JP3959747B2 - Method for producing high silicon steel strip - Google Patents

Method for producing high silicon steel strip Download PDF

Info

Publication number
JP3959747B2
JP3959747B2 JP13613395A JP13613395A JP3959747B2 JP 3959747 B2 JP3959747 B2 JP 3959747B2 JP 13613395 A JP13613395 A JP 13613395A JP 13613395 A JP13613395 A JP 13613395A JP 3959747 B2 JP3959747 B2 JP 3959747B2
Authority
JP
Japan
Prior art keywords
furnace
steel strip
hearth roll
speed
high silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13613395A
Other languages
Japanese (ja)
Other versions
JPH08302432A (en
Inventor
勝司 笠井
正広 阿部
和久 岡田
常弘 山路
多津彦 平谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP13613395A priority Critical patent/JP3959747B2/en
Publication of JPH08302432A publication Critical patent/JPH08302432A/en
Application granted granted Critical
Publication of JP3959747B2 publication Critical patent/JP3959747B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Heat Treatment Processes (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Tunnel Furnaces (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、炉内ハースロールを有する高温の連続炉を備えた高珪素鋼帯の製造または熱処理ラインにおいて、押し疵のない表面性状の良好な高珪素鋼帯を製造するための方法に関する。
【0002】
【従来の技術】
高珪素鋼帯の製造または熱処理を行う連続処理炉では、種々の原因により炉内ハースロール表面に付着物が生成、堆積し、これが鋼帯に押し疵を生じさせ鋼帯の表面性状を劣化させるという問題がある。このような炉内ハースロール表面への付着物の生成、堆積は、例えば連続焼鈍炉で行われる高珪素鋼帯の磁性焼鈍や脱炭焼鈍では、鋼帯下面の酸化スケールが炉内ハースロール表面に付着、堆積するのが主な原因であり、また、連続浸珪処理炉で行われる気体浸珪処理による高珪素鋼帯の製造では、炉内の微量酸素や水分が四塩化珪素等の反応ガスと反応して生成するシリカ(SiO2)が炉内ハースロール表面に付着、堆積するのが主な原因であると考えられる。また、この他に脱落、飛散した炉内耐火物も炉内ハースロール表面に付着、堆積する。
従来、このような炉内ハースロールの付着物を除去するためには、炉を降温し、炉開放を行なって炉内ハースロールを清掃するか、或いは高珪素鋼帯を停止した状態で炉内ハースロールを回転させ、ハースロールを高珪素鋼帯に対してスリップさせることにより付着物を掻き落す方法が採られている。
【0003】
【発明が解決しようとする課題】
しかし、前者の方法は炉の開放及びその後の炉立上げのために操業を長時間停止する必要があり、また、後者の方法においても付着物の掻き落しを効果的に行なうためには炉内温度を低下させる必要があるため、その間は実質的な操業ができないという問題がある。
このように従来では、炉内ハースロールを有する連続処理炉において押し疵のない高珪素鋼帯を製造しようとした場合、上記の方法で炉内ハースロールの付着物を定期的に除去せざるを得ず、したがって、押し疵のない表面性状の良好な高珪素鋼帯を長時間連続して製造することは困難であった。
したがって本発明の目的は、連続焼鈍炉や連続浸珪処理炉等のような高珪素鋼帯の製造また熱処理ラインにおいて、押し疵のない表面性状の良好な高珪素鋼帯を長時間連続して製造することができる方法を提供することにある。
【0004】
【課題を解決するための手段】
このような目的を達成するため本発明は、鋼帯の通板速度に対して、炉内ハースロール周速を付着物の掻き落し効果があり且つクリープによる鋼帯の伸び変性が生じない範囲で減速し、鋼帯とハースロール表面をスリップさせることにより、炉内ハースロール表面の付着物が鋼帯との接触により常時掻き落されるようにし、これにより炉内ハースロール表面への付着物の堆積が防止されるようにしたものである。
すなわち本発明は、高珪素鋼帯の製造または熱処理ラインにおいて鋼帯を炉内ハースロールを有する高温の連続炉内で通板させる際に、鋼帯通板速度に対して炉内ハースロール周速を下式を満足するよう減速させて、炉内ハースロールが鋼帯に対して常にスリップするように鋼帯を通板させることを特徴とする高珪素鋼帯の製造方法である。
0.3≦[1−(炉内ハースロール周速/鋼帯通板速度)]×100≦5.0
【0005】
【作用】
図1は本発明法が適用される水平型の連続焼鈍炉の一構成例を示しており、1は加熱帯、2は均熱帯、3は冷却帯である。また、図2は本発明法が適用される水平型の連続浸珪処理炉の一構成例を示しており、4は加熱帯、5は浸珪処理のための反応ガスが供給される浸珪処理帯、6は鋼帯表層に浸透したSiを熱処理により板厚方向に拡散させるための均熱帯、7は冷却帯である。これらの水平型の連続処理炉においては、鋼帯Sは炉内ハースロール8に支持されて通板する。
【0006】
このような高珪素鋼帯の製造または熱処理を行う連続処理炉において、鋼帯面に押し疵を生じさせるような付着物が炉内ハースロールに生成、堆積する原因は様々であるが、例えば図1に示すような連続焼鈍炉で行われる磁性焼鈍や脱炭焼鈍では、鋼帯Sの下面に生成した酸化スケールが炉内ハースロール8の表面に付着、堆積するのが主な原因であり、また、図2に示すような連続浸珪処理炉で行われる気体浸珪処理では、炉内の微量酸素や水分が反応ガス(四塩化珪素等)と反応して生成するシリカ(SiO2)が炉内ハースロール8の表面に付着、堆積するのが主な原因である。
【0007】
炉内ハースロール8への付着物の堆積量は時間とともに増加し、それだけ鋼帯Sの押し疵の発生も著しくなるが、炉内ハースロール8が鋼帯Sに対して常にスリップするように鋼帯Sを通板させれば、炉内ハースロール8が1回転する間にロール面に付着した付着物が常に鋼帯Sとの接触面で掻き落されることになり、したがって、押し疵を生じさせるような付着物の堆積が防止され、また、付着物の掻き取り自体も容易である。このため本発明では、鋼帯Sの通板速度に対して炉内ハースロール8の周速を小さくし、上記のような付着物の掻き落し作用を得るものである。
【0008】
本発明では、鋼帯Sの通板速度と炉内ハースロール8の周速の速度差が重要な条件となる。すなわち、この速度差が小さ過ぎると付着物の掻き落し効果が小さく、一方、速度差が大き過ぎると鋼帯Sがクリープ伸びによる板変形を生じてしまう。実験の結果、鋼帯Sの通板速度に対して炉内ハースロール8の周速を0.3〜5.0%相当分の範囲で減速させること、すなわち、減速比率=[1−(炉内ハースロール周速/鋼帯通板速度)]×100 により定義される減速比率を0.3〜5.0とすることにより、クリープ伸びによる板変形を生じることなく炉内ハースロール表面の付着物を効果的に掻き落すことができ、これにより押し疵を生じさせるような付着物の堆積を防止できることが判った。
【0009】
炉内ハースロール表面への付着物の堆積は、図1に示すような連続焼鈍炉では主として均熱帯2において、また図2に示すような連続浸珪処理炉では主として浸珪帯5において生じやすく、したがって、少なくともこれらの処理帯に本発明法を適用することが好ましい。但し、これらの処理帯の炉内ハースロール8の周速よりもその上流側の処理帯(図1の加熱帯1及び図2の加熱帯4)の炉内ハースロール8の周速のほうが大きい場合、鋼帯Sに長手方向での弛みを生じる恐れがあり、したがって、図1に示すような連続焼鈍炉では少なくとも加熱帯1と均熱帯2に、また図2に示すような連続浸珪処理炉では少なくとも加熱帯4と浸珪処理帯5に、それぞれ本発明法を適用することが好ましい。なお、それ以外の他の処理帯についても本発明法を適用できることは言うまでもない。
なお、炉内ハースロールの付着物を掻き落すという観点では、炉内ハースロールの周速に対して鋼帯通板速度を減速させるという方法も考えられるが、この場合には鋼帯に長手方向での弛みが生じるため、鋼帯の通板性が著しく損なわれてしまう。
【0010】
【実施例】
〔実施例1〕
図1に示す水平型の連続焼鈍炉において、下記▲1▼〜▲3▼の鋼帯に1200℃×3分の条件で磁性焼鈍を施し、その際に鋼帯の通板速度に対して炉内ハースロール周速の減速比率を変え、炉出側での鋼帯のクリープ伸びを測定した。
▲1▼ 6.5%Si鋼板(板厚;0.1mm×板幅;900mm)
▲2▼ 3.0%Si鋼板(板厚;0.1mm×板幅;900mm)
▲3▼ 1.0%Si鋼板(板厚;0.1mm×板幅;900mm)
【0011】
図3は各鋼帯について鋼帯通板速度に対する炉内ハースロール周速の減速比率と炉出側での鋼帯のクリープ伸びとの関係を示している。鋼帯の通板速度に対して炉内ハースロール周速を減速すると鋼帯とハースロール表面の間に摩擦力が生じ、通板時のライン張力以上の張力が鋼帯にかかるためにクリープ伸びが生ずる。そして、この伸びが大きくなり過ぎると板幅方向での波状変形を生じ、同時にSi鋼板の磁気特性を著しく劣化させる。この磁気特性の劣化を抑えるためには、クリープ伸びを0.3%程度以下とすることが必要である。図3によれば、鋼帯通板速度に対する炉内ハースロール周速の減速によるクリープ伸びの程度は高珪素鋼帯である6.5%Si鋼帯が最も大きく、この6.5%Si鋼帯のクリープ伸びを0.3%以下に抑えるには、減速比率を5.0%以下とする必要があることが判る。
【0012】
〔実施例2〕
図2に示す気体浸珪法による連続浸珪処理炉において、鋼帯通板速度に対する炉内ハースロール周速の減速比率を変えて浸珪処理を実施し、炉出側で鋼帯表面を検査して押し疵発生速度(単位時間当たりの押し疵発生数であり、0であれば押し疵発生がないことを意味する。)を求めた。図4はその結果を示しており、減速比率が0.3%以上であれば押し疵発生速度はほぼ零となり、押し疵が発生しなくなった。すなわち、鋼帯通板速度に対する炉内ハースロール周速の減速比率を0.3%以上とすることにより、炉内ハースロールに付着したシリカ(SiO2)等の付着物を適切に除去できることが判った。
【0013】
【発明の効果】
以上述べた本発明法によれば、高珪素鋼帯の連続焼鈍炉や気体浸珪法による連続浸珪処理炉において、鋼帯の板変形や磁気特性の劣化を生じることなく炉内ハースロール表面の付着物を適切且つ迅速に除去することができ、これにより炉内ハースロール表面への付着物の堆積を防止し、押し疵のない表面性状の良好な高珪素鋼帯を長時間連続して製造することが可能となる。
【図面の簡単な説明】
【図1】珪素鋼帯の連続焼鈍炉を示す説明図
【図2】気体浸珪法による連続浸珪処理炉を示す説明図
【図3】珪素鋼帯の連続焼鈍炉において、鋼帯通板速度に対する炉内ハースロール周速の減速比率と鋼帯のクリープ伸びとの関係を示すグラフ
【図4】気体浸珪法による連続浸珪処理炉において、鋼帯通板速度に対する炉内ハースロール周速の減速比率と押し疵発生速度との関係を示すグラフ
【符号の説明】
1…加熱帯、2…均熱帯、3…冷却帯、4…加熱帯、5…浸珪処理帯、6…均熱帯、7…冷却帯、8…炉内ハースロール、S…鋼帯
[0001]
[Industrial application fields]
TECHNICAL FIELD The present invention relates to a method for producing a high silicon steel strip having a good surface property free of pressing in a high silicon steel strip production or heat treatment line having a high-temperature continuous furnace having an in-furnace hearth roll.
[0002]
[Prior art]
In a continuous processing furnace that manufactures or heat-treats high silicon steel strips, deposits are generated and deposited on the surface of the hearth roll in the furnace due to various causes, which cause crushing on the steel strip and deteriorate the surface properties of the steel strip. There is a problem. For example, in the magnetic annealing and decarburization annealing of the high silicon steel strip performed in a continuous annealing furnace, the oxide scale on the bottom surface of the steel strip is the surface of the hearth roll in the furnace. In the production of high silicon steel strip by gas silicidation treatment performed in a continuous siliconization furnace, trace oxygen and moisture in the furnace react with silicon tetrachloride and the like. It is thought that the main cause is that silica (SiO 2 ) produced by reacting with gas adheres to and deposits on the surface of the hearth roll in the furnace. In addition, the refractory in the furnace that has fallen off and scattered also adheres and accumulates on the surface of the hearth roll in the furnace.
Conventionally, in order to remove such deposits on the hearth roll in the furnace, the furnace is cooled down and the furnace is opened to clean the hearth roll in the furnace or the high silicon steel strip is stopped and the furnace is stopped. A method of scraping off the deposits by rotating the hearth roll and slipping the hearth roll with respect to the high silicon steel strip is employed.
[0003]
[Problems to be solved by the invention]
However, in the former method, it is necessary to stop the operation for a long time in order to open the furnace and start up the furnace after that, and also in the latter method, in order to effectively scrape off the deposits, Since it is necessary to lower the temperature, there is a problem that substantial operation cannot be performed during that time.
Thus, conventionally, when trying to produce a high silicon steel strip without push rods in a continuous processing furnace having an in-furnace hearth roll, the deposits on the in-furnace hearth roll must be periodically removed by the above method. Therefore, it was difficult to continuously produce a high silicon steel strip having a good surface property with no lashes for a long time.
Accordingly, an object of the present invention is to continuously produce a high silicon steel strip having a good surface property without a crush for a long time in a production or heat treatment line of a high silicon steel strip such as a continuous annealing furnace or a continuous siliconization furnace. It is to provide a method that can be manufactured.
[0004]
[Means for Solving the Problems]
In order to achieve such an object, the present invention provides a furnace hearth peripheral speed with respect to the sheet passing speed of the steel strip within a range in which there is an effect of scraping off deposits and the steel strip does not undergo elongational deformation due to creep. By slowing down and slipping the steel strip and the hearth roll surface, the deposits on the hearth roll surface in the furnace are constantly scraped off by contact with the steel strip, and thus the deposits on the surface of the hearth roll in the furnace are removed. The accumulation is prevented.
That is, the present invention relates to the in-furnace hearth roll peripheral speed relative to the steel strip passage speed when the steel band is passed through a high-temperature continuous furnace having a hearth roll in the furnace in the production of a high silicon steel strip or a heat treatment line. Is slowed down to satisfy the following formula, and the steel strip is passed through so that the in-furnace hearth roll always slips relative to the steel strip.
0.3 ≦ [1− (hearth speed in furnace / steel strip speed)] × 100 ≦ 5.0
[0005]
[Action]
FIG. 1 shows one configuration example of a horizontal continuous annealing furnace to which the method of the present invention is applied, where 1 is a heating zone, 2 is a soaking zone, and 3 is a cooling zone. FIG. 2 shows an example of the configuration of a horizontal continuous siliconizing furnace to which the method of the present invention is applied. 4 is a heating zone, and 5 is a siliconizing furnace to which a reaction gas for siliconizing treatment is supplied. A treatment zone, 6 is a soaking zone for diffusing Si permeating into the steel strip surface layer in the thickness direction by heat treatment, and 7 is a cooling zone. In these horizontal continuous processing furnaces, the steel strip S is supported by the in-furnace hearth roll 8 and passes through.
[0006]
In such a continuous processing furnace that manufactures or heat-treats high silicon steel strips, there are various causes for the deposits that generate push rods on the steel strip surface to be generated and deposited on the hearth roll in the furnace. In the magnetic annealing and decarburization annealing performed in the continuous annealing furnace as shown in FIG. 1, the main cause is that the oxide scale generated on the lower surface of the steel strip S adheres to and accumulates on the surface of the hearth roll 8 in the furnace, In addition, in the gas silicidation treatment performed in a continuous siliconization treatment furnace as shown in FIG. 2, silica (SiO 2 ) produced by reaction of trace amounts of oxygen and moisture in the furnace with a reaction gas (such as silicon tetrachloride) is produced. The main cause is adhesion and deposition on the surface of the hearth roll 8 in the furnace.
[0007]
The amount of deposits deposited on the in-furnace hearth roll 8 increases with time, and as a result, the generation of push rods in the steel strip S becomes significant. However, the steel in the furnace hearth roll 8 always slips against the steel strip S. If the strip S is made to pass through, the adhering matter adhering to the roll surface during one rotation of the furnace hearth roll 8 will always be scraped off at the contact surface with the steel strip S. Accumulation of deposits that may occur is prevented, and scraping of the deposits itself is easy. For this reason, in this invention, the peripheral speed of the hearth roll 8 in a furnace is made small with respect to the plate | board speed of the steel strip S, and the scraping action of the above deposits is acquired.
[0008]
In the present invention, the speed difference between the sheet feeding speed of the steel strip S and the peripheral speed of the in-furnace hearth roll 8 is an important condition. That is, if this speed difference is too small, the effect of scraping off the deposits is small. On the other hand, if the speed difference is too large, the steel strip S undergoes plate deformation due to creep elongation. As a result of the experiment, the peripheral speed of the hearth roll 8 in the furnace is decelerated within a range corresponding to 0.3 to 5.0% with respect to the plate feed speed of the steel strip S, that is, the reduction ratio = [1− (furnace Inner hearth roll peripheral speed / steel strip through speed)] × 100 is defined as 0.3 to 5.0, so that the inner hearth roll surface can be attached without causing plate deformation due to creep elongation. It has been found that the kimono can be scraped off effectively, thereby preventing the deposition of deposits that would cause push folds.
[0009]
Accumulation of deposits on the surface of the hearth roll in the furnace is likely to occur mainly in the soaking zone 2 in the continuous annealing furnace as shown in FIG. 1 and mainly in the silicified zone 5 in the continuous siliconizing furnace as shown in FIG. Therefore, it is preferable to apply the method of the present invention to at least these treatment zones. However, the peripheral speed of the in-furnace hearth roll 8 in the upstream processing zone (the heating zone 1 in FIG. 1 and the heating zone 4 in FIG. 2) is higher than the peripheral speed of the in-furnace hearth roll 8 in these processing zones. In such a case, the steel strip S may be slackened in the longitudinal direction. Therefore, in the continuous annealing furnace as shown in FIG. 1, at least the heating zone 1 and the soaking zone 2 and the continuous siliconization treatment as shown in FIG. In the furnace, the method of the present invention is preferably applied to at least the heating zone 4 and the siliconization zone 5. Needless to say, the method of the present invention can be applied to other processing zones.
In addition, from the viewpoint of scraping off the adherence of the hearth roll in the furnace, a method of reducing the steel strip passing speed with respect to the peripheral speed of the hearth roll in the furnace is also conceivable. Since the slackening occurs, the plate-passability of the steel strip is significantly impaired.
[0010]
【Example】
[Example 1]
In the horizontal type continuous annealing furnace shown in FIG. 1, the steel strips of the following (1) to (3) are subjected to magnetic annealing under conditions of 1200 ° C. × 3 minutes, and at that time, The creep ratio of the steel strip on the furnace exit side was measured by changing the reduction ratio of the inner hearth roll peripheral speed.
(1) 6.5% Si steel plate (plate thickness: 0.1 mm × plate width: 900 mm)
(2) 3.0% Si steel plate (plate thickness: 0.1 mm x plate width: 900 mm)
(3) 1.0% Si steel plate (plate thickness: 0.1 mm × plate width: 900 mm)
[0011]
FIG. 3 shows the relationship between the reduction ratio of the hearth roll peripheral speed in the furnace with respect to the steel strip passing speed and the creep elongation of the steel strip on the furnace exit side for each steel strip. Decreasing the hearth speed in the furnace relative to the plate speed of the steel strip generates a frictional force between the steel strip and the surface of the hearth roll. Will occur. And when this elongation becomes too large, a wave-like deformation occurs in the sheet width direction, and at the same time, the magnetic properties of the Si steel sheet are significantly deteriorated. In order to suppress the deterioration of the magnetic characteristics, the creep elongation needs to be about 0.3% or less. According to FIG. 3, the extent of creep elongation due to the reduction of the hearth roll speed in the furnace relative to the steel plate passing speed is the highest in the 6.5% Si steel strip, which is a high silicon steel strip, and this 6.5% Si steel. It can be seen that the reduction ratio needs to be 5.0% or less in order to suppress the creep elongation of the belt to 0.3% or less.
[0012]
[Example 2]
In the continuous silicidation furnace shown in Fig. 2, the siliconization process is performed by changing the reduction ratio of the peripheral speed of the hearth roll in the furnace to the steel plate passage speed, and the steel strip surface is inspected on the furnace exit side. Thus, the speed of occurrence of pressing sticks (the number of pressing sticks generated per unit time, 0 means no occurrence of pressing sticks). FIG. 4 shows the result. When the speed reduction ratio is 0.3% or more, the speed of occurrence of pushing stick becomes almost zero, and pushing stick is not generated. That is, by setting the reduction ratio of the hearth roll peripheral speed in the furnace to the steel strip passing speed to be 0.3% or more, it is possible to appropriately remove deposits such as silica (SiO 2 ) attached to the furnace hearth roll. understood.
[0013]
【The invention's effect】
According to the above-described method of the present invention, in a continuous annealing furnace for high silicon steel strips or a continuous siliconization treatment furnace using a gas immersion method, the surface of the hearth roll in the furnace without causing plate deformation or deterioration of magnetic properties of the steel strip. Adhesive deposits can be removed appropriately and quickly, thereby preventing deposits from accumulating on the surface of the hearth roll in the furnace, and high silicon steel strips with good surface properties without crushing can be continuously applied for a long time. It can be manufactured.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a continuous annealing furnace for a silicon steel strip. FIG. 2 is an explanatory view showing a continuous siliconizing furnace using a gas immersion method. FIG. 3 is a steel strip through plate in a continuous annealing furnace for a silicon steel strip. Fig. 4 is a graph showing the relationship between the reduction ratio of the hearth roll peripheral speed in the furnace to the speed and the creep elongation of the steel strip. [Fig. 4] In the continuous siliconization furnace using the gas siliconization method, Graph showing the relationship between the speed reduction ratio and the speed at which the pushing rod is generated [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Heating zone, 2 ... Soaking zone, 3 ... Cooling zone, 4 ... Heating zone, 5 ... Soaking zone, 6 ... Soaking zone, 7 ... Cooling zone, 8 ... Hearth roll in furnace, S ... Steel zone

Claims (1)

高珪素鋼帯の製造または熱処理ラインにおいて鋼帯を炉内ハースロールを有する高温の連続炉内で通板させる際に、鋼帯通板速度に対して炉内ハースロール周速を下式を満足するよう減速させて、炉内ハースロールが鋼帯に対して常にスリップするように鋼帯を通板させることを特徴とする高珪素鋼帯の製造方法。
0.3≦[1−(炉内ハースロール周速/鋼帯通板速度)]×100≦5.0
When passing a steel strip in a high-temperature continuous furnace with a hearth roll in the furnace in the production of a high silicon steel strip or in a heat treatment line, the peripheral speed of the hearth roll in the furnace satisfies the following equation The method of manufacturing a high silicon steel strip, characterized by causing the steel strip to pass through so that the hearth roll in the furnace always slips relative to the steel strip.
0.3 ≦ [1− (hearth speed in furnace / steel strip speed)] × 100 ≦ 5.0
JP13613395A 1995-05-10 1995-05-10 Method for producing high silicon steel strip Expired - Lifetime JP3959747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13613395A JP3959747B2 (en) 1995-05-10 1995-05-10 Method for producing high silicon steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13613395A JP3959747B2 (en) 1995-05-10 1995-05-10 Method for producing high silicon steel strip

Publications (2)

Publication Number Publication Date
JPH08302432A JPH08302432A (en) 1996-11-19
JP3959747B2 true JP3959747B2 (en) 2007-08-15

Family

ID=15168086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13613395A Expired - Lifetime JP3959747B2 (en) 1995-05-10 1995-05-10 Method for producing high silicon steel strip

Country Status (1)

Country Link
JP (1) JP3959747B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100928789B1 (en) * 2002-12-13 2009-11-25 주식회사 포스코 Manufacturing method of steel plate for brushing of hearth roll and brushing method of hearth roll
KR101025871B1 (en) * 2004-12-23 2011-03-30 주식회사 포스코 hearth roll brushing method of furnace
KR100942099B1 (en) * 2006-06-01 2010-02-12 주식회사 포스코 Method for removing contaminant from ceramic hearth roll
EP2584346A4 (en) * 2010-06-17 2015-08-19 Asahi Glass Co Ltd Defect occurrence source identification method and conveying device maintenance method
JP5724683B2 (en) * 2010-07-01 2015-05-27 Jfeスチール株式会社 Method for preventing meandering and drawing of steel strip in horizontal heat treatment furnace

Also Published As

Publication number Publication date
JPH08302432A (en) 1996-11-19

Similar Documents

Publication Publication Date Title
JP3959747B2 (en) Method for producing high silicon steel strip
JPH0415187B2 (en)
NO831516L (en) PROCEDURE FOR MANUFACTURE OF ALUMINUM ALLOY PRODUCTS SUITABLE FOR TRAKING
US2057518A (en) Apparatus for bright annealing metallic products
JP3196548B2 (en) Scraper for rolls used under high temperature
EP3611118A1 (en) Roller scraper
JP4496572B2 (en) Continuous heat treatment method for steel strip
WO2002080622A1 (en) Heat insulating board of induction heating apparatus
JPS61147906A (en) Method for improving outer skin of steel sheet coated with molten aluminum
JP2595974B2 (en) Bluing treatment method for strip or linear steel with oil
JPS63115654A (en) Method and apparatus for casting metal sheet
JPS6324022A (en) Method for preventing pickup to in-furnace roll of continuous annealing furnace
JP4280035B2 (en) Steel plate transfer method and hearth roll in continuous annealing furnace
JP4261137B2 (en) Carbon fiber manufacturing method
JPS6174761A (en) Continuous casting method of steel
KR900006693B1 (en) Continous annealing method and apparatus for cold rolled steel strips
JPH08152277A (en) Heat insulation ceramic fiber block, and heat insulation executing method
JP3043917B2 (en) Rolls for heat treatment furnaces with excellent peel resistance, wear resistance, and build-up resistance
JPH0216994Y2 (en)
JPS639571Y2 (en)
TW201040285A (en) Continuous annealing furnace
JP3380354B2 (en) Method for suppressing in-furnace flaws on stainless steel strip in vertical bright annealing furnace
SU692679A1 (en) Method of preparing reinforcing inserts
SU637438A1 (en) Method of rolled stock treatment
US6023048A (en) Cooling furnaces for strip products

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140525

Year of fee payment: 7

EXPY Cancellation because of completion of term