JP3956923B2 - Avalanche photodiode bias voltage control circuit - Google Patents

Avalanche photodiode bias voltage control circuit Download PDF

Info

Publication number
JP3956923B2
JP3956923B2 JP2003327015A JP2003327015A JP3956923B2 JP 3956923 B2 JP3956923 B2 JP 3956923B2 JP 2003327015 A JP2003327015 A JP 2003327015A JP 2003327015 A JP2003327015 A JP 2003327015A JP 3956923 B2 JP3956923 B2 JP 3956923B2
Authority
JP
Japan
Prior art keywords
signal
light
apd
light receiving
bias voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003327015A
Other languages
Japanese (ja)
Other versions
JP2005093834A (en
Inventor
守保 市野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2003327015A priority Critical patent/JP3956923B2/en
Priority to US10/943,211 priority patent/US20050092896A1/en
Publication of JP2005093834A publication Critical patent/JP2005093834A/en
Priority to US11/488,077 priority patent/US7214924B2/en
Priority to US11/712,497 priority patent/US7282692B2/en
Application granted granted Critical
Publication of JP3956923B2 publication Critical patent/JP3956923B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier working in avalanche mode, e.g. avalanche photodiode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02027Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier for devices working in avalanche mode

Description

本発明は、光受信装置の受光素子として用いられるアバランシェフォトダイオードのバイアス電圧制御回路に関する。 The present invention relates to a bias voltage control circuitry of the avalanche photodiode used as the light receiving element of the optical receiver.

アバランシェフォトダイオード(Avalanche Photo Diode:以下、APDという)は、高いバイアス電圧下におけるキャリアの雪崩降伏を利用した光ダイオードであって、自己増倍作用を有している。微弱信号光から比較的大きな光電流を取出すことができるAPDの増倍係数をどの程度にするかによって、APDの後段に接続される前置増幅器及び受光システムの設計が左右される。なお、増倍係数とは、1個の光子が入射して何個のキャリアを生成するかを表す係数で、自己増倍作用を有しないPINフォトダイオードのような場合は、通常、1以下である。   An avalanche photodiode (Avalanche Photo Diode: hereinafter referred to as APD) is a photodiode that uses avalanche breakdown of carriers under a high bias voltage and has a self-multiplier action. The design of the preamplifier and the light receiving system connected to the subsequent stage of the APD depends on how much the multiplication factor of the APD that can extract a relatively large photocurrent from the weak signal light is set. The multiplication coefficient is a coefficient indicating how many carriers are generated by incidence of one photon. In the case of a PIN photodiode having no self-multiplication effect, it is usually 1 or less. is there.

信号光に対して高い増倍係数を設定(バイアス電圧を大きくする)すると、それにつれて雑音信号も増大し雑音特性が劣化する。反対に増倍係数を小さくすると、所定の受光感度を得ることができなくなる。対雑音特性については、例えば、特許文献1に、信号対雑音比(SNR)が最大となるように、バイアス電圧を制御することが開示されている。この開示技術は、APDの出力信号を増幅した後、第1のフィルタで信号成分を抽出し、第2のフィルタで雑音成分を抽出する。抽出された信号成分と雑音成分からSNRを演算し、演算されたSNRが最大となるようなバイアス電圧を、APDに印加するというものである。   When a high multiplication factor is set for the signal light (increasing the bias voltage), the noise signal increases accordingly, and the noise characteristics deteriorate. On the other hand, if the multiplication factor is reduced, a predetermined light receiving sensitivity cannot be obtained. Regarding noise-to-noise characteristics, for example, Patent Document 1 discloses that the bias voltage is controlled so that the signal-to-noise ratio (SNR) is maximized. In this disclosed technique, after the output signal of the APD is amplified, a signal component is extracted by a first filter, and a noise component is extracted by a second filter. The SNR is calculated from the extracted signal component and noise component, and a bias voltage that maximizes the calculated SNR is applied to the APD.

また、APDの受光強度及び環境温度を基準として、APDのバイアス電圧を制御する方法が、例えば、特許文献2に開示されている。この開示技術は、APDとは別個にPINフォトダイオードを用意しておき、このPINフォトダイオードにより受光された光の強度を基準として、APDのバイアス電圧を制御する方法である。なお、同文献2には、環境温度を検出する手段を設け、検出した温度を基準としてAPDのバイアス電圧を制御することも開示している。   Further, for example, Patent Document 2 discloses a method for controlling the bias voltage of the APD with reference to the light receiving intensity of the APD and the environmental temperature. This disclosed technique is a method of preparing a PIN photodiode separately from the APD and controlling the bias voltage of the APD with reference to the intensity of light received by the PIN photodiode. The same document 2 also discloses that a means for detecting the environmental temperature is provided, and the APD bias voltage is controlled based on the detected temperature.

特開平9−321710号公報JP-A-9-321710 特開2000−244418号公報JP 2000-244418 A

上述した特許文献1、2には、受光信号状態や環境温度の変化に応じてバイアス電圧を調整制御すること、すなわち、光電流の増倍係数を制御することが開示されている。他方、受光パワーが変化した場合や環境温度が変化した場合でも、増倍係数を一定に保持したい要求も常にある。しかし、図7の「光電流対逆電圧」に示されるように、バイアス電圧一定の条件下においては、得られる光電流、すなわち増倍係数は一定とはならない。特に、増倍係数が有意な値をもつバイアス電圧30V〜60Vでは、光電流値(微弱電流×増倍係数)は温度変化(光電流値は対数表示)に対して大きく変化する。   Patent Documents 1 and 2 described above disclose that the bias voltage is adjusted and controlled in accordance with changes in the received light signal state and the environmental temperature, that is, the multiplication factor of the photocurrent is controlled. On the other hand, there is always a need to keep the multiplication factor constant even when the received light power changes or the environmental temperature changes. However, as shown in “photocurrent vs. reverse voltage” in FIG. 7, the obtained photocurrent, that is, the multiplication factor, is not constant under the condition that the bias voltage is constant. In particular, at a bias voltage of 30 V to 60 V where the multiplication factor has a significant value, the photocurrent value (weak current × multiplication factor) changes greatly with respect to the temperature change (the photocurrent value is logarithmically displayed).

上述の特許文献2において、APDと同じ受光信号を受光するPINフォトダイオードは、APDと比べて温度依存性が小さく増倍係数もほぼ1に近い。したがって、このPINフォトダイオードの受光強度をモニタ光として、APDに印加するバイアス電圧を制御することにより、環境温度の影響による増倍係数の変動を小さくすることが可能と考えられる。しかし、PINフォトダイオードは、APDとは別に用意しなければならず、また、受光条件が同一になるとは限らない。このため、PINフォトダイオードが受光するモニタ光の光強度とAPDが受光する光強度は、必ずしも対応関係にあるとは言えず、バイアス電圧の制御が適正に行なわれないことがある。   In the above-mentioned Patent Document 2, the PIN photodiode that receives the same light reception signal as that of the APD has a temperature dependency smaller than that of the APD and has a multiplication factor close to 1. Therefore, it is considered that the fluctuation of the multiplication factor due to the influence of the environmental temperature can be reduced by controlling the bias voltage applied to the APD using the received light intensity of the PIN photodiode as the monitor light. However, the PIN photodiode must be prepared separately from the APD, and the light receiving conditions are not always the same. For this reason, the light intensity of the monitor light received by the PIN photodiode and the light intensity received by the APD are not necessarily in a corresponding relationship, and the bias voltage may not be properly controlled.

本発明は、上述した実情に鑑みてなされたもので、APDの他に別個に受光素子を用いることなく温度依存性の少ない信号光のモニタ光を取得し、このモニタ光を基準として、APDの増倍係数を一定に保持することができるAPDのバイアス電圧制御回路及び受光方法の提供を課題とする。   The present invention has been made in view of the above-described circumstances. In addition to the APD, the monitor light of the signal light having a small temperature dependency is obtained without using a light receiving element separately, and the APD is based on the monitor light. It is an object of the present invention to provide a bias voltage control circuit and a light receiving method for an APD that can keep a multiplication factor constant.

本発明によるAPDのバイアス電圧制御回路は、バイアス電圧印加され自己増倍作用を有する第1の受光領域と、バイアス電圧が印加されず自己増倍作用を有しない第2の受光領域をもつAPDで信号光を受光する回路を備える。そして、第1の受光領域で受光した光に基づく第1の信号と第2の受光領域で受光した光に基づくモニタ信号とを合成した合成信号を出力するトランスインピーダンス回路と、前記の合成信号から第1の信号を抽出しその強度を出力する回路と、前記の合成信号の平均値を出力する回路と、この平均値と第1の信号との強度の差に所定の利得を与え第2の信号を出力する回路を備え、第1の信号の強度と第2の信号とが等しくなるようにバイアス電圧を制御する APD bias voltage control circuit of the APD according to the invention, having a first light receiving area having a self-multiplication effect bias voltage is applied, the second light receiving region having no self-multiplication effect bias voltage is not applied A circuit for receiving signal light is provided. Then, a first signal based on light received by the first light receiving region, and a trans-impedance circuit which outputs a second synthesized signal obtained by synthesizing the monitor signal based on the light received by the light receiving region, the combined signal A circuit for extracting the first signal from the signal and outputting the intensity thereof, a circuit for outputting the average value of the synthesized signal, and giving a predetermined gain to the difference in intensity between the average value and the first signal. The bias voltage is controlled so that the intensity of the first signal is equal to the second signal .

また、第2の受光領域で受光したモニタ信号の強度のみを取出す回路をさらに設け、モニタ信号の強度に応じて、このモニタ信号に与える所定の利得を変える。  Further, a circuit for taking out only the intensity of the monitor signal received in the second light receiving area is further provided, and a predetermined gain given to the monitor signal is changed according to the intensity of the monitor signal.

本発明によるAPDのバイアス電圧制御回路によれば、温度依存性の小さいモニタ信号を基準にAPDの増倍係数を設定することができ、温度変化によらずに増倍係数を一定保持することが可能となる。この結果、APDの温度特性と比較して、温度変化による影響がはるかに小さいAPDの後段に接続される主増幅器、或いはシステム全体に対しても温度補償されたこととなり、安定した性能の光受信装置を得ることができる。
また、温度依存性の小さいモニタ信号を、他に光学素子を用いることなく、かつ、APDの信号光の一部から得ることができるので、構成が簡単で均一な性能の光受信装置を得ることができる。
According to the APD bias voltage control circuit of the present invention, the APD multiplication factor can be set based on a monitor signal having a small temperature dependency, and the multiplication factor can be kept constant regardless of the temperature change. It becomes possible. As a result, compared to the temperature characteristics of the APD, temperature compensation is performed for the main amplifier connected to the subsequent stage of the APD or the entire system, which is much less affected by the temperature change, and stable optical reception is achieved. A device can be obtained.
Further, since a monitor signal having a small temperature dependency can be obtained from a part of the signal light of the APD without using any other optical element, an optical receiver having a simple configuration and uniform performance can be obtained. Can do.

図により本発明の実施の形態を説明する。図1(A)及び図1(B)は本発明で用いるAPDの概略を説明する平面図と断面図、図2はAPDの受光領域と光感度特性を示す図、図3はAPDの受光領域における受光性能と周波数特性を示す図である。図中、1はAPDチップ、2はn基板、3はn層、4はp拡散領域、5、6は絶縁膜、7はp側電極、7aは電極パッド、8はn側電極、Psは第1の受光領域、Pmは第2の受光領域を示す。 Embodiments of the present invention will be described with reference to the drawings. 1A and 1B are a plan view and a cross-sectional view for explaining the outline of the APD used in the present invention, FIG. 2 is a diagram showing a light receiving region and photosensitivity characteristics of the APD, and FIG. 3 is a light receiving region of the APD. It is a figure which shows the light reception performance and frequency characteristic in this. In the figure, 1 is an APD chip, 2 is an n + substrate, 3 is an n layer, 4 is a p + diffusion region, 5 and 6 are insulating films, 7 is a p-side electrode, 7a is an electrode pad, 8 is an n-side electrode, Ps indicates a first light receiving region, and Pm indicates a second light receiving region.

図1(A)に示すように、APDチップ1の自己増倍作用を有する第1の受光領域Psは、例えば、中央部のごく限られた領域のみに設けられる。この中央部の第1の受光領域Psを囲むようにして形成されたリング状のp側電極7から引出された電極パッド7aと、裏面側のチップ全面に形成されたn側電極8との間にバイアス電圧が印加される。このAPDチップ1は、図1(B)に断面図で示すように、nの基板2上にn層3を成長させ、SiO等の第1の絶縁膜5による拡散窓を設けた後、この拡散窓を通してn層3中にアクセプター原子を拡散させて、拡散させた領域のみにp拡散領域4を形成する。 As shown in FIG. 1A, the first light receiving region Ps having a self-multiplier action of the APD chip 1 is provided only in a very limited region at the center, for example. A bias is provided between the electrode pad 7a drawn from the ring-shaped p-side electrode 7 formed so as to surround the first light-receiving region Ps in the center and the n-side electrode 8 formed on the entire surface of the chip on the back surface side. A voltage is applied. As shown in the sectional view of FIG. 1B, the APD chip 1 has an n layer 3 grown on an n + substrate 2 and a diffusion window made of a first insulating film 5 such as SiO 2 is provided. The acceptor atoms are diffused into the n layer 3 through this diffusion window, and the p + diffusion region 4 is formed only in the diffused region.

拡散領域4の周辺部に上述したリング状のp側電極7を設け、この電極の引出しを第1の絶縁膜5上で行なう。リング状のp側電極7で囲まれた領域は、受光する信号光の波長λsに対して非反射膜となるようにSi等の第2の絶縁膜6を所定の厚さで形成する。図1(B)のAPDチップ1の断面構造から明らかなように、p側電極7とn側電極8との間にバイアス電圧を印加した場合に、このバイアス電圧が作用するのは受光領域直下のみとなり、受光領域からはずれた部分には電圧が印加されない。 The ring-shaped p-side electrode 7 described above is provided in the periphery of the p + diffusion region 4, and this electrode is drawn out on the first insulating film 5. In a region surrounded by the ring-shaped p-side electrode 7, a second insulating film 6 such as Si 3 N 4 is formed with a predetermined thickness so as to be a non-reflective film with respect to the wavelength λs of the received signal light. To do. As is apparent from the cross-sectional structure of the APD chip 1 in FIG. 1B, when a bias voltage is applied between the p-side electrode 7 and the n-side electrode 8, the bias voltage acts directly under the light receiving region. Thus, no voltage is applied to the portion deviated from the light receiving region.

裏面側に形成されるn側電極8は、ほぼAPDチップ1の全面に形成されるので、p側電極7の外側の領域においても、その表面の絶縁膜6を、受光する信号光の波長λmに対して透明となるように形成する。この結果、p側電極7の外側の領域に入射した光も当然に光電子を生成することとなるが、この領域にはバイアス電圧が印加されず電界が作用していないので、増倍係数は1以下となる。本発明では、バイアス電圧による電界の作用で自己増倍作用を奏するp側電極7内の領域を第1の受光領域Psとし、バイアス電圧による電界が作用せず自己増倍作用を奏しないp側電極7の外側で光が入射される領域を第2の受光領域Pmとする。   Since the n-side electrode 8 formed on the back surface side is formed substantially on the entire surface of the APD chip 1, the wavelength λm of the signal light received by the insulating film 6 on the front surface also in the region outside the p-side electrode 7. To be transparent. As a result, light incident on the region outside the p-side electrode 7 naturally generates photoelectrons, but since no bias voltage is applied to this region and no electric field acts, the multiplication factor is 1 It becomes as follows. In the present invention, the region in the p-side electrode 7 that exhibits the self-multiplier action by the action of the electric field by the bias voltage is defined as the first light receiving region Ps, and the p-side that does not act by the bias voltage and does not act by the self-multiplier action. A region where light is incident outside the electrode 7 is defined as a second light receiving region Pm.

図2は、APDの感度特性を示す図で、図1(A)に示した45°の軸線b−bを横軸で表し、縦軸に得られる出力光電流値をプロットする。横軸の第1の受光領域の範囲が、図1のp側電極7内の領域Psに対応し、この領域に光が主に入射した場合には大きな光電流値が得られる。この受光領域を外した両側の範囲はp側電極7aの外側である第2の受光領域に対応し、この領域に光が入射した場合は、その光電流値は1/3以下の値にしかならない。また、この第2の領域には電界が作用していないので、その増倍係数の温度依存性も小さい。   FIG. 2 is a diagram showing the sensitivity characteristics of the APD. The axis bb of 45 ° shown in FIG. 1A is represented on the horizontal axis, and the output photocurrent value obtained is plotted on the vertical axis. The range of the first light receiving region on the horizontal axis corresponds to the region Ps in the p-side electrode 7 of FIG. 1, and a large photocurrent value is obtained when light mainly enters this region. The range on both sides excluding the light receiving region corresponds to the second light receiving region outside the p-side electrode 7a. When light enters this region, the photocurrent value is only 1/3 or less. Don't be. In addition, since no electric field acts on the second region, the temperature dependence of the multiplication coefficient is small.

図3は、第1の受光領域と第2の受光領域における受光性能の周波数特性を示す図である。この図から第1の受光領域の周波数特性は、高域(1GHz以上の帯域)においても高周波信号に応答可能である。しかし、第2の受光領域の周波数特性は、その光電流の増倍係数が最大でも1であるのに加え、高域での劣化が著しく低域信号(0.5GHz以下の帯域)での応答となる。   FIG. 3 is a diagram showing the frequency characteristics of the light receiving performance in the first light receiving region and the second light receiving region. From this figure, the frequency characteristic of the first light receiving region can respond to a high-frequency signal even in a high region (a band of 1 GHz or more). However, the frequency characteristic of the second light receiving region is that the multiplication factor of the photocurrent is 1 at the maximum, and the response in the low frequency signal (band of 0.5 GHz or less) is remarkably deteriorated in the high frequency range. It becomes.

したがって、第1及び第2の受光領域で受光した信号光の成分を、例えば、500MHz程度に遮断周波数を設定した高域通過フィルタを介することにより、第1の受光領域で受光した高域分を含む信号成分と、第2の受光領域で受光した低域分のモニタ成分とを分離して検出できることとなる。これら分離された2つの信号光の成分を適宜処理することで、APDの増倍係数を一定にするようにバイアス電圧を設定する構成、入力レベルに応じてバイアス電圧を制御する構成が可能となる。   Therefore, the component of the signal light received in the first and second light receiving regions is passed through a high-pass filter whose cutoff frequency is set to about 500 MHz, for example, so that the high frequency component received in the first light receiving region is reduced. The signal component that is included and the low-frequency monitor component received in the second light receiving region can be separated and detected. By appropriately processing these two separated signal light components, a configuration in which the bias voltage is set so as to make the APD multiplication coefficient constant, and a configuration in which the bias voltage is controlled in accordance with the input level can be realized. .

図4及び図5は、本発明によるAPDの増倍係数を一定に制御する例を説明する図である。図中、10はAPD、11は前置増幅器(TIA)、12はハイパスフィルタ(HPF)、13はロウパスフィルタ(LPF)、14はリミティング増幅器、15はピークホールド検波器、16,17、18は差動増幅器(U1,U2,U0)、19はDC/DCコンバータを示す。   4 and 5 are diagrams illustrating an example in which the multiplication factor of the APD according to the present invention is controlled to be constant. In the figure, 10 is an APD, 11 is a preamplifier (TIA), 12 is a high pass filter (HPF), 13 is a low pass filter (LPF), 14 is a limiting amplifier, 15 is a peak hold detector, 16, 17, 18 Is a differential amplifier (U1, U2, U0), and 19 is a DC / DC converter.

APD10は、図1に示したような、バイアス電圧の印加により自己増倍作用を有する第1の受光領域と、バイアス電圧が印加されず自己増倍作用を有しない第2の受光領域をもつ構成のAPDである。このAPD10で受光された信号光には、第1の受光領域で受光した信号光による信号成分Isと、第2の受光領域で受光した信号光(モニタ光となる)によるモニタ成分Imと、これに両成分に共通する雑音成分Inoが加わって、(Is+Im+Ino)の成分が電気信号に変換されてトランスインピーダンス回路からなる前置増幅器11(Trans-Impedance Amplifier:TIA)に入力される。なお、雑音成分Inoには、信号光そのものに含まれているもの、APDで電流信号に変換される際に生じるもの、バイアス電圧に依存して増減するもの等、種々の要因による全ての成分を含んでいるものとする。 The APD 10 includes a first light receiving region that has a self-multiplier effect by applying a bias voltage and a second light-receiving region that has no self-multiplier effect when no bias voltage is applied, as shown in FIG. APD. The signal light received by the APD 10 includes a signal component Is based on the signal light received in the first light receiving region, a monitor component Im based on the signal light received in the second light receiving region (which becomes monitor light), and In addition, a noise component Ino common to both components is added, and a component (Is + Im + Ino) is converted into an electric signal and input to a pre-amplifier 11 (Trans-Impedance Amplifier: TIA) including a transimpedance circuit . The noise component Ino includes all components due to various factors such as those included in the signal light itself, those generated when converted into current signals by the APD, and those that increase or decrease depending on the bias voltage. It shall contain.

前置増幅器11において、これらの成分(Is+Im+Ino)と対応する電流成分は、電流/電圧変換して電圧信号とされる。この後、HPF12とLPF13を通され、HPF12を通過する信号は、低域のモニタ信号Imがカットされた信号Isと雑音信号Inoからなる第1の信号(Is+Ino)となる。他方、LPF13を通過する信号は、信号Is及び雑音信号Inoに加えて低域のモニタ信号Imを含む信号(Im+Is+Ino)となる。   In the preamplifier 11, current components corresponding to these components (Is + Im + Ino) are converted into voltage signals by current / voltage conversion. Thereafter, the signal passing through the HPF 12 and the LPF 13 and passing through the HPF 12 is the first signal (Is + Ino) including the signal Is and the noise signal Ino from which the low-frequency monitor signal Im has been cut. On the other hand, the signal passing through the LPF 13 becomes a signal (Im + Is + Ino) including a low-frequency monitor signal Im in addition to the signal Is and the noise signal Ino.

HPF12を通過した第1の信号(Is+Ino)は、リミティング増幅器14等の出力回路を経て伝送信号とされる。また、このHPF12を通過した第1の信号は、整流回路からなるピークホールド検波器15を介することにより、(Is+Ino)の強度を取出すことができる。他方、LPF13を通過した信号(Im+Is+Ino)は、その遮断周波数(低域遮断周波数)を小さい値に設定することで整流回路を兼ねることになり、LPF13から出力される信号は、(Im+Is+Ino)の強度成分のみとすることができる。この2つの信号は、利得Gを可変とする差動増幅器16(U1増幅器)に入力される。   The first signal (Is + Ino) that has passed through the HPF 12 is converted into a transmission signal through an output circuit such as the limiting amplifier 14. Further, the intensity of (Is + Ino) can be extracted from the first signal that has passed through the HPF 12 via the peak hold detector 15 formed of a rectifier circuit. On the other hand, the signal (Im + Is + Ino) that has passed through the LPF 13 also serves as a rectifier circuit by setting its cut-off frequency (low cut-off frequency) to a small value, and the signal output from the LPF 13 has an intensity of (Im + Is + Ino). It can be an ingredient only. These two signals are input to a differential amplifier 16 (U1 amplifier) whose gain G is variable.

HPF12を通過した信号は、(Is+Ino)のみであり、LPF13を通過した信号は(Im+Is+Ino)であるので、この差をU1増幅器16で検出することでモニタ信号Imのみを抽出し、所定の利得Gを与えた第2の信号(G×Im)を出力することができる。この利得倍された第2の信号(G×Im)と、HPF12を通過した第1の信号(Is+Ino)との差を、U2増幅器17で検出する。そして、利得倍された第2の信号(G×Im)とHPF12を通過した第1の信号(Is+Ino)とが等しくなるように、APDに加わるバイアス電圧をDC/DCコンバータ19により制御する。   Since the signal that has passed through the HPF 12 is only (Is + Ino) and the signal that has passed through the LPF 13 is (Im + Is + Ino), only the monitor signal Im is extracted by detecting this difference with the U1 amplifier 16, and a predetermined gain G Can be output as a second signal (G × Im). The U2 amplifier 17 detects the difference between the gain-multiplied second signal (G × Im) and the first signal (Is + Ino) that has passed through the HPF 12. The bias voltage applied to the APD is controlled by the DC / DC converter 19 so that the gain-multiplied second signal (G × Im) is equal to the first signal (Is + Ino) that has passed through the HPF 12.

すなわち、バイアス電圧の印加により自己増倍作用を有する第1の受光領域で受光した光による第1の信号(雑音分を含む)の強度が、バイアス電圧が印加されず自己増倍作用を有しない第2の受光領域で受光した光によるモニタ信号の強度のG倍となるよう制御系を実現することができる。そして、モニタ信号には、温度依存性の成分は極めて少ない割合でしか含まれていないため、APDの周囲温度が変化したとしても、APDの増倍係数は一定に保持することができる。   That is, the intensity of the first signal (including noise) by the light received in the first light receiving region having a self-multiplier effect by applying a bias voltage does not have a self-multiplier effect when no bias voltage is applied. The control system can be realized so as to be G times the intensity of the monitor signal by the light received in the second light receiving region. Since the monitor signal contains only a very small percentage of temperature-dependent components, the APD multiplication factor can be kept constant even if the ambient temperature of the APD changes.

一方、通常のAPD制御においては、入力レベルが大きくなった場合は、増倍係数を低減して、APDから取出される出力電流を抑える制御が行なわれる。しかし、上述した図4の例では、第1の信号(Is+Ino)の強度がモニタ信号ImのG倍となるように制御系を設定している。したがって、常に増倍係数が一定となるように設定した場合、入力レベルが大きくなって取出される電流値が増加し、この増加電流によりAPD自身を破壊するということもある。また、APDの電流値が増加した場合、後段に接続される電気回路を飽和状態で動作させることにもなり、正常動作が期待できなくなるという事態が生じる恐れもある。   On the other hand, in normal APD control, when the input level increases, control is performed to reduce the multiplication factor and suppress the output current drawn from the APD. However, in the example of FIG. 4 described above, the control system is set so that the intensity of the first signal (Is + Ino) is G times the monitor signal Im. Therefore, if the multiplication factor is set to be constant at all times, the input level increases and the extracted current value increases, and this increased current may destroy the APD itself. In addition, when the current value of the APD increases, the electric circuit connected to the subsequent stage is also operated in a saturated state, and there is a possibility that a normal operation cannot be expected.

図5の例は、APDに入力される信号光の強度が増加した場合には、それに応じてバイアス電圧を低下させ、上述のような事態が生じるのを回避させることを可能とするものである。APD10は、図4の場合と同様のものが用いられ、第1の受光領域で受光した信号光による信号成分Isと第2の受光領域で受光した信号光の一部(モニタ光)によるモニタ成分Imと、これに両成分に共通する雑音成分Inoが加わって、(Is+Im+Ino)の成分が電気信号に変換されてTIA11に入力される。   In the example of FIG. 5, when the intensity of the signal light input to the APD increases, the bias voltage is decreased accordingly, and the above situation can be avoided. . The APD 10 is the same as that shown in FIG. 4, and the signal component Is generated by the signal light received by the first light receiving region and the monitor component by a part of the signal light (monitor light) received by the second light receiving region. Im and a noise component Ino common to both components are added to this, and the component (Is + Im + Ino) is converted into an electrical signal and input to the TIA 11.

HPF12を通され、整流回路からなるピークホールド検波器15を経て抽出された第1の信号(Is+Ino)と、LPF13を通された信号(Im+Is+Ino)の強度は、U0増幅器18とU1増幅器16の両方に入力される。U0増幅器18では、第1の信号(Is+Ino)と信号(Im+Is+Ino)の強度差が検出され、モニタ信号Imの強度のみを取出す。このモニタ信号Imは、U1増幅器16に制御信号として入力される。   The intensities of the first signal (Is + Ino) passed through the HPF 12 and extracted through the peak hold detector 15 consisting of a rectifier circuit and the signal (Im + Is + Ino) passed through the LPF 13 are both in the U0 amplifier 18 and the U1 amplifier 16. Is input. The U0 amplifier 18 detects an intensity difference between the first signal (Is + Ino) and the signal (Im + Is + Ino), and extracts only the intensity of the monitor signal Im. This monitor signal Im is input to the U1 amplifier 16 as a control signal.

U1増幅器16からは、図4の場合と同様に、モニタ信号Imに所定の利得Gを与えた第2の信号(G×Im)を出力させることができる。この利得倍された第2の信号(G×Im)と、HPF12を通過した第1の信号(Is+Ino)との差を、U2増幅器17で検出する。そして、利得倍された第2の信号(G×Im)と、HPF12を通過した第1の信号(Is+Ino)とが等しくなるように、APD10に加わるバイアス電圧をDC/DCコンバータ19により制御する。 Similarly to the case of FIG. 4, the U1 amplifier 16 can output a second signal (G × Im) obtained by giving a predetermined gain G to the monitor signal Im. The U2 amplifier 17 detects the difference between the gain-multiplied second signal (G × Im) and the first signal (Is + Ino) that has passed through the HPF 12. The bias voltage applied to the APD 10 is controlled by the DC / DC converter 19 so that the gain-multiplied second signal (G × Im) is equal to the first signal (Is + Ino) that has passed through the HPF 12.

APD10の第1の受光領域で受光される信号光の強度と、第2の受光領域で受光されるモニタ光の強度は、同じ光ビームから得られるとすれば、ビームスポットが移動しない限り、比例関係にある。したがって、信号光の強度が大となればモニタ光の強度も大となる。すなわち、信号Isの強度が大となればモニタ信号Imの強度も大となるので、U0増幅器18からのモニタ信号Imの強度が増加したときは、U1増幅器16の利得Gを低下させ、モニタ信号Imの強度が低下したときは、U1増幅器16の利得Gを増加させ、利得倍された第2の信号(G×Im)が一定になるようにする。全体としての閉ループでは、(G×Im)=(Is+Ino)になるように制御されるので、APDの周囲温度が変化しても、APDに加わる入力信号強度が変化しても、APDの電流を所定値に保持することができる。   If the intensity of the signal light received by the first light receiving area of the APD 10 and the intensity of the monitor light received by the second light receiving area are obtained from the same light beam, they are proportional unless the beam spot moves. There is a relationship. Therefore, the intensity of the monitor light increases as the intensity of the signal light increases. That is, if the intensity of the signal Is increases, the intensity of the monitor signal Im also increases. Therefore, when the intensity of the monitor signal Im from the U0 amplifier 18 increases, the gain G of the U1 amplifier 16 is decreased and the monitor signal Im is increased. When the intensity of Im decreases, the gain G of the U1 amplifier 16 is increased so that the gain-multiplied second signal (G × Im) becomes constant. In the closed loop as a whole, control is performed so that (G × Im) = (Is + Ino). Therefore, even if the ambient temperature of the APD changes or the input signal strength applied to the APD changes, the current of the APD is changed. It can be held at a predetermined value.

図6は、APDの受光方法を説明する図で、図6(A)は通常の受光形態を示す図、図6(B)は本発明の受光方法の一例を説明する図、図6(C)は本発明の受光方法の他の例を説明する図である。図中、20はAPDの受光面、21は集光レンズ、22はハーフミラー、23はミラー、Psは第1の受光領域、Pmは第2の受光領域、Sは信号光を示す。   6A and 6B are diagrams for explaining a light receiving method of APD, FIG. 6A is a diagram showing a normal light receiving mode, FIG. 6B is a diagram explaining an example of a light receiving method of the present invention, and FIG. (A) is a figure explaining the other example of the light-receiving method of this invention. In the figure, 20 is a light receiving surface of the APD, 21 is a condenser lens, 22 is a half mirror, 23 is a mirror, Ps is a first light receiving region, Pm is a second light receiving region, and S is signal light.

APDの受光面20は、図1で説明したように、バイアス電圧の印加により自己増倍作用を有する第1の受光領域Psと、バイアス電圧が印加されず自己増倍作用を有しない第2の受光領域Pmをもつ。信号光に対するAPDの受光は、通常、図6(A)に示すように第1の受光領域Psのみに信号光Sが入射されるように、集光レンズ21等によりその集光径が絞られている。   As described with reference to FIG. 1, the light receiving surface 20 of the APD has a first light receiving region Ps that has a self-multiplier effect by applying a bias voltage, and a second light-receiving region Ps that has no self-multiplier effect when no bias voltage is applied. It has a light receiving area Pm. As shown in FIG. 6A, the light receiving diameter of the APD with respect to the signal light is normally reduced by the condensing lens 21 or the like so that the signal light S is incident only on the first light receiving region Ps. ing.

本発明では、図6(B)に示すように、集光レンズ21等により照射される信号光Sが、第1の受光領域Ps以外に第2の受光領域Pmにも一部が入射されるように、その集光径を拡大する。信号光Sは主として第1の受光領域Psで受光され、制御系の信号成分Isとされるが、拡大された集光径を有する信号光Sの一部が第2の受光領域Pmでも受光される。第2の受光領域Pmで受光された信号光Sの一部は、図4、5で説明したモニタ光とされ、制御系のモニタ成分Imとされる。   In the present invention, as shown in FIG. 6B, a part of the signal light S irradiated by the condenser lens 21 and the like is incident not only on the first light receiving area Ps but also on the second light receiving area Pm. Thus, the condensing diameter is enlarged. The signal light S is mainly received by the first light receiving region Ps and is used as the signal component Is of the control system, but a part of the signal light S having an enlarged condensed diameter is also received by the second light receiving region Pm. The A part of the signal light S received in the second light receiving region Pm is the monitor light described in FIGS. 4 and 5 and is the monitor component Im of the control system.

図6(C)は、集光レンズ21等により照射される第1の受光領域Psへの信号光Sをハーフミラー22により、その一部を光分岐する。ハーフミラー22を透過した信号光Sは、第1の受光領域Psで受光され、制御系の信号成分Isとされる。光分岐された信号光Sの一部は、ミラー23により第2の受光領域Pmで受光してモニタ光とされ、制御系のモニタ成分Imとされる。   In FIG. 6C, the signal light S to the first light receiving region Ps irradiated by the condenser lens 21 or the like is partially branched by the half mirror 22. The signal light S transmitted through the half mirror 22 is received by the first light receiving region Ps and used as a signal component Is of the control system. A part of the branched signal light S is received by the mirror 23 in the second light receiving region Pm and used as monitor light, and is used as the monitor component Im of the control system.

上述したように、同一のAPDのバイアス電圧による電界が作用せず自己増倍作用を奏しない領域を第2の受光領域とし、この領域で受光した信号光をモニタ光とすることにより、PINダイオードを別に用意することなく、温度変化に関係なくAPDの増倍係数を一定とする制御を行なうことができる。また、APDの信号光と同一条件にある信号光の一部をモニタ光とすることができるので、均一の性能で高性能の制御を行なうことが可能となる。   As described above, the region where the electric field due to the bias voltage of the same APD does not act and does not exhibit the self-multiplier function is set as the second light receiving region, and the signal light received in this region is used as the monitor light, whereby the PIN diode Can be controlled to make the APD multiplication coefficient constant irrespective of the temperature change. In addition, since a part of the signal light under the same conditions as the signal light of the APD can be used as the monitor light, it is possible to perform high performance control with uniform performance.

本発明に用いるAPDの一例を説明する図である。It is a figure explaining an example of APD used for the present invention. 本発明で用いるAPDの受光領域と感度特性を示す図である。It is a figure which shows the light reception area | region and sensitivity characteristic of APD used by this invention. 本発明で用いるAPDの受光領域における受光性能と周波数特性を示す図である。It is a figure which shows the light reception performance and frequency characteristic in the light reception area | region of APD used by this invention. 本発明の実施形態の一例を説明する図である。It is a figure explaining an example of an embodiment of the present invention. 本発明の実施形態の他の例を説明する図である。It is a figure explaining the other example of embodiment of this invention. 本発明のAPDの受光方法の実施形態を説明する図である。It is a figure explaining embodiment of the light-receiving method of APD of this invention. 本発明の解決しようとする課題を説明するための、APDの光電流と逆電圧の関係を示す図である。It is a figure which shows the relationship between the photocurrent and reverse voltage of APD for demonstrating the subject which this invention tends to solve.

符号の説明Explanation of symbols

1…APDチップ、2…n基板、3…n層、4…p拡散領域、5,6…絶縁膜、7…p側電極、7a…電極パッド、8…n側電極、10…APD、11…前置増幅器(TIA)、12…ハイパスフィルタ(HPF)、13…ロウパスフィルタ(LPF)、14…リミティング増幅器、15…ピークホールド検波器、16,17,18…差動増幅器(U1,U2,U0)、19…DC/DCコンバータ、20…APDの受光面、21…集光レンズ、22…ハーフミラー、23…ミラー、Ps…第1の受光領域、Pm…第2の受光領域。 DESCRIPTION OF SYMBOLS 1 ... APD chip, 2 ... n + board | substrate, 3 ... n layer, 4 ... p + diffusion region, 5, 6 ... Insulating film, 7 ... P side electrode, 7a ... Electrode pad, 8 ... N side electrode, 10 ... APD , 11: Preamplifier (TIA), 12: High-pass filter (HPF), 13 ... Low-pass filter (LPF), 14 ... Limiting amplifier, 15 ... Peak hold detector, 16, 17, 18 ... Differential amplifier (U1) , U2, U0), 19 ... DC / DC converter, 20 ... light receiving surface of APD, 21 ... condensing lens, 22 ... half mirror, 23 ... mirror, Ps ... first light receiving region, Pm ... second light receiving region. .

Claims (2)

バイアス電圧印加され自己増倍作用を有する第1の受光領域と、バイアス電圧が印加されず自己増倍作用を有しない第2の受光領域をもつアバランシェフォトダイオードで信号光を受光し、前記第1の受光領域で受光した光に基づく第1の信号と前記第2の受光領域で受光した光に基づくモニタ信号とを合成した合成信号を出力するトランスインピーダンス回路と、
前記合成信号から第1の信号を抽出してその強度を出力する回路と、前記合成信号の平均値を出力する回路と、前記平均値と前記第1の信号の強度との差に所定の利得を与え第2の信号を出力する回路を備え、
前記第1の信号の強度と前記第2の信号とが等しくなるように前記バイアス電圧が制御されることを特徴とするアバランシェフォトダイオードのバイアス電圧制御回路。
Receiving a first light receiving area having a self-multiplication effect bias voltage is applied, the signal light in the avalanche photodiode having a second light receiving region having no self-multiplication effect bias voltage is not applied, the first a transimpedance circuit for outputting a first signal based on light received by the first light receiving region and the synthesized signal obtained by synthesizing the monitor signal based on the light received by the second light receiving region,
A circuit that extracts a first signal from the combined signal and outputs the intensity; a circuit that outputs an average value of the combined signal; and a predetermined gain in a difference between the average value and the intensity of the first signal And a circuit for outputting the second signal ,
The bias voltage control circuit for an avalanche photodiode, wherein the bias voltage is controlled so that the intensity of the first signal is equal to the second signal.
前記第2の受光領域で受光したモニタ信号の強度のみを取出す回路をさらに備え、前記モニタ信号の強度に応じて、前記所定の利得を変えることを特徴とする請求項1に記載のアバランシェフォトダイオードのバイアス電圧制御回路。 2. The avalanche photodiode according to claim 1, further comprising a circuit that extracts only the intensity of the monitor signal received in the second light receiving region, wherein the predetermined gain is changed according to the intensity of the monitor signal. Bias voltage control circuit.
JP2003327015A 2003-09-19 2003-09-19 Avalanche photodiode bias voltage control circuit Expired - Fee Related JP3956923B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003327015A JP3956923B2 (en) 2003-09-19 2003-09-19 Avalanche photodiode bias voltage control circuit
US10/943,211 US20050092896A1 (en) 2003-09-19 2004-09-17 Light-receiving method of an avalanche photodiode and a bias control circuit of the same
US11/488,077 US7214924B2 (en) 2003-09-19 2006-07-18 Light-receiving method of an avalanche photodiode and a bias control circuit of the same
US11/712,497 US7282692B2 (en) 2003-09-19 2007-03-01 Light receiving method of an avalanche photodiode and a bias control circuit of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003327015A JP3956923B2 (en) 2003-09-19 2003-09-19 Avalanche photodiode bias voltage control circuit

Publications (2)

Publication Number Publication Date
JP2005093834A JP2005093834A (en) 2005-04-07
JP3956923B2 true JP3956923B2 (en) 2007-08-08

Family

ID=34457001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003327015A Expired - Fee Related JP3956923B2 (en) 2003-09-19 2003-09-19 Avalanche photodiode bias voltage control circuit

Country Status (2)

Country Link
US (3) US20050092896A1 (en)
JP (1) JP3956923B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007080526A1 (en) * 2006-01-09 2007-07-19 Philips Intellectual Property & Standards Gmbh Light sensor with integrated temperature sensor functionality
JP2008051698A (en) * 2006-08-25 2008-03-06 Yokogawa Electric Corp Bidirectional optical module and optical pulse tester using the same
JP4679498B2 (en) 2006-12-11 2011-04-27 富士通株式会社 Avalanche photodiode bias control circuit
JP5211095B2 (en) 2010-03-25 2013-06-12 株式会社豊田中央研究所 Photodetector
ES2386732B2 (en) * 2011-01-31 2013-03-13 Universidad De Málaga LASER RECEIVER DEVICE BASED ON THERMOREGULATED AVALANCHA PHOTODIOD WITH EMBEDDED CONTROL.
JP5808592B2 (en) * 2011-07-04 2015-11-10 浜松ホトニクス株式会社 Reference voltage determination method and recommended operating voltage determination method
US9001530B2 (en) * 2012-06-29 2015-04-07 Finisar Corporation Integrated circuit with voltage conversion
DE102016220492A1 (en) * 2016-10-19 2018-04-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Charge avalanche photodetector system
CN107024289A (en) * 2017-04-13 2017-08-08 华中师范大学 A kind of single-photon detector of low time jitter
KR102506438B1 (en) * 2017-07-06 2023-03-06 삼성전자주식회사 Distance measuring device and method for measuring distance by using thereof
WO2020121852A1 (en) 2018-12-12 2020-06-18 浜松ホトニクス株式会社 Photodetector
JP7454917B2 (en) 2018-12-12 2024-03-25 浜松ホトニクス株式会社 light detection device
DE102019107895A1 (en) * 2019-03-27 2020-10-01 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Photodiode and readout circuit for photodiode

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0216572B1 (en) * 1985-09-24 1995-04-05 Kabushiki Kaisha Toshiba Semiconductor photo-detector having a two-stepped impurity profile
JPS6377171A (en) 1986-09-19 1988-04-07 Matsushita Electric Ind Co Ltd Optical receiver
JPH0687549B2 (en) 1986-10-22 1994-11-02 松下電器産業株式会社 Optical receiver
EP0360877B1 (en) * 1988-09-15 1994-12-07 Siemens Aktiengesellschaft Circuitry to determine the optical power of a signal
JP3421103B2 (en) * 1993-12-20 2003-06-30 浜松ホトニクス株式会社 Photodetection circuit using avalanche photodiode
JPH09321710A (en) 1996-05-28 1997-12-12 Nec Corp Optical receiver
JP2000244418A (en) 1999-02-23 2000-09-08 Nec Corp Optical receiver and storage medium storing program
US6794631B2 (en) * 2002-06-07 2004-09-21 Corning Lasertron, Inc. Three-terminal avalanche photodiode

Also Published As

Publication number Publication date
US20050092896A1 (en) 2005-05-05
US20070152138A1 (en) 2007-07-05
US7214924B2 (en) 2007-05-08
US7282692B2 (en) 2007-10-16
US20060255245A1 (en) 2006-11-16
JP2005093834A (en) 2005-04-07

Similar Documents

Publication Publication Date Title
JP3956923B2 (en) Avalanche photodiode bias voltage control circuit
US5463461A (en) Coherent optical receiver having optically amplified local oscillator signal
US20070258722A1 (en) Optical receiver
US20200091881A1 (en) Differential trans-impedance amplifier
JP4276119B2 (en) Low noise optical receiver
US7939790B1 (en) Method and apparatus for controlling the gain of an avalanche photodiode with fluctuations in temperature
US6654215B2 (en) Photodetector circuit with avalanche photodiode
JPH04252923A (en) Photo detecting circuit
TW201421926A (en) A photo detecting device for enhancing the sensitivity of optical receivers
JP4045170B2 (en) Avalanche photodiode characteristics definition method
JPH03296309A (en) Optical reception circuit
JPS6388871A (en) Optical hybrid integrated circuit device
JPH0236622A (en) Optical heterodyne receiver
JPS6057726B2 (en) Gain control method for optical signal receiver
JP3047525B2 (en) Avalanche photodiode bias circuit
JPH06252660A (en) Optical receiver
JP2008245118A (en) Optical receiver
JP2004336568A (en) Amplification circuit and amplification method
JPH0993203A (en) Optical receiver
JPH04192378A (en) Optical receiving circuit
JPS60259917A (en) Light-receiving circuit
JPH04145735A (en) Optical receiver
JPH06164501A (en) Bais system for avalanche photodiode
CN114459617A (en) Laser phase noise measurement method and system
JP2000224111A (en) Optical space transmitter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070430

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees