JP3380354B2 - Method for suppressing in-furnace flaws on stainless steel strip in vertical bright annealing furnace - Google Patents

Method for suppressing in-furnace flaws on stainless steel strip in vertical bright annealing furnace

Info

Publication number
JP3380354B2
JP3380354B2 JP07387395A JP7387395A JP3380354B2 JP 3380354 B2 JP3380354 B2 JP 3380354B2 JP 07387395 A JP07387395 A JP 07387395A JP 7387395 A JP7387395 A JP 7387395A JP 3380354 B2 JP3380354 B2 JP 3380354B2
Authority
JP
Japan
Prior art keywords
stainless steel
furnace
steel strip
temperature
cooling zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07387395A
Other languages
Japanese (ja)
Other versions
JPH08269575A (en
Inventor
裕隆 狩野
裕一郎 渡辺
明 梅津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP07387395A priority Critical patent/JP3380354B2/en
Publication of JPH08269575A publication Critical patent/JPH08269575A/en
Application granted granted Critical
Publication of JP3380354B2 publication Critical patent/JP3380354B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、竪型光輝焼鈍炉におけ
るステンレス帯板の炉内変形を防止し、炉壁との接触に
よって生じるすり疵の発生を抑制する方法に関する。 【0002】 【従来の技術】光輝焼鈍炉では、特に薄板広幅材の場合
において、炉内を通過する帯板に発生する熱応力によっ
て、帯板が面外変形を起こしやすく、炉壁等との接触に
よるすり疵が発生することがある。とくに、炉内にサポ
ートロールを配置しない竪型光輝焼鈍炉で、ステンレス
帯板を熱処理する場合にはすり疵発生の危険性が大きい
のである。 【0003】このようなステンレス帯板の炉内変形を防
止する従来の技術としては、例えば、特開昭49− 17314
号公報には、高温のステンレス帯板を可能な限りゆっく
り冷却する方法が示されているが、板幅、板厚などの条
件によってどの程度ゆっくりな冷却が必要であるかは明
らかにされていない。また、特公昭53− 35848号公報に
開示されているように、炉内を通過するステンレス帯板
の表裏に温度差をつけたガスを吹き付けることにより炉
内の板反りを矯正する方法がある。しかし、この方法で
は、板の面内方向に働く圧縮応力による座屈が原因で板
反りが発生する際に、特に薄板の場合は容易に座屈のモ
ードが反転し、制御が難しいという問題点がある。 【0004】このように、竪型光輝焼鈍炉における炉内
変形を抑制するに当たり、いったん変形が起こっている
ものを矯正する方法では、変形自体が座屈という不安定
な現象のため、これを完全に矯正することは困難であ
る。 【0005】 【発明が解決しようとする課題】本発明は、上記のよう
な従来技術の有する課題を解決すべくなされたものであ
って、2次的な形状矯正手段を用いることなく、ステン
レス帯板の竪型光輝焼鈍炉での炉内変形を未然に防止
し、炉内におけるすり疵の発生を抑制する方法を提供す
ることを目的とする。 【0006】 【課題を解決するための手段】本発明は、加熱帯および
冷却帯を備えた竪型光輝焼鈍炉を用いてステンレス帯板
を熱処理する際に、前記冷却帯の高さ方向のステンレス
帯板の温度分布を折れ線で設定し、該ステンレス帯板の
温度勾配変化量とステンレス帯板に付加する平均張力と
を下記式の範囲 σt (y) − 4.9×10-2w・q・E・α≧0 ただし、 y ;炉の高さ方向位置 [m] σt (y) ;炉の高さ方向位置yにおける平均張力[Pa] w ;板幅 [m] q ;温度勾配変化量 [℃/m]=(ΔT/Δy) 2 −(ΔT/Δy) 1 (ΔT/Δy) 1 ;冷却帯中、高さ方向に、ステンレス
帯板の温度分布を折れ線で設定し、ステンレス帯板の温
度が変化するとした領域内のある位置1における温度勾
配 [℃/m] (ΔT/Δy) 2 ;冷却帯中、高さ方向に、ステンレス
帯板の温度分布を折れ線で設定し、ステンレス帯板の温
度が変化しないとした領域内のある位置2における温度
勾配 [℃/m] E ;炉の高さyの板温でのステンレス帯板のヤ
ング率[Pa] α ;炉の高さyの板温でのステンレス帯板の線
膨張係数[/℃] に収めることによって、ステンレス帯板の熱変形を抑制
することを特徴とする竪型板光輝焼鈍炉におけるステン
レス帯の炉内すり疵抑制方法である。 【0007】 【作 用】本発明者らは、まず、板温分布の温度勾配変
化量がステンレス帯板に発生する熱応力への影響を定量
的に把握するために有限要素法による熱応力解析を実施
した。基本的な因果関係を把握するために、図3に実線
で示す折れ線すなわち2つの直線からなる板温曲線1で
温度分布を設定した場合に面内に働く熱応力を解析する
ことにより、以下の知見を得た。 【0008】(1) 温度勾配が変化する位置を中心に局所
的に熱応力が発生すること。 (2) 応力が発生する領域は温度勾配が変化する位置から
板幅程度の領域であること。 (3) 温度勾配の変化が上に凸の場合、板幅中央付近は圧
縮応力が、板幅端部には引張応力がそれぞれ働くこと。 【0009】(4) 温度勾配の変化が下に凸の場合、板幅
中央付近は引張応力、板幅端部には圧縮応力がそれぞれ
働くこと。 (5) 温度勾配変化量とピーク応力値は比例すること。 (6) 板幅とピーク応力値は比例すること。 (7) ヤング率とピーク応力値は比例すること。 【0010】(8) 線膨張係数とピーク応力値は比例する
こと。 (9) ヤング率および線膨張率に温度依存性がない場合、
温度勾配の変化によって発生する圧縮応力のピーク値は
下記式(1) ,(2) で計算できること。 σx,peak=kx w・q・E・α ………………(1) σy,peak=ky w・q・E・α ………………(2) ここで、 σx,peak ;幅方向垂直応力のピーク値 [Pa] σy,peak ;高さ方向垂直応力のピーク値 [Pa] x ;幅方向を示すインデックス y ;高さ方向を示すインデックス w ;板幅 [m] q ;温度勾配変化量 [℃/m]=(ΔT/
Δy)2 −(ΔT/Δy)1 (ΔT/Δy)1 ;冷却帯の高さ方向の位置1(図3で
はy<9m)における温度勾配 [℃/m] (ΔT/Δy)2 ;冷却帯の高さ方向の位置2(図3で
はy>9m)における温度勾配 [℃/m] E ;ヤング率 [Pa] α ;線膨張係数 [/℃] kx ;定数(7.5 ×10-2) ky ;定数(4.9 ×10-2) 以上は、1点で温度勾配がデジタルに変化する板温曲線
1の場合について述べたが、微視的にみれば、実際には
図3に破線および一点鎖線で示す板温曲線2,3のよう
に温度勾配が連続的に徐々に変化すると考えられる。こ
のような板温曲線の場合でも、上に凸の場合に板幅中央
に圧縮応力が働き、板幅端部に引張応力が働くなど、基
本的には同様な応力状態となる。 【0011】ただし、たとえば、図4に示すように、板
幅中央における幅方向垂直応力を縦軸にとり、高さ方向
位置を横軸にしてプロットしてみると、実線で示す応力
分布曲線4のように、2つの直線からなる板温曲線1の
場合に尖鋭なピークをもっていた応力分布が、温度勾配
を徐々に変化させた板温曲線2,3の場合は破線および
一点鎖線で示す応力分布曲線5,6のようにピークが鈍
化し滑らかとなり、かつピークレベルが大きく低下する
という違いがある。 【0012】これに対し、板幅中央における高さ方向垂
直応力を縦軸にとった場合においては、図5の実線およ
び破線、一点鎖線に示す応力分布曲線7,8,9のよう
に、2つの直線からなる板温曲線1と温度勾配を徐々に
変化させた板温曲線2,3のどちらの場合もピークは滑
らかであり、温度勾配を徐々に変化させることによるピ
ーク値の低下も小さい。 【0013】したがって、温度勾配の変化によりステン
レス帯板に発生する圧縮応力は、高さ方向の方がその絶
対値は大きく、温度勾配の変化による高さ方向の圧縮応
力に比べ、より絶対値の大きい張力が加わっていれば、
座屈によるステンレス帯板の面外変形の可能性は小さ
い。温度勾配が滑らかに変化する場合は温度勾配の変化
による高さ方向の圧縮応力はさらに小さくなるため、板
温分布を折れ線で設定した場合に比べて該面外変形の可
能性はさらに小さくなる。それゆえ、板温分布を折れ線
で設定した場合の炉の高さ方向位置yにおける平均張力
をσt (y) とするとき、下記(3) 式 σt (y) − 4.9×10-2w・q・E・α≧0 ………………(3) を満たす範囲で、温度勾配変化量qと平均張力σ
t (y) を決定することによって、ステンレス帯板の炉
内変形を抑制し、炉内すり疵の発生を低減することがで
きる。なお、平均張力σt (y) は、下記(4) 式で表す
ことができる。 【0014】 σt (y) =σt (y0)+ρ・g・(y−y0) ………………(4) ここで、y0 は炉出口位置[m] 、σt (y0)は炉出口で
の平均張力[Pa]、ρはステンレス帯板の密度[kg/m3] 、
gは重力加速度[m/sec2]である。 【0015】 【実施例】以下に、本発明の実施例について、図1を用
いて説明する。この図に示すように、竪型光輝焼鈍炉10
は、シュート11、2個の炉内デフレクタロール12、たと
えば電気ヒータなどが取り付けられる加熱帯13、冷却ガ
スノズルなどが取り付けられる冷却帯14で構成される。
前工程から送られてきたステンレス帯板Sは、入側ブラ
イドルロール15、入側デフレクタロール16を介してシュ
ート11に送り込まれ、炉内デフレクタロール12を経て加
熱帯13、冷却帯14を通過して、出側デフレクタロール1
7、出側ブライドルロール18を介して次工程に送り出さ
れる。この竪型光輝焼鈍炉10においては、炉の構成上、
冷却帯14における炉内の炉壁間隔が狭くなっており、特
に冷却帯14の入口14aの近傍におけるすり疵発生の危険
性が高い。 【0016】材質がステンレスフェライト特殊鋼のステ
ンレス帯板Sを熱処理する際に本発明法を適用した。こ
のときの焼鈍温度は 950℃、板幅が 1.3m 、板厚が 0.2
mmである。問題となる冷却帯14の入口近傍におけるステ
ンレス帯板Sのヤング率Eが120GPa 、線膨張係数αが
1.5×10-5として、冷却帯14の入口近傍における平均張
力σt (y)と、温度勾配変化量qの満たすべき関係
は、 q≦ 8.7×10-6σt (y) ………………(5) となる。この関係を図2に示した。 【0017】そこで、過大な張力は板の破断につながる
恐れがあるため、ここでは、冷却帯14の入口近傍におけ
る平均張力σt (y)を5MPa となるように出側張力を
設定した。また、冷却帯14の入口近傍における温度勾配
変化量qの最大値を図2の本発明の範囲内で○で示す40
℃/mとなるように高さ方向板温分布を設定して、ステン
レス帯板Sを製造した。 【0018】その結果、すり疵発生率は本発明適用前の
1/3に低減された。なお、冷却帯14の入口近傍におけ
る温度勾配変化量40℃/mを実現するにあたっては、加熱
帯13の後半から冷却に転じる板温分布とすることによ
り、冷却帯14の入口近傍における温度勾配変化を低く抑
えることができた。なお、冷却帯14の入口14a近傍にお
ける温度勾配変化量qの最大値を80℃/m(図2の×印)
とし、他の条件は上記と同一にして操業を行ったとこ
ろ、多量のすり疵が発生する結果になった。また、平均
張力σt (y)を2.5MPaに設定して、温度勾配変化量q
の最大値を40℃/mおよび80℃/mに設定した場合も、同様
に多量のすり疵が発生する結果になった。 【0019】 【発明の効果】以上説明したように、本発明によれば、
冷却帯の高さ方向の任意の位置におけるステンレス帯板
の板温曲線の温度勾配変化量とステンレス帯板に付加す
る平均張力とを前出(3) 式を満たす範囲に制御するよう
にしたので、ステンレス帯板の表裏に温度差をもたせる
ように冷却ガスを吹き付ける従来の2次的な形状矯正手
段を用いることなく、竪型光輝焼鈍炉中を通過するステ
ンレス帯板の変形を抑制し、すり疵発生を低減すること
ができ、これによって製品の品質および歩留りの向上に
大いに寄与することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention prevents deformation of a stainless steel strip in a vertical bright annealing furnace and prevents generation of scratches caused by contact with a furnace wall. Regarding the method of suppressing. 2. Description of the Related Art In a bright annealing furnace, particularly in the case of a thin and wide material, the strip is liable to undergo out-of-plane deformation due to thermal stress generated in the strip passing through the furnace. Abrasion may occur due to contact. In particular, when a stainless steel strip is heat-treated in a vertical bright annealing furnace in which no support roll is disposed in the furnace, there is a high risk of scratches. [0003] As a conventional technique for preventing such deformation of the stainless steel strip inside the furnace, for example, Japanese Patent Laid-Open Publication No. Sho 49-17314.
In the publication, a method of cooling a high-temperature stainless steel strip as slowly as possible is shown, but it is not clear how slow cooling is necessary depending on conditions such as a sheet width and a sheet thickness. . Further, as disclosed in Japanese Patent Publication No. 53-35848, there is a method of correcting a sheet warpage in a furnace by blowing a gas having a temperature difference between the front and back of a stainless steel strip passing through the furnace. However, this method has the problem that when buckling occurs due to buckling due to compressive stress acting in the in-plane direction of the plate, the buckling mode is easily reversed, especially in the case of a thin plate, and control is difficult. There is. [0004] As described above, in the vertical bright annealing furnace, in order to suppress the in-furnace deformation, in the method of correcting the once deformed one, the deformation itself is an unstable phenomenon called buckling. It is difficult to correct. SUMMARY OF THE INVENTION [0005] The present invention has been made to solve the above-mentioned problems of the prior art, and uses a stainless steel strip without using secondary shape correcting means. An object of the present invention is to provide a method for preventing deformation of a sheet in a vertical bright annealing furnace in a furnace and suppressing generation of scratches in the furnace. According to the present invention, when heat-treating a stainless steel strip using a vertical bright annealing furnace having a heating zone and a cooling zone, a gap in the height direction of the cooling zone is provided . The temperature distribution of the stainless steel strip is set by a polygonal line, and the temperature gradient change amount of the stainless steel strip and the average tension applied to the stainless steel strip are defined by the following equation: σ t (y) −4.9 × 10 − 2 w · q · E · α ≧ 0, where y: furnace height position [m] σ t (y); average tension at furnace height position y [Pa] w; plate width [m] q ; temperature gradient variation [℃ / m] = (ΔT / Δy) 2 - (ΔT / Δy) 1 (ΔT / Δy) 1; in the cooling zone, the height direction, stainless
Set the temperature distribution of the strip with a polygonal line, and
Temperature gradient at position 1 in the area where the temperature changes
Distribution [° C / m] (ΔT / Δy) 2 ; stainless steel in cooling zone, height direction
Set the temperature distribution of the strip with a polygonal line, and
Temperature at a certain position 2 in the region where the degree does not change
Gradient [° C./m] E; Young's modulus of stainless steel strip at plate temperature at furnace height y [Pa] α; Linear expansion coefficient of stainless steel plate at plate temperature at furnace height y [/ ° C.] This is a method for suppressing in-furnace scratches on a stainless steel strip in a vertical plate bright annealing furnace, characterized in that thermal deformation of the stainless steel strip is suppressed by being contained in the stainless steel strip. [0007] The present inventors first conducted a thermal stress analysis by the finite element method in order to quantitatively grasp the influence of the change in the temperature gradient of the plate temperature distribution on the thermal stress generated in the stainless steel strip. Was carried out. In order to grasp the basic causal relationship, the following thermal stress is analyzed by analyzing the thermal stress acting in the plane when the temperature distribution is set by the broken line shown by the solid line in FIG. 3, that is, the plate temperature curve 1 composed of two straight lines. Obtained knowledge. (1) A local thermal stress is generated around a position where a temperature gradient changes. (2) The area where the stress is generated should be about the width of the plate from the position where the temperature gradient changes. (3) If the change in temperature gradient is convex upward, compressive stress acts near the center of the sheet width, and tensile stress acts on the end of the sheet width. (4) When the change in the temperature gradient is convex downward, a tensile stress acts near the center of the sheet width and a compressive stress acts on the end of the sheet width. (5) The change in temperature gradient and the peak stress value must be proportional. (6) The plate width and peak stress value are proportional. (7) Young's modulus and peak stress value should be proportional. (8) The coefficient of linear expansion is proportional to the peak stress value. (9) When the Young's modulus and linear expansion coefficient do not have temperature dependency,
The peak value of the compressive stress generated by the change of the temperature gradient shall be calculated by the following formulas (1) and (2). σ x, peak = k x w · q · E · α .................. (1) σ y, peak = k y w · q · E · α .................. (2) Here, sigma x, peak : Peak value of vertical stress in the width direction [Pa] σ y, peak ; Peak value of vertical stress in the height direction [Pa] x; Index y indicating the width direction; Index w indicating the height direction; m] q; temperature gradient change [° C./m]=(ΔT/
Δy) 2 − (ΔT / Δy) 1 (ΔT / Δy) 1 ; temperature gradient at position 1 (y <9 m in FIG. 3) in the height direction of the cooling zone [° C./m] (ΔT / Δy) 2 ; cooling Temperature gradient at position 2 in the height direction of the belt (in FIG. 3, y> 9 m) [° C./m] E; Young's modulus [Pa] α; Linear expansion coefficient [/ ° C.] k x ; constant (7.5 × 10 -2) ) K y ; constant (4.9 × 10 −2 ) In the above, the case of the sheet temperature curve 1 in which the temperature gradient changes digitally at one point has been described. It is considered that the temperature gradient continuously and gradually changes as shown by the sheet temperature curves 2 and 3 indicated by the dashed line. Even in the case of such a sheet temperature curve, a basically similar stress state is obtained such that, when the sheet is convex upward, a compressive stress acts on the center of the sheet width and a tensile stress acts on an end portion of the sheet width. However, for example, as shown in FIG. 4, when the vertical direction stress at the center of the sheet width is plotted on the vertical axis and the position in the height direction is plotted on the horizontal axis, the stress distribution curve 4 shown by the solid line is obtained. As described above, the stress distribution having a sharp peak in the case of the sheet temperature curve 1 composed of two straight lines is different from the stress distribution curve indicated by the broken line and the one-dot chain line in the case of the sheet temperature curves 2 and 3 in which the temperature gradient is gradually changed. There is a difference that the peaks become dull and smooth, and the peak level is greatly reduced, as shown in FIGS. On the other hand, when the vertical stress at the center of the plate width is plotted on the vertical axis, the stress distribution curves 7, 8, and 9 shown by the solid line, the broken line, and the one-dot chain line in FIG. In both cases of the plate temperature curve 1 composed of two straight lines and the plate temperature curves 2 and 3 in which the temperature gradient is gradually changed, the peak is smooth, and the decrease in the peak value by gradually changing the temperature gradient is small. Therefore, the absolute value of the compressive stress generated in the stainless steel strip due to the change in the temperature gradient is greater in the height direction, and the absolute value of the compressive stress in the height direction is greater than that in the height direction due to the change in the temperature gradient. If a large tension is applied,
The possibility of out-of-plane deformation of the stainless steel strip due to buckling is small. If the temperature gradient changes smoothly, change the temperature gradient
Since the compressive stress in the height direction due to
Out-of-plane deformation is possible compared to the case where the temperature distribution is set with a polygonal line.
The performance becomes even smaller. Therefore, the sheet temperature distribution is broken
Assuming that the average tension at the height position y of the furnace in the case of setting is σ t (y), the following equation (3) is used: σ t (y) −4.9 × 10 −2 w · q · E · α ≧ 0 …………… (3) Within the range that satisfies (3), the temperature gradient change q and the average tension σ
By determining t (y), deformation of the stainless steel strip in the furnace can be suppressed, and occurrence of in-furnace scratches can be reduced. The average tension σ t (y) can be expressed by the following equation (4). Σ t (y) = σ t (y 0 ) + ρ · g · (y−y 0 ) (4) where y 0 is the furnace outlet position [m], σ t ( y 0 ) is the average tension at the furnace outlet [Pa], ρ is the density of the stainless steel strip [kg / m 3 ],
g is the gravitational acceleration [m / sec 2 ]. An embodiment of the present invention will be described below with reference to FIG. As shown in this figure, the vertical bright annealing furnace 10
Is constituted by a chute 11, two in-furnace deflector rolls 12, a heating zone 13 to which an electric heater or the like is attached, and a cooling zone 14 to which a cooling gas nozzle or the like is attached.
The stainless steel strip S sent from the previous process is fed into the chute 11 via the entrance bridle roll 15 and the entrance deflector roll 16, passes through the in-furnace deflector roll 12, passes through the heating zone 13, and the cooling zone 14. And the exit side deflector roll 1
7. It is sent to the next process via the outlet bridle roll 18. In this vertical bright annealing furnace 10, due to the configuration of the furnace,
Since the space between the furnace walls in the furnace in the cooling zone 14 is narrow, there is a high risk of occurrence of scratches especially near the inlet 14a of the cooling zone 14. The method of the present invention was applied to heat treatment of a stainless steel strip S made of a stainless steel ferrite special steel. The annealing temperature at this time is 950 ° C, the sheet width is 1.3m, and the sheet thickness is 0.2
mm. The Young's modulus E of the stainless steel strip S in the vicinity of the entrance of the cooling zone 14 which is a problem is 120 GPa, and the linear expansion coefficient α is
Assuming that 1.5 × 10 −5 , the relationship between the average tension σ t (y) near the inlet of the cooling zone 14 and the temperature gradient variation q is q ≦ 8.7 × 10 −6 σ t (y)... …… (5) This relationship is shown in FIG. Therefore, since an excessive tension may lead to breakage of the plate, the outlet tension is set so that the average tension σ t (y) near the inlet of the cooling zone 14 is 5 MPa. Further, the maximum value of the temperature gradient change q near the inlet of the cooling zone 14 is indicated by a circle within the range of the present invention in FIG.
The stainless steel strip S was manufactured by setting the plate temperature distribution in the height direction to be ° C / m. As a result, the rate of occurrence of scratches was reduced to 1/3 of that before application of the present invention. In order to achieve a temperature gradient change of 40 ° C./m near the inlet of the cooling zone 14, the temperature gradient change near the inlet of the cooling zone 14 is set by setting the plate temperature distribution to start cooling from the latter half of the heating zone 13. Could be kept low. The maximum value of the temperature gradient change q in the vicinity of the inlet 14a of the cooling zone 14 is 80 ° C./m (marked by X in FIG. 2).
The operation was performed under the same conditions as above, and as a result, a large amount of scratches were generated. Further, the average tension σ t (y) is set to 2.5 MPa, and the temperature gradient change q
When the maximum value was set to 40 ° C./m and 80 ° C./m, a large amount of scratches were similarly generated. As described above, according to the present invention,
Since the amount of change in the temperature gradient of the sheet temperature curve of the stainless steel strip and the average tension applied to the stainless steel strip at an arbitrary position in the height direction of the cooling zone are controlled so as to satisfy the above-mentioned formula (3). The deformation of the stainless steel strip passing through the vertical bright annealing furnace is suppressed without using a conventional secondary shape correcting means that blows a cooling gas so as to have a temperature difference between the front and the back of the stainless steel strip. The generation of flaws can be reduced, which can greatly contribute to the improvement of product quality and yield.

【図面の簡単な説明】 【図1】本発明の実施例における竪型光輝焼鈍炉を断面
で示す概要図である。 【図2】平均張力と温度勾配変化量の関係を示す特性図
である。 【図3】ステンレス帯板の長手方向の板温曲線の基本的
な影響を調べるために設定した板温曲線の一例を示す特
性図である。 【図4】図3の板温曲線に対応するステンレス帯板の幅
方向垂直応力の分布を示す特性図である。 【図5】図3の板温曲線に対応するステンレス帯板の高
さ方向垂直応力の分布を示す特性図である。 【符号の説明】 1 高さ方向の板温曲線(1点にて温度勾配を一気に変
化させるケース) 2 高さ方向の板温曲線(連続的に徐々に温度勾配を変
化させるケース) 3 高さ方向の板温曲線(板温曲線2よりさらにゆっく
りと温度勾配を変化させるケース) 4 板温曲線1でのステンレス帯板の幅方向中央に発生
する幅方向垂直応力の応力分布曲線 5 板温曲線2でのステンレス帯板の幅方向中央に発生
する幅方向垂直応力の応力分布曲線 6 板温曲線3でのステンレス帯板の幅方向中央に発生
する幅方向垂直応力の応力分布曲線 7 板温曲線1でのステンレス帯板の幅方向中央に発生
する高さ方向垂直応力の応力分布曲線 8 板温曲線2でのステンレス帯板の幅方向中央に発生
する高さ方向垂直応力の応力分布曲線 9 板温曲線3でのステンレス帯板の幅方向中央に発生
する高さ方向垂直応力の応力分布曲線 10 竪型光輝焼鈍炉 11 シュート 12 炉内デフレクタロール 13 加熱帯 14 冷却帯 14a 冷却帯入口 15 入側ブライドルロール 16 入側デフレクタロール 17 出側デフレクタロール 18 出側ブライドルロール S ステンレス帯板
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing a cross section of a vertical bright annealing furnace according to an embodiment of the present invention. FIG. 2 is a characteristic diagram illustrating a relationship between an average tension and a temperature gradient change amount. FIG. 3 is a characteristic diagram showing an example of a sheet temperature curve set for examining a basic effect of a sheet temperature curve in a longitudinal direction of a stainless steel strip. FIG. 4 is a characteristic diagram showing a distribution of a vertical stress in a width direction of the stainless steel strip corresponding to the sheet temperature curve of FIG. 3; FIG. 5 is a characteristic diagram showing a distribution of a vertical stress in a height direction of a stainless steel strip corresponding to the sheet temperature curve of FIG. 3; [Explanation of Signs] 1 Sheet temperature curve in height direction (case in which temperature gradient is changed at one point at a stroke) 2 Sheet temperature curve in height direction (case in which temperature gradient is continuously and gradually changed) 3 Height Temperature curve in the direction (case in which the temperature gradient is changed more slowly than the sheet temperature curve 2) 4 Stress distribution curve of the vertical stress generated in the width direction center of the stainless steel strip in the sheet temperature curve 1 5 Sheet temperature curve The stress distribution curve of the widthwise vertical stress generated at the center of the stainless steel strip in the width direction in 2, the stress distribution curve of the widthwise vertical stress generated in the widthwise center of the stainless steel strip in the sheet temperature curve. Stress distribution curve of vertical stress generated in the center of width direction of stainless steel strip in 1; stress distribution curve of vertical stress generated in width direction center of stainless steel strip in temperature curve 2; Of stainless steel strip in temperature curve 3 Stress distribution curve of vertical stress generated in the center in the width direction 10 Vertical bright annealing furnace 11 Chute 12 Furnace deflector roll 13 Heating zone 14 Cooling zone 14a Cooling zone entrance 15 Inlet bridle roll 16 Inlet deflector roll 17 Exit Side deflector roll 18 Exit side bridle roll S stainless steel strip

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−78755(JP,A) 特開 昭64−75630(JP,A) 特公 昭62−15613(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C21D 9/52 - 9/66 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-5-78755 (JP, A) JP-A-64-75630 (JP, A) JP-B-62-15613 (JP, B1) (58) Field (Int.Cl. 7 , DB name) C21D 9/52-9/66

Claims (1)

(57)【特許請求の範囲】 【請求項1】 加熱帯および冷却帯を備えた竪型光輝焼
鈍炉を用いてステンレス帯板を熱処理する際に、前記冷
却帯の高さ方向のステンレス帯板の温度分布を折れ線で
設定し、該ステンレス帯板の温度勾配変化量とステンレ
ス帯板に付加する平均張力とを下記式の範囲に収めるこ
とによって、ステンレス帯板の熱変形を抑制することを
特徴とする竪型光輝焼鈍炉におけるステンレス帯板の炉
内すり疵抑制方法。 σt (y) − 4.9×10-2w・q・E・α≧0 ただし、 y ;炉の高さ方向位置 [m] σt (y) ;炉の高さ方向位置yにおける平均張力[Pa] w ;板幅 [m] q ;温度勾配変化量 [℃/m]=(ΔT/Δy) 2 −(ΔT/Δy) 1 (ΔT/Δy) 1 ;冷却帯中、高さ方向に、ステンレス
帯板の温度分布を折れ線で設定し、ステンレス帯板の温
度が変化するとした領域内のある位置1における温度勾
配 [℃/m] (ΔT/Δy) 2 ;冷却帯中、高さ方向に、ステンレス
帯板の温度分布を折れ線で設定し、ステンレス帯板の温
度が変化しないとした領域内のある位置2における温度
勾配 [℃/m] E ;炉の高さyの板温でのステンレス帯板のヤ
ング率[Pa] α ;炉の高さyの板温でのステンレス帯板の線
膨張係数[/℃]
(57) [Claims 1 At the time of heat treatment of stainless steel strip by using a vertical bright annealing furnace with a heating zone and a cooling zone, the height direction of the stainless band of the cooling zone The temperature distribution of the plate is represented by a line
By setting the amount of change in the temperature gradient of the stainless steel strip and the average tension applied to the stainless steel strip within the range of the following formula, thermal deformation of the stainless steel strip is suppressed, and the vertical bright annealing is characterized in that: A method for suppressing in-furnace scratches on stainless steel strip in a furnace. σ t (y) −4.9 × 10 −2 w · q · E · α ≧ 0, where y: furnace height position [m] σ t (y); average tension at furnace height position y [ Pa] w; strip width [m] q; temperature gradient variation [℃ / m] = (ΔT / Δy) 2 - (ΔT / Δy) 1 (ΔT / Δy) 1; in the cooling zone, the height direction ,stainless
Set the temperature distribution of the strip with a polygonal line, and
Temperature gradient at position 1 in the area where the temperature changes
Distribution [° C / m] (ΔT / Δy) 2 ; stainless steel in cooling zone, height direction
Set the temperature distribution of the strip with a polygonal line, and
Temperature at a certain position 2 in the region where the degree does not change
Gradient [° C./m] E; Young's modulus of stainless steel strip at plate temperature at furnace height y [Pa] α; Linear expansion coefficient of stainless steel plate at plate temperature at furnace height y [/ ° C.]
JP07387395A 1995-03-30 1995-03-30 Method for suppressing in-furnace flaws on stainless steel strip in vertical bright annealing furnace Expired - Fee Related JP3380354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07387395A JP3380354B2 (en) 1995-03-30 1995-03-30 Method for suppressing in-furnace flaws on stainless steel strip in vertical bright annealing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07387395A JP3380354B2 (en) 1995-03-30 1995-03-30 Method for suppressing in-furnace flaws on stainless steel strip in vertical bright annealing furnace

Publications (2)

Publication Number Publication Date
JPH08269575A JPH08269575A (en) 1996-10-15
JP3380354B2 true JP3380354B2 (en) 2003-02-24

Family

ID=13530758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07387395A Expired - Fee Related JP3380354B2 (en) 1995-03-30 1995-03-30 Method for suppressing in-furnace flaws on stainless steel strip in vertical bright annealing furnace

Country Status (1)

Country Link
JP (1) JP3380354B2 (en)

Also Published As

Publication number Publication date
JPH08269575A (en) 1996-10-15

Similar Documents

Publication Publication Date Title
US4644667A (en) Cooling apparatus for strip metal
JP4709628B2 (en) Cold rolled steel sheet manufacturing method
JP3380354B2 (en) Method for suppressing in-furnace flaws on stainless steel strip in vertical bright annealing furnace
JPH11229040A (en) Annealing method and apparatus correcting shape of fe-ni alloy steel strip
JP3173329B2 (en) Heat treatment furnace tension control method
JP4018572B2 (en) Manufacturing method of steel sheet with small variation in yield stress and residual stress
JP4525037B2 (en) Roller straightening method for steel sheet
JPH08269576A (en) Method for suppressing in-furnace rubbing flaw of stainless steel strip in vertical type bright annealing furnace
JPH02277723A (en) Vertical type continuous annealing furnace
JP2003253343A (en) Process for continuously heat treating metal strip
JPH075995B2 (en) Tension control method for metal strip in continuous annealing furnace
JPH08199247A (en) Heat treatment furnace for metallic strip
JP3526763B2 (en) Warpage prevention method in steel plate rolling
JP4399872B2 (en) Tension leveler and strip straightening method
JP3870820B2 (en) Heat treatment furnace for metal strip
JP2005238304A (en) Method for manufacturing hot-rolled steel sheet
JP2776033B2 (en) Method of preventing meandering of steel strip in continuous annealing furnace
JP2715683B2 (en) Roll cooling method and apparatus for continuous annealing furnace
JPH04323328A (en) Method for controlling continuous annealing temperature of steel strip
JP2007021537A (en) Shape straightening method of metallic strip
JP2002241845A (en) Method for cooling steel strip
JPH0559178B2 (en)
JP2004107683A (en) Method and apparatus for manufacturing metal strip
JP2001158920A (en) Method of preventing variation of width in continuous annealing furnace
JPS6237696B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees