JP3959100B2 - Vehicle travel control device - Google Patents

Vehicle travel control device Download PDF

Info

Publication number
JP3959100B2
JP3959100B2 JP2005366518A JP2005366518A JP3959100B2 JP 3959100 B2 JP3959100 B2 JP 3959100B2 JP 2005366518 A JP2005366518 A JP 2005366518A JP 2005366518 A JP2005366518 A JP 2005366518A JP 3959100 B2 JP3959100 B2 JP 3959100B2
Authority
JP
Japan
Prior art keywords
objects
vehicle
target object
host vehicle
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005366518A
Other languages
Japanese (ja)
Other versions
JP2006189432A (en
Inventor
弘之 小池
和彦 望月
芳洋 浦井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2005366518A priority Critical patent/JP3959100B2/en
Publication of JP2006189432A publication Critical patent/JP2006189432A/en
Application granted granted Critical
Publication of JP3959100B2 publication Critical patent/JP3959100B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Traffic Control Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

本発明は、レーダー装置等により自車の推定軌跡内に存在する物体を検知し、その物体と自車との位置関係に応じて自車の走行状態を制御するための車両の走行制御装置に関する。   The present invention relates to a vehicle travel control device for detecting an object existing in an estimated trajectory of a host vehicle using a radar device or the like, and controlling the traveling state of the host vehicle according to the positional relationship between the object and the host vehicle. .

車載のレーダー装置で検知した複数の物体のデータのうち、その位置が相互に近接し、かつ自車に対する相対速度のばらつきが所定範囲内にある物体のデータどうしを統合することで、ガードレール等の固定物と先行車等の対照物を確実に識別する対照物認識方法が、下記特許文献1により公知である。
特開平8−240660号公報
Among the data of multiple objects detected by the on-vehicle radar device, by integrating the data of objects whose positions are close to each other and the relative speed variation with respect to the host vehicle is within a predetermined range, such as a guardrail A control object recognition method for reliably identifying a control object such as a fixed object and a preceding vehicle is known from Patent Document 1 below.
JP-A-8-240660

ところで、自車の前方を乗用車のような小型車両が走行し、その小型車両の側方をキャリヤカーのような大型車両が同速度で並走している場合に、上記従来の対照物認識方法では、小型車両が大型車両に統合されて1台の車両として誤認識されてしまう場合がある。このような場合に、1台に統合された車両の位置は、車体の大きさの差から大型車両の位置として認識されてしまうため、実際に自車の推定軌跡内を走行している小型車両が認識されず、自車の推定軌跡外を走行している大型車両だけが認識される事態が発生する。その結果、自車が大型車両および小型車両に接近して大型車両がレーダー装置の検知範囲から外れたとき、あるいは大型車両が進路変更してレーダー装置の検知範囲から外れて前記統合が解除されたときに、自車の推定軌跡内に突然に小型車両が認識されることになり、先行車に対する追突を防止するための制動に遅れが生じる虞がある。   By the way, when a small vehicle such as a passenger car is traveling in front of the own vehicle and a large vehicle such as a carrier car is running side by side at the same speed on the side of the small vehicle, the conventional contrast object recognition method described above. Then, a small vehicle may be integrated into a large vehicle and mistakenly recognized as one vehicle. In such a case, since the position of the vehicle integrated into one vehicle is recognized as the position of the large vehicle from the difference in the size of the vehicle body, the small vehicle that is actually traveling in the estimated trajectory of the own vehicle Will not be recognized, and only a large vehicle traveling outside the estimated trajectory of the vehicle will be recognized. As a result, when the own vehicle approaches a large vehicle and a small vehicle and the large vehicle deviates from the detection range of the radar device, or the large vehicle changes its course and deviates from the detection range of the radar device, and the integration is canceled. Sometimes, a small vehicle is suddenly recognized in the estimated trajectory of the own vehicle, and there is a possibility that a delay occurs in braking for preventing a rear-end collision with the preceding vehicle.

本発明は前述の事情に鑑みてなされたもので、自車の前方に存在する複数の物体が不適切に統合されるのを防止して車両制御を的確に行えるようにすることを目的とする。   The present invention has been made in view of the above-described circumstances, and an object thereof is to prevent a plurality of objects existing in front of the host vehicle from being inappropriately integrated and to perform vehicle control accurately. .

上記目的を達成するために、請求項1に記載された発明によれば、自車の進行方向の所定領域に向けて電磁波を送信し、前記所定領域内に存在する物体からの反射波を受信する送受信手段と、送受信手段の送受信結果に基づいて自車に対する物体の位置を算出する物体情報算出手段と、所定範囲内に複数の物体が検知されたときに該複数の物体の少なくとも位置に基づいて該複数の物体を一つの目標物体として纏める統合手段と、自車の将来の走行軌跡を推定する軌跡推定手段と、統合手段により纏められた目標物体が前記推定軌跡内に存在するときに、該目標物体および自車の位置関係に応じて自車の走行状態を制御する車両制御手段とを備えた車両の走行制御装置において、前記所定範囲における自車に近い側の小範囲に存在する物体の位置を基準として、前記統合手段により纏められた一つの目標物体の代表位置を出力する位置出力手段と、前記統合された複数の物体の位置の何れかが前記代表位置から第1の所定距離以上離れており、かつ前記統合された複数の物体の位置の何れかが自車の推定軌跡内に存在していれば、前記一つの目標物体を自車の推定軌跡の内外に存在する別個の目標物体に分離する分離手段とを備え、前記位置出力手段は、前記小範囲に単一の物体が存在するときには、該単一の物体の位置を前記代表位置とし、前記小範囲に複数の物体が存在するときには、該複数の物体のうちの左右方向両端に存在する二つの物体間の領域を前記代表位置として出力することを特徴とする車両の走行制御装置が提案される。 To achieve the above object, according to the first aspect of the present invention, an electromagnetic wave is transmitted toward a predetermined region in the traveling direction of the host vehicle, and a reflected wave from an object existing in the predetermined region is received. Based on at least the positions of the plurality of objects when a plurality of objects are detected within a predetermined range based on the transmission / reception results of the transmission / reception means. Integration means for combining the plurality of objects as one target object, trajectory estimation means for estimating a future travel trajectory of the own vehicle, and when the target object summarized by the integration means exists in the estimated trajectory, In a vehicle travel control device comprising vehicle control means for controlling the travel state of the host vehicle according to the positional relationship between the target object and the host vehicle, the object present in a small range closer to the host vehicle in the predetermined range of Based on the location, the position output means for outputting a representative position of one target object that has been gathered by the integrating means, said one position of the integrated plurality of objects which is the first predetermined distance or more from the representative position If one of the positions of the plurality of integrated objects exists within the estimated trajectory of the own vehicle, the one target object is separated from the estimated trajectory of the own vehicle. Separating means for separating into objects, and when the single object exists in the small range, the position output means uses the position of the single object as the representative position, and a plurality of objects in the small range. When the vehicle is present, a travel control device for a vehicle is proposed, in which a region between two objects existing at both ends in the left-right direction among the plurality of objects is output as the representative position .

第1の所定距離d0,d1は実施例においてそれぞれ3mおよび0.8mに設定されているが、その値は適宜設定可能である。   The first predetermined distances d0 and d1 are set to 3 m and 0.8 m, respectively, in the embodiment, but the values can be set as appropriate.

また請求項2に記載された発明によれば、請求項1の構成に加えて、前記統合手段は、前記複数の物体のうちの一つの物体の位置を基準とする所定範囲内に存在する物体を纏めることを特徴とする車両の走行制御装置が提案される According to a second aspect of the present invention, in addition to the configuration of the first aspect, the integration unit is an object existing within a predetermined range based on the position of one of the plurality of objects. travel control device for a vehicle, characterized in that summarize is proposed.

また請求項に記載された発明によれば、請求項1または請求項2の構成に加えて、前記分離手段の代わりに、前記統合手段により纏められる複数の物体のうち、二つ以上の物体が前記推定軌跡内に存在するとき、該二つ以上の物体間の左右方向の距離が第2の所定距離以上の物体どうしを別個の目標物体として再分離する再分離手段を備えたことを特徴とする車両の走行制御装置が提案される。 According to the invention described in claim 3 , in addition to the configuration of claim 1 or 2 , in place of the separating means, two or more objects among a plurality of objects collected by the integrating means are provided. Is provided in the estimated trajectory, further comprising re-separating means for re-separating the objects whose left-right distance between the two or more objects is a second predetermined distance or more as separate target objects. A vehicle travel control device is proposed.

第2の所定距離d2は実施例において0.8mに設定されているが、その値は適宜設定可能である。   The second predetermined distance d2 is set to 0.8 m in the embodiment, but the value can be set as appropriate.

また請求項に記載された発明によれば、請求項1〜請求項の何れか1項の構成に加えて、前記分離手段の代わりに、前記統合手段により纏められる複数の物体のうち、二つ以上の物体が前記推定軌跡内に存在するとき、該二つ以上の物体間の前後方向の距離が第3の所定距離以上の物体どうしを別個の目標物体として再分離する再分離手段を備えたことを特徴とする車両の走行制御装置が提案される。 According to the invention described in claim 4 , in addition to the configuration of any one of claims 1 to 3 , among a plurality of objects collected by the integration unit instead of the separation unit, Re-separating means for re-separating, as separate target objects, objects whose front-rear distance between the two or more objects is a third predetermined distance or more when two or more objects exist in the estimated trajectory; There is proposed a vehicle travel control device characterized by comprising the above.

第3の所定距離d3は実施例において3.0mに設定されているが、その値は適宜設定可能である。   The third predetermined distance d3 is set to 3.0 m in the embodiment, but the value can be set as appropriate.

尚、実施例のミリ波レーダー装置Srは本発明の送受信手段に対応する。   The millimeter wave radar device Sr of the embodiment corresponds to the transmitting / receiving means of the present invention.

請求項1の構成によれば、送受信手段で検知した複数の物体を一つの目標物体として纏めたとき、纏められた複数の物体が自車の推定軌跡の内外に跨がって存在すれば、前記一つの目標物体を自車の推定軌跡の内外に存在する別個の目標物体に分離するので、誤って一つに纏められた目標物体を別個の目標物体として正しく認識し、自車の推定軌跡上に存在する目標物体と自車との位置関係に基づく自車の車両制御を的確に行うことができる。特に、一つの目標物体として纏められた複数の物体の位置の何れかが、それら複数の物体の代表位置から第1の所定距離以上離れており、かつ前記纏められた複数の物体の位置の何れかが自車の推定軌跡内に存在すれば、前記一つの目標物体を自車の推定軌跡の内外に存在する別個の目標物体に分離するので、分離する必要のない別個の目標物体が元の目標物体から分離されるのを防止することができる。 According to the configuration of claim 1, when a plurality of objects detected by the transmission / reception means are collected as one target object, if the collected objects exist across the inside and outside of the estimated trajectory of the own vehicle, Since the one target object is separated into separate target objects existing inside and outside the own vehicle's estimated trajectory, the target objects mistakenly combined into one are correctly recognized as separate target objects, and the own vehicle's estimated trajectory The vehicle control of the own vehicle based on the positional relationship between the target object existing above and the own vehicle can be accurately performed. In particular, any of the positions of the plurality of objects collected as one target object is at least a first predetermined distance from the representative position of the plurality of objects, and any of the positions of the collected objects Is present in the estimated trajectory of the own vehicle, the one target object is separated into separate target objects existing inside and outside the estimated trajectory of the own vehicle. It is possible to prevent separation from the target object.

更に、所定範囲における自車に近い側に小範囲を設定し、その小範囲に存在する物体の位置を基準として目標物体の代表位置を出力するので、目標物体の代表位置をできるだけ自車に近い位置に適切に設定することができ、しかも小範囲に単一の物体が存在するときには、該単一の物体の位置を前記代表位置とし、また小範囲に複数の物体が存在するときには、該複数の物体のうちの左右方向両端に存在する二つの物体間の領域を前記代表位置として出力するので、この代表位置によって目標物体の位置を適切に設定することができる。Furthermore, since a small range is set on the side close to the own vehicle in the predetermined range and the representative position of the target object is output with reference to the position of the object existing in the small range, the representative position of the target object is as close to the own vehicle as possible. When a single object exists in a small range, the position of the single object is set as the representative position, and when a plurality of objects exist in a small range, the plurality of Since the region between two objects existing at both ends in the left-right direction is output as the representative position, the position of the target object can be appropriately set by this representative position.

請求項2の構成によれば、検知された複数の物体のうちの一つの物体の位置を基準とする所定範囲内に存在する物体を目標物体として纏めるので、元々分離している複数の物体が誤って一つの目標物体として纏められるのを防止することができる According to the configuration of claim 2, since the objects existing within a predetermined range based on the position of one of the detected plurality of objects are collected as the target object, the plurality of originally separated objects are It is possible to prevent a single target object from being mistakenly collected .

請求項の構成によれば、推定軌跡内に存在するために元の目標物体から別個の目標物体として分離されるべき二つ以上の物体間の左右方向の距離が第2の所定距離以上であれば、それら二つ以上の物体どうしを別個の目標物体として再分離するので、自車の推定軌跡上に存在する物体を目標物体として一層確実に分離することができる。 According to the configuration of claim 3 , the distance in the left-right direction between two or more objects to be separated from the original target object as separate target objects because they exist in the estimated trajectory is equal to or greater than the second predetermined distance. If there is, the two or more objects are re-separated as separate target objects, so that the object existing on the estimated trajectory of the host vehicle can be more reliably separated as the target object.

請求項の構成によれば、推定軌跡内に存在するために元の目標物体から別個の目標物体として分離されるべき二つ以上の物体間の前後方向の距離が第3の所定距離以上であれば、それら二つ以上の物体どうしを別個の目標物体として再分離するので、別個の目標物体として分離する必要がある物体だけを一層確実に分離することができる。 According to the configuration of claim 4 , the distance in the front-rear direction between two or more objects that are to be separated from the original target object as separate target objects because they exist in the estimated trajectory is a third predetermined distance or more. If so, the two or more objects are re-separated as separate target objects, so that only objects that need to be separated as separate target objects can be more reliably separated.

以下、本発明の実施の形態を、添付の図面に示した本発明の実施例に基づいて説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on examples of the present invention shown in the accompanying drawings.

図1〜図8は本発明の第1実施例を示すもので、図1は走行制御装置の全体構成図、図2は送受信アンテナに対して物体が接近移動しているときの送受信波の波形およびピーク周波数を示すグラフ、図3は検知されたピーク信号を示すグラフ、図4はレーダー装置の演算処理装置の回路構成を示すブロック図、図5は目標車両を分離する領域を示す図、図6は自車の前方を並走する大型車両および小型車両を単一の目標車両として纏めた状態を示す図、図7は一旦纏めた大型車両から小型車両を分離した状態を示す図、図8は作用を説明するフローチャートである。   1 to 8 show a first embodiment of the present invention. FIG. 1 is an overall configuration diagram of a travel control device, and FIG. 2 is a waveform of a transmission / reception wave when an object is moving close to the transmission / reception antenna. 3 is a graph showing the detected peak signal, FIG. 4 is a block diagram showing the circuit configuration of the arithmetic processing unit of the radar device, and FIG. 5 is a diagram showing a region for separating the target vehicle, FIG. 6 is a view showing a state in which a large vehicle and a small vehicle running in parallel in front of the host vehicle are grouped as a single target vehicle, FIG. 7 is a view showing a state in which the small vehicle is separated from the once assembled large vehicle, FIG. Is a flowchart explaining the operation.

図1に示すように、FM−CW波を用いたミリ波レーダー装置Srは、タイミング信号生成回路1から入力されるタイミング信号に基づいて発振器3の発信作動がFM変調制御回路2により変調制御され、図2(a)に実線で示すように、周波数が三角波状に変調された送信波がアンプ4およびサーキュレータ5を介して送受信アンテナ6から、自車の前方の所定の検知範囲の水平方向に異なる方向に向けて例えば9チャンネルに別れて送信される。このFM−CW波が先行車等の物体に反射された反射波が送受信アンテナ6に受信されると、この受信波は、例えば物体が自車に接近してくる場合には、図2(a)に破線で示すように、送信波の周波数が直線的に増加する上昇側では送信波よりも低い周波数で送信波から遅れて出現し、また送信波の周波数が直線的に減少する下降側では送信波よりも高い周波数で送信波から遅れて出現する。   As shown in FIG. 1, in the millimeter wave radar device Sr using FM-CW waves, the transmission operation of the oscillator 3 is modulated and controlled by the FM modulation control circuit 2 based on the timing signal input from the timing signal generation circuit 1. As shown by the solid line in FIG. 2A, a transmission wave whose frequency is modulated in a triangular wave shape is transmitted from the transmitting / receiving antenna 6 via the amplifier 4 and the circulator 5 in the horizontal direction of a predetermined detection range in front of the vehicle. For example, 9 channels are transmitted separately in different directions. When a reflected wave obtained by reflecting the FM-CW wave on an object such as a preceding vehicle is received by the transmission / reception antenna 6, the received wave is, for example, when the object approaches the own vehicle, as shown in FIG. ) On the rising side where the frequency of the transmission wave increases linearly, it appears later than the transmission wave at a frequency lower than the transmission wave, and on the lower side where the frequency of the transmission wave decreases linearly. Appears later than the transmitted wave at a higher frequency than the transmitted wave.

送受信アンテナ6で受信した受信波はサーキュレータ5を介してミキサ7に入力される。ミキサ7には、サーキュレータ5からの受信波の他に発振器3から出力される送信波から分配された送信波がアンプ8を介して入力されており、ミキサ7で送信波および受信波が混合されることにより、図2(b)に示すように、送信波の周波数が直線的に増加する上昇側でピーク周波数Fupを有し、送信波の周波数が直線的に減少する下降側でピーク周波数Fdnを有するビート信号が生成される。   The received wave received by the transmission / reception antenna 6 is input to the mixer 7 via the circulator 5. In addition to the reception wave from the circulator 5, the transmission wave distributed from the transmission wave output from the oscillator 3 is input to the mixer 7 via the amplifier 8, and the transmission wave and the reception wave are mixed by the mixer 7. Thus, as shown in FIG. 2B, the peak frequency Fup has a peak frequency Fup on the rising side where the frequency of the transmission wave increases linearly, and the peak frequency Fdn on the falling side where the frequency of the transmission wave decreases linearly. A beat signal having

ミキサ7で得られたビート信号はアンプ9で必要なレベルの振幅に増幅され、A/Dコンバータ10によりサンプリングタイム毎にA/D変換され、デジタル化されたデータがメモリ11に時系列的に記憶保持される。このメモリ11には、タイミング信号生成回路1からタイミング信号が入力されており、そのタイミング信号に応じてメモリ11は、送受信波の周波数が増加する上昇側および前記周波数が減少する下降側毎にデータを記憶保持することになる。   The beat signal obtained by the mixer 7 is amplified to the required level of amplitude by the amplifier 9, A / D converted by the A / D converter 10 at every sampling time, and the digitized data is stored in the memory 11 in time series. Retained. A timing signal is input to the memory 11 from the timing signal generation circuit 1, and in accordance with the timing signal, the memory 11 stores data on the rising side where the frequency of the transmission / reception wave increases and on the falling side where the frequency decreases. Will be stored in memory.

図4に示すように、前記メモリ11に記憶されたデータに基づいて、演算処理装置(CPU)Cは、後述するように物体との相対距離および相対速度を演算するとともに、電子制御ユニットUに通信する。更に、演算処理装置(CPU)Cは、物体情報算出手段M1と、統合手段M2と、位置出力手段M3と、分離手段M4と、軌跡推定手段M6とを備えており、電子制御ユニットUで構成される車両制御手段M5は、演算処理装置(CPU)Cからの信号を受けて、ドライバーに自発的な減速を促す警報手段12の作動と、自車の車輪ブレーキを駆動するブレーキアクチュエータ13の作動とを制御する。   As shown in FIG. 4, based on the data stored in the memory 11, the arithmetic processing unit (CPU) C calculates a relative distance and a relative speed with respect to an object as described later, and connect. Further, the arithmetic processing unit (CPU) C includes an object information calculation unit M1, an integration unit M2, a position output unit M3, a separation unit M4, and a trajectory estimation unit M6. The vehicle control means M5 receives the signal from the arithmetic processing unit (CPU) C and operates the alarm means 12 that prompts the driver to decelerate spontaneously and the brake actuator 13 that drives the wheel brake of the own vehicle. And control.

物体情報算出手段M1は、メモリ11に記憶されたビート信号のデータをFFT(高速フーリエ変換)により周波数分析してスペクトル分布を求め、そのスペクトルデータを基に検知レベルが所定の閾値以上で極大値となるスペクトル(ピーク信号)を検出する。図3(a)に示す上昇側のピーク信号と図3(b)に示す下降側のピーク信号とは、物体との相対速度が「0」であるときのピーク位置を挟んで対称的に検知される。そして上昇側のピーク周波数Fupおよび下降側のピーク周波数Fdnに基づいて、物体の相対距離および相対速度を算出する。具体的には、両ピーク周波数Fup,Fdnの和に基づいて物体までの距離が算出され、両ピーク周波数Fup,Fdnの差に基づいて物体との相対速度が算出される。また物体が検知されたときの送信波の送信方向に基づいて物体の方向を算出する。   The object information calculation means M1 analyzes the frequency of the beat signal data stored in the memory 11 by FFT (Fast Fourier Transform) to obtain the spectrum distribution, and based on the spectrum data, the detection level is a maximum value when the detection level is equal to or greater than a predetermined threshold value. A spectrum (peak signal) is detected. The ascending peak signal shown in FIG. 3 (a) and the descending peak signal shown in FIG. 3 (b) are detected symmetrically across the peak position when the relative speed to the object is “0”. Is done. Then, the relative distance and the relative speed of the object are calculated based on the peak frequency Fup on the rising side and the peak frequency Fdn on the descending side. Specifically, the distance to the object is calculated based on the sum of both peak frequencies Fup and Fdn, and the relative velocity with respect to the object is calculated based on the difference between both peak frequencies Fup and Fdn. The direction of the object is calculated based on the transmission direction of the transmission wave when the object is detected.

統合手段M2は、物体情報算出手段M1で得られた物体の位置(相対距離および方向)に基づいて、複数の物体を一つの目標物体と見なして統合する。位置出力手段M3は、一つに統合した目標物体の代表位置を出力する。軌跡推定手段M6は、車速センサSaで検出した自車の車速と、ヨーレートセンサSbで検出したヨーレートとに基づいて、自車の将来の軌跡を推定する。そして分離手段M4は、目標物体を構成する個々の物体の位置と推定軌跡とを比較した結果に基づき、その目標物体を複数の目標物体に分離する。車両制御手段M5は、例えば接触被害軽減支援システムからなり、自車が先行車(つまり目標物体)に接触しないように、あるいは接触しても被害が軽減されるように、ドライバーに自発的なブレーキ操作を促す警報手段12を作動させたり、自動制動を行うためのブレーキアクチュエータ13を作動させたりする。   Based on the position (relative distance and direction) of the object obtained by the object information calculation unit M1, the integration unit M2 considers a plurality of objects as one target object and integrates them. The position output means M3 outputs the representative position of the target object integrated into one. The trajectory estimation means M6 estimates the future trajectory of the host vehicle based on the vehicle speed detected by the vehicle speed sensor Sa and the yaw rate detected by the yaw rate sensor Sb. The separation unit M4 separates the target object into a plurality of target objects based on the result of comparing the position of each object constituting the target object and the estimated trajectory. The vehicle control means M5 is composed of, for example, a contact damage reduction support system. The vehicle control means M5 is a brake that is voluntarily provided to the driver so that the vehicle does not contact the preceding vehicle (that is, the target object) or damage is reduced even if the vehicle contacts the vehicle. The alarm means 12 for prompting the operation is activated, or the brake actuator 13 for performing automatic braking is activated.

演算処理装置Cの上記作用を更に具体的に説明する。   The operation of the arithmetic processing unit C will be described more specifically.

図5〜図7に示すように、自車Vaの前方をキャリヤカーのような大型車両Vbと、乗用車のような小型車両Vcとが同速度で並走している状態を考える。小型車両Vcは、自車Vaの車速およびヨーレートから推定した軌跡の中心(一点鎖線)の左右両側に所定距離(実施例では1.8m)を加算した車線幅相当の推定軌跡内に位置しており、大型車両Vbは前記推定軌跡外に位置している。キャリヤカーよりなる大型車両Vbには複数の車両が搭載されているため、ミリ波レーダー装置Srは大型車両Vbから複数の物体T1〜T4を検知し、小型車両Vcから物体T5を検知し、また他の車両等(図示せず)を物体として検知する。   As shown in FIGS. 5 to 7, a state is considered in which a large vehicle Vb such as a carrier car and a small vehicle Vc such as a passenger car are running in parallel at the same speed in front of the host vehicle Va. The small vehicle Vc is located in an estimated trajectory corresponding to the lane width obtained by adding a predetermined distance (1.8 m in the embodiment) to both the left and right sides of the center (one-dot chain line) of the trajectory estimated from the vehicle speed and yaw rate of the host vehicle Va. The large vehicle Vb is located outside the estimated locus. Since a large vehicle Vb made of a carrier car has a plurality of vehicles mounted thereon, the millimeter wave radar device Sr detects a plurality of objects T1 to T4 from the large vehicle Vb, detects an object T5 from the small vehicle Vc, and Another vehicle or the like (not shown) is detected as an object.

上記複数の物体T1…のうち、自車Vaに最も近い物体T1を基準として設定される所定範囲A(実施例では左右両側に各1.6m、前方に15m)に複数の物体T1〜T5が検知され、かつ検知された複数の物体T1〜T5の自車Vaに対する相対速度が一致していれば、それら複数の物体T1〜T5は統合されて二点鎖線で囲んだ一つの目標物体Taとして認識される。目標物体Taの代表位置は、前記所定範囲Aの手前側の前後方向距離が3m以内の小範囲a(図5参照)に存在する物体が仮に単数であれば、その物体の位置とされる。また図示したように、小範囲aに存在する物体T1,T2が複数であれば、それらの物体T1,T2の中央位置(あるいは重心位置)が代表位置とされる。この場合、代表位置は左右方向の幅を持ち、その左端点は小範囲aに含まれる物体T1,T2のうちの最も左側に存在する物体T1の位置とされ、その右端点は小範囲aに含まれる物体T1,T2のうちの最も右側に存在する物体T2の位置とされる。   Among the plurality of objects T1..., The plurality of objects T1 to T5 are within a predetermined range A (in the embodiment, 1.6 m on each of the left and right sides and 15 m on the front) set based on the object T1 closest to the host vehicle Va. If the detected relative speeds of the plurality of objects T1 to T5 with respect to the vehicle Va match, the plurality of objects T1 to T5 are integrated as one target object Ta surrounded by a two-dot chain line. Be recognized. The representative position of the target object Ta is the position of the object if there is a single object that exists in the small range a (see FIG. 5) with a front-rear distance of the predetermined range A within 3 m. As shown in the figure, if there are a plurality of objects T1 and T2 existing in the small range a, the center position (or the center of gravity position) of these objects T1 and T2 is set as the representative position. In this case, the representative position has a width in the left-right direction, the left end point is the position of the leftmost object T1 among the objects T1 and T2 included in the small range a, and the right end point is in the small range a. The position of the rightmost object T2 among the included objects T1 and T2 is set.

記代表位置を基準として所定距離d0(実施例で3m)以上前方であり、かつ代表位置(代表位置が左右方向の幅を持つ場合には、その左端点)を基準として所定距離d1(実施例で0.8m)以上左方(推定軌跡に近づく方向)であり、かつ自車Vaから前方に所定距離(実施例では50m)以内であり、かつ自車Vaの推定軌跡内に含まれる領域R(図5参照)に、図7に示すように統合された複数の物体T1〜T5のうちの物体T5が存在すれば、その物体T5を大型車両Vbと異なる小型車両Vcであると判定し、元の目標物体Taから小型車両Vcに対応する目標物体Tbを分離する。前記所定距離d0および前記所定距離d1は本願発明の第1の所定距離とされる。領域R内に存在する物体T5が単数であれば、その物体T5の位置が分離された小型車両Vcの代表位置となり、領域R内に存在する物体T5が複数であれば、それら複数の物体の中央位置(あるいは重心位置)が代表位置とされる。この場合、代表位置は左右方向の幅を持ち、その左端点は領域Rに含まれる物体のうちの最も左側に存在する物体の位置とされ、その右端点は領域Rに含まれる物体のうちの最も右側に存在する物体の位置とされる。 Before SL with respect to the representative position is a predetermined distance d0 forward (in 3m Example) above, and the representative position (when the representative position has a width in the lateral direction, the left end point) a predetermined distance d1 (implemented as a reference An area that is 0.8 m) or more to the left (in the direction approaching the estimated trajectory) , is within a predetermined distance (50 m in the embodiment) forward from the own vehicle Va, and is included in the estimated trajectory of the own vehicle Va If R (see FIG. 5) includes an object T5 among a plurality of integrated objects T1 to T5 as shown in FIG. 7, it is determined that the object T5 is a small vehicle Vc different from the large vehicle Vb. The target object Tb corresponding to the small vehicle Vc is separated from the original target object Ta. The predetermined distance d0 and the predetermined distance d1 are the first predetermined distance of the present invention. If there is a single object T5 present in the region R, the position of the object T5 becomes the representative position of the separated small vehicle Vc. If there are a plurality of objects T5 present in the region R, the plurality of objects The center position (or center of gravity position) is set as the representative position. In this case, the representative position has a width in the left-right direction, the left end point is the position of the leftmost object among the objects included in the region R, and the right end point is the position of the objects included in the region R. It is the position of the object that exists on the rightmost side.

上述のようにして、一旦は単一の目標物体Taとして誤って統合された大型車両Vbを、大型車両Vbと小型車両Vcとに正しく分離して認識することができるので、自車Vaの推定軌跡上に存在する小型車両Vcに対して適切に警報手段12やブレーキアクチュエータ13を作動させることができる。   As described above, since the large vehicle Vb once mistakenly integrated as the single target object Ta can be correctly separated into the large vehicle Vb and the small vehicle Vc and recognized, the estimation of the host vehicle Va is possible. The alarm means 12 and the brake actuator 13 can be appropriately operated with respect to the small vehicle Vc existing on the trajectory.

大型車両Vbから小型車両Vaを分離する際に、小範囲a内に存在する物体T1,T2を除く物体T3〜T5のうちから、小型車両Vaに対応する物体T5を分離するので、小範囲a内に存在して大型車両Vbの位置を特定するために用いた物体T1,T2を、小型車両Vaとして分離することがなくなり、無駄な分離が行われるのを回避することができる。なぜならば、仮に物体T5が小範囲aに含まれていれば、目標物体Taの代表位置は左右両端に位置する2個の物体T5,T2の中央位置として設定され、その代表位置の左端点は物体T5の位置となる。そして代表位置の左端点を定める物体T5の位置は自車Vaの推定軌跡内に位置しているため、この代表位置に基づいて接触被害軽減制御を行えば、特別の分離作業を行う必要がない。   When separating the small vehicle Va from the large vehicle Vb, the object T5 corresponding to the small vehicle Va is separated from the objects T3 to T5 excluding the objects T1 and T2 existing in the small range a. The objects T1 and T2 that exist in the vehicle and are used for specifying the position of the large vehicle Vb are not separated as the small vehicle Va, so that useless separation can be avoided. This is because if the object T5 is included in the small range a, the representative position of the target object Ta is set as the center position of the two objects T5 and T2 located at the left and right ends, and the left end point of the representative position is This is the position of the object T5. Since the position of the object T5 that defines the left end point of the representative position is located within the estimated trajectory of the host vehicle Va, if the contact damage reduction control is performed based on the representative position, no special separation work is required. .

また大型車両Vbから小型車両Vaを分離する際に、大型車両Vbの代表位置の左端点を定める物体T1から第1の所定距離(実施例では0.8m)以上自車Vaの推定軌跡側に偏倚していることを条件にしているので、大型車両Vbの一部を小型車両Vcとして誤分離するのを防止することができる。   Further, when the small vehicle Va is separated from the large vehicle Vb, the estimated distance of the own vehicle Va is more than the first predetermined distance (0.8 m in the embodiment) from the object T1 that defines the left end point of the representative position of the large vehicle Vb. Since the condition is that it is biased, it is possible to prevent a part of the large vehicle Vb from being erroneously separated as the small vehicle Vc.

図8のフローチャートに上記作用を纏めたものが示される。   The flowchart of FIG. 8 summarizes the above actions.

先ず、ステップS1でミリ波レーダー装置Srにより検出した複数の物体の距離、相対速度および方向を算出し、ステップS2で前記複数の物体を一つの車両データ(目標物体)として所定の範囲で統合し、その目標物体の距離、相対速度および方向を算出する。続くステップS3で自車の車速およびヨーレートに基づいて自車の将来の軌跡を推定し、その推定軌跡の幅内に前記ステップS2で統合された複数の物体の何れかが存在するか否かを判定する。ステップS3の答えがYESであれば、ステップS4で推定軌跡内に存在する物体を別個の目標物体として分離し、そのデータにフラグを付して識別できるようにする。このとき、前記ステップS2で算出した元の目標物体のデータも出力する。そしてステップS5で前記分離した別個の目標物体を制御対象物体(先行車)と判断して自車の走行状態を制御する。一方、前記ステップS3の答えがNOであれば、前記ステップS2で算出した元の目標物体のデータだけを出力し ステップS7で自車の推定軌跡に制御対象物体(先行車)が存在しないと判断する。   First, the distance, relative speed, and direction of a plurality of objects detected by the millimeter wave radar device Sr are calculated in step S1, and the plurality of objects are integrated as a single vehicle data (target object) in a predetermined range in step S2. The distance, relative speed and direction of the target object are calculated. In a subsequent step S3, the future trajectory of the host vehicle is estimated based on the vehicle speed and yaw rate of the host vehicle, and whether or not any of the plurality of objects integrated in the step S2 exists within the width of the estimated trajectory. judge. If the answer to step S3 is YES, an object present in the estimated trajectory is separated as a separate target object in step S4, and the data is flagged so that it can be identified. At this time, the original target object data calculated in step S2 is also output. In step S5, the separated separate target object is determined as a control target object (preceding vehicle), and the traveling state of the host vehicle is controlled. On the other hand, if the answer to step S3 is NO, only the data of the original target object calculated in step S2 is output, and it is determined in step S7 that the control target object (preceding vehicle) does not exist in the estimated trajectory of the own vehicle. To do.

次に、図1および図9に基づいて本発明の第2実施例を説明する。   Next, a second embodiment of the present invention will be described with reference to FIGS.

図1に示すように、第2実施例の演算処理装置(CPU)Cは、第1実施例の分離手段M4の代わりに再分離手段M4′を備える。   As shown in FIG. 1, the arithmetic processing unit (CPU) C according to the second embodiment includes a re-separation means M4 ′ instead of the separation means M4 according to the first embodiment.

図9に示すように、ミリ波レーダー装置Srで検知された複数の物体T1…のうち、最も手前位置にある物体T1を基準とする前後15m、左右3.2mの所定範囲A(図5参照)に存在する4個の物体T1〜T4を統合して目標物体Taとする。所定範囲Aの手前側3mの小範囲a(図5参照)には1個の物体T1(Ta)しか存在しないため、その物体T1(Ta)の位置が目標物体Taの代表位置となる。代表位置を基準として第1の所定距離d0(実施例で3m)以上前方に離れており、かつ代表位置を基準として第1の所定距離d1(実施例で0.8m)以上左方(推定軌跡に近づく方向)に離れており、かつ自車Vaから前方に所定距離(実施例では50m)以内であり、かつ自車Vaの推定軌跡内に含まれる領域R(図5参照)に物体T2,T4が存在すれば、それらの物体T2,T4を元の目標物体Taに対して別個の目標物体Tb,Tcとして分離する。   As shown in FIG. 9, among a plurality of objects T1... Detected by the millimeter wave radar device Sr, a predetermined range A of 15 m forward and backward and 3.2 m right and left with reference to the object T1 at the closest position (see FIG. 5). ) Are integrated into a target object Ta. Since only one object T1 (Ta) exists in the small range a (see FIG. 5) on the near side 3m of the predetermined range A, the position of the object T1 (Ta) becomes the representative position of the target object Ta. 1st predetermined distance d0 (3 m in the embodiment) or more forward with respect to the representative position, and left (estimated locus) more than the first predetermined distance d1 (0.8 m in the embodiment) with respect to the representative position. In the region R (see FIG. 5) that is within a predetermined distance (50 m in the embodiment) forward from the vehicle Va and that is included in the estimated trajectory of the vehicle Va. If T4 exists, the objects T2 and T4 are separated from the original target object Ta as separate target objects Tb and Tc.

分離された2個の物体T2,T4(Tb,Tc)のうち、手前側に位置する物体T2(Ta)の位置を基準として第2の所定距離d2(実施例で0.8m)以上左右方向に離れており、かつ物体T2(Ta)の位置を基準として第3の所定距離d3(実施例で3m)以上前方に離れた領域に物体T4(Tc)が存在すれば、物体T2(Tb)に対して物体T4(Tc)を再度分離する。つまり、分離操作を2回繰り返すことにより、元の目標物体Taに対して独立した2個の目標物体Tb,Tcを分離し、それらの目標物体Tb,Tcは各々が代表位置を持つことになる。合計3個の目標物体Ta,Tb,Tcのうち、右側の2個の目標物体Ta,Tbは大型車両Vbに対応するが、左側の1個の目標物体Tcは小型車両Vcに対応するため、3個の目標物体Ta,Tb,Tcのうちの推定軌跡内に存在する2個の目標物体Ta,Tbに基づいて車両制御を行うことで、大型車両Vbおよび小型車両Vcの両方に対して適切に警報手段12やブレーキアクチュエータ13を作動させることができる。   Out of the two separated objects T2, T4 (Tb, Tc), the left and right directions are equal to or longer than a second predetermined distance d2 (0.8 m in the embodiment) with reference to the position of the object T2 (Ta) located on the near side. If the object T4 (Tc) exists in a region that is further forward than the third predetermined distance d3 (3 m in the embodiment) with reference to the position of the object T2 (Ta), the object T2 (Tb) Again, the object T4 (Tc) is separated. That is, by repeating the separation operation twice, two independent target objects Tb and Tc are separated from the original target object Ta, and each of the target objects Tb and Tc has a representative position. . Of the total three target objects Ta, Tb, Tc, the two right target objects Ta, Tb correspond to the large vehicle Vb, but the one left target object Tc corresponds to the small vehicle Vc. Appropriate for both the large vehicle Vb and the small vehicle Vc by performing vehicle control based on the two target objects Ta, Tb existing in the estimated trajectory of the three target objects Ta, Tb, Tc. The alarm means 12 and the brake actuator 13 can be activated.

以上、本発明の実施例を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。   Although the embodiments of the present invention have been described above, various design changes can be made without departing from the scope of the present invention.

例えば、実施例では車両制御手段M5として接触被害軽減支援システムを例示したが、車両制御手段M5は接触被害軽減支援システムに限定されず、例えば先行車が存在しないときに予め設定した車速で定車速走行を行い、先行車が存在するときに予め設定した車間距離を保って定車間走行を行うACCシステム(アダプティブ・クルーズ・コントロール・システム)に対しても適用することができる。   For example, in the embodiment, the contact damage reduction support system is exemplified as the vehicle control means M5. However, the vehicle control means M5 is not limited to the contact damage reduction support system. For example, when there is no preceding vehicle, the vehicle speed is set at a predetermined vehicle speed. The present invention can also be applied to an ACC system (adaptive cruise control system) that travels and keeps a predetermined inter-vehicle distance while a preceding vehicle is present.

また実施例では送受信手段としてミリ波レーダー装置Srを例示したが、レーザーレーダー装置等の他の手段を採用することができる。   In the embodiment, the millimeter wave radar device Sr is exemplified as the transmission / reception means, but other means such as a laser radar device can be adopted.

走行制御装置の全体構成図Overall configuration diagram of the travel control device 送受信アンテナに対して物体が接近移動しているときの送受信波の波形およびピーク周波数を示すグラフGraph showing the waveform and peak frequency of transmitted / received waves when an object is moving close to the transmitting / receiving antenna 検知ピーク判定手段で検知されたピーク信号を示すグラフGraph showing peak signal detected by detection peak determination means レーダー装置の演算処理装置の回路構成を示すブロック図Block diagram showing the circuit configuration of the arithmetic processing unit of the radar device 目標車両を分離する領域を示す図The figure which shows the field which separates the target vehicle 自車の前方を並走する大型車両および小型車両を単一の目標車両として纏めた状態を示す図The figure which shows the state which put together the large vehicle and small vehicle which run in front of the own vehicle as a single target vehicle 一旦纏めた大型車両から小型車両を分離した状態を示す図The figure which shows the state which separated the small vehicle from the large vehicle once collected 作用を説明するフローチャートFlow chart explaining operation 本発明の第2実施例に係る、前記図6に対応する図The figure corresponding to the said FIG. 6 based on 2nd Example of this invention.

符号の説明Explanation of symbols

M1 物体情報算出手段
M2 統合手段
M3 位置出力手段
M4 分離手段
M4′ 再分離手段
M5 車両制御手段
M6 軌跡推定手段
Sr ミリ波レーダー装置(送受信手段)
Va 自車
M1 Object information calculation means M2 Integration means M3 Position output means M4 Separation means M4 ′ Reseparation means M5 Vehicle control means M6 Trajectory estimation means Sr Millimeter wave radar device (transmission / reception means)
Va own car

Claims (4)

自車(Va)の進行方向の所定領域に向けて電磁波を送信し、前記所定領域内に存在する物体からの反射波を受信する送受信手段(Sr)と、
送受信手段(Sr)の送受信結果に基づいて自車(Va)に対する物体の位置を算出する物体情報算出手段(M1)と、
所定範囲(A)内に複数の物体が検知されたときに該複数の物体の少なくとも位置に基づいて該複数の物体を一つの目標物体(Ta)として纏める統合手段(M2)と、
自車(Va)の将来の走行軌跡を推定する軌跡推定手段(M6)と、
統合手段(M2)により纏められた目標物体(Ta)が前記推定軌跡内に存在するときに、該目標物体(Ta)および自車の位置関係に応じて自車(Va)の走行状態を制御する車両制御手段(M5)と、
を備えた車両の走行制御装置において、
前記所定範囲(A)における自車(Va)に近い側の小範囲(a)に存在する物体の位置を基準として、前記統合手段(M2)により纏められた一つの目標物体(Ta)の代表位置を出力する位置出力手段(M3)と
前記統合された複数の物体の位置の何れかが前記代表位置から第1の所定距離(d0,d1)以上離れており、かつ前記統合された複数の物体の位置の何れかが自車(Va)の推定軌跡内に存在していれば、前記一つの目標物体(Ta)を自車(Va)の推定軌跡の内外に存在する別個の目標物体(Ta,Tb,Tc)に分離する分離手段(M4)とを備え、
前記位置出力手段(M3)は、前記小範囲(a)に単一の物体が存在するときには、該単一の物体の位置を前記代表位置とし、前記小範囲(a)に複数の物体が存在するときには、該複数の物体のうちの左右方向両端に存在する二つの物体間の領域を前記代表位置として出力することを特徴とする車両の走行制御装置。
Transmission / reception means (Sr) for transmitting an electromagnetic wave toward a predetermined area in the traveling direction of the host vehicle (Va) and receiving a reflected wave from an object existing in the predetermined area;
Object information calculation means (M1) for calculating the position of the object relative to the host vehicle (Va) based on the transmission / reception result of the transmission / reception means (Sr);
An integration unit (M2) that combines the plurality of objects as one target object (Ta) based on at least the position of the plurality of objects when the plurality of objects are detected within the predetermined range (A);
Trajectory estimation means (M6) for estimating the future travel trajectory of the host vehicle (Va);
When the target object (Ta) collected by the integration means (M2) exists in the estimated locus, the traveling state of the host vehicle (Va) is controlled according to the positional relationship between the target object (Ta) and the host vehicle. Vehicle control means (M5),
In a vehicle travel control device comprising:
A representative of one target object (Ta) collected by the integration means (M2) with reference to the position of the object existing in the small range (a) on the side close to the host vehicle (Va) in the predetermined range (A). Position output means (M3) for outputting a position ;
Any one of the positions of the plurality of integrated objects is at least a first predetermined distance (d0, d1) from the representative position, and any of the positions of the plurality of integrated objects is own vehicle (Va ) Separating means for separating the one target object (Ta) into separate target objects (Ta, Tb, Tc) existing inside and outside the estimated locus of the host vehicle (Va). (M4) and equipped with a,
When there is a single object in the small range (a), the position output means (M3) uses the position of the single object as the representative position, and a plurality of objects exist in the small range (a). When the vehicle travels, a vehicle travel control device that outputs, as the representative position, a region between two objects existing at both ends in the left-right direction of the plurality of objects .
前記統合手段(M2)は、前記複数の物体のうちの一つの物体の位置を基準とする所定範囲(A)内に存在する物体を纏めることを特徴とする、請求項1に記載の車両の走行制御装置。   2. The vehicle according to claim 1, wherein the integration unit (M <b> 2) collects objects existing within a predetermined range (A) based on a position of one of the plurality of objects. Travel control device. 前記分離手段(M4)の代わりに、前記統合手段(M2)により纏められる複数の物体のうち、二つ以上の物体が前記推定軌跡内に存在するとき、該二つ以上の物体間の左右方向の距離が第2の所定距離(d2)以上の物体どうしを別個の目標物体(Tb,Tc)として再分離する再分離手段(M4′)を備えたことを特徴とする、請求項1または請求項2に記載の車両の走行制御装置。 Instead of the separating means (M4), when two or more objects are present in the estimated trajectory among a plurality of objects collected by the integrating means (M2), the left-right direction between the two or more objects characterized by comprising a re-separation unit (M4 ') to the distance of re-separating the second predetermined distance (d2) or more objects to each other as a separate target object (Tb, Tc), according to claim 1, wherein Item 3. The vehicle travel control device according to Item 2 . 前記分離手段(M4)の代わりに、前記統合手段(M2)により纏められる複数の物体のうち、二つ以上の物体が前記推定軌跡内に存在するとき、該二つ以上の物体間の前後方向の距離が第3の所定距離(d3)以上の物体どうしを別個の目標物体(Tb,Tc)として再分離する再分離手段(M4′)を備えたことを特徴とする、請求項1〜請求項の何れか1項に記載の車両の走行制御装置。 Instead of the separation means (M4), when two or more objects are present in the estimated locus among the plurality of objects collected by the integration means (M2), the front-rear direction between the two or more objects A re-separation means (M4 ') for re-separating objects having a distance equal to or greater than a third predetermined distance (d3) as separate target objects (Tb, Tc) is provided. Item 4. The vehicle travel control device according to any one of item 3 .
JP2005366518A 2001-12-05 2005-12-20 Vehicle travel control device Expired - Fee Related JP3959100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005366518A JP3959100B2 (en) 2001-12-05 2005-12-20 Vehicle travel control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001370899 2001-12-05
JP2005366518A JP3959100B2 (en) 2001-12-05 2005-12-20 Vehicle travel control device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002229681A Division JP3944022B2 (en) 2001-12-05 2002-08-07 Vehicle travel control device

Publications (2)

Publication Number Publication Date
JP2006189432A JP2006189432A (en) 2006-07-20
JP3959100B2 true JP3959100B2 (en) 2007-08-15

Family

ID=36796764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005366518A Expired - Fee Related JP3959100B2 (en) 2001-12-05 2005-12-20 Vehicle travel control device

Country Status (1)

Country Link
JP (1) JP3959100B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8115668B2 (en) 2009-03-05 2012-02-14 Honda Motor Co., Ltd. Object detecting apparatus for vehicle

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5078637B2 (en) 2008-01-29 2012-11-21 富士通テン株式会社 Radar apparatus and target detection method
JP4843003B2 (en) * 2008-08-05 2011-12-21 富士通テン株式会社 Signal processing apparatus, radar apparatus, and signal processing method
WO2013186925A1 (en) * 2012-06-15 2013-12-19 トヨタ自動車株式会社 Tracking control apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8115668B2 (en) 2009-03-05 2012-02-14 Honda Motor Co., Ltd. Object detecting apparatus for vehicle

Also Published As

Publication number Publication date
JP2006189432A (en) 2006-07-20

Similar Documents

Publication Publication Date Title
JP3944022B2 (en) Vehicle travel control device
KR102572784B1 (en) Driver assistance system and control method for the same
JP4837755B2 (en) Object detection device
US10053067B2 (en) Vehicle safety assist system
US9618607B2 (en) Radar apparatus and signal processing method
EP1357394B1 (en) Still object detecting method of scanning radar
JP5953716B2 (en) Vehicle control apparatus, specific object determination apparatus, specific object determination method, specific object determination program
JP4428277B2 (en) Object detection device
US7349771B2 (en) Road shape recognition apparatus
JP2001242242A (en) Millimeter-wave radar device with function for improving detecting performance
EP2784538A2 (en) Radar apparatus and signal processing method
JP2003270342A (en) Object recognizing device, object recognizing method, and radar device
KR102699145B1 (en) Apparatus and method for identificating short cut-in vehicle and vehicle including the same
JP4890577B2 (en) Vehicle object detection device
KR20160075134A (en) Radar system for the Vehicles
JP2014227000A (en) Vehicle control device, method and program
CN104169154B (en) Vehicle travel control apparatus
JP2009103565A (en) Measuring device and method
JP3959100B2 (en) Vehicle travel control device
JP3660301B2 (en) Vehicle travel control device
WO2005066656A1 (en) Vehicle mounted radar system and its signal processing method
US11209537B2 (en) Extended target-matched CFAR detector
JP4407315B2 (en) Target estimation device
JP2001141812A (en) Fm-cw radar
JP4994852B2 (en) Automotive radar equipment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070511

R150 Certificate of patent or registration of utility model

Ref document number: 3959100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees