステル系樹脂としては、例えば、ポリエチレンテレフタレートやポリブチレンテレフタレートなどがある。
ポリアセタール系樹脂としては、例えば、単独重合体のポリオキシメチレン及びトリオキサンとエチレンオキシドから得られるホルムアルデヒド−エチレンオキシド共重合体などが挙げられる。
【0011】
ポリカーボネート系樹脂としては、4,4’−ジヒドロキシジアリールアルカン系ポリカーボネート、特にビスフェノールA系ポリカーボネートが好ましく用いられる。また、変性ビスフェノールA系ポリカーボネートや難燃化ビスフェノールA系ポリカーボネートなども用いることができる。
ポリ芳香族エーテル又はチオエーテル系樹脂は、例えば、ポリフェニレンエーテル,スチレンでグラフト化されたポリフェニレンエーテル,ポリエーテルエーテルケトン,ポリフェニレンサルファイドなどが挙げられる。
【0012】
ポリ芳香族エステル系樹脂としては、例えば、ポリアリレートなどが挙げられる。
ポリスルホン系樹脂は、例えば、ポリスルホン、ポリエーテルスルホン、ポリアリールスルホンなどを挙げることができる。
アクリレート系樹脂としては、例えば、メタクリル酸エステル重合体やアクリル酸エステル重合体などが挙げられる。
【0013】
本発明においては、上記熱可塑性樹脂は単独でも、また二種以上を組み合わせて用いてもよい。さらには、例えば、アクリル酸,メタクリル酸,マレイン酸,フマル酸などの不飽和カルボン酸類、無水マレイン酸などの酸無水物またはその誘導体で変性された酸変性ポリオレフィン系樹脂も好ましく用いられる。これらの中では、特に無水マレイン酸が好適である。
【0014】
これらの不飽和カルボン酸やその誘導体は、一種又は二種以上を組み合わせて用いてもよい。また変性方法についても特に制限はない。
(2) 繊維
本発明に用いる繊維は特に問わない。ガラス繊維;ボロン繊維,炭化ケイ素繊維,アルミナ繊維,チッ化ケイ素繊維,ジルコニア繊維のセラミック繊維;銅繊維,黄銅繊維,鋼繊維,ステンレス繊維,アルミニウム繊維,アルミニウム合金繊維等の金属繊維;ポリエステル繊維,ポリアミド繊維,アラミド繊維,ポリアリレート繊維等の有機繊維;炭素繊維等が挙げられる。好ましくは、ガラス繊維が用いられるが、上記繊維の2種以上を併用しても構わない。
【0015】
ガラス繊維を用いる場合は、カップリング剤で表面処理されたものが好ましい。カップリング剤としては、好ましくはアミノシラン,エポキシシラン等のシラン系カップリング剤,チタン系カップリング剤から任意のものを用いることができる。また、カップリング剤とともにガラス用フィルム形成性物質を併用することができる。このフィルム形成性物質には、特に制限はなく、例えばポリエステル系,ウレタン系,エポキシ系,アクリル系,酢酸ビニル系,イソシアネート系などの重合体が挙げられる。ガラス繊維としては、E−ガラス、S−ガラス等のガラス繊維が好ましく用いられる。
【0016】
本発明において、繊維としては、その平均繊維径が20μm以下のものが好ましい。さらに、好ましくは1〜17μm、より好ましくは3〜14μmのものである。1μmより小さいとペレット製造時の樹脂の濡れ、含侵が困難となり、20μmを越えると溶融混練時の繊維の欠損が起こりやすくなる。
(3) 繊維含有熱可塑性樹脂ペレット(A)の作製方法
繊維含有熱可塑性樹脂ペレット(A)の作製については、特に制限されるものではないが、得られたペレット(A)における繊維の長さが2〜100mm、好ましくは3〜80mm、より好ましくは5〜50mmであることが必要である。繊維長が2mmより小さいと本発明の製造法を採用しても、十分な膨張が行われないため成形品の軽量化の達成は困難であり、機械的強度も充分でなく、反り変形も大きくなる場合がある。また、100mmを超えると射出成形が困難となるとともに、繊維の分散性が悪くなり、成形品の表面特性が低下する場合がある。
【0017】
ペレット(A)の作製については、例えば、以下に述べる方法が好ましく用いられる。
▲1▼集束された繊維束に熱可塑性樹脂を含浸・付着させる方法
用いる繊維を集束し、そこへ熱可塑性樹脂を含浸させ、溶融樹脂の付着した繊維束(ストランド)を引き抜き、切断することによりペレットを作製する方法であり、例えば、ガラス繊維や無機繊維,炭素繊維のように比較的折損し易い繊維を用いる場合に好ましく用いられる。繊維を適当な集束剤を用いて、好ましくは100〜10000本の範囲で集束した繊維束が用いられる。
【0018】
集束剤としては、例えば、ウレタン系,オレフィン系、アクリル系,ブタジエン系,エポキシ系などがあるが、これらの中でウレタン系、オレフィン系が好ましい。繊維束に樹脂を付着、含浸させる方法としては、例えば、溶融樹脂に繊維束を浸漬して通す方法,コーティング用ダイに繊維束を通す方法,ダイを用いて繊維束の周りに溶融樹脂を押し出す方法などが挙げられる。なお、繊維への熱可塑性樹脂の含浸性、ペレットの製造性が満足されれば集束剤の使用は必ずしも必要としない。このようにして得られたストランド状の長繊維含有熱可塑性樹脂を冷却後、適切な長さのペレットに切断することにより、繊維が互いに平行に配列され、繊維長とペレット長とが等しい繊維含有熱可塑性樹脂ペレット(A)を得ることができる。ペレットとして(A)を2〜100mmの長さに切断したものを用いると、繊維の長さはペレット長と等しい2〜100mmとなる。
【0019】
熱可塑性樹脂として、例えば、ポリプロピレン系樹脂が好ましく用いられるが、その場合、メルトインデックス(230℃、2.16kgf)が、10〜1000g/10分の範囲のものが、含侵性、成形性などの点で好ましい。なお、前記ペレットとしては、ストランド状のものを切断したものに限らず、シート状、テープ状、バンド状に成形したものを繊維長さが実質的に2〜100mmになるように切断したものであってもよい。
【0020】
該方法による場合、ペレット(A)中における繊維含有量が20〜80重量%になるように樹脂と繊維を配合するのが好ましい。20重量%未満では、ペレット作製時連続してストランドを引き出せないおそれがあり、80重量%を超えると、繊維束中への樹脂の含浸が悪くなるおそれがある。
▲2▼バンバリーミキサー等を用いて熱可塑性樹脂と繊維とを混練する方法
バンバリーミキサー等の中に熱可塑性樹脂と繊維を加え、加熱することにより樹脂を溶融させ、しかる後に押出機から押出し、ストランドを切断することによりペレットを作製する方法である。例えば、有機繊維のように比較的折損しにくい繊維を用いる場合に好ましく採られる方法である。
【0021】
該方法における繊維の量は、熱可塑性樹脂と繊維からなる全体に対し5〜80重量%になるように適宜選べばよい。
該方法による場合、(A)中の繊維はペレット中において互いに平行に配列しているとは必ずしも限らない。
2.繊維強化熱可塑性樹脂軽量成形品の製造法
本発明の繊維強化熱可塑性樹脂軽量成形品の製造法は、前記の繊維含有熱可塑性樹脂ペレット(A)単独、あるいは(A)と熱可塑性樹脂との混合物を成形原料とし、必要に応じて少量の発泡剤を配合したものを、特定条件の射出成形により成形する。
(1) 成形原料
繊維含有熱可塑性樹脂ペレット(A)については前記のとおりであるが、繊維含有量は5〜80重量%、好ましくは5〜60重量%、さらに好ましくは15〜55重量%であることが必要である。繊維含有量の異なるペレットや繊維長の異なるペレットを必要に応じて混合して用いることもできる。繊維含有量の異なるペレットを必要に応じて混合して用いる場合であっても、繊維含有量は全体に対し5〜80重量%、好ましくは5〜60重量%、さらに好ましくは15〜55重量%であることが必要である。
【0022】
また、繊維含有熱可塑性樹脂ペレット(A)と熱可塑性樹脂との混合物を成形原料として用いる場合、該熱可塑性樹脂としては、ペレット、粒状体、粉体などその形状には制限はないが、ペレットを用いることが好ましい。この場合においても、(A)と熱可塑性樹脂との混合は制限はなく、(A)と熱可塑性樹脂との混合物からなる成形原料全体に対し、繊維含有量が5〜80重量%、好ましくは5〜60重量%、さらに好ましくは15〜55重量%であることが必要である。5重量%より少ないと製品の剛性や耐衝撃性が不十分になるおそれがある。また、80重量%を超えると成形品中に未解繊の繊維が残ったり、製品の外観が悪くなる場合がある。この場合、(A)と熱可塑性樹脂との混合物からなる成形原料全体に対し、繊維含有量が5〜80重量%であればよく、(A)自身の繊維含有量は5〜80重量%に限られず、特に問わない。
【0023】
またタルク、マイカ、炭酸カルシウムなどの強化剤、充填剤、酸化防止剤、帯電防止剤、難燃剤、顔料、分散剤などを含有していてもよい。
さらに、本発明の軽量成形品の製造法(4)においては、繊維含有熱可塑性樹脂ペレット(A)100重量部、又は繊維含有熱可塑性樹脂ペレット(A)及び熱可塑性樹脂からなる混合物100重量部に対し、発泡剤を0.01〜3重量部配合した配合物が射出成形に供される。0.01重量部より少ない場合、十分な量のガスが発生せず、金型を後退させキャビティを拡大したときに、キャビティ内が負圧状態になり、安定した膨張が行われず、成形品の表面にうねりが生じ平滑性が悪くなったりするおそれがある。3重量部を超える場合、キャビティ内にガスが多くなりすぎ、成形品に空隙部の偏在等が生じ、機械的強度が低下するおそれがある。発泡剤の種類は特に問わないが、熱により分解しガスが発生するものであることが必要である。好ましい発泡剤の量は、発泡剤の種類及び成形に供される原料に含有されている繊維の種類又は量によっても異なるが、一般に、繊維量が30〜80重量%の場合、成形に供される原料100重量部に対し0.01〜0.8重量部であり、繊維量が20〜30重量%の場合、同様に0.05〜1.5重量部であり、繊維量が5〜20重量%の場合、同様に0.1〜3重量部である範囲から選ばれる。
【0024】
発泡剤としては、具体的には、シュウ酸誘導体,アゾ化合物,ヒドラジン誘導体,セミカルバジド,アジ化合物,ニトロソ化合物,トリアゾール,尿素及びその関連化合物,亜硝酸塩,水素化物,炭酸塩及び重炭酸塩等が用いられる。
(2) 成形方法
本発明の製造法は、成形原料を溶融し、閉じた金型中に該溶融原料(前記の製造法(1)にあっては溶融樹脂をいい、製造法(4)にあっては溶融樹脂に発泡剤を配合したものをいう。以下同じ。)を射出するのであるが、その際、例えば、次の▲1▼〜▲3▼で示す方法から選ばれる。
【0025】
▲1▼最終の成形品に相等する金型容積よりも小さくなるように閉じた金型中に溶融樹脂を射出し、樹脂の射出完了前若しくは完了後に金型を最終成形品の容積まで開くことにより行う方法。
この場合の最初の金型の閉じ具合は、成形原料中の繊維の含有量、繊維長さなどをもとに適宜設定すればよい。また、金型を開くタイミングは金型の温度、成形品表面のスキン層の厚み、成形品の厚みなどを考慮して適宜決定すればよい。
【0026】
具体的には、図1及び図2に示すように、固定金型及び可動金型からなり、キャビティ部が該固定金型及び可動金型から形成され、可動金型を前進又は後退させることによりキャビティ部の容積を可変とし得る金型を用いて成形を行うのがよい。即ち、閉じた金型中に溶融樹脂を射出し、樹脂の射出が完了し閉じた金型内へ樹脂が充満された直後、キャビティ部分が最終成形品に相等する状態になるように可動金型を後退させることにより成形を行うのが望ましい。可動金型を後退させる速度は、用いた樹脂等の成形原料或いは最終成形品の形状等によっても異なるが、通常、0.1〜10mm/秒の範囲で選ばれる。さらには、速度は必ずしも一定にする必要はなく、後退初期から徐々に速度を速めていってもよい。
【0027】
▲2▼キャビティ部の容積が射出される該溶融原料の全体積よりも小さくなるように閉じた状態の金型に射出し、しかる後、金型を最終成形品の容積まで開くことにより行う方法。
この方法は、前記▲1▼の方法を改良したもので、射出前の金型の閉じ方として、キャビティ部の容積が射出される該溶融原料の全体積量よりも小さくなるようにしておくものである。この状態で射出を開始すると同時にコアバックを開始する。射出される溶融樹脂は金型に押しつけられ面転写が良くなるとともに、連続してコアバックが行われるため、ヘジテーションがなく、良好な膨張性を示す。これにより、良好な表面状態をもつ成形品を得ることができる。
【0028】
射出される溶融原料の全体積量よりも、どの程度キャビティ部の容積が小さくなるように閉じさせておくかについては、用いる樹脂の種類,含有する繊維の量等に応じて適宜決めればよい。通常、キャビティ部の容積を、射出される溶融原料の全体積量に対し、60〜99%、好ましくは80〜95%の範囲にしておくのが好ましい。或いは、成形品が板状のものである場合には、溶融原料をすべて充填した場合に得られる成形品の厚みに対し、その厚みの60〜99%、好ましくは80〜95%になるようにキャビティ部を小さくすべく、金型を閉じさせておくのが好ましい。
【0029】
このように閉じた金型内に溶融原料を射出し、続いて金型を最終成形品の容積まで開く操作操作を行う。金型を開き始めるタイミングは金型の温度、成形品表面のスキン層の厚み、成形品の厚みなどを考慮して適宜決定すればよい。このコアバック操作は、射出と同時に開始してもよく、また射出が完了する直前に開始してもよい。通常、溶融原料の充填速度は極めて速いので、射出が完了する直前まで待つ必要はなく、射出開始と同時にコアバック操作を開始することが好ましく行われる。最終成形品の容積になるまで金型を開き、冷却することによって最終の軽量成形品が得られる。可動金型を後退させる速度は前記▲1▼と同様である。
【0030】
▲3▼キャビティ内に溶融樹脂を射出するのと同時又は射出開始後、可動金型を前進させて一旦圧縮し、しかる後に、金型を最終成形品の容積まで開くことにより行う方法。
この方法は、前記▲1▼及び▲2▼のように原料の射出後、直ぐに金型を開き始めるのではなく、一旦可動金型を前進させて原料を圧縮した後に開く方法である。
【0031】
この方法による場合、最初のキャビティの容積は金型を開いた状態、即ち、最終成形品の容積にしておいてもよく、それより小さい容積でもよい。低い射出圧力で樹脂の射出を行うことにより、射出充填時に生じやすい繊維の折損や配向を効果的に防ぐことが可能になるという観点から、金型を開いた状態であることが好ましい。溶融樹脂を射出するのと同時又は射出開始後、金型内に樹脂が充満するように一旦可動金型を前進させるが、この場合の前進させる距離は、通常、0.1〜50mmの範囲にするのがよい。特に、成形品表面でのエアーの巻き込みによるフローマーク等の外観不良発生防止の点から、0.1〜20mmの範囲が好ましい。前進させる速度は、通常、0.5〜30mm/秒の範囲から適宜選ばれる。
【0032】
キャビティ部を圧縮するタイミングとしては、溶融樹脂の射出と同時に開始してもよく、また射出開始後に行ってもよい。通常、溶融原料の充填速度は極めて速いので、射出が完了する直前まで待つ必要はなく、射出と同時に圧縮を開始することが好ましく行われる。
続いて金型を最終成形品の容積まで開く操作を行うが、金型を開き始めるタイミング及び可動金型の後退速度については、前記▲1▼及び▲2▼で述べたのと同様である。
(2) 金型温度
本発明においては、用いられる金型において、最終成形品の端部が形成される部分が他の部分より高い温度になるようにして成形することが必要である。ここでいう端部とは、図1及び図2に示すように、可動金型の後退により、固定金型とにより形成される面を含む最終成形品の側面部をさす。このように端部が形成される部分の温度を他の部分より高くすることにより、最終製品の端部が形成される部分が、固定金型に接することにより先に冷却され、固化されてしまうことによって引き起こされる膨張不十分を防止することができる。用いられる金型において、端部が形成される部分が他の部分より、どの程度高い温度であればよいかについては、用いる樹脂等の成形原料の種類やキャビティ部の容積によって適宜選択すればよいが、具体的には、少なくとも10℃以上高いことが好ましい。金型における該部分を他の部分より高い温度にする方法としては、特に制限はないが、該金型部分にヒーターを埋設したり、赤外線により加熱する方法等が好ましく行われる。
4.繊維強化熱可塑性樹脂軽量成形品
本発明の製造法によって得られる繊維強化熱可塑性樹脂軽量成形品は、繊維含有量は5〜80重量%、好ましくは5〜60重量%、より好ましくは15〜55重量%である。また、その空隙率は30〜80%、好ましくは40〜75%であり、より好ましくは50〜70%である。なお、空隙率とは、成形品中の繊維や樹脂などの占める容積を除いた、いわゆる空隙部の容積の全体に対する比率をいい、例えば、素材と製品の比重の比率や、製品を製造する際の発泡倍率等をもとに算出することもできる。
【0033】
本発明の製造法においては、各種軽量成形品の製造が可能である。本発明にかかる製造法によって得られる繊維強化熱可塑性樹脂軽量成形品は、特に形状や大きさに制限はないが、好適には板状成形品、特に30mm以下の板状系の成形品、型物成形品が含まれる。具体的には、自動車部品(例えば、インパネコア,バンパービーム,ドアステップ,ルーフラック,リアクォーターパネル,エアクリーナーケース,サンシェードなど)、自動二輪車等に搭載されるヘルメット収納用ボックスのように軽量でかつ耐衝撃性,強度が要求されるところに用いられる各種箱状物、家電部品、建築部材(例えば、コンクリートパネル(コンクリート型枠),ケーブルトラフ,壁材,床材など)、ユニットバスの床材、ウォーターパンなどが挙げられる。
【0034】
【実施例】
次に、実施例及び比較例により本発明をさらに詳細に説明するが、本発明はこれによって制限されるものではない。
下記の実施例及び比較例において、成形品の評価は下記の方法で行った。
600mm×300mm×肉厚tmmテスト用矩形板について、以下に述べる評価を行った。
(a)製品端部の膨張状態
▲1▼端部膨張率=a/t
▲2▼中央部膨張率=b/t
ここで、aは、図3に示すように、可動金型のコアバックの終了後も固定金型における製品の端部形成部に接していることにより形成された側面部の厚みをさす。また、bは、可動金型のコアバックの終了による膨張後の最終成形品の厚みをさす。また、tは、可動金型をコアバックする前の状態での製品の厚みをさす。
(b)反り量: テスト用矩形板を定盤上に設置し、図4に示すように左右の端が定盤から反り上がった距離を求め、次式により反り量を求めた。
【0035】
反り量= h1 +h2
(d)膨張状況: テスト用矩形板の中央部を切断し、切断面を目視により評価した。
〔実施例1〕
ポリプロピレン(出光石油化学(株)製,商品名J−6083H)96重量部に無水マレイン酸含有量1重量%の無水マレイン酸変性ポリプロピレン4重量部を加え、これをダイスの中に押し出す一方、γ−アミノプロピルトリエトキシシランで表面処理された繊維径13μmのガラス繊維をウレタン系集束剤で170本束ねたガラスロービングをダイスに引き入れ、繊維束へ樹脂を含浸させた後、繊維を引き抜き、冷却後ペレットの長さが15mmになるように切断した。得られたペレット中の繊維量は40重量%であった。
【0036】
このペレットを、射出成形機(三菱重工業株式会社製:850MGW、出光圧縮ユニット装着)にて、金型(600mm×300mm×tmm厚み可変の矩形)を用いて射出成形を行った。このとき、樹脂温度は250℃とし、金型において、成形品の端部に対応する部分は80℃とし、それ以外の部分は40℃とした。成形手順は次のとおりである。まず、予め厚み(t)が3mmの成形品を得るのに必要な溶融原料量を計量しておいた。次に、成形品の厚み(t)が3mmとなるような位置まで可動金型を前進させセットした後、先に計量しておいた量の溶融原料の射出を開始した。射出開始とほぼ同時に、最終成形品の厚みが7.5mmになるように可動金型を後退させて金型を開いた。冷却後、肉厚7.5mmの軽量成形品を得た。評価結果を第1表に示す。
【0037】
【表1】

Figure 0003960660
【0038】
〔比較例1〕
金型温度をすべて40℃の均一とした以外は、実施例1と同様に行った。評価結果を第1表に示す。
〔比較例2〕
最初から成形品の厚み(t)が3mmとなるような位置に金型コアをセットし、コアバックを行わなかった以外は、実施例1と同様に行った。評価結果を第1表に示す。
〔比較例3〕
成形原料として、ガラス繊維含有量が40重量%で、ガラス繊維の重量平均繊維長が0.42mmである短繊維ガラス繊維強化ポリプロピレンを用いた以外は、実施例1と同様にして成形品を得た。評価結果を第1表に示す。
〔実施例2〕
ポリプロピレン(出光石油化学(株)製,商品名J−6083H)95重量部に無水マレイン酸含有量1重量%の無水マレイン酸変性ポリプロピレン5重量部を加え、これを実施例1と同様にしてペレットの長さが8mmになるように切断した。得られたペレット中の繊維量は60重量%であった。このペレットにポリプロピレン(出光石油化学(株)製,商品名J−6083H)を、ガラス繊維含有量が30重量%になるようにドライブレンドし、さらにこのドライブレンド物100重量部に対し、発泡剤マスターバッチペレット〔ポリスレンEV−306G(永和化成工業株式会社製):発泡剤含有量=30重量%〕を0.3重量部ブレンドした後、以下の手順にした以外は実施例1と同様に射出成形を行った。 まず、予め厚み(t)が3mmの成形品を得るのに必要な溶融原料量を計量しておいた。次に、成形品の厚み(t)が2mmとなるような位置まで可動金型を前進させセットした後、先に計量しておいた量の溶融原料の射出を開始した。射出開始とほぼ同時に、最終成形品の厚みが9mmになるようにコアバックを行った。冷却後、肉厚9mmの軽量成形品を得た。評価結果を第1表に示す。
〔比較例4〕
金型温度をすべて50℃の均一とした以外は、実施例2と同様に行った。評価結果を第1表に示す。
〔比較例5〕
成形原料として、ガラス繊維含有量が30重量%で、ガラス繊維の重量平均繊維長が0.48mmである短繊維ガラス繊維強化ポリプロピレンを用い、さらに発泡剤マスターバッチペレット〔ポリスレンEV−306G(永和化成工業株式会社製):発泡剤含有量=30重量%〕を3重量部ブレンドしたものを用いた以外は、実施例2と同様にして成形品を得た。評価結果を第1表に示す。
〔比較例6〕
成形原料として、ガラス繊維含有量が30重量%で、ガラス繊維の重量平均繊維長が0.48mmである短繊維ガラス繊維強化ポリプロピレンを用い、さらに発泡剤を10重量部ブレンドしたものを用いて、最初から成形品の厚み(t)が3mmとなるような位置に可動金型をセットし、射出開始とほぼ同時に、最終成形品の厚みが9mmになるようにコアバックを行った。この際、金型温度をすべて50℃の均一とした。また、金型はカウンタープレッシャー用にシールを施した。それ以外は実施例2と同様におこなった。冷却後、肉厚9mmの軽量成形品を得た。評価結果を第1表に示す。
【0039】
【発明の効果】
本発明による繊維強化軽量熱可塑性樹脂軽量成形品の製造法は、発泡剤を多量に用いることなく製造することができ、得られた成形体は、軽量であるとともに、表面状態等の外観に極めて優れ、しかも表面にスキン層が形成されるため、繊維の補強と相まって高強度、高剛性である。
【図面の簡単な説明】
【図1】溶融樹脂充填完了時点であり、未膨張状態における固定金型及び可動
金型の概略平面図
【図2】可動金型を後退させ、膨張完了状態における固定金型及び可動金型の
概略平面図
【図3】端部膨張率及び中央部膨張率の測定における試験用矩形板の中央部で
の概略断面図
【図4】反り量試験用矩形板の概略平面図
【符号の説明】
1: 固定金型
2: 可動金型
3: 金型における加熱された部分
4: 溶融樹脂
5: スプルー
6: 初期キャビティ部
7: 最終成形品におけるキャビティ部
8: 端部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a fiber-reinforced thermoplastic resin lightweight molded article, and in particular, by injection molding using a specific fiber-reinforced thermoplastic resin pellet, it is lightweight, has a good surface state, and has high strength and high rigidity. It is related with the method of manufacturing the fiber reinforced thermoplastic resin lightweight molded article which is.
[0002]
[Prior art]
For the purpose of improving the tensile strength, rigidity, and heat resistance, conventionally, various fibers have been widely blended with resin. However, when the amount of fibers is increased, high strength is achieved. There was a drawback that the specific gravity of the molded product was high.
On the other hand, as a method for obtaining a lightweight molded article, a foam injection molding method using a foaming agent at the time of molding is known (Japanese Patent Laid-Open No. 7-247679, etc.). A considerable amount of foaming agent must be used, and even if a large amount of foaming agent is used, it is not so easy to increase the expansion ratio, and sufficient weight reduction cannot be achieved. Furthermore, the surface appearance of the molded product is inferior due to non-uniform foaming, and a large hollow portion is formed inside, and a molded product satisfying in terms of strength and rigidity cannot be obtained.
[0003]
In addition, even when the resin is blended with fibers and injection molding is performed using a foaming agent, as described above, sufficient foaming cannot be obtained at the time of injection molding, or the molded product surface is defective such as a silver mark. At present, the phenomenon has occurred and there are many problems in terms of strength, and it has not been put into practical use.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing a lightweight molded article excellent in surface appearance, strength and rigidity using a specific fiber-containing thermoplastic resin pellet having a long fiber length without using a large amount of a foaming agent. And
[0005]
[Means for Solving the Problems]
The present inventors have intensively studied to obtain a lightweight fiber-reinforced thermoplastic resin molded product that satisfies weight reduction and strength, has an excellent surface appearance, and is sufficiently expanded on all surfaces of the molded product by injection molding. As a result, for example, the molten resin is injected into a closed mold so as to be smaller than the mold volume corresponding to the final molded product, and the mold is filled up to the volume of the final molded product before or after the resin injection is completed. Although the method of taking the opening method was previously proposed (Japanese Patent Application No. 8-277920, Japanese Patent Application No. 8-298599, Japanese Patent Application No. 8-298600), a combination of these specific molding raw materials and molding methods In addition to the above, it has been found that the object can be achieved more effectively by molding under specific mold conditions. The present invention has been completed based on such findings.
[0006]
That is, this invention provides the manufacturing method of the following fiber reinforced thermoplastic resin lightweight molded articles.
(1) Fiber-containing thermoplastic resin pellet (A) having a fiber length of 2 to 100 mm in the pellet, or a mixture of the pellet (A) and the thermoplastic resin as a molding raw material, and the fiber content in the molding raw material Melting and kneading the amount of 5 to 80% by weight, and injecting the molten resin into a closed mold so as to be smaller than the mold volume equivalent to the final molded product, before or after completion of resin injection In manufacturing a lightweight fiber reinforced thermoplastic resin molded product by opening the mold to the volume of the final molded product later,The mold has a female mold and a male mold slidably fitted to the female mold, and the volume of the cavity defined by the female mold and the male mold is variable, The side part on which the male mold slides on the inner surface of the female mold is hotter than the other parts.A process for producing a lightweight molded product of fiber reinforced thermoplastic resin characterized by the above.
(2) When the same raw material as in the above (1) is melt-kneaded and the molten raw material is injected into a closed mold, the volume of the cavity portion is made smaller than the entire volume of the molten raw material to be injected. In order to produce a fiber-reinforced thermoplastic resin lightweight molded product by injecting into a closed mold, and then opening the mold to the volume of the final molded product,The mold has a female mold and a male mold slidably fitted to the female mold, and the volume of the cavity defined by the female mold and the male mold is variable, The side part on which the male mold slides on the inner surface of the female mold is hotter than the other parts.A process for producing a lightweight molded product of fiber reinforced thermoplastic resin characterized by the above.
(3) The same raw materials as in (1) above are melted and kneaded, and simultaneously with the injection of the molten resin into the cavity or after the start of injection, the movable mold is advanced and compressed once, and then the mold is finalized. In manufacturing a fiber reinforced thermoplastic resin lightweight molded product by opening up to the volume of the molded product,The mold has a female mold and a male mold slidably fitted to the female mold, and the volume of the cavity defined by the female mold and the male mold is variable, The side part on which the male mold slides on the inner surface of the female mold is hotter than the other parts.A process for producing a lightweight molded product of fiber reinforced thermoplastic resin characterized by the above.
(4) In the manufacturing method of said (1)-(3), as a material used for melt-kneading, the fiber-containing thermoplastic resin pellet (A) whose length of the fiber in a pellet is 2-100 mm, or this pellet ( A mixture of A) and a thermoplastic resin is used as a forming raw material, and 100 parts by weight of the fiber content in the forming raw material is 5 to 80% by weight, and 0.1 to 3 parts by weight of a foaming agent is blended. A method for producing a lightweight molded article of fiber-reinforced thermoplastic resin according to any one of (1) to (3), wherein the method is used.
(5) Production of fiber-reinforced thermoplastic resin lightweight molded article according to any one of (1) to (3), wherein the porosity of the lightweight molded article in (1) to (3) is 30 to 80%. Law.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described.
1. Fiber-containing thermoplastic resin pellet (A)
In the method for producing a fiber-reinforced thermoplastic resin lightweight molded article of the present invention, fiber-containing thermoplastic resin pellets (A) are used as a molding raw material.
(1) Thermoplastic resin
There is no particular limitation on the thermoplastic resin used here, for example, polyolefin resin, polystyrene resin, polyvinyl chloride resin, polyamide resin, polyester resin, polyacetal resin, polycarbonate resin, polyaromatic ether or Examples include thioether resins, polyaromatic ester resins, polysulfone resins, and acrylate resins.
[0008]
Examples of the polyolefin resin include homopolymers of α-olefins such as ethylene and propylene, and copolymers of these with other copolymerizable unsaturated monomers.
Examples of the styrene resin include homopolymers such as styrene and α-methylstyrene, and copolymers with unsaturated monomers copolymerizable therewith.
[0009]
Examples of the polyvinyl chloride resin include vinyl chloride homopolymers and copolymers with unsaturated monomers copolymerizable with vinyl chloride.
Examples of the polyamide-based resin include 6-nylon, 12-nylon, 6,6-nylon, 6,10-nylon, 6,12-nylon, and 11-nylon.
[0010]
Examples of the polyester resin include polyethylene terephthalate and polybutylene terephthalate.
Examples of the polyacetal resin include a homopolymer polyoxymethylene and a formaldehyde-ethylene oxide copolymer obtained from trioxane and ethylene oxide.
[0011]
As the polycarbonate resin, 4,4'-dihydroxydiarylalkane polycarbonate, particularly bisphenol A polycarbonate is preferably used. Also, modified bisphenol A-based polycarbonates, flame retardant bisphenol A-based polycarbonates, and the like can be used.
Examples of the polyaromatic ether or thioether-based resin include polyphenylene ether, polyphenylene ether grafted with styrene, polyether ether ketone, and polyphenylene sulfide.
[0012]
Examples of the polyaromatic ester-based resin include polyarylate.
Examples of the polysulfone resin include polysulfone, polyethersulfone, and polyarylsulfone.
Examples of the acrylate resin include methacrylic acid ester polymers and acrylic acid ester polymers.
[0013]
In the present invention, the above thermoplastic resins may be used alone or in combination of two or more. Furthermore, for example, acid-modified polyolefin resins modified with unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid and fumaric acid, acid anhydrides such as maleic anhydride or derivatives thereof are also preferably used. Of these, maleic anhydride is particularly preferred.
[0014]
These unsaturated carboxylic acids and derivatives thereof may be used singly or in combination of two or more. There is no particular limitation on the modification method.
(2) Fiber
The fiber used in the present invention is not particularly limited. Glass fiber; Boron fiber, Silicon carbide fiber, Alumina fiber, Silicon nitride fiber, Zirconia fiber ceramic fiber; Copper fiber, Brass fiber, Steel fiber, Stainless steel fiber, Aluminum fiber, Aluminum alloy fiber and other metal fiber; Polyester fiber, Organic fibers such as polyamide fiber, aramid fiber and polyarylate fiber; carbon fiber and the like can be mentioned. Glass fibers are preferably used, but two or more of the above fibers may be used in combination.
[0015]
When glass fiber is used, one that has been surface treated with a coupling agent is preferred. As the coupling agent, any of silane coupling agents such as aminosilane and epoxysilane, and titanium coupling agents can be preferably used. Moreover, the film-forming substance for glass can be used together with a coupling agent. The film-forming substance is not particularly limited, and examples thereof include polyester-based, urethane-based, epoxy-based, acrylic-based, vinyl acetate-based, and isocyanate-based polymers. As the glass fibers, glass fibers such as E-glass and S-glass are preferably used.
[0016]
In the present invention, the fiber preferably has an average fiber diameter of 20 μm or less. Furthermore, it is preferably 1 to 17 μm, more preferably 3 to 14 μm. If it is smaller than 1 μm, it becomes difficult to wet and impregnate the resin during the production of pellets, and if it exceeds 20 μm, the fiber tends to be damaged during melt-kneading.
(3) Method for producing fiber-containing thermoplastic resin pellet (A)
Although it does not restrict | limit especially about preparation of a fiber containing thermoplastic resin pellet (A), The length of the fiber in the obtained pellet (A) is 2-100 mm, Preferably it is 3-80 mm, More preferably, it is 5 It must be ˜50 mm. If the fiber length is less than 2 mm, even if the manufacturing method of the present invention is adopted, sufficient expansion is not performed, so it is difficult to achieve a lightweight molded product, mechanical strength is not sufficient, and warping deformation is large. There is a case. Moreover, when it exceeds 100 mm, while injection molding becomes difficult, the dispersibility of a fiber worsens and the surface characteristic of a molded article may fall.
[0017]
For producing the pellet (A), for example, the method described below is preferably used.
(1) A method of impregnating and adhering a bundle of fibers with a thermoplastic resin
It is a method of producing pellets by bundling the fibers used, impregnating them with a thermoplastic resin, drawing out a fiber bundle (strand) to which the molten resin is adhered, and cutting it. For example, glass fibers, inorganic fibers, carbon fibers It is preferably used when using fibers that are relatively easy to break. A fiber bundle in which fibers are bundled with an appropriate sizing agent, preferably in the range of 100 to 10,000 is used.
[0018]
Examples of the sizing agent include urethane, olefin, acrylic, butadiene, and epoxy. Of these, urethane and olefin are preferable. Examples of methods for attaching and impregnating resin to the fiber bundle include, for example, a method in which the fiber bundle is immersed in the molten resin, a method in which the fiber bundle is passed through the coating die, and a molten resin is extruded around the fiber bundle using the die. The method etc. are mentioned. In addition, if the impregnation property of the thermoplastic resin to the fiber and the manufacturability of the pellet are satisfied, the use of the sizing agent is not necessarily required. The strand-like long fiber-containing thermoplastic resin thus obtained is cooled and then cut into pellets of an appropriate length so that the fibers are arranged in parallel with each other, and the fiber length and the pellet length are equal. A thermoplastic resin pellet (A) can be obtained. If a pellet obtained by cutting (A) into a length of 2 to 100 mm is used, the fiber length is 2 to 100 mm, which is equal to the pellet length.
[0019]
As the thermoplastic resin, for example, a polypropylene resin is preferably used. In that case, a resin having a melt index (230 ° C., 2.16 kgf) in the range of 10 to 1000 g / 10 min is impregnated, moldability, etc. This is preferable. The pellets are not limited to those obtained by cutting strands, but are formed into sheets, tapes, or bands and cut so that the fiber length is substantially 2 to 100 mm. There may be.
[0020]
In the case of this method, it is preferable to mix the resin and the fiber so that the fiber content in the pellet (A) is 20 to 80% by weight. If the amount is less than 20% by weight, the strands may not be continuously drawn out during pellet production. If the amount exceeds 80% by weight, the impregnation of the resin into the fiber bundle may be deteriorated.
(2) Method of kneading thermoplastic resin and fiber using a Banbury mixer or the like
In this method, a thermoplastic resin and fibers are added to a Banbury mixer and the like, and the resin is melted by heating, and then extruded from an extruder and cut into strands to produce pellets. For example, it is a method preferably employed when using fibers that are relatively difficult to break, such as organic fibers.
[0021]
What is necessary is just to select suitably the quantity of the fiber in this method so that it may become 5 to 80 weight% with respect to the whole which consists of a thermoplastic resin and a fiber.
In the case of this method, the fibers in (A) are not necessarily arranged in parallel in the pellet.
2. Manufacturing method of lightweight molded product of fiber reinforced thermoplastic resin
The method for producing a fiber-reinforced thermoplastic resin lightweight molded article according to the present invention uses the above-mentioned fiber-containing thermoplastic resin pellet (A) alone or a mixture of (A) and a thermoplastic resin as a molding raw material, and a small amount as required. A blended foaming agent is molded by injection molding under specific conditions.
(1) Molding raw material
The fiber-containing thermoplastic resin pellet (A) is as described above, but the fiber content needs to be 5 to 80% by weight, preferably 5 to 60% by weight, and more preferably 15 to 55% by weight. is there. Pellets having different fiber contents and pellets having different fiber lengths can be mixed and used as necessary. Even when pellets having different fiber contents are mixed as necessary, the fiber content is 5 to 80% by weight, preferably 5 to 60% by weight, more preferably 15 to 55% by weight based on the whole. It is necessary to be.
[0022]
In addition, when a mixture of the fiber-containing thermoplastic resin pellet (A) and the thermoplastic resin is used as a forming raw material, the thermoplastic resin is not limited in its shape such as pellet, granule, powder, etc. Is preferably used. Even in this case, the mixing of the (A) and the thermoplastic resin is not limited, and the fiber content is 5 to 80% by weight, preferably based on the entire forming raw material composed of the mixture of the (A) and the thermoplastic resin. It is necessary to be 5 to 60% by weight, more preferably 15 to 55% by weight. If it is less than 5% by weight, the product may have insufficient rigidity and impact resistance. On the other hand, if it exceeds 80% by weight, undefibrated fibers may remain in the molded product, or the appearance of the product may deteriorate. In this case, the fiber content may be 5 to 80% by weight with respect to the entire forming raw material composed of the mixture of (A) and the thermoplastic resin, and (A) the fiber content itself is 5 to 80% by weight. There is no particular limitation.
[0023]
Further, it may contain reinforcing agents such as talc, mica and calcium carbonate, fillers, antioxidants, antistatic agents, flame retardants, pigments, dispersants and the like.
Furthermore, in the manufacturing method (4) of the lightweight molded article of the present invention, 100 parts by weight of the fiber-containing thermoplastic resin pellet (A), or 100 parts by weight of a mixture comprising the fiber-containing thermoplastic resin pellet (A) and the thermoplastic resin. On the other hand, a blend containing 0.01 to 3 parts by weight of a foaming agent is used for injection molding. When the amount is less than 0.01 parts by weight, a sufficient amount of gas is not generated, and when the mold is retracted and the cavity is enlarged, the inside of the cavity is in a negative pressure state and stable expansion is not performed. There is a possibility that undulations may occur on the surface and smoothness may deteriorate. When the amount exceeds 3 parts by weight, the amount of gas in the cavity becomes excessive, and the molded product may have uneven distribution of voids, which may reduce the mechanical strength. The type of foaming agent is not particularly limited, but it is necessary that the foaming agent be decomposed by heat to generate gas. The preferred amount of foaming agent varies depending on the type of foaming agent and the type or amount of fiber contained in the raw material used for molding, but generally, when the amount of fiber is 30 to 80% by weight, it is used for molding. When the raw material is 100 to 100 parts by weight and the fiber amount is 20 to 30% by weight, it is similarly 0.05 to 1.5 parts by weight and the fiber amount is 5 to 20%. In the case of% by weight, it is similarly selected from the range of 0.1 to 3 parts by weight.
[0024]
Specific examples of blowing agents include oxalic acid derivatives, azo compounds, hydrazine derivatives, semicarbazides, azides, nitroso compounds, triazoles, urea and related compounds, nitrites, hydrides, carbonates and bicarbonates. Used.
(2) Molding method
In the production method of the present invention, a molding raw material is melted, and the molten raw material (in the production method (1), the molten resin is referred to as a molten resin in the production method (4)), The same applies hereinafter), and is selected from the following methods (1) to (3).
[0025]
(1) The molten resin is injected into a closed mold so as to be smaller than the mold volume equivalent to the final molded product, and the mold is opened to the final molded product volume before or after the resin injection is completed. How to do by.
The closing condition of the first mold in this case may be appropriately set based on the fiber content, fiber length, etc. in the forming raw material. The timing for opening the mold may be appropriately determined in consideration of the temperature of the mold, the thickness of the skin layer on the surface of the molded product, the thickness of the molded product, and the like.
[0026]
Specifically, as shown in FIG. 1 and FIG. 2, a fixed mold and a movable mold are formed, and a cavity portion is formed from the fixed mold and the movable mold, and the movable mold is moved forward or backward. It is preferable to perform molding using a mold that can change the volume of the cavity. That is, the molten resin is injected into the closed mold, and immediately after the injection of the resin is completed and the resin is filled into the closed mold, the movable mold is set so that the cavity part is equivalent to the final molded product. It is desirable to perform molding by retreating. The speed at which the movable mold is retracted varies depending on the molding raw material such as the resin used or the shape of the final molded product, but is usually selected in the range of 0.1 to 10 mm / second. Furthermore, the speed does not necessarily have to be constant, and the speed may be gradually increased from the initial reverse.
[0027]
(2) A method of injecting the mold into a closed mold so that the volume of the cavity portion is smaller than the total volume of the molten raw material to be injected, and then opening the mold to the volume of the final molded product. .
This method is an improvement of the above method (1), and as a method of closing the mold before injection, the volume of the cavity portion is made smaller than the total volume of the molten raw material to be injected. It is. In this state, the core back is started simultaneously with the start of injection. The injected molten resin is pressed against the mold to improve surface transfer, and since the core back is continuously performed, there is no hesitation and good expansibility is exhibited. Thereby, a molded article having a good surface state can be obtained.
[0028]
What is necessary is just to determine suitably according to the kind of resin to be used, the quantity of the fiber to contain, etc. about how much the volume of a cavity part is closed so that it may become smaller than the total volume of the molten raw material injected. Usually, the volume of the cavity portion is preferably set in the range of 60 to 99%, preferably 80 to 95% with respect to the total volume of the molten raw material to be injected. Alternatively, when the molded product is plate-shaped, it is 60 to 99%, preferably 80 to 95% of the thickness of the molded product obtained when all the molten raw materials are filled. It is preferable to close the mold in order to make the cavity portion small.
[0029]
The molten raw material is injected into the mold thus closed, and then the operation of opening the mold to the volume of the final molded product is performed. The timing for opening the mold may be appropriately determined in consideration of the temperature of the mold, the thickness of the skin layer on the surface of the molded product, the thickness of the molded product, and the like. This core back operation may be started simultaneously with the injection, or may be started immediately before the injection is completed. Usually, since the filling speed of the molten raw material is extremely high, it is not necessary to wait until the injection is completed, and it is preferable to start the core back operation simultaneously with the start of the injection. The final lightweight molded product is obtained by opening the mold until it reaches the volume of the final molded product and cooling. The speed at which the movable mold is retracted is the same as in the above (1).
[0030]
(3) A method in which the movable mold is advanced and compressed once at the same time as or after the injection of the molten resin into the cavity, and then the mold is opened to the volume of the final molded product.
This method is a method in which the mold is not opened immediately after the injection of the raw material as in the above (1) and (2), but is opened after the movable mold is once advanced to compress the raw material.
[0031]
According to this method, the volume of the first cavity may be in a state where the mold is opened, that is, the volume of the final molded product, or may be a smaller volume. From the viewpoint that it is possible to effectively prevent fiber breakage and orientation that are likely to occur during injection filling by injecting the resin at a low injection pressure, it is preferable that the mold is open. At the same time as or after the start of injection of the molten resin, the movable mold is once advanced so that the resin fills the mold. In this case, the advance distance is usually in the range of 0.1 to 50 mm. It is good to do. In particular, the range of 0.1 to 20 mm is preferable from the viewpoint of preventing appearance defects such as flow marks due to air entrainment on the surface of the molded product. The speed to advance is usually selected from the range of 0.5 to 30 mm / second.
[0032]
The timing for compressing the cavity portion may be started simultaneously with the injection of the molten resin or after the start of the injection. Usually, since the filling speed of the molten raw material is extremely high, it is not necessary to wait until just before the injection is completed, and it is preferable to start the compression simultaneously with the injection.
Subsequently, an operation of opening the mold to the volume of the final molded product is performed. The timing at which the mold starts to open and the retracting speed of the movable mold are the same as described in the above (1) and (2).
(2) Mold temperature
In the present invention, it is necessary to mold the mold to be used so that the portion where the end portion of the final molded product is formed has a higher temperature than the other portions. As shown in FIG. 1 and FIG. 2, the term “end portion” as used herein refers to a side surface portion of a final molded product including a surface formed by a fixed mold by retreating a movable mold. By making the temperature of the portion where the end portion is formed in this way higher than the other portions, the portion where the end portion of the final product is formed is cooled and solidified first by contacting the fixed mold. Insufficient expansion caused by this can be prevented. In the mold used, the temperature at which the end part is formed should be appropriately selected depending on the type of molding raw material such as resin used and the volume of the cavity part. However, specifically, it is preferably at least 10 ° C. or higher. There is no particular limitation on the method for raising the temperature of the part of the mold compared to other parts, but a method of burying a heater in the mold part or heating with infrared rays is preferably performed.
4). Fiber reinforced thermoplastic resin lightweight molded product
The fiber-reinforced thermoplastic resin lightweight molded article obtained by the production method of the present invention has a fiber content of 5 to 80% by weight, preferably 5 to 60% by weight, more preferably 15 to 55% by weight. Moreover, the porosity is 30 to 80%, preferably 40 to 75%, and more preferably 50 to 70%. The porosity is the ratio of the volume of the void, excluding the volume occupied by fibers and resins in the molded product. For example, the ratio of the specific gravity of the material and product, It can also be calculated on the basis of the foaming ratio.
[0033]
In the production method of the present invention, various lightweight molded products can be produced. The fiber-reinforced thermoplastic resin lightweight molded product obtained by the production method according to the present invention is not particularly limited in shape or size, but is preferably a plate-shaped molded product, particularly a plate-shaped molded product or mold of 30 mm or less. Includes molded articles. Specifically, it is lightweight like a helmet storage box mounted on automobile parts (for example, instrument panel cores, bumper beams, door steps, roof racks, rear quarter panels, air cleaner cases, sunshades, etc.), motorcycles, etc. Various boxes, home appliance parts, building materials (for example, concrete panels (concrete formwork), cable troughs, wall materials, floor materials, etc.) used for places where impact resistance and strength are required, flooring for unit baths And water pans.
[0034]
【Example】
EXAMPLES Next, although an Example and a comparative example demonstrate this invention further in detail, this invention is not restrict | limited by this.
In the following examples and comparative examples, the molded products were evaluated by the following methods.
The following evaluation was performed on a rectangular plate for 600 mm × 300 mm × thickness tmm test.
(A) Expansion state of product end
(1) End part expansion coefficient = a / t
(2) Center part expansion coefficient = b / t
Here, as shown in FIG. 3, “a” indicates the thickness of the side surface portion formed by being in contact with the end portion forming portion of the product in the fixed die even after the core back of the movable die is finished. Further, b represents the thickness of the final molded product after expansion due to the end of the core back of the movable mold. Further, t represents the thickness of the product in a state before the movable mold is core-backed.
(B) Warpage amount: A test rectangular plate was placed on the surface plate, the distance at which the left and right ends warped from the surface plate as shown in FIG. 4 was determined, and the amount of warpage was determined by the following equation.
[0035]
Warpage amount = h1+ H2
(D) Expansion state: The central part of the test rectangular plate was cut, and the cut surface was visually evaluated.
[Example 1]
While 96 parts by weight of polypropylene (trade name J-6083H, manufactured by Idemitsu Petrochemical Co., Ltd.) was added 4 parts by weight of maleic anhydride-modified polypropylene having a maleic anhydride content of 1% by weight, this was extruded into a die, while γ -A glass roving in which 170 glass fibers having a fiber diameter of 13 μm surface-treated with aminopropyltriethoxysilane were bundled with urethane sizing agent was drawn into a die, the resin was impregnated into the fiber bundle, and then the fiber was drawn out and cooled. The pellet was cut to a length of 15 mm. The amount of fibers in the obtained pellets was 40% by weight.
[0036]
The pellets were injection-molded using an injection molding machine (Mitsubishi Heavy Industries, Ltd .: 850MGW, equipped with an Idemitsu compression unit) using a mold (rectangular shape with a thickness of 600 mm × 300 mm × tmm). At this time, the resin temperature was 250 ° C., the portion of the mold corresponding to the end of the molded product was 80 ° C., and other portions were 40 ° C. The molding procedure is as follows. First, the amount of molten raw material necessary to obtain a molded product having a thickness (t) of 3 mm was measured in advance. Next, after the movable mold was advanced and set to a position where the thickness (t) of the molded product was 3 mm, injection of the molten raw material in the amount weighed earlier was started. Almost simultaneously with the start of injection, the movable mold was moved backward to open the mold so that the final molded product had a thickness of 7.5 mm. After cooling, a lightweight molded product having a thickness of 7.5 mm was obtained. The evaluation results are shown in Table 1.
[0037]
[Table 1]
Figure 0003960660
[0038]
[Comparative Example 1]
The same operation as in Example 1 was performed except that the mold temperature was all uniform at 40 ° C. The evaluation results are shown in Table 1.
[Comparative Example 2]
The same procedure as in Example 1 was performed except that the mold core was set at a position where the thickness (t) of the molded product was 3 mm from the beginning and the core back was not performed. The evaluation results are shown in Table 1.
[Comparative Example 3]
A molded product was obtained in the same manner as in Example 1 except that a short fiber glass fiber reinforced polypropylene having a glass fiber content of 40% by weight and a glass fiber weight average fiber length of 0.42 mm was used. It was. The evaluation results are shown in Table 1.
[Example 2]
5 parts by weight of maleic anhydride-modified polypropylene having a maleic anhydride content of 1% by weight was added to 95 parts by weight of polypropylene (trade name J-6083H, manufactured by Idemitsu Petrochemical Co., Ltd.). Was cut to a length of 8 mm. The amount of fibers in the obtained pellets was 60% by weight. Polypropylene (trade name J-6083H, manufactured by Idemitsu Petrochemical Co., Ltd.) was dry blended to the pellets such that the glass fiber content was 30% by weight, and a foaming agent was added to 100 parts by weight of the dry blend. Master batch pellets [Polyslen EV-306G (manufactured by Eiwa Kasei Kogyo Co., Ltd.): foaming agent content = 30 wt%] were blended in 0.3 parts by weight and then injected in the same manner as in Example 1 except that the following procedure was followed. Molding was performed. First, the amount of molten raw material necessary to obtain a molded product having a thickness (t) of 3 mm was measured in advance. Next, after the movable mold was advanced and set to a position where the thickness (t) of the molded product was 2 mm, injection of the molten raw material in the previously weighed amount was started. Almost simultaneously with the start of injection, the core back was performed so that the final molded product had a thickness of 9 mm. After cooling, a lightweight molded product having a thickness of 9 mm was obtained. The evaluation results are shown in Table 1.
[Comparative Example 4]
The same procedure as in Example 2 was performed except that the mold temperature was all uniform at 50 ° C. The evaluation results are shown in Table 1.
[Comparative Example 5]
As a forming raw material, a short fiber glass fiber reinforced polypropylene having a glass fiber content of 30% by weight and a glass fiber weight average fiber length of 0.48 mm is used. Further, a foaming agent master batch pellet [Polyslen EV-306G (Yewa Kasei) A molded product was obtained in the same manner as in Example 2 except that a blend of 3 parts by weight of (manufactured by Kogyo Co., Ltd.): foaming agent content = 30 wt%] was used. The evaluation results are shown in Table 1.
[Comparative Example 6]
As a forming raw material, using a short fiber glass fiber reinforced polypropylene having a glass fiber content of 30% by weight and a glass fiber weight average fiber length of 0.48 mm, and further blended with 10 parts by weight of a foaming agent, From the beginning, the movable mold was set at a position where the thickness (t) of the molded product was 3 mm, and core back was performed so that the final molded product had a thickness of 9 mm almost simultaneously with the start of injection. At this time, the mold temperatures were all made uniform at 50 ° C. The mold was sealed for counter pressure. Otherwise, the same procedure as in Example 2 was performed. After cooling, a lightweight molded product having a thickness of 9 mm was obtained. The evaluation results are shown in Table 1.
[0039]
【The invention's effect】
The manufacturing method of the fiber-reinforced lightweight thermoplastic resin lightweight molded product according to the present invention can be manufactured without using a large amount of foaming agent, and the obtained molded product is lightweight and extremely in appearance such as surface condition. Excellent, and since a skin layer is formed on the surface, it has high strength and high rigidity combined with fiber reinforcement.
[Brief description of the drawings]
FIG. 1 is a point when a molten resin filling is completed, and a fixed mold and a movable in an unexpanded state
Schematic plan view of mold
FIG. 2 shows that the movable mold is retracted and the fixed mold and the movable mold are in an expanded state.
Schematic plan view
[Fig. 3] In the central part of the test rectangular plate in the measurement of the end part expansion coefficient and the center part expansion coefficient
Schematic cross section of
FIG. 4 is a schematic plan view of a rectangular plate for warpage test.
[Explanation of symbols]
1: Fixed mold
2: Movable mold
3: Heated part in the mold
4: Molten resin
5: Sprue
6: Initial cavity
7: Cavity in the final molded product
8: Edge

Claims (5)

ペレット中の繊維の長さが2〜100mmである繊維含有熱可塑性樹脂ペレット(A)、又は該ペレット(A)と熱可塑性樹脂の混合物を成形原料とし、該成形原料中の繊維含有量が5〜80重量%であるものを溶融混練し、最終の成形品に相等する金型容積よりも小さくなるように閉じた金型中に溶融樹脂を射出し、樹脂の射出完了前若しくは完了後に金型を最終成形品の容積まで開くことにより繊維強化熱可塑性樹脂軽量成形品を製造するにあたり、
前記金型は、雌型と、この雌型に摺動自在に嵌合する雄型と、を有し、前記雌型と前記雄型とで画成されるキャビティの容積が可変であって、
前記雌型の内面において前記雄型が摺動する側面部分が他の部分より高温である
ことを特徴とする繊維強化熱可塑性樹脂軽量成形品の製造法。
A fiber-containing thermoplastic resin pellet (A) having a fiber length of 2 to 100 mm in a pellet or a mixture of the pellet (A) and a thermoplastic resin is used as a forming raw material, and the fiber content in the forming raw material is 5 Melting and kneading what is -80% by weight, injecting molten resin into a closed mold so as to be smaller than the mold volume equivalent to the final molded product, and mold before or after completion of resin injection In manufacturing a lightweight molded product of fiber reinforced thermoplastic resin by opening up to the volume of the final molded product,
The mold has a female mold and a male mold slidably fitted to the female mold, and the volume of the cavity defined by the female mold and the male mold is variable,
A method for producing a lightweight molded article of fiber reinforced thermoplastic resin , wherein a side portion on which the male die slides is hotter than the other portion on the inner surface of the female die .
ペレット中の繊維の長さが2〜100mmである繊維含有熱可塑性樹脂ペレット(A)、又は該ペレット(A)と熱可塑性樹脂の混合物を成形原料とし、該成形原料中の繊維含有量が5〜80重量%であるものを溶融混練し、閉じた金型中に該溶融した原料を射出するにあたり、キャビティ部の容積が射出される該溶融原料の全体積よりも小さくなるように閉じた状態の金型に射出し、しかる後、金型を最終成形品の容積まで開くことにより繊維強化熱可塑性樹脂軽量成形品を製造するにあたり、
前記金型は、雌型と、この雌型に摺動自在に嵌合する雄型と、を有し、前記雌型と前記雄型とで画成されるキャビティの容積が可変であって、
前記雌型の内面において前記雄型が摺動する側面部分が他の部分より高温である
ことを特徴とする繊維強化熱可塑性樹脂軽量成形品の製造法。
A fiber-containing thermoplastic resin pellet (A) having a fiber length of 2 to 100 mm in a pellet or a mixture of the pellet (A) and a thermoplastic resin is used as a forming raw material, and the fiber content in the forming raw material is 5 When melted and kneaded at -80% by weight and injecting the molten raw material into a closed mold, the cavity is closed so that the volume of the cavity is smaller than the total volume of the molten raw material to be injected In order to manufacture a lightweight fiber reinforced thermoplastic resin molded product by injecting into the mold, and then opening the mold to the volume of the final molded product,
The mold has a female mold and a male mold slidably fitted to the female mold, and the volume of the cavity defined by the female mold and the male mold is variable,
A method for producing a lightweight molded article of fiber reinforced thermoplastic resin , wherein a side portion on which the male die slides is hotter than the other portion on the inner surface of the female die .
ペレット中の繊維の長さが2〜100mmである繊維含有熱可塑性樹脂ペレット(A)、又は該ペレット(A)と熱可塑性樹脂の混合物を成形原料とし、該成形原料中の繊維含有量が5〜80重量%であるものを溶融混練し、キャビティ内に溶融樹脂を射出するのと同時又は射出開始後、可動金型を前進させて一旦圧縮し、しかる後に、金型を最終成形品の容積まで開くことにより繊維強化熱可塑性樹脂軽量成形品を製造するにあたり、
前記金型は、雌型と、この雌型に摺動自在に嵌合する雄型と、を有し、前記雌型と前記雄型とで画成されるキャビティの容積が可変であって、
前記雌型の内面において前記雄型が摺動する側面部分が他の部分より高温である
ことを特徴とする繊維強化熱可塑性樹脂軽量成形品の製造法。
A fiber-containing thermoplastic resin pellet (A) having a fiber length of 2 to 100 mm in a pellet or a mixture of the pellet (A) and a thermoplastic resin is used as a forming raw material, and the fiber content in the forming raw material is 5 -80% by weight is melt-kneaded and the molten resin is injected into the cavity at the same time or after the injection starts, the movable mold is advanced and compressed once, and then the mold is filled with the volume of the final molded product. In manufacturing a lightweight molded product of fiber reinforced thermoplastic resin by opening up to
The mold has a female mold and a male mold slidably fitted to the female mold, and the volume of the cavity defined by the female mold and the male mold is variable,
A method for producing a lightweight molded article of fiber reinforced thermoplastic resin , wherein a side portion on which the male die slides is hotter than the other portion on the inner surface of the female die .
請求項1〜3において、溶融混練に供する材料として、ペレット中の繊維の長さが2〜100mmである繊維含有熱可塑性樹脂ペレット(A)、又は該ペレット(A)と熱可塑性樹脂の混合物を成形原料とし、該成形原料中の繊維含有量が5〜80重量%であるもの100重量部に対し、発泡剤を0.01〜3重量部配合したものを用いることを特徴とする請求項1〜3のいずれかに記載の繊維強化熱可塑性樹脂軽量成形品の製造法。  In Claims 1-3, as a material used for melt-kneading, a fiber-containing thermoplastic resin pellet (A) having a fiber length of 2 to 100 mm in a pellet, or a mixture of the pellet (A) and a thermoplastic resin is used. The molding raw material is used by blending 0.01 to 3 parts by weight of a foaming agent with respect to 100 parts by weight of the fiber content in the molding raw material of 5 to 80% by weight. The manufacturing method of the fiber reinforced thermoplastic resin lightweight molded article in any one of -3. 請求項1〜3における軽量成形品の空隙率が、30〜80%である請求項1〜3のいずれかに記載の繊維強化熱可塑性樹脂軽量成形品の製造法。  The manufacturing method of the fiber reinforced thermoplastic resin lightweight molded article in any one of Claims 1-3 whose porosity of the lightweight molded article in Claims 1-3 is 30 to 80%.
JP17369197A 1997-06-30 1997-06-30 Manufacturing method of lightweight molded product of fiber reinforced thermoplastic resin Expired - Fee Related JP3960660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17369197A JP3960660B2 (en) 1997-06-30 1997-06-30 Manufacturing method of lightweight molded product of fiber reinforced thermoplastic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17369197A JP3960660B2 (en) 1997-06-30 1997-06-30 Manufacturing method of lightweight molded product of fiber reinforced thermoplastic resin

Publications (2)

Publication Number Publication Date
JPH1119961A JPH1119961A (en) 1999-01-26
JP3960660B2 true JP3960660B2 (en) 2007-08-15

Family

ID=15965332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17369197A Expired - Fee Related JP3960660B2 (en) 1997-06-30 1997-06-30 Manufacturing method of lightweight molded product of fiber reinforced thermoplastic resin

Country Status (1)

Country Link
JP (1) JP3960660B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7195815B1 (en) 1999-08-30 2007-03-27 Sekisui Chemical Co., Ltd. Process for producing foamed body of thermoplastic resin, mold for forming same and foamed body of thermoplastic resin
JP4555419B2 (en) * 1999-10-19 2010-09-29 本田技研工業株式会社 Synthetic resin foam seat bottom plate for small vehicles such as motorcycles
JP4618925B2 (en) * 2001-04-02 2011-01-26 株式会社プライムポリマー Method for producing polypropylene foam molding and foam molding
JP5393252B2 (en) * 2009-05-15 2014-01-22 河西工業株式会社 Molding method for foamed resin molded products
EP3184278B1 (en) * 2015-12-23 2019-04-17 Ems-Patent Ag Injection moulding method for the preparation of moulded parts, moulded part produced by means of injection moulding and injection moulding tool

Also Published As

Publication number Publication date
JPH1119961A (en) 1999-01-26

Similar Documents

Publication Publication Date Title
US6010656A (en) Method of forming a light-weight, fiber-reinforced thermoplastic resin product and a light-weight molded product
EP0887168B1 (en) Method of molding a fiber-reinforced resin laminate and a laminated molding
US5424020A (en) Method for producing molded article of fiber-reinforced thermoplastic resin
EP1987934B1 (en) Skin-covered propylene resin foamed molded article
US6623838B1 (en) Lightweight resin molded product and production method thereof
EP0919351A2 (en) Fiber-Reinforced resin molded article and method of manufacturing the same
JP4405080B2 (en) Coated long fiber reinforced composite structure and method for producing the same
JP3960660B2 (en) Manufacturing method of lightweight molded product of fiber reinforced thermoplastic resin
JP3831026B2 (en) Manufacturing method of lightweight molded product of fiber reinforced thermoplastic resin
JP3993292B2 (en) Fiber reinforced resin molded product with thick part
JPH10138276A (en) Production of fiber reinforced thermoplastic resin lightweight molded product
JP3828215B2 (en) Manufacturing method of lightweight molded product of fiber reinforced thermoplastic resin
JP2001088161A (en) Production of thin-walled lightweight resin molded article and thin-walled lightweight resin molded article
JP2001162648A (en) Method for molding skin integrated lightweight molded article and molded article
JP2000033627A (en) Manufacture of lightweight resin molding and lightweight resin molding
JP3623616B2 (en) Fiber reinforced thermoplastic resin lightweight storage container and manufacturing method thereof
JPH11179751A (en) Fiber reinforced lightweight resin molded product having projected part and its production
JP3375377B2 (en) Method for producing fiber-reinforced thermoplastic resin foam molded article
JPH10315262A (en) Method for molding fiber-reinforced resin and molding
JPH09277335A (en) Manufacture of glass fiber reinforced thermoplastic resin lightweight molding and lightweight molding
JP4278233B2 (en) Extrusion molding method and extruded product of fiber-containing thermoplastic resin
JP2003181893A (en) Method for manufacturing fiber reinforced molded article
JP2001353749A (en) Injection multilayered molded article and method for manufacturing the same
JPH09220730A (en) Manufacture of lightweight molding of glass fiber reinforced thermoplastic resin and lightweight molding
JP2000033628A (en) Lightweight resin molding and manufacture thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040603

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040603

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040603

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040707

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051208

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070515

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees