JP3958914B2 - Solidification method of steelmaking slag - Google Patents

Solidification method of steelmaking slag Download PDF

Info

Publication number
JP3958914B2
JP3958914B2 JP2000106745A JP2000106745A JP3958914B2 JP 3958914 B2 JP3958914 B2 JP 3958914B2 JP 2000106745 A JP2000106745 A JP 2000106745A JP 2000106745 A JP2000106745 A JP 2000106745A JP 3958914 B2 JP3958914 B2 JP 3958914B2
Authority
JP
Japan
Prior art keywords
mass
slag
steelmaking slag
blast furnace
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000106745A
Other languages
Japanese (ja)
Other versions
JP2001286854A (en
Inventor
秀夫 井出
清 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000106745A priority Critical patent/JP3958914B2/en
Publication of JP2001286854A publication Critical patent/JP2001286854A/en
Application granted granted Critical
Publication of JP3958914B2 publication Critical patent/JP3958914B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、製鋼スラグを冷間で安価に固化させる方法に関するものである。
【0002】
【従来の技術】
一般に製鋼スラグ(以下でスラグと略す)は、スラグ中に石灰が遊離した形(以下で遊離CaOと称す)で残存しているため、そのままの形で道路用材、土木用材などに利用した場合、遊離CaOの水酸化により膨張が起こることが知られている。そこで、現在一般にスラグを自然冷却し、破砕した後、屋外で山積みするかあるいは人為的に水蒸気と接触させることにより遊離CaOを安定化させている。しかし、安定化後は遊離CaOの水酸化による膨張でスラグが崩壊し、微粉分が増加する。あまり微粉分が増加すると充填性が悪化し、道路用材としての利用が困難になる。従って、一部の微粉分は集めて固化するのが望ましい。それも、熱間で再溶融するとコストがかかるので、冷間で固化するのがより望ましい。
【0003】
スラグを冷間で固化する方法としては、例えば、特開平11−71160号公報に示されるように、製鋼スラグを破砕し三方を仕切壁で囲んだピット内に山積みし下から炭酸ガスを吹き込んでスラグを炭酸固化するという方法がある。
【0004】
【発明が解決しようとする課題】
本発明者は、上記の方法をエージング後の製鋼スラグ微粉分の固化に適用しようと試みた。その結果、高純度の炭酸ガスは高価であり、処理費が高くつくことが判明した。
【0005】
本発明はこの問題を解決し、製鋼スラグ微粉分を安価に固化させることを目的とする。
【0006】
【課題を解決するための手段】
本発明は、5mmアンダーの製鋼スラグを配合後の固形物総質量に対し25〜75質量%、高炉水砕微粉末を10〜40質量%、石炭灰を10〜50質量%、石膏を1〜10質量%配合し、配合後の固形物総質量に対して水を外掛けで40〜70質量%添加し混練して、2週間以上養生し、固化後に30mmアンダーに破砕して更に2週間以上養生することを特徴とする製鋼スラグの固化方法である。
【0007】
【発明の実施の形態】
以下に、本発明について詳細に説明する。
【0008】
転炉、混銑車、溶銑鍋、溶鋼鍋などで発生した製鋼スラグを冷却・凝固させ破砕する。次にエージングの前または後に分級し、5mmアンダーの微粉分を得る。ここで、5mmアンダーとはトップサイズが5mmであることを意味している。この製鋼スラグ微粉分に高炉水砕微粉末、石炭灰、石膏を配合し水を添加して混練し、適当な大きさのピットあるいは地面に流して養生する。養生・固化後に固化体を30mmアンダーに破砕して更に養生する。これら養生期間中に、スラグからCaO、高炉水砕微粉末からSiO2とAl23、石膏からCaSO4が溶出し、水中で反応してケイ酸カルシウム水和物やエトリンガイトという化合物を生成する。その際の化学反応式は次のとおりである。
【0009】
【化1】

Figure 0003958914
【0010】
【化2】
Figure 0003958914
ケイ酸カルシウム水和物やエトリンガイトは不溶性であり、これらの化合物が水を結晶水として取り込みながら固体として析出し、空間に占める固体の割合が増加することにより固化していく。石炭灰の機能は、各材料を混合する際の分散性の向上である。石炭灰は平均粒径15μm程度で球状に近い粒子が多く含まれる。これにより集塊状となっている土壌のフロック構造に進入して、CaO、CaSO4、H2O、SiO2、Al23などの化学種が拡散するスペースを増加させる。スラグを5mmアンダーに破砕するのは、5mmを越えると比表面積が減少し、高炉水砕微粉末等との反応効率が低下するからである。下限値は特に規定するものではない。スラグの配合量を25〜75質量%とするのは、25質量%未満ではCaOが不足し、ケイ酸カルシウム水和物やエトリンガイトが十分に生成しない。75質量%を越えるとケイ酸カルシウム水和物やエトリンガイト生成に必要な他の物質が不足し、未反応の遊離CaOが残存する。高炉水砕微粉末の配合量を10〜40質量%とするのは、10質量%未満ではSiO2やAl23の溶出量が不足する。40質量%を越えるとケイ酸カルシウム水和物やエトリンガイト生成に必要な他の物質が不足し、未反応の高炉水砕微粉末が残存する。高炉スラグのなかでは高炉水砕微粉末が最も好ましい。高炉水砕スラグでも未破砕品は製造時の水との接触により表面が不活性層に覆われており、反応性が十分ではない。従って高炉水砕スラグを粉砕した高炉水砕微粉末を用いる。その平均粒径の範囲は2〜40μmが望ましい。石炭灰の配合量を10〜50質量%とするのは、10質量%未満では分散性が不十分であり、50質量%を越えると石炭灰がスラグや高炉水砕微粉末を覆ってしまい、反応が阻害される。石膏の配合量を1〜10質量%とするのは、1質量%未満ではCaSO4が不足しエトリンガイトが十分に生成しない。10質量%を越えるとエトリンガイトが過剰に生成し、その結晶成長圧により組織が破壊される。水を外掛けで40〜70質量%添加するのは、40質量%未満では流動性発現に必要な水が不足し、ピットや地面に流すのが困難となる。70質量%を越えると固化時の空隙が増加し強度が低下する。混練してから2週間以上養生するのは、2週間未満では、固化後破砕するために必要な強度が得られないからである。養生期間の上限は特にない。固化後に30mmアンダーに破砕して更に2週間以上養生するのは、少量残留している未反応分へ雨水等の水分を供給して反応をほぼ完結させるためである。ここでも上限は特にない。30mmアンダーに破砕するのは、30mmを越えると水分が内部へ十分に浸透しない。下限値は特になく、用途に応じて適正な粒径にすることが望ましい。更に2週間以上養生するのは、2週間未満では、反応が完結するのに不十分である。ここで、最初の2週間以上または次の2週間以上のいずれか一方、あるいは両方で雨水のような天然水だけでなく、人工的に水分を散布してもよい。ここで破砕後の養生での天然または人工の水分の供給量は、特に規定するものではないが、例えば固化物に対して外掛けで10質量%程度以上あれば望ましい。
【0011】
【実施例】
以下、本発明を実施例に基づいて説明する。
【0012】
本実施例の製鋼スラグ、高炉水砕スラグ、石炭灰の化学組成を表1に示す。
【0013】
製鋼スラグを冷却・凝固させた後、5mmアンダーに破砕するか、あるいは5mmよりも粗い粒度で破砕して分級し5mmアンダー品を得た。この製鋼スラグを各種物質と表2に示す割合で混合し、養生・固化した。本発明例1〜9で高炉水砕微粉末の平均粒径は10μmである。比較例としては、個々の因子が本発明例の範囲から外れる場合を選んだ。
【0014】
表3の従来法1が特開平11−71160号公報に示されるように製鋼スラグを破砕し三方を仕切壁で囲んだピット内に山積みし下から炭酸ガスを吹き込んでスラグを炭酸固化する方法である。ここでは、3mmアンダーの転炉スラグ粉を幅4m×奥行6mのピット内に高さ1.5mに山積みして適度に締め固めた後、ピットを密閉し、炭酸ガスを供給量50m3(Normal)/hで3日間吹き込み、スラグを炭酸固化させた。表2および表3にコスト比率および固化の状況も示す。ここで、コスト比率とは、固化物1t当たり必要な材料費について従来法1を100とし、その他を100に対する比率で示したものである。
【0015】
表2を表3と比較すると、本発明例はいずれも比較例に対して固化が良好であり、また従来法に対してコストの点で有利である。
【0016】
【発明の効果】
本発明により、製鋼スラグの微粉分を冷間で安価に固化させることができた。従って、高純度の炭酸ガスや高価なセメントを使わずに、主に産業上の副産物を利用して製鋼スラグを固化させることが可能となった。
【0017】
この方法は、ステンレススラグのようにダスティングで粉化するスラグの固化にも有効である。
【0018】
【表1】
Figure 0003958914
【0019】
【表2】
Figure 0003958914
【0020】
【表3】
Figure 0003958914
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for solidifying steelmaking slag at low cost.
[0002]
[Prior art]
In general, steelmaking slag (hereinafter abbreviated as slag) remains in a form in which lime is liberated in the slag (hereinafter referred to as free CaO), so when used as it is for road materials, civil engineering materials, etc. It is known that swelling occurs due to hydroxylation of free CaO. Therefore, at present, the free CaO is stabilized by naturally cooling and crushing the slag and then stacking it outdoors or artificially contacting it with water vapor. However, after stabilization, slag collapses due to expansion of free CaO due to hydroxylation, and the fine powder content increases. If the fine powder content increases too much, the filling property deteriorates and it becomes difficult to use as a road material. Therefore, it is desirable to collect and solidify a part of the fine powder. It is also more desirable to solidify in the cold because it costs more when remelted hot.
[0003]
As a method of solidifying the slag in a cold state, for example, as shown in JP-A-11-71160, steelmaking slag is crushed and piled up in a pit surrounded by three partition walls, and carbon dioxide gas is blown from below. There is a method of carbonating slag.
[0004]
[Problems to be solved by the invention]
This inventor tried to apply said method to solidification of the steelmaking slag fines after aging. As a result, it has been found that high-purity carbon dioxide gas is expensive and expensive to process.
[0005]
An object of the present invention is to solve this problem and solidify the steelmaking slag fine powder at low cost.
[0006]
[Means for Solving the Problems]
The present invention is 25 to 75% by mass, 10 to 40% by mass of granulated blast furnace powder, 10 to 50% by mass of coal ash, Mix 10% by mass, add 40-70% by mass of water to the total solid mass after mixing, knead and cure for 2 weeks or longer, crush to 30mm under after solidification and further 2 weeks or longer It is a solidification method of steelmaking slag characterized by curing.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
[0008]
Steelmaking slag generated in converters, kneading wheels, hot metal ladle, molten steel pan, etc. is cooled, solidified and crushed. Next, classification is performed before or after aging to obtain a fine powder under 5 mm. Here, under 5 mm means that the top size is 5 mm. This steelmaking slag fine powder is mixed with ground granulated blast furnace powder, coal ash, and gypsum, added with water, kneaded, and then poured into an appropriately sized pit or ground for curing. After curing and solidification, the solidified body is crushed to under 30 mm and further cured. During these curing periods, CaO from slag, SiO 2 and Al 2 O 3 from blast furnace granulated fine powder, and CaSO 4 from gypsum are eluted and react in water to produce compounds such as calcium silicate hydrate and ettringite. . The chemical reaction formula at that time is as follows.
[0009]
[Chemical 1]
Figure 0003958914
[0010]
[Chemical 2]
Figure 0003958914
Calcium silicate hydrate and ettringite are insoluble, and these compounds precipitate as solids while taking water as crystal water, and solidify as the proportion of solids in the space increases. The function of coal ash is to improve dispersibility when mixing each material. Coal ash contains many particles having an average particle size of about 15 μm and nearly spherical. As a result, the soil enters a floc structure of agglomerated soil and increases the space in which chemical species such as CaO, CaSO 4 , H 2 O, SiO 2 , and Al 2 O 3 diffuse. The reason why the slag is crushed to under 5 mm is that when the thickness exceeds 5 mm, the specific surface area decreases and the reaction efficiency with blast furnace granulated fine powder and the like decreases. The lower limit is not particularly specified. The reason why the slag content is 25 to 75% by mass is that when it is less than 25% by mass, CaO is insufficient and calcium silicate hydrate and ettringite are not sufficiently formed. If it exceeds 75 mass%, calcium silicate hydrate and other substances necessary for ettringite formation are insufficient, and unreacted free CaO remains. The blending amount of the granulated blast furnace granulated powder is 10 to 40% by mass. If it is less than 10% by mass, the elution amount of SiO 2 or Al 2 O 3 is insufficient. If it exceeds 40% by mass, calcium silicate hydrate and other substances necessary for producing ettringite are insufficient, and unreacted ground granulated blast furnace powder remains. Among the blast furnace slag, blast furnace granulated fine powder is most preferable. Even in the blast furnace granulated slag, the surface of the uncrushed product is covered with an inert layer due to contact with water during production, and the reactivity is not sufficient. Therefore, granulated blast furnace granulated blast furnace slag is used. The range of the average particle diameter is desirably 2 to 40 μm. The blending amount of the coal ash is 10 to 50% by mass. If the amount is less than 10% by mass, the dispersibility is insufficient. If the amount exceeds 50% by mass, the coal ash covers the slag and blast furnace granulated fine powder. The reaction is inhibited. The reason why the amount of gypsum is 1 to 10% by mass is that when it is less than 1% by mass, CaSO 4 is insufficient and ettringite is not sufficiently formed. If it exceeds 10% by mass, ettringite is excessively generated, and the structure is destroyed by the crystal growth pressure. When adding 40 to 70% by mass of water as an outer layer, if it is less than 40% by mass, the water required for the expression of fluidity is insufficient, and it becomes difficult to flow to the pit or the ground. If it exceeds 70% by mass, voids at the time of solidification increase and the strength decreases. The reason for curing for 2 weeks or more after kneading is that the strength required for crushing after solidification cannot be obtained if it is less than 2 weeks. There is no upper limit for the curing period. The reason for crushing under 30 mm after solidification and curing for 2 weeks or more is to supply moisture such as rain water to the unreacted portion remaining in a small amount to almost complete the reaction. Again, there is no particular upper limit. The reason for crushing to under 30 mm is that the water does not sufficiently penetrate into the interior if it exceeds 30 mm. There is no particular lower limit, and it is desirable to have an appropriate particle size according to the application. Further, curing for 2 weeks or more is insufficient for completing the reaction in less than 2 weeks. Here, not only natural water such as rainwater but also water may be artificially sprayed in one or both of the first two weeks or more and the next two weeks or more. Here, the supply amount of natural or artificial water in the curing after crushing is not particularly specified, but for example, it is preferably about 10% by mass or more with respect to the solidified product.
[0011]
【Example】
Hereinafter, the present invention will be described based on examples.
[0012]
Table 1 shows the chemical compositions of steelmaking slag, granulated blast furnace slag, and coal ash of this example.
[0013]
After the steelmaking slag was cooled and solidified, it was crushed to under 5 mm, or crushed with a particle size coarser than 5 mm and classified to obtain a 5 mm under product. This steelmaking slag was mixed with various substances in the proportions shown in Table 2, and cured and solidified. In Examples 1 to 9 of the present invention, the average particle size of the ground granulated blast furnace powder is 10 μm. As a comparative example, the case where individual factors deviated from the scope of the present invention example was selected.
[0014]
Conventional method 1 in Table 3 is a method in which steelmaking slag is crushed and piled in a pit surrounded by a partition wall and carbon dioxide gas is blown from below to solidify the slag as disclosed in JP-A-11-71160. is there. Here, after compacted moderately tighten pile height 1.5m in the converter slag powder 3mm under wide 4m × depth 6m pit, sealing the pit, the supply amount 50 m 3 of carbon dioxide (Normal ) / H was blown for 3 days to solidify the slag. Tables 2 and 3 also show the cost ratio and solidification status. Here, the cost ratio is a ratio of the material cost required per 1 t of the solidified product to the conventional method 1 of 100 and the other to the ratio of 100.
[0015]
Comparing Table 2 with Table 3, all of the inventive examples are better solidified than the comparative examples, and are advantageous in terms of cost over the conventional method.
[0016]
【The invention's effect】
According to the present invention, it was possible to solidify the fine powder of steelmaking slag at low cost. Therefore, steelmaking slag can be solidified mainly using industrial by-products without using high-purity carbon dioxide or expensive cement.
[0017]
This method is also effective for solidifying slag that is pulverized by dusting, such as stainless slag.
[0018]
[Table 1]
Figure 0003958914
[0019]
[Table 2]
Figure 0003958914
[0020]
[Table 3]
Figure 0003958914

Claims (1)

5mmアンダーの製鋼スラグを配合後の固形物総質量に対し25〜75質量%、高炉水砕微粉末を10〜40質量%、石炭灰を10〜50質量%、石膏を1〜10質量%配合し、配合後の固形物総質量に対して水を外掛けで40〜70質量%添加し混練して、2週間以上養生し、固化後に30mmアンダーに破砕して更に2週間以上養生することを特徴とする製鋼スラグの固化方法。25 to 75% by mass, 5 to 40% by mass of ground granulated blast furnace powder, 10 to 50% by mass of coal ash, 1 to 10% by mass of gypsum Add 40 to 70% by mass of water to the total solid mass after mixing, knead and cure for 2 weeks or more, crush to 30 mm under after solidification, and further cure for 2 weeks or more A method for solidifying steelmaking slag as a feature.
JP2000106745A 2000-04-07 2000-04-07 Solidification method of steelmaking slag Expired - Lifetime JP3958914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000106745A JP3958914B2 (en) 2000-04-07 2000-04-07 Solidification method of steelmaking slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000106745A JP3958914B2 (en) 2000-04-07 2000-04-07 Solidification method of steelmaking slag

Publications (2)

Publication Number Publication Date
JP2001286854A JP2001286854A (en) 2001-10-16
JP3958914B2 true JP3958914B2 (en) 2007-08-15

Family

ID=18619863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000106745A Expired - Lifetime JP3958914B2 (en) 2000-04-07 2000-04-07 Solidification method of steelmaking slag

Country Status (1)

Country Link
JP (1) JP3958914B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5381383B2 (en) * 2009-06-19 2014-01-08 新日鐵住金株式会社 Method for producing non-inflatable roadbed material
KR101257077B1 (en) 2011-09-28 2013-04-22 현대제철 주식회사 Oxidation slag processing method

Also Published As

Publication number Publication date
JP2001286854A (en) 2001-10-16

Similar Documents

Publication Publication Date Title
JP3714043B2 (en) Agglomeration method of steelmaking slag
JP4560887B2 (en) Underwater hardened body made from steelmaking slag
JPH02233539A (en) Slag block
JP3958090B2 (en) Hydrated cured body
JP3175694B2 (en) Submerged stone and method of manufacturing the same
JP3958914B2 (en) Solidification method of steelmaking slag
JPH09100470A (en) Hardening of soil
CN1236747A (en) Mortar powder of magnesium slag ash and its product
JP5668634B2 (en) Expanded controlled steel slag hydrated solid artificial stone and method for producing the same
JP4979186B2 (en) Method for producing granulated material
JP4655337B2 (en) Roadbed material made from steelmaking slag
JP4204922B2 (en) Roadbed material and method for manufacturing the same
JP2007063061A (en) Method for aging slag
JP5381383B2 (en) Method for producing non-inflatable roadbed material
JP7019903B2 (en) Manufacturing method of roadbed material
JP2005029404A (en) Cement composition
JP3398224B2 (en) Slag hardening material
JPH08253349A (en) Aging of slag
JP3687444B2 (en) Method for producing a steelmaking slag hardened body
JP5006486B2 (en) Method for producing a steelmaking slag hardened body
JP2006233576A (en) Paving material using converter slag dust
JP4591082B2 (en) Solidified body manufacturing method and on-site solidified body construction method
JPS623051A (en) Manufacture of road bed material
JPH1060434A (en) Setting agent for soil having high water content
JP2005154175A (en) Method of manufacturing civil engineering material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070501

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070511

R151 Written notification of patent or utility model registration

Ref document number: 3958914

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

EXPY Cancellation because of completion of term