JP3375377B2 - Method for producing fiber-reinforced thermoplastic resin foam molded article - Google Patents

Method for producing fiber-reinforced thermoplastic resin foam molded article

Info

Publication number
JP3375377B2
JP3375377B2 JP14397293A JP14397293A JP3375377B2 JP 3375377 B2 JP3375377 B2 JP 3375377B2 JP 14397293 A JP14397293 A JP 14397293A JP 14397293 A JP14397293 A JP 14397293A JP 3375377 B2 JP3375377 B2 JP 3375377B2
Authority
JP
Japan
Prior art keywords
thermoplastic resin
fiber
reinforced thermoplastic
mold
molded article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14397293A
Other languages
Japanese (ja)
Other versions
JPH0716933A (en
Inventor
公二 山口
清康 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP14397293A priority Critical patent/JP3375377B2/en
Publication of JPH0716933A publication Critical patent/JPH0716933A/en
Application granted granted Critical
Publication of JP3375377B2 publication Critical patent/JP3375377B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Moulding By Coating Moulds (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、繊維強化熱可塑性樹脂
発泡成形体の製造方法に関するものである。 【0002】 【従来の技術】従来より、発泡体の成形方法としては、
ビーズ状発泡材料を金型内に入れ、これに加熱蒸気を吹
き込んで発泡させる方法やポリウレタン発泡体の原料で
あるポリオールとイソシアネートを金型内に注入、反応
させて発泡体を得る反応射出成形法などが周知である。
しかしながら、これらの成形方法では、強度が弱くかつ
再生利用ができない発泡体しか得られなかった。 【0003】そこで、最近では、再生利用可能な熱可塑
性樹脂発泡体や繊維強化熱可塑性樹脂発泡体が広く用い
られている。 【0004】上記熱可塑性樹脂発泡体の製造方法として
は、例えば、発泡剤が混入された熱可塑性樹脂を、型閉
めされた金型キャビティ内にショートショットに射出す
る方法やキャビティ内に充填した後、キャビティ容積を
増大して発泡させる方法などが挙げられる(工業材料2
9[3](1981年3月)橋本建次郎P.60−6
4)。 【0005】 【発明が解決しようとする課題】しかしながら、上記技
術を用いて繊維強化熱可塑性樹脂発泡体を成形すると、
含有強化繊維がランダムに配向しているため、必要な強
化方向以外の方向を強化している強化繊維が多くなり、
重量の割に強化効率が悪いという問題があった。本発明
の目的は、軽量でかつ特に厚さ方向に高強度を有する繊
維強化熱可塑性樹脂発泡成形体の製造方法を提供するこ
とにある。 【0006】 【課題を解決するための手段】発明は、発泡コア層の
両面に強化繊維が表面とほぼ平行に配向しているスキン
層を備えた繊維強化熱可塑性樹脂発泡成形体の製造方法
において、長さ5〜25mmの強化繊維を20〜70重
量%含有する加熱発泡性繊維強化熱可塑性樹脂を、その
熱可塑性樹脂の溶融温度以上でかつ発泡温度以上に加熱
した状態で、金型キャビティ内に充填し、加熱発泡性繊
維強化熱可塑性樹脂の温度が前記溶融温度以上であるう
ちに、キャビティ容積が前記充填時の1.5〜10倍に
なるように型開きして繊維強化熱可塑性樹脂を発泡さ
せ、コア層に含まれている強化繊維のうち20重量%以
上の繊維をスキン層に対してほぼ垂直に配向させること
を特徴とするものである。【0007】 強化繊維としては、ガラス繊維、炭素繊
維、シリコン・チタン・炭素繊維、ボロン繊維、微細な
金属繊維、アラミド繊維、ポリエステル繊維、ポリアミ
ド繊維などの有機繊維を挙げることができる。モノフィ
ラメントの直径は1〜50μm、特に3〜23μmが好
ましい。繊維長は5〜25mmの範囲内で、製品の要求
性能及び形状等により適宜決定される。繊維長が5mm
未満では所期の製品は得られず、25mmを超えると、
熱可塑性樹脂及び発泡剤との混練や混合、溶融、金型へ
の供給などが困難となるし、コア層における強化繊維が
スキン層に対しほぼ垂直に配向し難くなる。【0008】 強化繊維の含有率は、20〜70重量%の
範囲になるように混合する必要がある。強化繊維の含有
率が20重量%未満であると、所期の発泡成形体が得ら
れず、強化繊維が70重量%を超えると、モノフィラメ
ント繊維間に浸透する熱可塑性樹脂が不充分となり、成
形体の剛性が著しく低下する。【0009】 熱可塑性樹脂は、加熱により溶融軟化する
樹脂すべてが使用可能である。例えば、ポリエチレン、
ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリ
アミド、ポリエチレンテレフタレート、ポリブチレンテ
レフタレート、ポリカーボネート、ポリフッ化ビニリデ
ン、ポリフェニレンサルファイド、ポリフェニレンオキ
サイド、ポリエーテルスルホン、ポリエーテルエーテル
ケトン等が使用される。【0010】 また、上記熱可塑性樹脂を主成分とする共
重合体やグラフト樹脂やブレンド樹脂、例えばエチレン
−塩化ビニル共重合体、酢酸ビニル−エチレン共重合
体、酢酸ビニル−塩化ビニル共重合体、ウレタン−塩化
ビニル共重合体、アクリロニトリル−ブタジエン−スチ
レン共重合体、アクリル酸変性ポリプロピレン、マレイ
ン酸変性ポリエチレンなども使用しうる。そして、前記
熱可塑性樹脂には、安定剤、滑剤、加工助剤、可塑剤、
着色剤のような添加剤及びタルク、マイカや炭酸カルシ
ウム等の充填材が配合されてもよい。【0011】 熱可塑性樹脂に配合する発泡剤としては、
熱により分解または縮合してガスを生成するアゾジカル
ボンアミド、アゾビスイソブチロニトリル、N,N’−
ジニトロソペンタメチレンテトラミン、pp’−オキシ
ビスベンゼンスルホニルヒドラジド、アゾジカルボン酸
バリウム、トリヒドラジノトリアジン、p−トルエンス
ルホニルヒドラジド等が挙げられる。配合量は、発泡剤
によって異なるが、高強度を得るためには、発泡倍率が
1.5〜3.5倍程度となるように配合することが好ま
しい。【0012】 加熱発泡性繊維強化熱可塑性樹脂は、熱可
塑性樹脂に強化繊維と発泡剤を混合するかまたは発泡剤
の発泡温度以下で混練することにより得られる。【0013】 コア層に含まれる強化繊維のうち20重量
%以上の繊維がほぼ垂直方向に配向していなくてはなら
ない。この明細書で「ほぼ垂直」とは、強化繊維が両ス
キン層のうちいずれか一方に対して75度以上の角度で
配向している状態をいう。すなわち、75度以上の角度
で一方のスキン層に達し、弧を描いて他の強化繊維、熱
可塑性樹脂または他方のスキン層に接している強化繊維
をほぼ垂直方向に配向しているというものとする。スキ
ン層に対する強化繊維の配向角度が75度未満である
と、スキン層に垂直に加わる圧縮力に対して強度が弱
く、また、コア層に含まれている強化繊維のうちほぼ垂
直方向に配向している繊維が20重量%未満であって
も、スキン層に垂直に加わる圧縮力に対して強度が弱
い。なお、スキン層の露出面には薄い熱可塑性樹脂のみ
の層が形成されていることが好ましい。【0014】 コア層の強化繊維は、供給された溶融状態
の加熱発泡性繊維強化熱可塑性樹脂がキャビティ内に充
填される際に供給場所を中心として放射状に配向し、つ
ぎに繊維強化熱可塑性樹脂の発泡と繊維自体の立毛のた
めに片方のスキン層に対してほぼ垂直方向に配向する。【0015】 溶融状態の発泡性繊維強化熱可塑性樹脂を
金型キャビティ内に充填する方法としては、これを予め
型閉めされたキャビティ内に射出充填する方法や、開放
状態の金型のキャビティに供給後ただちに型閉めして圧
縮力により充填する方法が挙げられる。ただし、型閉め
して圧縮力により充填する方法では、射出充填する方法
に比べてスキン層が厚くなるので、型開きを早めに行な
うことが望ましい。【0016】 充填後の型開きは、熱可塑性樹脂が型内で
溶融温度以上であるうちに行なわなければならない。溶
融熱可塑性樹脂の温度によって異なるが、熱可塑性樹脂
がキャビティに充填している状態を長時間維持するとス
キン層の厚さが厚くなって発泡し難くなるし、発生した
過剰のガスも抜け難くなり、製品形状が悪くなる原因と
なる。スキン層の厚さは、0.5〜5mmが好ましい。
繊維強化熱可塑性樹脂の発泡は、熱可塑性樹脂が発泡剤
の発泡温度以上であるうちに型開きして行なってもよい
し、発泡剤が発泡し、熱可塑性樹脂内で発泡したガスが
圧力を持っている状態で型開きして行なってもよい。【0017】 キャビティ容積が充填時の1.5倍未満で
あると、コア層に含まれている強化繊維のうちの20重
量%以上の繊維がスキン層に対してほぼ垂直に配向せ
ず、キャビティ容積が充填時の10倍を超えるとコア層
に大きな空洞部ができやすく、得られる成形体の強度が
低下する虞れがある。型開きは、キャビティ容積が熱可
塑性樹脂充填時の2〜4倍となるように行なうのが好ま
しい。【0018】 なお、金型の型開き間隙は、通常8〜10
0mm、好ましくは5〜40mmの範囲とされる。【0019】 型開き距離が大きいほど繊維はスキン層に
対して垂直方向に配向しやすく、樹脂に含有される繊維
の長さ以上の距離だけ型開きを行なうとコア層中の半数
以上の繊維がスキン層に対して垂直方向に配向するが、
大き過ぎるとキャビティ容積が過大となり、成形体強度
が低下することとなる。【0020】 【作用】発明は、発泡コア層の両面に強化繊維が表面
とほぼ平行に配向しているスキン層を備えた繊維強化熱
可塑性樹脂発泡成形体の製造方法において、長さ5〜2
5mmの強化繊維を20〜70重量%含有する加熱発泡
性繊維強化熱可塑性樹脂を、その熱可塑性樹脂の溶融温
度以上でかつ発泡温度以上に加熱した状態で、金型キャ
ビティ内に充填し、加熱発泡性繊維強化熱可塑性樹脂の
温度が前記溶融温度以上であるうちに、キャビティ容積
が前記充填時の1.5〜10倍になるように型開きして
繊維強化熱可塑性樹脂を発泡させ、コア層に含まれてい
る強化繊維のうち20重量%以上の繊維をスキン層に対
してほぼ垂直に配向させるものであるから、軽量な割に
厚さ方向に高強度を有する発泡成形体が得られる。【0021】 【実施例】以下本発明の実施例を、図面を参照するとと
もに、比較例と対比して説明する。【0022】 実施例1 図1に示す平板状の繊維強化熱可塑性樹脂発泡成形体
(1) は、長さ12.5mmの強化繊維を40重量%含有
する繊維強化熱可塑性樹脂からなるとともに、発泡コア
層(2) の両面に強化繊維が表面とほぼ平行に配向してい
るスキン層(3) を備えており、コア層(2) に含まれる強
化繊維のうち約30重量%の繊維がスキン層(3) に対し
てほぼ垂直に配向しているものであり、強化繊維として
はガラス繊維が用いられ、熱可塑性樹脂としてはポリプ
ロピレンが用いられている。【0023】 上記繊維強化熱可塑性樹脂発泡成形体の製
造方法の1例は、つぎのとおりである。【0024】 まず、直径23μm、長さ12.5mmの
ガラス繊維を40重量%含有するポリプロピレン100
重量部に対し、アゾジカルボンアミド系発泡剤5重量部
を混合し、加熱発泡性繊維強化熱可塑性樹脂を得た。【0025】 つぎに、上記加熱発泡性繊維強化熱可塑性
樹脂(4) を、図2に示すように、射出(図示略)で約2
15℃に加熱後、60℃に温度調整されている圧縮成形
用金型(5) のキャビティクリアランスが10mmになる
まで上型(6) を降下して型閉めしたキャビティ(7) 内
に、下型(8) のホットランナー(9) を通して、約4秒で
充填した。充填完了3秒後、キャビティ容積が充填時の
2.5倍、型開き間隙が25mmとなるように型開き
し、そのまま製品の温度が70℃になるまで冷却し、図
1に示すような製品である発泡成形体(1) を取り出し
た。【0026】 得られた発泡成形体(1) の厚さは35m
m、スキン層(3) の厚さは両面とも2mmで、ガラス繊
維は表面とほぼ平行に配向しており、コア層(2) の厚さ
は31mmで、これに含まれるガラス繊維の約30重量
%の繊維がスキン層(3) に対してほぼ垂直に配向してい
た。【0027】 実施例2 繊維強化熱可塑性樹脂発泡成形体の製造方法の他の例
は、つぎのとおりである。【0028】 実施例1と同じ加熱発泡性繊維強化熱可塑
性樹脂(4) を約215℃に加熱後、図3に示すように、
押出機(図示略)の吐出部(10)を圧縮成形用金型(11)の
上型(12)と下型(13)の間に挿入し、両型(12)(13)間を適
宜移動せしめながら、そのノズル(14)より下型(13)に吐
出し、吐出部(10)を両型(12)(13)間から退避させた後、
ただちにキャビティクリアランスが10mmになるまで
型閉めしてキャビティ(15)内に加熱発泡性繊維強化熱可
塑性樹脂(4) を充填した。充填完了3秒後、キャビティ
容積が充填時の2.5倍、型開き間隙が25mmとなる
ように型開きし、そのまま製品の温度が70℃になるま
で冷却し、製品である発泡成形体を取り出した。【0029】 得られた成形体の厚さは35mm、スキン
層の厚さは下面が4mm、上面が3mmで、ともにガラ
ス繊維は表面とほぼ平行に配向しており、コア層の厚さ
は28mmであり、コア層に含まれるガラス繊維の約2
5重量%の繊維がスキン層に対してほぼ垂直に配向して
いた。【0030】 実施例3 繊維径23μm、繊維長6.3mmのガラス繊維を、繊
維含有量40重量%含有するポリプロピレン樹脂100
重量部に対し、アゾジカルボンアミド系発泡剤5重量部
を混合し、発泡性繊維強化熱可塑性樹脂を得た。この発
泡性繊維強化熱可塑性樹脂(4)を、図に示すように、
図外の射出成形機で約215℃に加熱後、キャビティク
リアランスが10mmになるまで型閉めされた圧縮成形
用金型(5)キャビティ内に、下型(8) 内のホットランナ
(9)を通して、約2秒で充填した。充填完了1秒後、
8mm型開き(1.8倍分)し、そのまま製品の温度が
70℃になるまで冷却し、製品を取り出した。【0031】 得られた成形体の厚さは18mm、スキン
層の厚さは両面とも2mmで、コア層の厚さは14m
m、コア層中のガラス繊維の約半分量の繊維が配向して
いた。 比較例1 この比較例は、加熱発泡性強化熱可塑性樹脂として、長
さ3.0mmのガラス繊維を用いること以外実施例1と
同様にして繊維強化熱可塑性樹脂発泡成形体を得たもの
である。【0032】 比較例2 この比較例は、発泡性繊維強化熱可塑性樹脂を圧縮成形
用金型のキャビティに充填後、キャビティ容積が充填時
の1.4倍、型開き間隙が5mmとなるように型開きを
行なうこと以外実施例1と同様にして繊維強化熱可塑性
樹脂発泡成形体を得たものである。【0033】 各実施例及び各比較例で得られた発泡成形
体について、密度を測定するとともに、圧縮強度試験を
行なった結果を表1に示す。なお、密度測定は、JIS
−K7222 硬質発泡プラスチックの密度測定方法に
準じ、圧縮強度試験は、JIS−K7220 硬質発泡
プラスチックの圧縮試験方法に準ずる。【0034】 【表1】 表1から明らかなように、本発明の繊維強化熱可塑性樹
脂発泡成形体は、軽量でかつ厚み方向の圧縮強度に優れ
ている。【0035】 【発明の効果】本発明の繊維強化熱可塑性樹脂発泡成形
体の製造方法によれば、重量の割に強化効率のよい優れ
た発泡成形体を確実にうることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a fiber-reinforced thermoplastic resin foam molded article . [0002] Conventionally, as a method of molding a foam,
A method in which a bead-shaped foam material is placed in a mold and foamed by blowing heated steam into the mold, or a reaction injection molding method in which a polyol and an isocyanate, which are raw materials of a polyurethane foam, are injected and reacted in the mold to obtain a foam. Are well known.
However, with these molding methods, only foams having low strength and which cannot be recycled were obtained. Therefore, recently, recyclable thermoplastic resin foams and fiber-reinforced thermoplastic resin foams have been widely used. [0004] As a method for producing the above-mentioned thermoplastic resin foam, for example, a method of injecting a thermoplastic resin mixed with a foaming agent into a short cavity in a closed mold cavity, or a method of filling the cavity with a short shot. And foaming by increasing the cavity volume (industrial material 2
9 [3] (March 1981) Kenjiro Hashimoto 60-6
4). [0005] However, when a fiber-reinforced thermoplastic resin foam is molded by using the above-described technique,
Because the containing reinforcing fibers are randomly oriented, the number of reinforcing fibers that are reinforcing in directions other than the necessary reinforcing direction increases,
There was a problem that the reinforcing efficiency was poor for the weight. An object of the present invention is to provide a method for producing a fiber-reinforced thermoplastic resin foamed molded article having a high strength lightweight and particularly the thickness direction. SUMMARY OF THE INVENTION The present invention provides a method for producing a fiber-reinforced thermoplastic resin foam molded article having a skin layer in which reinforcing fibers are oriented substantially parallel to the surface on both surfaces of a foamed core layer. In the mold cavity, a heat-expandable fiber-reinforced thermoplastic resin containing 20 to 70% by weight of a reinforcing fiber having a length of 5 to 25 mm is heated at a temperature not lower than the melting temperature of the thermoplastic resin and not lower than the foaming temperature. While the temperature of the heat-expandable fiber-reinforced thermoplastic resin is equal to or higher than the melting temperature, the mold is opened so that the cavity volume becomes 1.5 to 10 times that at the time of the filling, and the fiber-reinforced thermoplastic resin is opened. The resin is foamed, and 20% by weight or more of the reinforcing fibers contained in the core layer are oriented almost perpendicularly to the skin layer. Examples of the reinforcing fiber include organic fibers such as glass fiber, carbon fiber, silicon / titanium / carbon fiber, boron fiber, fine metal fiber, aramid fiber, polyester fiber and polyamide fiber. The diameter of the monofilament is preferably 1 to 50 μm, particularly preferably 3 to 23 μm. The fiber length is in the range of 5 to 25 mm and is appropriately determined according to the required performance and shape of the product. Fiber length is 5mm
If it is less than 25 mm, the desired product cannot be obtained.
It becomes difficult to knead and mix with the thermoplastic resin and the foaming agent, melt, supply to a mold, and the like, and it becomes difficult for the reinforcing fibers in the core layer to be oriented almost perpendicularly to the skin layer. It is necessary to mix the reinforcing fibers so that the content thereof is in the range of 20 to 70% by weight. If the content of the reinforcing fibers is less than 20% by weight, the desired foamed molded article cannot be obtained. If the content of the reinforcing fibers exceeds 70% by weight, the thermoplastic resin penetrating between the monofilament fibers becomes insufficient, and Body stiffness is significantly reduced. As the thermoplastic resin, any resin that melts and softens when heated can be used. For example, polyethylene,
Polypropylene, polyvinyl chloride, polystyrene, polyamide, polyethylene terephthalate, polybutylene terephthalate, polycarbonate, polyvinylidene fluoride, polyphenylene sulfide, polyphenylene oxide, polyether sulfone, polyether ether ketone and the like are used. In addition, copolymers, graft resins and blend resins containing the above-mentioned thermoplastic resin as a main component, for example, ethylene-vinyl chloride copolymer, vinyl acetate-ethylene copolymer, vinyl acetate-vinyl chloride copolymer, Urethane-vinyl chloride copolymer, acrylonitrile-butadiene-styrene copolymer, acrylic acid-modified polypropylene, maleic acid-modified polyethylene and the like can also be used. And the thermoplastic resin includes a stabilizer, a lubricant, a processing aid, a plasticizer,
Additives such as coloring agents and fillers such as talc, mica and calcium carbonate may be blended. As a foaming agent to be blended with the thermoplastic resin,
Azodicarbonamide, azobisisobutyronitrile, N, N'-
Dinitrosopentamethylenetetramine, pp'-oxybisbenzenesulfonylhydrazide, barium azodicarboxylate, trihydrazinotriazine, p-toluenesulfonylhydrazide and the like. The compounding amount varies depending on the foaming agent, but in order to obtain high strength, it is preferable that the compounding is performed so that the expansion ratio becomes about 1.5 to 3.5 times. The heat-expandable fiber-reinforced thermoplastic resin can be obtained by mixing a reinforcing fiber and a foaming agent with the thermoplastic resin or kneading the thermoplastic resin at a foaming temperature or lower. At least 20% by weight of the reinforcing fibers contained in the core layer must be oriented substantially vertically. In this specification, “substantially perpendicular” refers to a state in which the reinforcing fibers are oriented at an angle of 75 ° or more with respect to one of the two skin layers. That is, it reaches one of the skin layers at an angle of 75 degrees or more, and draws an arc so that the reinforcing fibers in contact with another reinforcing fiber, thermoplastic resin, or the other skin layer are oriented substantially vertically. I do. If the orientation angle of the reinforcing fibers with respect to the skin layer is less than 75 degrees, the strength is weak against the compressive force applied perpendicularly to the skin layer, and the reinforcing fibers contained in the core layer are oriented substantially vertically. Even if the content of the fibers is less than 20% by weight, the strength is weak against the compressive force applied perpendicularly to the skin layer. It is preferable that a layer made of only a thin thermoplastic resin is formed on the exposed surface of the skin layer. [0014] reinforcing fibers of the core layer is oriented radially around the dispensing location when the heating foamable fiber-reinforced thermoplastic resin of the supplied molten state is filled into the cavity, then the fiber-reinforced thermoplastic resin Orientation in a direction substantially perpendicular to one skin layer due to foaming of the fibers and napping of the fibers themselves. As a method for filling the foamed fiber reinforced thermoplastic resin in a molten state into a mold cavity, a method for injecting the same into a cavity which is closed in advance, or a method for supplying the resin to an open mold cavity is provided. There is a method in which the mold is closed immediately and the filling is performed by a compressive force. However, in the method in which the mold is closed and filling is performed by compressive force, the skin layer becomes thicker than in the method of injection filling, so that it is desirable to open the mold earlier. The opening of the mold after filling must be performed while the thermoplastic resin is at or above the melting temperature in the mold. Depends on the temperature of the molten thermoplastic resin, but if the thermoplastic resin is kept in the cavity for a long time, the thickness of the skin layer will increase, making it difficult to foam, and the excess gas generated will also be difficult to escape. This may cause the product shape to deteriorate. The thickness of the skin layer is preferably 0.5 to 5 mm.
The foaming of the fiber-reinforced thermoplastic resin may be performed by opening the mold while the thermoplastic resin is at or above the foaming temperature of the foaming agent, or the foaming agent foams and the gas foamed in the thermoplastic resin increases the pressure. You may open the mold while holding it. If the cavity volume is less than 1.5 times that at the time of filling, more than 20% by weight of the reinforcing fibers contained in the core layer will not be oriented almost perpendicularly to the skin layer, If the volume exceeds 10 times that at the time of filling, a large cavity is likely to be formed in the core layer, and the strength of the obtained molded body may be reduced. The mold opening is preferably performed so that the cavity volume is 2 to 4 times that of the thermoplastic resin. The opening gap of the mold is usually 8 to 10
0 mm, preferably in the range of 5 to 40 mm. The larger the mold opening distance, the more easily the fibers are oriented in the direction perpendicular to the skin layer. When the mold is opened for a distance longer than the length of the fibers contained in the resin, more than half of the fibers in the core layer are removed. Orients vertically to the skin layer,
If it is too large, the cavity volume will be excessive, and the strength of the compact will be reduced. [0020] DETAILED DESCRIPTION OF THE INVENTION The present invention, in the method for producing a fiber-reinforced thermoplastic resin foamed molded reinforcing fibers with a skin layer that is oriented substantially parallel to the surface on both sides of the foam core layer, length 5 2
A heat-expandable fiber-reinforced thermoplastic resin containing 20 to 70% by weight of a 5 mm reinforcing fiber is filled in a mold cavity while being heated at a temperature higher than the melting temperature of the thermoplastic resin and higher than the foaming temperature. While the temperature of the foamable fiber-reinforced thermoplastic resin is equal to or higher than the melting temperature, the mold is opened so that the cavity volume becomes 1.5 to 10 times that of the filling, and the fiber-reinforced thermoplastic resin is foamed. Since 20% by weight or more of the reinforcing fibers contained in the layer are oriented almost perpendicularly to the skin layer, a foam molded article having high strength in the thickness direction for a light weight can be obtained. . [0021] The embodiment of EXAMPLES Hereinafter the present invention, with reference to the drawings will be described in comparison with Comparative Example. [0022] Example 1 Tabular fiber reinforced thermoset shown in FIG thermoplastic resin foamed molded
(1) A skin made of a fiber-reinforced thermoplastic resin containing 40% by weight of a reinforcing fiber having a length of 12.5 mm, and a reinforcing fiber oriented on both surfaces of a foamed core layer (2) substantially parallel to the surface. A layer (3), in which about 30% by weight of the reinforcing fibers contained in the core layer (2) are oriented almost perpendicular to the skin layer (3). Is made of glass fiber, and polypropylene is used as the thermoplastic resin. [0023] One example of a method for manufacturing the fiber-reinforced thermoplastic resin expanded molded article is as follows. Firstly, polypropylene 100 containing a diameter of 23 .mu.m, the glass fiber length 12.5 mm 40 wt%
5 parts by weight of an azodicarbonamide-based blowing agent was mixed with the parts by weight to obtain a heat-expandable fiber-reinforced thermoplastic resin. Next, the heating foamable fiber-reinforced thermoplastic resin (4), as shown in FIG. 2, approximately at the exit (not shown) 2
After heating to 15 ° C, the upper mold (6) is lowered until the cavity clearance of the compression mold (5), which has been temperature-controlled to 60 ° C, becomes 10 mm. The filling was performed in about 4 seconds through the hot runner (9) of the mold (8). 3 seconds after the completion of filling, the mold is opened so that the cavity volume is 2.5 times that at the time of filling and the opening gap is 25 mm, and the product is cooled until the temperature of the product reaches 70 ° C., and the product as shown in FIG. Was taken out. [0026] The thickness of the resulting foamed molded article (1) 35m
m, the thickness of the skin layer (3) is 2 mm on both sides, the glass fibers are oriented almost parallel to the surface, the thickness of the core layer (2) is 31 mm, and the thickness of the By weight, the fibers were oriented almost perpendicular to the skin layer (3). [0027] Another example of the manufacturing method of Example 2 fiber-reinforced thermoplastic resin expanded molded article is as follows. After the same heat-expandable fiber-reinforced thermoplastic resin (4) as in Example 1 was heated to about 215 ° C., as shown in FIG.
Insert the discharge part (10) of the extruder (not shown) between the upper die (12) and the lower die (13) of the compression molding die (11), and properly insert the two die (12) and (13). While moving, discharge from the nozzle (14) to the lower mold (13), and after retreating the discharge part (10) from between the two molds (12) (13),
Immediately, the mold was closed until the cavity clearance became 10 mm, and the cavity (15) was filled with the heat-expandable fiber-reinforced thermoplastic resin (4). After 3 seconds from the completion of filling, the mold is opened so that the cavity volume is 2.5 times that at the time of filling and the opening gap is 25 mm, and the product is cooled until the product temperature reaches 70 ° C. I took it out. [0029] The thickness of the obtained molded body 35 mm, thickness lower surface 4mm of the skin layer, the upper surface is 3 mm, and substantially oriented parallel to the both glass fiber surface, the thickness of the core layer 28mm And about 2% of the glass fibers contained in the core layer.
5% by weight of the fibers were oriented almost perpendicular to the skin layer. [0030] Example 3 fiber diameter 23 .mu.m, a polypropylene resin 100 glass fibers having a fiber length of 6.3 mm, containing 40 wt% fiber content
5 parts by weight of an azodicarbonamide-based blowing agent was mixed with the parts by weight to obtain an expandable fiber-reinforced thermoplastic resin. The foamable fiber-reinforced thermoplastic resin (4), as shown in FIG. 2,
After heating to about 215 ° C with an injection molding machine (not shown) , the hot runner (9) in the lower mold (8) is passed into the compression mold (5) cavity, which is closed until the cavity clearance becomes 10 mm. , About 2 seconds. One second after filling is complete,
The product was opened by an 8 mm mold (1.8 times), cooled as it was until the temperature of the product reached 70 ° C., and the product was taken out. [0031] The thickness of the obtained molded body 18 mm, thickness of the skin layer in 2mm on both sides, the thickness of the core layer 14m
m, about half of the glass fibers in the core layer were oriented. Comparative Example 1 In this comparative example, a fiber-reinforced thermoplastic resin foam molded article was obtained in the same manner as in Example 1 except that a glass fiber having a length of 3.0 mm was used as the heat-expandable thermoplastic resin. . [0032] Comparative Example 2 This comparative example was filled with foamable fiber-reinforced thermoplastic resin in the compression mold cavity, as 1.4 times the cavity volume is filled, the mold opening gap is 5mm A foamed fiber-reinforced thermoplastic resin molded article was obtained in the same manner as in Example 1 except that the mold was opened. With respect to the foamed molded articles obtained in each of the examples and comparative examples, the density was measured and the compression strength test was performed. Table 1 shows the results. The density measurement is based on JIS
-K7222 The compression strength test conforms to the method for measuring the density of the rigid foamed plastic according to JIS-K7220. [ Table 1] As is clear from Table 1, the fiber-reinforced thermoplastic resin foam molded article of the present invention is lightweight and has excellent compressive strength in the thickness direction. [0035] [Effect of the Invention] fiber-reinforced thermoplastic resin foamed molding of the present invention
According to the method for producing a body, it is possible to surely obtain an excellent foam molded article having high reinforcement efficiency for the weight.

【図面の簡単な説明】 【図1】本発明により得られた平板状の繊維強化熱可塑
性樹脂発泡成形体の一例を示す斜視図である。 【図2】本発明の実施例の1つを示すもので、繊維強化
熱可塑性樹脂発泡成形体の成形途上の状態を示す横断面
図である。 【図3】本発明の実施例の他の1つを示すもので、繊維
強化熱可塑性樹脂発泡成形体の成形途上の状態を示す横
断面図である。 【符号の説明】 (1) :繊維強化熱可塑性樹脂発泡成形体 (2) :発泡コア層 (3) :スキン層
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing an example of a flat fiber-reinforced thermoplastic resin foam molded article obtained according to the present invention . FIG. 2 is a cross-sectional view showing one example of the present invention and showing a state in which a fiber-reinforced thermoplastic resin foam molded article is being formed. FIG. 3 is a cross-sectional view showing another example of the embodiment of the present invention and showing a state in which a fiber-reinforced thermoplastic resin foam molding is being formed. [Explanation of Signs] (1): Fiber-reinforced thermoplastic resin foam molded article (2): Foam core layer (3): Skin layer

Claims (1)

(57)【特許請求の範囲】【請求項1】 発泡コア層の両面に強化繊維が表面とほ
ぼ平行に配向しているスキン層を備えた繊維強化熱可塑
性樹脂発泡成形体の製造方法において、長さ5〜25m
mの強化繊維を20〜70重量%含有する加熱発泡性繊
維強化熱可塑性樹脂を、その熱可塑性樹脂の溶融温度以
上でかつ発泡温度以上に加熱した状態で、金型キャビテ
ィ内に充填し、加熱発泡性繊維強化熱可塑性樹脂の温度
が前記溶融温度以上であるうちに、キャビティ容積が前
記充填時の1.5〜10倍になるように型開きして繊維
強化熱可塑性樹脂を発泡させ、コア層に含まれている強
化繊維のうち20重量%以上の繊維をスキン層に対して
ほぼ垂直に配向させることを特徴とする繊維強化熱可塑
性樹脂発泡成形体の製造方法。
(57) [Claim 1] A method for producing a fiber-reinforced thermoplastic resin foam molded article having a skin layer on both surfaces of a foamed core layer in which reinforcing fibers are oriented substantially parallel to the surface, Length 5-25m
A foamable fiber-reinforced thermoplastic resin containing 20 to 70% by weight of a reinforcing fiber of m is filled in a mold cavity while being heated at a temperature not lower than the melting temperature of the thermoplastic resin and not lower than the foaming temperature. While the temperature of the foamable fiber-reinforced thermoplastic resin is equal to or higher than the melting temperature, the mold is opened so that the cavity volume becomes 1.5 to 10 times that of the filling, and the fiber-reinforced thermoplastic resin is foamed. A method for producing a fiber-reinforced thermoplastic resin foam, characterized in that at least 20% by weight of fibers among the reinforcing fibers contained in the layer are oriented substantially perpendicular to the skin layer.
JP14397293A 1993-06-15 1993-06-15 Method for producing fiber-reinforced thermoplastic resin foam molded article Expired - Fee Related JP3375377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14397293A JP3375377B2 (en) 1993-06-15 1993-06-15 Method for producing fiber-reinforced thermoplastic resin foam molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14397293A JP3375377B2 (en) 1993-06-15 1993-06-15 Method for producing fiber-reinforced thermoplastic resin foam molded article

Publications (2)

Publication Number Publication Date
JPH0716933A JPH0716933A (en) 1995-01-20
JP3375377B2 true JP3375377B2 (en) 2003-02-10

Family

ID=15351339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14397293A Expired - Fee Related JP3375377B2 (en) 1993-06-15 1993-06-15 Method for producing fiber-reinforced thermoplastic resin foam molded article

Country Status (1)

Country Link
JP (1) JP3375377B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0758577B1 (en) * 1995-03-01 2001-05-16 Kawasaki Steel Corporation Stampable sheet made by papermaking technique and method for manufacturing lightweight molded stampable sheet
JPH1058573A (en) * 1996-08-20 1998-03-03 Sumitomo Chem Co Ltd Fiber-reinforced thermoplastic resin foam molding and its manufacture
NL1004268C2 (en) * 1996-10-14 1998-04-15 Dsm Nv Shell-shaped molded part, a method for its manufacture and applications.
US20160101543A1 (en) * 2013-12-03 2016-04-14 The Boeing Company Hybrid Laminate and Molded Composite Structures

Also Published As

Publication number Publication date
JPH0716933A (en) 1995-01-20

Similar Documents

Publication Publication Date Title
KR100554781B1 (en) Method of cas-injection molding of fiber reinforced resin and the molded article prepared therefrom
US6099949A (en) Method of molding a fiber-reinforced resin laminate and a laminated molding
KR100475398B1 (en) A method of forming a light-weight, fiber-reinforced thermoplastic resin product and a light-weight molded product
US6623838B1 (en) Lightweight resin molded product and production method thereof
JP3814032B2 (en) Molding
JP2004510021A (en) Fiber filler molding products
US5843568A (en) Fiber-reinforced article and a method for producing the same
JPH11156881A (en) Fiber reinforced lightweight resin molded product and its production
JP3375377B2 (en) Method for producing fiber-reinforced thermoplastic resin foam molded article
JP2001088161A (en) Production of thin-walled lightweight resin molded article and thin-walled lightweight resin molded article
JPH079462A (en) Fiber reinforced thermoplastic resin foamed object and production thereof
JP2000033627A (en) Manufacture of lightweight resin molding and lightweight resin molding
JP3167233B2 (en) Method for producing thermoplastic resin foam
JPH11179751A (en) Fiber reinforced lightweight resin molded product having projected part and its production
US20060138714A1 (en) Method of manufacturing resin mold product
JP3340186B2 (en) Manufacturing method of laminated molded body
JP2002337186A (en) Method for supplying material to injection molding machine or extrusion machine
JP4303844B2 (en) Method for producing fiber-containing lightweight resin tray
GB2188636A (en) Thermoset polyester and phenolic foams having denser outer skin
JPH1119961A (en) Manufacture of fiber-reinforced, thermoplastic resin light-weight molding
JP2001353749A (en) Injection multilayered molded article and method for manufacturing the same
JP4278233B2 (en) Extrusion molding method and extruded product of fiber-containing thermoplastic resin
JP3432110B2 (en) Gas injection molding method and molded product of fiber reinforced resin
JP2603859B2 (en) Method for producing injection molded foam
JPH11170290A (en) Fiber reinforced lightweight resin molded product and its manufacture

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071129

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees