JP3959660B2 - Method for producing SnO-containing glass powder - Google Patents

Method for producing SnO-containing glass powder Download PDF

Info

Publication number
JP3959660B2
JP3959660B2 JP20618598A JP20618598A JP3959660B2 JP 3959660 B2 JP3959660 B2 JP 3959660B2 JP 20618598 A JP20618598 A JP 20618598A JP 20618598 A JP20618598 A JP 20618598A JP 3959660 B2 JP3959660 B2 JP 3959660B2
Authority
JP
Japan
Prior art keywords
glass
sno
melted
glass powder
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20618598A
Other languages
Japanese (ja)
Other versions
JP2000044253A (en
Inventor
俊郎 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP20618598A priority Critical patent/JP3959660B2/en
Publication of JP2000044253A publication Critical patent/JP2000044253A/en
Application granted granted Critical
Publication of JP3959660B2 publication Critical patent/JP3959660B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はSnO含有ガラス粉末の製造方法に関するものである。
【0002】
【従来の技術】
SnOを多量に含有するSnO−P25 系ガラスが特開平7−69672号や特開平9−175833号で提案されている。これらガラスは、PbO含有ガラスと同等の低融点化が可能であり、現在広く使用されているPbOを含むCRTフリット等の代替材料として検討されている。
【0003】
SnOを含むガラスの問題点は、溶融過程でSnの酸化状態が変わり易いことであり、溶融条件によってガラスの性状が変化し、SnO2(4価)の状態にまで酸化が進むと未溶解物が生じて品質の良いガラスが得られなくなる。このため、安定な低融点ガラスを得るためには、SnをSnO(2価)の形で存在させておくことが重要となる。
【0004】
SnOのSnO2への酸化は高温ほど起こり易いが、SnO含有低融点ガラスを得るための溶融温度でも容易に起こる。このため前記特許では、坩堝に蓋をして溶融したり、バッチ中に還元剤を添加してSnO2への酸化を防いでいる。
【0005】
【発明が解決しようとする課題】
しかしながら、実験室規模で短時間に少量のガラスを溶融する場合には上記方法でも差し支えないが、工業的規模で長時間、多量のガラスを溶融する場合にはSnの酸化を十分に防止することができず、ガラス融液上部に未溶解物の層が生成し易くなる。特にSnO含有量の高いガラスや溶融温度が高いガラスでは、融液の上部全体が厚い未溶解物の層に覆われるために、ガラス中に未溶解物が含まれてしまい、品質の良いガラスを得ることが困難である。
【0006】
本発明目的は、工業的規模でガラスを製造しても、品質の良いガラスを得ることが可能なSnO含有ガラス粉末の製造方法を提供することである。
【0007】
【課題を解決するための手段】
本発明のSnO含有ガラス粉末の製造方法は、モル%表示でSnOを30〜80%含有するSnO含有ガラス粉末を製造するに当たり、窒素ガス雰囲気中で溶融することを特徴とする。
【0008】
【発明の実施の形態】
以下、本発明の方法を詳細に説明する。
【0009】
まず所望の組成となるようにガラス原料を調合する。ここでSn原料として、2価の状態の原料(例えば一酸化錫)を使用することが望ましい。なお必要に応じて、バッチに還元剤を添加してもよい。
【0010】
次いで、バッチを窒素ガス雰囲気中で溶融し、ガラス化する。バッチを窒素ガス雰囲気中で溶融すると、Snの酸化が防止され、未溶解物の生成を抑えることができる。
【0011】
その後、溶融ガラスを成形し、SnO含有ガラスを得る。
【0012】
本方法により好適に作製できるSnO含有ガラスには、SnO−P25 系ガラスや、SnO−B23 −P25 系ガラス等のSnOを主成分として含むガラスが挙げられる。SnO−P25 系ガラスとしては、例えばモル%表示でSnO 30〜80%、P25 20〜50%、ZnO 0.1〜20%の組成を有するガラスが使用でき、SnO−B23 −P25 系ガラスとしては、例えばモル%表示でSnO 30〜80%、B23 2〜50%、P25 2〜50%、ZnO 0〜20%の組成を有するガラスが使用できる。
【0013】
なお本発明の方法により得られるSnO−P25 系ガラスや、SnO−B23 −P25 系ガラスは、280〜380℃のガラス転移点を有し、500℃以下の温度で良好な流動性を示す。しかし熱膨張係数が30〜250℃において100〜150×10-7/℃程度と大きく、また機械的強度が一般のガラスに比べて大きくない。そこで封着材料として使用する場合には、熱膨張係数の調整や機械的強度の向上のために耐火性フィラー粉末を添加して複合化することができる。
【0014】
【実施例】
以下、実施例に基づいて本発明を説明する。
【0015】
(実施例1)
まず、モル%で、SnO 59.0%、B23 3.0%、P25 32.0%、ZnO 5.9%の組成を有するガラスを用い、空気中で溶融した場合と窒素ガス中で溶融した場合の違いを説明する。
【0016】
まず石英ガラス製坩堝に正リン酸(液体)を入れ、これに一酸化錫、無水硼酸、及び亜鉛華を加えて混合した後、120℃で乾燥させた。次にこの混合物を空気中で600℃までゆっくりと加熱し、粘稠な液になったところで良く攪拌して予備溶融物を得た。
【0017】
空気中での溶融は、この予備溶融物の入った坩堝に蓋をして、通常の電気炉にて950℃まで昇温し、この温度で1時間保持することにより行った。
【0018】
窒素ガス中での溶融は、予備溶融物の入った坩堝を雰囲気調整のできる電気炉に移し、窒素ガスを供給しながら950℃まで昇温し、この温度で1時間保持することにより行った。
【0019】
その結果、空気中で溶融した場合は、融液上部に未溶解物層が生成しており、未溶解物を多く含んだガラスとなった。一方、窒素ガス中で溶融した場合は殆ど未溶解物を含まないガラスが得られた。
【0020】
次にこれらのガラスで作製した粉末試料を用い、加熱時の流動性をフローボタン法により比較した。
【0021】
まず空気中及び窒素ガス雰囲気中で溶融したガラスを粉砕し、目開き65μmの篩を通過させてガラス粉末とした。次いでこのガラス粉末3.70gを金型により径20mmのボタンにプレスし、窓板ガラスの上に載せ、続いて450℃の温度まで10℃/分の速度で加熱し、この温度で10分間保持した。流動したボタンの広がりを測定した結果、空気中で溶融したガラスからなる試料が22mmしか流動しなかったのに対し、窒素ガス中で溶融したガラスからなる試料の流動径は27mmであった。
【0022】
(実施例2)
実施例1で作製したガラス粉末に耐火性フィラー粉末としてコージエライト粉末を加え、複合体化した封着材料を作製した。なお配合比は、体積%でガラス粉末75%、コージエライト粉末25%とした。
【0023】
次に得られた材料3.43gを径20mmのボタンにプレスし、実施例1と同様にして流動性を評価したところ、空気中で溶融したガラス粉末を用いた試料が18mmしか流動しなかったのに対し、窒素ガス中で溶融したガラス粉末を用いた試料の流動径は22mmであった。
【0024】
なお使用したコージエライト粉末は、次のようにして調製した。まず化学量論の組成(2MgO・2Al23 ・5SiO2 )を有するガラスを粉砕して、目開き100μmの篩を通過させた。次いでこのガラス粉末を1300℃で10時間加熱してコージエライト結晶を析出させた。その後、この結晶化物を粉砕し、目開き45μmの篩を通過させて、コージエライト粉末を得た。
【0025】
(実施例3)
モル%でSnO 62.8%、P25 36.2%、ZnO 1.0%の組成を有するガラスを、実施例1と同様にして空気中及び窒素ガス中で溶融したところ、空気中で溶融したガラスでは、融液上部に厚い未溶解物層が生成したのに対し、窒素ガス中で溶融したガラスでは、未溶解物が若干生成したものの、ほぼ良好なガラスが得られた。
【0026】
次にこのガラスで作製した粉末試料3.60gを径20mmのボタンにプレスし、実施例1と同様にして加熱時の流動性を比較したところ、空気中で溶融したガラスからなる試料が18mmしか流動しなかったのに対し、窒素ガス中で溶融したガラスからなる試料の流動径は22mmであった。
【0027】
これらの事実は、本発明の方法により得られたガラスは未溶解物を含まないために流動性がよいことを示している。
【0028】
【発明の効果】
以上説明したように、本発明の製造方法によれば、高品質のSnO含有ガラスを工業的規模で大量に生産することが可能である。それゆえSnO含有ガラス粉末を安定して供給することができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing SnO-containing glass powder .
[0002]
[Prior art]
SnO—P 2 O 5 glass containing a large amount of SnO has been proposed in JP-A-7-69672 and JP-A-9-175833. These glasses can have the same low melting point as PbO-containing glasses, and are being investigated as alternative materials such as CRT frits containing PbO that are currently widely used.
[0003]
The problem with glasses containing SnO is that the oxidation state of Sn is likely to change during the melting process, and the properties of the glass change depending on the melting conditions, and when the oxidation proceeds to the SnO 2 (tetravalent) state, undissolved matter As a result, high quality glass cannot be obtained. For this reason, in order to obtain a stable low melting point glass, it is important that Sn is present in the form of SnO (divalent).
[0004]
Although oxidation of SnO to SnO 2 is more likely to occur at higher temperatures, it also easily occurs at the melting temperature for obtaining a SnO-containing low-melting glass. For this reason, in the aforementioned patent, the crucible is covered and melted, or a reducing agent is added in the batch to prevent oxidation to SnO 2 .
[0005]
[Problems to be solved by the invention]
However, when a small amount of glass is melted in a short time on a laboratory scale, the above method can be used. However, when a large amount of glass is melted on an industrial scale for a long time, the oxidation of Sn should be sufficiently prevented. It becomes difficult to form a layer of undissolved material on the glass melt. In particular, in a glass with a high SnO content or a glass with a high melting temperature, the entire upper part of the melt is covered with a thick undissolved material layer. It is difficult to obtain.
[0006]
The objective of this invention is providing the manufacturing method of SnO containing glass powder which can obtain glass with sufficient quality even if it manufactures glass on an industrial scale.
[0007]
[Means for Solving the Problems]
The production method of the SnO-containing glass powder of the present invention is characterized by melting in a nitrogen gas atmosphere when producing a SnO-containing glass powder containing 30 to 80% SnO in terms of mol% .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the method of the present invention will be described in detail.
[0009]
First, a glass raw material is prepared so as to have a desired composition. Here, it is desirable to use a divalent raw material (for example, tin monoxide) as the Sn raw material. If necessary, a reducing agent may be added to the batch.
[0010]
The batch is then melted in a nitrogen gas atmosphere and vitrified. When the batch is melted in a nitrogen gas atmosphere, the oxidation of Sn is prevented and the generation of undissolved substances can be suppressed.
[0011]
Then, molten glass is shape | molded and SnO containing glass is obtained.
[0012]
Examples of the SnO-containing glass that can be suitably produced by this method include glasses containing SnO as a main component, such as SnO—P 2 O 5 glass and SnO—B 2 O 3 —P 2 O 5 glass. As the SnO—P 2 O 5 glass, for example, a glass having a composition of 30 to 80% SnO, 20 to 50% P 2 O 5 and 0.1 to 20% ZnO in terms of mol% can be used. As the 2 O 3 -P 2 O 5 glass, for example, a composition of SnO 30 to 80%, B 2 O 3 2 to 50%, P 2 O 5 2 to 50%, ZnO 0 to 20% in terms of mol% is used. The glass which has can be used.
[0013]
Incidentally or SnO-P 2 O 5 based glass obtained by the method of the present invention, SnO-B 2 O 3 -P 2 O 5 -based glass has a glass transition temperature of two hundred and eighty to three hundred eighty ° C., 500 ° C. below the temperature Shows good fluidity. However, the coefficient of thermal expansion is as large as about 100 to 150 × 10 −7 / ° C. at 30 to 250 ° C., and the mechanical strength is not as large as that of general glass. Therefore, when used as a sealing material, a refractory filler powder can be added and combined to adjust the thermal expansion coefficient and improve the mechanical strength.
[0014]
【Example】
Hereinafter, the present invention will be described based on examples.
[0015]
Example 1
First, a glass having a composition of 5 % by mole of SnO, 3.0% of B 2 O 3 , 32.0% of P 2 O 5 , and 5.9% of ZnO is melted in air. The difference when melted in nitrogen gas will be described.
[0016]
First, orthophosphoric acid (liquid) was put into a quartz glass crucible, tin monoxide, boric anhydride and zinc white were added and mixed, and then dried at 120 ° C. Next, this mixture was slowly heated to 600 ° C. in air, and when it became a viscous liquid, it was stirred well to obtain a pre-melt.
[0017]
Melting in air was carried out by covering the crucible containing the pre-melt and raising the temperature to 950 ° C. in a normal electric furnace and holding at this temperature for 1 hour.
[0018]
Melting in nitrogen gas was carried out by transferring the crucible containing the pre-melt to an electric furnace capable of adjusting the atmosphere, raising the temperature to 950 ° C. while supplying nitrogen gas, and holding at this temperature for 1 hour.
[0019]
As a result, when melted in air, an undissolved material layer was formed on the upper part of the melt, resulting in a glass containing a large amount of undissolved material. On the other hand, when melted in nitrogen gas, a glass containing almost no undissolved material was obtained.
[0020]
Next, powder samples made of these glasses were used, and the fluidity during heating was compared by the flow button method.
[0021]
First, glass melted in air and in a nitrogen gas atmosphere was pulverized and passed through a sieve having an opening of 65 μm to obtain glass powder. Next, 3.70 g of this glass powder was pressed on a button having a diameter of 20 mm by a mold, placed on a window glass, subsequently heated to a temperature of 450 ° C. at a rate of 10 ° C./min, and held at this temperature for 10 minutes. . As a result of measuring the spread of the flowed button, the sample made of glass melted in air only flowed 22 mm, whereas the flow diameter of the sample made of glass melted in nitrogen gas was 27 mm.
[0022]
(Example 2)
Cordierite powder was added to the glass powder produced in Example 1 as a refractory filler powder to produce a composite sealing material. The mixing ratio was 75% glass powder and 25% cordierite powder by volume.
[0023]
Next, 3.43 g of the obtained material was pressed on a button having a diameter of 20 mm, and the fluidity was evaluated in the same manner as in Example 1. As a result, a sample using glass powder melted in the air only flowed 18 mm. On the other hand, the flow diameter of the sample using glass powder melted in nitrogen gas was 22 mm.
[0024]
The cordierite powder used was prepared as follows. First, glass having a stoichiometric composition (2MgO · 2Al 2 O 3 · 5SiO 2 ) was pulverized and passed through a sieve having an opening of 100 μm. Next, this glass powder was heated at 1300 ° C. for 10 hours to precipitate cordierite crystals. Thereafter, the crystallized product was pulverized and passed through a sieve having an opening of 45 μm to obtain cordierite powder.
[0025]
(Example 3)
When a glass having a composition of 62.8% SnO, 36.2% P 2 O 5 and 1.0% ZnO was melted in air and nitrogen gas in the same manner as in Example 1, In the glass melted in (1), a thick undissolved layer was formed on the upper part of the melt, whereas in the glass melted in nitrogen gas, an undissolved material was slightly formed, but almost good glass was obtained.
[0026]
Next, 3.60 g of a powder sample made of this glass was pressed onto a button with a diameter of 20 mm, and the fluidity during heating was compared in the same manner as in Example 1. As a result, the sample made of glass melted in air was only 18 mm. While it did not flow, the flow diameter of the sample made of glass melted in nitrogen gas was 22 mm.
[0027]
These facts show that the glass obtained by the method of the present invention has good flowability because it does not contain undissolved substances.
[0028]
【The invention's effect】
As described above, according to the production method of the present invention, high-quality SnO-containing glass can be produced in large quantities on an industrial scale. Therefore, the SnO-containing glass powder can be supplied stably.

Claims (2)

モル%表示でSnOを30〜80%含有するSnO含有ガラス粉末を製造するに当たり、窒素ガス雰囲気中で溶融することを特徴とするSnO含有ガラス粉末の製造方法。 A method for producing a SnO-containing glass powder , characterized by melting in a nitrogen gas atmosphere when producing a SnO-containing glass powder containing 30 to 80% SnO in terms of mol% . モル%表示でSnO 30〜80%、BSnO 30-80% in mol% display, B 22 O 3Three 2〜50%、P  2-50%, P 22 O 5Five 2〜50%、ZnO 0〜20%の組成からなることを特徴とする請求項1に記載のSnO含有ガラス粉末の製造方法。  It consists of a composition of 2-50% and ZnO 0-20%, The manufacturing method of the SnO containing glass powder of Claim 1 characterized by the above-mentioned.
JP20618598A 1998-07-22 1998-07-22 Method for producing SnO-containing glass powder Expired - Fee Related JP3959660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20618598A JP3959660B2 (en) 1998-07-22 1998-07-22 Method for producing SnO-containing glass powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20618598A JP3959660B2 (en) 1998-07-22 1998-07-22 Method for producing SnO-containing glass powder

Publications (2)

Publication Number Publication Date
JP2000044253A JP2000044253A (en) 2000-02-15
JP3959660B2 true JP3959660B2 (en) 2007-08-15

Family

ID=16519230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20618598A Expired - Fee Related JP3959660B2 (en) 1998-07-22 1998-07-22 Method for producing SnO-containing glass powder

Country Status (1)

Country Link
JP (1) JP3959660B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4765179B2 (en) * 2001-03-02 2011-09-07 日本電気硝子株式会社 Glass paste
KR101082437B1 (en) 2005-03-02 2011-11-11 삼성에스디아이 주식회사 An electron emission source, a preparing method thereof, and an electron emission device using the same
US20060231737A1 (en) 2005-04-15 2006-10-19 Asahi Glass Company, Limited Light emitting diode element
JP5477756B2 (en) * 2006-07-07 2014-04-23 日本電気硝子株式会社 Semiconductor encapsulating material and semiconductor element encapsulated using the same
JP5381131B2 (en) * 2009-01-30 2014-01-08 旭硝子株式会社 Manufacturing method of glass powder for light emitting device coating
JP5638759B2 (en) * 2009-01-30 2014-12-10 旭硝子株式会社 Light emitting device coating glass powder, light emitting device coating slurry, light emitting device coating paste, and glass coated light emitting device
JP5471095B2 (en) * 2009-07-09 2014-04-16 旭硝子株式会社 Sealing glass

Also Published As

Publication number Publication date
JP2000044253A (en) 2000-02-15

Similar Documents

Publication Publication Date Title
CN1772676B (en) Low melting glass, sealing composition and sealing paste
KR100296471B1 (en) Lead free glass for sealing
CN101066839B (en) No-lead glass powder for electrode coating and its preparation process
JPS62100450A (en) Flat plate display device, glass therefor and manufacture
JPH1059741A (en) Non-alkali glass and its production
JPH10130034A (en) Alkali-free glass and its production
JP3959660B2 (en) Method for producing SnO-containing glass powder
JPH10114538A (en) Alkali-free glass and its production
JP3748533B2 (en) Low melting glass and method for producing the same
US3929439A (en) Method for preparing a highly siliceous alkali metal silicate glass and hydrated powder
JP4093342B2 (en) Press frit
Huang et al. Dependence of the critical cooling rate for lithium-silicate glass on nucleating agents
JP2001010843A (en) Crystalline low-melting glass and sealing composition
JPH0432020B2 (en)
CN115572072A (en) Sealing glass powder and preparation method thereof
JP2987039B2 (en) Glass for bonding and sealing
JPH0692673A (en) Before furnace colorant
JP3877500B2 (en) Manufacturing method of glass for sealing material
SU1565344A3 (en) Method of obtaining soldering borolead glass
JP2004059366A (en) Lead-free low melting glass and sealing material
JP3087262B2 (en) Crystallized glass
JP2944387B2 (en) Low melting glass
TW202132233A (en) Sealing/coating glass with low thermal expandability
JPS63201037A (en) Crystallized glass having natural marble pattern
JP3082862B2 (en) Sealing material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140525

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees