JP3955096B2 - Selective hydrodesulfurization catalyst and method - Google Patents

Selective hydrodesulfurization catalyst and method Download PDF

Info

Publication number
JP3955096B2
JP3955096B2 JP53295197A JP53295197A JP3955096B2 JP 3955096 B2 JP3955096 B2 JP 3955096B2 JP 53295197 A JP53295197 A JP 53295197A JP 53295197 A JP53295197 A JP 53295197A JP 3955096 B2 JP3955096 B2 JP 3955096B2
Authority
JP
Japan
Prior art keywords
catalyst
moo
feedstock
weight
hydrodesulfurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP53295197A
Other languages
Japanese (ja)
Other versions
JP2000505358A (en
Inventor
ラピンスキー,マーク,ピー.
リレイ,ケネス,エル.
ハルバート,トーマス,アール.
ラスコ,ウィリアム
カウフマン,ジェフリー,エル.
アルドリッジ,クライド,エル.
トウベル,ミケーレ,エス.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Research and Engineering Co
Original Assignee
Exxon Research and Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/583,725 external-priority patent/US6126814A/en
Application filed by Exxon Research and Engineering Co filed Critical Exxon Research and Engineering Co
Publication of JP2000505358A publication Critical patent/JP2000505358A/en
Application granted granted Critical
Publication of JP3955096B2 publication Critical patent/JP3955096B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

発明の分野
本発明は、ナフサ原料油流れを水素化脱硫するための触媒及び方法に関し、その方法において、反応器供給口温度は反応器供給口における供給原料油の露点未満であり、かつナフサは触媒床内で完全に蒸発する。触媒は、好適な担体物質上に担持された約1〜約10重量%のMoO3、約0.1〜約5重量%のCoOを含む。それらはまた、平均媒体細孔直径が約60Å〜200Å、Co/Mo原子比が約0.1〜約1.0、MoO3表面濃度が約0.5×10-4〜約3.0×10-4g MoO3/m2、及び平均粒子サイズが直径約2.0mm未満であることを特徴とする。
本発明の背景
ナフサ流れは、米国内のいずれの石油精製所においても主要生成物である。これらの流れをブレンドすると、「ガソリンプール」と業界で呼ばれているものが得られる。このような流れ、特に流動接触分解やコーキングなどの分解法の生成物であるこうしたナフサ流れに付随する一つの問題は、それらのナフサ流れが比較的高レベルの望ましからぬ硫黄を含有することである。それらのナフサ流れはまた、結果として得られるガソリンプールのオクタン価に寄与する価値あるオレフィンをも含有するため、処理中にそれらを低オクタン価パラフィンに飽和されることがないようにすることが大変に望ましい。このようなナフサ流れの硫黄レベルを、より厳しい政府の規制によって要求される更に低いレベルにまで低下させるために、ナフサ流れの脱硫に関して更に改良された性質を有する触媒の必要性が依然として存在する。過去数年間にわたる研究の結果、ナフサ原料油流れを脱硫するためのかなり多くの水素化脱硫触媒および方法が得られたが、その際、オレフィン飽和を最低限に保つように試みられた。現在、商業的に成功を収めたナフサ水素化脱硫触媒が利用されているが、最適な水素化脱硫とオレフィンの最低限の水素化とを兼ね備えることができる、改良された触媒の必要性は依然として存在する。
本発明の概要
本発明によれば、オレフイン飽和を最小限に抑えてナフサ原料油流れを水素化脱硫するための好適な触媒が提供されるが、該触媒は、
(a)無機耐火担体物質;
(b)約1〜10重量%のMoO3;及び
(c)約0.1〜5重量%のCoO;及び
(d)約0.1〜1.0のCo/Mo原子比;及び
(e)約60Å〜200Åの細孔直径中央値;及び
(f)約0.5×10-4〜3×10-4g MoO3/m2のMoO3表面濃度;及び
(g)約2.0mm未満の平均粒子サイズ直径;
を有する。
また、本発明によれば、触媒床を含む水素化脱硫処理ユニットに供給原料油を通すことによりナフサ供給原料油を水素化脱硫するための方法が提供されるが、この場合、供給原料油は、水素化脱硫条件で先に規定された触媒床を通過する。
本発明の好ましい実施態様において、触媒は、酸素化学吸着により測定した場合、約800〜2800μMol酸素/g MoO3の金属硫化物エッジ面積を有する。
本発明のもう1つの好ましい実施態様において、水素化脱硫の処理条件は、反応ユニットへの供給原料油の供給口温度が供給原料油の露点未満であり、かつ供給原料油の100%が触媒床中で蒸発した状態になるような条件である。
本発明の他の好ましい実施態様において、MoO3表面濃度は約0.75×10-4〜2.5×10-4g MoO3/m2;Co/Mo原子比は約0.20〜0.85;更に、平均細孔直径は約75Å〜約175Åである。
図の簡単な説明
ここでの唯一の図は、本明細書の表VIIに記載の触媒の金属硫化物エッジ面積に対する水素化脱硫(HDS)相対活性のプロットを表している。
発明の詳細な説明
本発明に使用するために好適なナフサ供給原料油は、大気圧において約50°F〜約450°Fの範囲で沸騰する任意の1つ以上の精油所流れを含むことができる。ナフサ供給原料油は、一般に分解ナフサを含有するが、この分解ナフサは、通常流動接触分解ユニットナフサ(FCC接触分解ナフサ)、コークス炉ナフサ、水素化分解炉ナフサ、残油水素処理炉ナフサ、脱ブタン天然ガソリン(DNG)、及びナフサ沸騰範囲の流れが生成可能な他の供給源からのガソリン混合成分を含む。FCC接触分解ナフサおよびコークス炉ナフサは、接触及び/又は熱分解反応の生成物であるため、一般によりオレフィン性の高いナフサであり、本発明に使用するためのより好ましい流れである。
ナフサ供給原料油、好ましくは分解ナフサ供給原料油は、一般にパラフィン、ナフテン及び芳香族物質のみならず、開鎖及び環状オレフィン、ジエン及びオレフィン側鎖を有する環状炭化水素をも含有する。分解ナフサ供給原料油は、一般に約60重量%、より典型的には約50重量%、最も典型的には約5重量%〜約40重量%の全オレフィン濃度を有する。分解ナフサ供給原料油は、15重量%に及ぶジエン濃度を有することもあるが、より典型的には、供給原料油の約0.02重量%〜約5重量%の範囲である。高いジエン濃度では、安定性及び色の劣ったガソリン生成物を生じる可能性がある。分解ナフサ供給原料油の硫黄含有量は、一般に供給原料油の全重量を基準に約0.05重量%〜約0.7重量%、より典型的には約0.07重量%〜約0.5重量%の範囲であろう。窒素含有量は、一般に約5 wppm〜約500 wppm、より典型的には約20 wppm〜約200 wppmの範囲であろう。
従来技術においては、本発明のものと類似の多くの水素化脱硫触媒が存在するが、本発明のものと同じように、ユニークな性質のすべてを備え、従って比較的低いオレフィン飽和と組み合わさった水素化脱硫に対する活性レベルを有することを特徴とするものはない。例えば、いくつかの従来の水素化脱硫触媒は、典型的には本発明の請求の範囲内のMoO3及びCoOレベルを有する。他の水素化脱硫触媒は、本発明の触媒の範囲にある表面積および細孔直径を有する。本発明の触媒のすべての性質が存在する場合のみ、このような低いオレフィン飽和と組み合わさった水素化脱硫のこうした高いレベルが満たされる。本発明の触媒に決定的な要因となる性質としては、次のものがが挙げられる:(a)触媒の全重量を基準にして、約1〜10重量%、好ましくは約2〜8重量%、より好ましくは約4〜6重量%のMoO3濃度;(b)同様に触媒の全重量を基準15にして、約0.1〜5重量%、好ましくは約0.5〜4重量%、より好ましくは約1〜3重量%のCoO濃度;(c)約0.1〜約1.0、好ましくは約0.20〜約0.80、より好ましくは約0.25〜約0.72のCo/Mo原子比;(d)約60Å〜約200Å、好ましくは約75Å〜約175Å、より好ましくは約80Å〜約150Åの細孔直径中央値;(e)約0.5×10-4〜約3×10-4g MoO3/m2、好ましくは約0.75×10-4〜約2.5×10-4、より好ましくは約1×10-4〜約2×10-4のMoO3表面濃度;及び(f)2.0mm未満、好ましくは約1.6mm未満、より好ましくは約1.4mm未満、最も好ましくは市販の水素化脱硫処理ユニットに対して実用的な程度に小さい平均粒子サイズ直径。最も好ましい触媒はまた、酸素化学吸着試験により測定される金属硫化物エッジ面積が大きいであろう。この酸素化学吸着試験は、「硫化モリブデンの構造及び性質:O2化学吸着と水素化脱硫活性との相関」、S.J.Tauster et al., Journal of Catalysis 63, pp. 515-519 (1980)に記載されており、これについては引用により本明細書中に含まれるものとする。酸素化学吸着試験では、エッジ面積の測定が行われるが、この際酸素のパルスがキャリヤーガスに添加され、その結果触媒床を迅速に旋回する。例えば、酸素化学吸着は、約800〜2,800、好ましくは約1,000〜2,200、より好ましくは約1,200〜2,000μmol酸素/グラムMoO3であろう。水素処理および水素化脱硫という用語は、この文書中では時々互換的に使用される。
本発明の触媒は担持触媒である。任意の好適な無機酸化物担体物質が本発明の触媒に使用することができる。好適な担体物質としては、例えばアルミナ、シリカ、チタニア、酸化カルシウム、酸化ストロンチウム、酸化バリウム、炭素、ジルコニア、珪藻土;酸化セリウム、酸化ランタン、酸化ネオジム、酸化イットリウム、酸化プラセオジムなどのランタニド酸化物、クロミア、酸化トリウム、ウラニア、ニオビア、タンタラ、酸化スズ、酸化亜鉛、及びリン酸アルミニウムが挙げられるが、これらに限定されるものではない。好ましいのは、アルミナ、シリカ及びシリカ−アルミナである。より好ましいのは、アルミナである。金属硫化物エッジ面積の大きい本発明の触媒に対しては、マグネシアを使用することもできる。担体物質が、Fe、硫酸塩、シリカ、更に担体物質の調製時に存在する可能性のある種々の金属酸化物などの少量の混入物を含むこともあることを理解すべきである。これらの混入物は、担体を調製するために使用される原料中に存在し、好ましくは担体の全重量を基準にして、約1重量%未満の量で存在するであろう。担体物質がこのような混入物を実質的に含まないことがより好ましい。本発明の実施態様では、約0〜5重量%、好ましくは約0.5〜4重量%、より好ましくは約1〜3重量%の添加剤が担体中に存在するが、但し、該添加剤は、リン及び元素の周期表の第IA族(アルカリ金属)からの金属又は金属酸化物から成る群より選ばれる。
本発明の触媒を使用した水素化脱硫法は、典型的には分解ナフサ供給原料油の予備加熱工程から開始される。仕込原料油は、目標反応ゾーン供給口温度までの最終予備加熱を行うための加熱炉に入る前に、供給原料油/流出物熱交換器中で予備加熱される。供給原料油は、予備加熱前、予備加熱中及び/文は予備加熱後、水素含有流れと接触させることができる。水素含有流れはまた、水素化脱硫反応ゾーン中に添加することもできる。水素流れは、純粋な水素であってもよいし、精油所水素流れ中に見出される他の成分との混合物の形態であってもよい。水素含有流れ中の硫化水素は、存在したとしても極僅かであることが好ましい。水素流れの純度は、少なくとも水素約50体積%、好ましくは少なくとも水素約65体積%、より好ましくは最良の結果を得るために少なくとも水素約75体積%でなければならない。
反応域は、1つ以上の固定床反応器から構成することができ、各反応器は、複数の触媒床を含有することができる。いくらかのオレフィン飽和が起こるであろうし、かつオレフィン飽和及び脱硫反応は一般に発熱的であるため、その結果として、固定床反応器間又は同じ反応器胴中の触媒床間で中間冷却を利用することができる。水素化脱硫法から発生する熱の一部分は回収することができるが、この熱回収オプションが利用できない場合、冷却水又は空気などの冷却ユーティリティを介して、又は急冷水素流れを介して冷却してもよい。このようにして最適反応温度をより容易に保持することができる。
本発明の方法は、一般に約0.5hr-1〜約15hr-1、好ましくは約0.5hr-1〜約10hr-1、最も好ましくは約1hr-1〜約5hr-1の時間基準液空間速度(liquid hourly space velocity)で操作される。
本発明の触媒を用いて水素化脱硫法を実施する最も好ましい形態は、反応器供給口温度を供給原料油の露点未満にし、結果としてナフサ留分が反応器供給口において完全に蒸発することがないようにすることである。ナフサ原料油が触媒と接触して水素化脱硫反応が開始されると、反応の発熱の一部が蒸発の吸熱によって吸収され、その結果床内で100%蒸発が達成される(乾点操作)。反応熱の一部分を蒸発へ移行させることにより、反応器を全域で全体としての温度上昇が緩和され、その結果全体としてオレフィンの水素化の度合いが低下し、しかも水素化脱硫は少し抑えられるにすぎない。蒸発の度合いは、ナフサ供給原料油の供給口露点温度(TDP,R)と反応器供給口温度(TIN,R)との比により規定される。但し、Rはランキン絶対温度である、露点温度は、Simulation Sciences Inc.から入手可能なPro/IIなどのコンピュータソフトウェアにより計算することができる。本発明の配置では、TDP/TIN比は、0.990以上でなければならず、これ値未満になると、触媒床内での乾点操作が行えなくなる。即ち、反応器中ですべてが混合相の状態で操作される点まで、この比を増大させる。この比の限界値は、選択される操作条件に依存して変化する可能性がある。比0.990は、温度測定位置の変動などに起因した供給口温度の測定のばらつき及び実際の露点の計算の精度を考慮して指定されているが、ナフサ供給原料油は、反応器供給口において完全に蒸発することがないようにする必要がある。
本発明の触媒の金属は、第VIB族及び第VIII族の金属の熱分解性塩を利用した含浸などの任意の好適な従来手段により、又はイオン交換などの当業者に周知の他の方法により、担体上へ析出させるか又は組込むことができるが、含浸法が好ましい。好適な含浸用水溶液としては、硝酸コバルト、モリブデン酸アンモニウム、硝酸ニッケル、およびメタタングステン酸アンモニウムが挙げられるが、これらに限定されるものではない。
上記の含浸用水溶液を用いた触媒担体上への水素化用金属の含浸は、初期湿潤技術(incipient wetness technique)を使用して行うことができる。触媒担体を予備か焼し、担体すべてを過不足なく湿潤させるために添加すべき水の量を決定する。含浸用水溶液を添加する際は、この水溶液が、所定の担体塊上に析出されるべき水素化用成分金属の全量を含有するようにする。含浸は、乾燥工程を含浸の間に介在させて各金属に対して別々に行ってもよいし、単一の共含浸工程として行ってもよい。次に、飽和された担体を分離し、水気を切り、更に乾燥させてか焼に備える。か焼は、一般に約480°F〜約1,200°F、より好ましくは約800°F〜約1,100°Fの温度で行う。
本発明のナフサ供給原料油の水素化脱硫は、次の条件下で行うことができる。

Figure 0003955096
反応圧力及び水素循環速度がこれらの範囲未満になると、触媒の失活速度が増大し、その結果選択的水素処理の効率が低下する。反応圧力が過度に高くなると、エネルギー及び設備コストが増大し、限界収益が減少する。
次の実施例は、本発明を説明するために提示されたものであり、いかなる制限をも加えるものではないことを理解すべきである。
実施例1:
8.590gのクエン酸を、15mlの脱イオン水に添加し、更に2.840gの炭酸コバルトを添加することにより溶液を調製した。得られた溶液を沸騰するまで加熱し、次いで溶液が透明になるまでその状態を保持した。次に、加熱された溶液をほぼ室温まで冷却し、6.533gの七モリブデン酸アンモニウムを添加した。溶液が透明になった後、脱イオン水で溶液を73.3mlまで希釈した。固形分84.6重量%を含み、かつ残りが吸収された水である遷移アルミナ押出物118.2gを溶液に添加し、数分間攪拌して粒子のすべてを湿潤させた。遷移アルミナ押出物は円柱形であり、平均直径は1/16インチ、水銀注入法により測定したときの細孔直径中央値は87Å、表面積は約270m2/g、更に細孔体積は約0.60cm3/gであった。粒子を湿潤させた後、蒸発皿中に入れ、フードの下で一晩空気乾燥し、その後約49℃で4時間乾燥し、次いで空気中460℃で2時間か焼した。得られた触媒は触媒Aであり、以下の実施例3で使用する。
実施例2:
小型固定床ユニットを使用し、更に中間接触分解ナフサ(ICN)供給原料油を用いて、等温アップフロー全蒸気相の実験を行った。ナフサは、沸点範囲80〜156℃(5%及び95%蒸留沸点)、全硫黄分740 wppm、及び臭素価46であった。この実施例及び本明細書中のすべての実施例において、オレフィン飽和は、オレフィン臭素価試験(ASTM 1159)を使用して測定した。コバルトとモリブデンとの原子モル比を0.0〜0.86の間で変化させ(CoO0.0〜2.4重量%を添加した)、MoO35重量%をアルミナ上に担持した一連の触媒を調製した。これらの触媒のMoO3表面積は1.0〜2.0×10-4g MoO3/m2、平均粒子直径は1/32インチ、更に酸化型の新鮮な触媒に関して水銀注入法により測定したときの細孔直径中央値は75〜76Åであった。10%H2S/H2ガスブレンドを用い、370〜400℃において8時間、各触媒をin situで硫化し、次いで250℃まで冷却し、その後ナフサ供給原料油を導入した。これらの試験に対する反応器の条件は、275℃、1000 SCF/B、水素100%の処理ガス、全供給圧力200 psig及び空間速度一定であった。以下の表Iには、選択率(×10)及びCo/Mo原子モル比が列挙されている。選択率は、米国特許第4,149,965号に既に記載されたものであり、水素化脱硫速度定数とオレフィン水素化速度定数との比として定義される:
Figure 0003955096
但し、Sf、Spはそれぞれ、原料油及び生成物の硫黄レベルであり、Brf及びBrpはそれぞれ、原料油及び生成物の臭素価レベルである。表Iは、Co/Moモル比が0.0より大きく、かつ0.86より小さい場合、選択率に極大が存在することを示している。
Figure 0003955096
実施例3:
ICN供給原料油(71〜163℃、全硫黄分775 wppm、臭素価49.2)に関して、274℃、全供給圧力200 psig、処理ガスと油との比2000 SCF/B、水素100%の処理ガス及びLHSV一定の条件下で、等温アップフロー全蒸気相のパイロットプラント実験を行った。これらの条件下で、次の3つの触媒の試験を行った。即ち、(1)触媒A:本明細書中の実施例1に従って調製したもので、MoO35.2重量%及びCoO1.5重量%がアルミナ担体上に担持され、細孔直径中央値87Å及び粒子直径1/16インチを有する(本発明の触媒);(2)触媒B:MoO8.2重量%及びCoO2.4重量%がアルミナ担体上に担持され、細孔直径中央値85Å及び粒子直径1/16インチを有する;並びに(3)触媒C:MoO3約12重量%及びCoO4重量%を含有した市販のRT−2触媒(細孔直径中央値67Å及び粒子直径1/16インチ)。3つの触媒すべてに対してCo/Moモル比は、0.55〜0.63であった。第4の触媒である触媒Dについても試験を行ったが、この触媒に対しては、最初に重質接触分解ナフサ供給原料油(全硫黄分1757 wppm及び臭素価29.7)を用いて24日間にわたり実験を行い、その後上記のICN供給原料油及び条件に移行した。触媒Dは、MoO3約15重量%、CoO4重量%、細孔直径中央値72Å及び粒子直径1.3mmを有する市販のKF−742触媒であった。10% H2S/H2ガスブレンドを用い、370℃において15時間、すべての触媒をin situで硫化し、次いで93℃まで冷却し、その後最初のナフサ供給原料油を導入した。ICN供給原料油の導入を行った後、4〜11日間かけて触媒をラインアウト(line-out)した。表IIは、MoO3表面濃度の関数として選択率(×10)を示している。本発明の触媒である触媒Aは、MoO3表面濃度が2.9×10-4g MoO3/m2未満のときに明らかな選択率の増加を呈する。2000 SCF/Bにおいて平衡に達した後、同じ触媒に対して処理ガスと油との比を1000 SCF/Bに変更した。この場合にも同様に、触媒Aは、MoO3表面濃度が2.9×10-4g MoO3/m2未満のときに明らかな選択率の増加を呈する。
Figure 0003955096
実施例4:
全供給圧力200 psig、処理ガスと油との比1000 SCF/B、水素100%及び260〜288℃の条件下で、ICN供給原料油(71〜167℃、全硫黄分922 wppm、臭素価58)を用いて、3つの低金属触媒の温度応答を調べた。実験は、等温アップフロー反応器中で全蒸気相操作により行った。触媒は、MoO3含有量を3.2〜5.2重量%の範囲で、CoO含有量を0.9〜1.5重量%の範囲で変化させて実験室中で調製した。細孔直径中央値が顕著に異なる3種類のアルミナ担体を使用した。これらの担体のうち、細孔直径中央値(MPD)が58Åのものを担体X、MPDが87Åのものを担体Y、更にMPDが131Åのものを担体Zと呼ぶことにする。細孔直径の影響と温度の影響とを分離するために、触媒の平均粒子直径はいずれも、1/16インチ未満とした。10% H2S/H2ガスブレンドを用い、370℃において15時間、各触媒をin situで硫化し、次いで93°_Fまで冷却し、その後ICN供給原料油を導入した。触媒及び温度の関数としての水素化脱硫(HDS)の結果を表IIIに報告する。
Figure 0003955096
触媒2及び3では、HDS%が260℃から288℃まで一様に増加した。しかしながら、触媒1では、274℃から288℃まで僅かに少しの増加を示したに過ぎないことから、58Åという小さい平均細孔サイズのためにHDSが拡散による制約を受けたことが示唆される。従って、本発明の触媒は、中程度の操作温度において、58Åを越える細孔直径中央値をもつ必要がある。
実施例5:
重質接触分解ナフサ(HCN)供給原料油(71〜228℃、全硫黄分2075 wppm、臭素価33.9)に関して、以下の表IVに記載の3つの触媒を使用し、等温アップフロー全蒸気相のパイロットプラント実験を行った。2つの低金属CoMo触媒は、酸化型の新鮮な触媒に関して水銀注入法により測定したときの細孔直径中央値が87Å(担体Y)及び131Å(担体Z)であるアルミナを用いて調製した。使用した第3の触媒は、77Åの細孔直径中央値を有する市販の高活性触媒(KF−752)であった。この高活性触媒の性能を、低金属触媒と同じようなレベルでモニターするために、より小容積の高活性触媒を反応器中に仕込んだ(1/4.7の比で)。このため、この触媒に対して使用した空間速度は非常に高いものとなった。10%H2S/H2ガスブレンドを用い、370℃において15時間、各触媒をin situで硫化し、次いで93℃まで冷却し、その後HCN供給原料油を導入した。
最初に、296℃、800 SCF/B、及び全供給圧力325 psigの基準条件下で10日間、触媒をラインアウトさせた。この期間の後、各触媒に対して338℃まで温度を上昇させ、かつ空間速度を2倍に増加させた。油に1日接触させた後、データを取得した(ケースI)。8日後、条件を基準条件に戻した。4日後、条件を、3540℃及び300 SCF/Bに変更し、再び油に1日接触させた後データを取得した(ケースII)。表IVは、3つの触媒に対するHDS%の結果を示している。
Figure 0003955096
基準ケースとケースIとの比較により、高活性触媒が最も少ないHDSレベルの増加を示したことが分かる。基準ケースとケースIIとを比較すると、高活性触媒ではHDSレベルの劇的な低下が見られたが、低金属触媒のそれぞれに対するHDSレベルはほぼ一定のままであったことが分かる。ケースI及びIIはいずれも、338℃を越える温度においてHCN供給原料油を用いた場合、高活性触媒ではHDSが拡散による著しい制約を受けたことを示唆する。従って、より高温の操作に対しては、細孔直径中央値は約77Åよりも大きくなければならない。
実施例6:
沸騰範囲71〜228℃、全硫黄分1760 wppm(原料油L)〜2075 wppm(原料油H)、及び臭素価29.7(原料油L)〜33.2(原料油H)を有する2つの非常に類似したHCN供給原料油を使用し、等温アップフロー全蒸気相のパイロットプラント実験を行った。実験室で調製した低金属触媒及び商業用に製造した低金属触媒を、市販の触媒RT−2及びKF−742と比較した。低金属触媒は、細孔直径中央値84〜87Åを有する1.3mm非対称四葉体で、アルミナ上に担持されたMoO34.2重量%及びCoO1.2〜1.3重量%から成っていた。市販のRT−2は、細孔直径中央値67Åを有し、かつ約12重量%のMoO3及び4重量%のCoOを含む1/16インチ押出物であった。市販のKF−742は、細孔直径中央値72Åを有し、かつ約15重量%のMoO3及び4重量%のCoOを含む1.3mm四葉体であった。10%H2S/H2ガスブレンドを用い、370℃において15時間、各触媒をin situで硫化し、次いで93℃まで冷却し、その後ナフサ供給原料油を導入した。これらの試験に対する反応器の条件は、302℃、1000 SCF/B、水素80%/メタン20%の処理ガス及び全供給圧力325 psigであった。96〜99%のHDSレベルが得られるように空間速度を調節した。以下の表Vは、選択率の計算値と共に、HDSレベル及びオレフィン水素化(OH)レベルをまとめたものである。選択率は、低金属触媒がHDSに対して最も選択性があることを示している。
Figure 0003955096
実施例7:
HCN供給原料油(85〜237℃、硫黄分1760 wppm、臭素価29.7)に関して、288℃、全供給圧力325 psig、処理ガスと油との比1000 SCF/B、水素80%/メタン20%の処理ガス、及びLHSV一定の条件下で、等温アップフロー全蒸気相のパイロットプラント実験を行った。細孔直径中央値87Åを有するアルミナ担体上に担持されたMoO35.2重量%及びCoO1.5重量%を含有する実験室で調製した触媒と、市販の高活性CoMo触媒KF−742とを比較した。10% H2S/H2ガスブレンドを用い、370℃において15時間、両方の触媒をin situで硫化し、次いで93℃まで冷却し、その後HCN供給原料油を導入した。一定条件における比較から、低金属触媒が90%に近い硫黄除去レベルを達成でき、しかもオレフィンの水素化が極めて少ないことが分かる。
Figure 0003955096
実施例8:
ICN供給原料油(71〜166℃、全硫黄分978 wppm、臭素価49.7、API49.1、全窒素分29 wppm)に関して、274℃、全供給圧力200 psig、1000 SCF/B、水素100%の処理ガス及びLHSV一定の条件下で、等温アップフロー全蒸気相のパイロットプラント実験を行った。表VIIは、試験した触媒のまとめを示したものである。担体a及びbはいずれも、アルミナであった。10% H2S/H2ガスブレンドを用い、370℃において15時間、各触媒をin situで硫化し、次いで93℃まで冷却し、その後ICN供給原料油を導入した。ICN供給原料油の導入を行った後、10〜11日間かけて触媒をラインアウトした。
Figure 0003955096
本明細書中の図1は、上記の表VIIに記載の触媒に関して、金属硫化物のエッジ面積に対してHDS相対活性をプロットしたものである。相対HDS活性は、1.33次の速度式を用いて、MoO3重量を基準に各触媒に対して計算し、市販の触媒Eに対する値(この値を100とした)に規格化した。表VIIの選択率はほぼ一定であるので、約800μmol O2/g MoO3よりも大きく、かつ約2800μmol O2/g MoO3よりも小さい金属分布が得られれば、基準の触媒EよりもMoO3単位重量当たりのHDS活性が大きく、しかも同じように高い選択率を保持した触媒が得られることは自明である。MoO3単位重量当たりのHDS活性は、約1200〜2000μmol O2/g MoO3の間に極大が現れる。
実施例9:
本発明の新しい市販触媒(1.3mm非対称四葉体、MoO34.2重量%、CoO1.2重量%、細孔直径中央値87Åを有するアルミナ担体)の固定床を備えた商用水素処理ユニット中で、HCN供給原料油(100〜232℃、硫黄分2200 wppm、臭素価21.1)を処理した。触媒を硫化した後、標準的な商慣習に従ってHCN供給原料油の水素処理を行った。以下の表VIIIは、2つの条件をまとめたものである。即ち、条件Aは、反応器供給口温度が、供給口露点温度の計算値よりも大きく、条件Bは、反応器供給口温度が、露点の計算値よりも小さい。条件Aから条件Bへ移ると、空間速度が2.3倍に増大した結果として、更に水素の流量をほぼ一定にした状態で反応器の圧力が45 psig増加した結果として、供給口における露点が変化した。条件Bに対する温度上昇は、反応器排出口において生成物が完全に蒸発していたことを示しており、即ち反応器床中で乾点を介して操作されたことを示している。
Figure 0003955096
表VIIIから、2つの条件に対するHDSレベルは近接しているが、オレフィンの水素化はかなり異なったものであることが分かる(条件Aでは83%であるのに対して、条件Bでは33%である)。これは、条件Aに対して条件Bの選択率が2.7倍に増大したことに対応する。オレフィン水素化が大きく抑制されたことにより、RONで3.5及びMONで1.6の顕著なオクタン節約が可能となり、しかもHDSレベルは90%を越えたレベルが保持された。ロードオクタン損失(ΔRON+ΔMON)/2は、HDS93%において僅かに0.65であったことに注目されたい。また、オレフィンの水素化レベルの低下により、水素の消費の著しい削減が実現された。
実施例10:
本発明の新しい市販触媒(1.3mm非対称四葉体、MoO34.2重量%、CoO1.2重量%、細孔直径中央値87Åを有するアルミナ担体)の固定床を備えた商用水素処理ユニット中で、HCN供給原料油(100〜232℃、硫黄分2200 wppm、臭素価21.1)を処理した。触媒を硫化した後、標準的な商慣習に従ってHCN供給原料油の水素処理を行った。以下の表IXには、商用ユニット中で2ヶ月にわたり行った10回の実験の条件がまとめられている。この間の全反応器圧力は280〜350 psigであり、LHSVは基準レベルの2.85倍まで変化させた。表IXにはまた、各条件の期間にわたり平均した値としてHDS%及びOH%が列挙されている。
Figure 0003955096
上記の条件1〜3は、TDP/TIN比が0.990未満であり、1.5以下の低い選択率の値を示す。条件4〜10は、TDP/TIN比が0.990以上であり、1.88〜3.2の選択率の値を示す。これらのデータから、本発明の触媒を使用した様々な商用ユニット条件に対して、TDP/TIN比が0.990以上であるかぎり、高い選択率の値が得られることが分かる。 Field of Invention
The present invention relates to a catalyst and method for hydrodesulfurizing a naphtha feed stream, wherein the reactor feed temperature is less than the feedstock dew point at the reactor feed, and the naphtha is in the catalyst bed. Evaporate completely. The catalyst is about 1 to about 10 weight percent MoO supported on a suitable support material.ThreeAbout 0.1 to about 5% by weight of CoO. They also have an average media pore diameter of about 60 to 200 mm, a Co / Mo atomic ratio of about 0.1 to about 1.0, MoOThreeSurface concentration is about 0.5 × 10-Four~ About 3.0 × 10-Fourg MoOThree/ m2And an average particle size of less than about 2.0 mm in diameter.
Background of the invention
Naphtha stream is a major product at any oil refinery in the United States. When these streams are blended, what is called the “gasoline pool” in the industry is obtained. One problem associated with such naphtha streams, which are the products of such streams, particularly cracking processes such as fluid catalytic cracking and coking, is that they contain relatively high levels of unwanted sulfur. It is. Because these naphtha streams also contain valuable olefins that contribute to the octane number of the resulting gasoline pool, it is highly desirable to avoid saturating them to low octane paraffins during processing. . There is still a need for a catalyst with further improved properties with respect to naphtha stream desulfurization in order to reduce the sulfur level of such naphtha streams to the lower levels required by stricter government regulations. Research over the past few years has resulted in a significant number of hydrodesulfurization catalysts and methods for desulfurizing naphtha feed streams, in which attempts were made to keep olefin saturation to a minimum. Currently, commercially successful naphtha hydrodesulfurization catalysts are utilized, but there remains a need for improved catalysts that can combine optimal hydrodesulfurization with minimal hydrogenation of olefins. Exists.
Summary of the present invention
According to the present invention, there is provided a suitable catalyst for hydrodesulfurizing a naphtha feed stream with minimal olefin saturation,
(A) inorganic refractory carrier material;
(B) About 1 to 10% by weight of MoOThree;as well as
(C) about 0.1-5 wt% CoO; and
(D) a Co / Mo atomic ratio of about 0.1 to 1.0; and
(E) a median pore diameter of about 60 to 200 mm; and
(F) About 0.5 × 10-Four~ 3 × 10-Fourg MoOThree/ m2MoOThreeSurface concentration; and
(G) an average particle size diameter of less than about 2.0 mm;
Have
According to the present invention, there is also provided a method for hydrodesulfurizing naphtha feedstock oil by passing the feedstock oil through a hydrodesulfurization treatment unit including a catalyst bed. Pass through the catalyst bed previously defined under hydrodesulfurization conditions.
In a preferred embodiment of the invention, the catalyst is about 800-2800 μMol oxygen / g MoO as measured by oxygen chemisorption.ThreeMetal sulfide edge area.
In another preferred embodiment of the present invention, the hydrodesulfurization treatment conditions are such that the feed temperature of the feedstock to the reaction unit is less than the dew point of the feedstock and 100% of the feedstock is the catalyst bed. The conditions are such that they are evaporated.
In another preferred embodiment of the present invention, MoOThreeSurface concentration is about 0.75 × 10-Four~ 2.5 × 10-Fourg MoOThree/ m2The Co / Mo atomic ratio is about 0.20 to 0.85; and the average pore diameter is about 75 to about 175.
Brief description of the figure
The only figure here represents a plot of hydrodesulfurization (HDS) relative activity against the metal sulfide edge area of the catalyst described in Table VII herein.
Detailed Description of the Invention
A naphtha feedstock suitable for use in the present invention may include any one or more refinery streams boiling in the range of about 50 ° F. to about 450 ° F. at atmospheric pressure. Naphtha feedstock generally contains cracked naphtha, which is usually fluidized catalytic cracking unit naphtha (FCC catalytic cracking naphtha), coke oven naphtha, hydrocracking naphtha, residual oil hydrotreating naphtha, desulfurization naphtha Contains gasoline blending components from butane natural gasoline (DNG) and other sources capable of producing naphtha boiling range streams. FCC catalytic cracking naphtha and coke oven naphtha are generally higher olefinic naphthas because they are the products of catalytic and / or pyrolysis reactions, and are the more preferred streams for use in the present invention.
Naphtha feedstocks, preferably cracked naphtha feedstocks, generally contain not only paraffins, naphthenes and aromatics, but also cyclic hydrocarbons with open chain and cyclic olefins, dienes and olefin side chains. The cracked naphtha feedstock generally has a total olefin concentration of about 60 wt%, more typically about 50 wt%, and most typically about 5 wt% to about 40 wt%. The cracked naphtha feedstock may have a diene concentration ranging up to 15% by weight, but more typically ranges from about 0.02% to about 5% by weight of the feedstock. High diene concentrations can result in gasoline products with poor stability and color. The sulfur content of cracked naphtha feedstock will generally range from about 0.05 wt% to about 0.7 wt%, more typically from about 0.07 wt% to about 0.5 wt%, based on the total weight of the feedstock . The nitrogen content will generally range from about 5 wppm to about 500 wppm, more typically from about 20 wppm to about 200 wppm.
In the prior art, there are many hydrodesulfurization catalysts similar to those of the present invention, but, like those of the present invention, have all of the unique properties and thus combined with a relatively low olefin saturation. Nothing is characterized by having an activity level for hydrodesulfurization. For example, some conventional hydrodesulfurization catalysts are typically MoO within the scope of the present invention.ThreeAnd have a CoO level. Other hydrodesulfurization catalysts have surface areas and pore diameters that are in the range of the catalyst of the present invention. Only when all the properties of the catalyst of the invention are present, such high levels of hydrodesulfurization combined with such low olefin saturation are met. Properties critical to the catalyst of the present invention include: (a) about 1-10% by weight, preferably about 2-8% by weight, based on the total weight of the catalyst. More preferably about 4 to 6% by weight of MoO.ThreeConcentration; (b) Similarly, CoO concentration of about 0.1-5 wt%, preferably about 0.5-4 wt%, more preferably about 1-3 wt%, based on 15 total weight of catalyst; (c) about Co / Mo atomic ratio of 0.1 to about 1.0, preferably about 0.20 to about 0.80, more preferably about 0.25 to about 0.72; (d) about 60 to about 200, preferably about 75 to about 175, more preferably about 80 ~ Median pore diameter of about 150 mm; (e) about 0.5 x 10-Four~ About 3 × 10-Fourg MoOThree/ m2, Preferably about 0.75 × 10-Four~ 2.5 × 10-Four, More preferably about 1 × 10-Four~ About 2 × 10-FourMoOThreeSurface concentration; and (f) an average particle size diameter of less than 2.0 mm, preferably less than about 1.6 mm, more preferably less than about 1.4 mm, and most preferably as small as practical for commercial hydrodesulfurization processing units. The most preferred catalyst will also have a large metal sulfide edge area as measured by an oxygen chemisorption test. This oxygen chemisorption test was performed using the structure and properties of molybdenum sulfide: O2Correlation between chemisorption and hydrodesulfurization activity '', S.J.Tauster et al.,Journal of Catalysis 63,pp. 515-519 (1980), which is hereby incorporated by reference. In the oxygen chemisorption test, the edge area is measured, where an oxygen pulse is added to the carrier gas, resulting in a rapid swirling of the catalyst bed. For example, oxygen chemisorption is about 800-2,800, preferably about 1,000-2,200, more preferably about 1,200-2,000 μmol oxygen / gram MoO.ThreeWill. The terms hydroprocessing and hydrodesulfurization are sometimes used interchangeably in this document.
The catalyst of the present invention is a supported catalyst. Any suitable inorganic oxide support material can be used in the catalyst of the present invention. Suitable carrier materials include, for example, alumina, silica, titania, calcium oxide, strontium oxide, barium oxide, carbon, zirconia, diatomaceous earth; lanthanide oxides such as cerium oxide, lanthanum oxide, neodymium oxide, yttrium oxide, praseodymium oxide, chromia , Thorium oxide, urania, niobia, tantala, tin oxide, zinc oxide, and aluminum phosphate, but are not limited thereto. Preference is given to alumina, silica and silica-alumina. More preferred is alumina. For the catalyst of the present invention having a large metal sulfide edge area, magnesia can also be used. It should be understood that the support material may contain minor amounts of contaminants such as Fe, sulfate, silica, and various metal oxides that may be present during preparation of the support material. These contaminants are present in the raw materials used to prepare the carrier and preferably will be present in an amount of less than about 1% by weight, based on the total weight of the carrier. More preferably, the carrier material is substantially free of such contaminants. In an embodiment of the present invention, about 0-5% by weight, preferably about 0.5-4% by weight, more preferably about 1-3% by weight of additive is present in the carrier, provided that the additive is Selected from the group consisting of metals and metal oxides from Group IA (alkali metals) of the periodic table of phosphorus and elements.
The hydrodesulfurization process using the catalyst of the present invention typically begins with a preheating step of cracked naphtha feedstock. The feedstock is preheated in the feedstock / effluent heat exchanger before entering the furnace for final preheating to the target reaction zone feed port temperature. The feedstock can be contacted with the hydrogen-containing stream before preheating, during preheating and / or after preheating. A hydrogen-containing stream can also be added into the hydrodesulfurization reaction zone. The hydrogen stream may be pure hydrogen or in the form of a mixture with other components found in the refinery hydrogen stream. It is preferred that the hydrogen sulfide in the hydrogen-containing stream, if present, is negligible. The purity of the hydrogen stream should be at least about 50% by volume hydrogen, preferably at least about 65% by volume hydrogen, and more preferably at least about 75% by volume hydrogen for best results.
The reaction zone can be composed of one or more fixed bed reactors, and each reactor can contain multiple catalyst beds. As some olefin saturation will occur and olefin saturation and desulfurization reactions are generally exothermic, the result is to utilize intercooling between fixed bed reactors or between catalyst beds in the same reactor barrel. Can do. A portion of the heat generated from the hydrodesulfurization process can be recovered, but if this heat recovery option is not available, it can be cooled through a cooling utility such as cooling water or air, or through a quench hydrogen stream. Good. In this way, the optimum reaction temperature can be more easily maintained.
The method of the present invention generally takes about 0.5 hr.-1~ 15hr-1, Preferably about 0.5hr-1~ 10hr-1, Most preferably about 1 hr-1~ About 5hr-1It is operated at a liquid hourly space velocity.
The most preferred form of carrying out the hydrodesulfurization process using the catalyst of the present invention is that the reactor feed temperature is less than the dew point of the feedstock, resulting in complete evaporation of the naphtha fraction at the reactor feed. It is to avoid. When the naphtha feedstock comes into contact with the catalyst and the hydrodesulfurization reaction begins, a part of the heat generated by the reaction is absorbed by the endothermic evaporation, resulting in 100% evaporation in the bed (dry spot operation). . By transferring a portion of the heat of reaction to evaporation, the overall temperature rise in the reactor is mitigated, resulting in a lower overall olefin hydrogenation and a little suppression of hydrodesulfurization. Absent. The degree of evaporation depends on the dew point temperature of the naphtha feedstock (TDP, R) and reactor inlet temperature (TIN, R). However, R is Rankine absolute temperature, dew point temperature is Simulation Sciences Inc. It can be calculated by computer software such as Pro / II available from In the arrangement of the present invention, TDP/ TINThe ratio must be 0.990 or more, and if it is less than this value, the dry spot operation cannot be performed in the catalyst bed. That is, this ratio is increased to the point where everything is operated in a mixed phase in the reactor. The limit value of this ratio can vary depending on the operating conditions selected. The ratio 0.990 is specified in consideration of the measurement variation of the feed port temperature due to fluctuations in temperature measurement position, etc. and the accuracy of the actual dew point calculation, but the naphtha feedstock is completely at the reactor feed port. It is necessary to prevent evaporation.
The metal of the catalyst of the present invention may be obtained by any suitable conventional means such as impregnation utilizing pyrolytic salts of Group VIB and Group VIII metals or by other methods well known to those skilled in the art such as ion exchange. Can be deposited on or incorporated into the support, but impregnation is preferred. Suitable aqueous solutions for impregnation include, but are not limited to, cobalt nitrate, ammonium molybdate, nickel nitrate, and ammonium metatungstate.
Impregnation of the metal for hydrogenation on the catalyst support using the above aqueous solution for impregnation can be performed using an incipient wetness technique. Pre-calcinate the catalyst support and determine the amount of water to be added to wet all of the support without excess or deficiency. When the aqueous solution for impregnation is added, the aqueous solution contains the total amount of the component metal for hydrogenation to be deposited on a predetermined carrier mass. The impregnation may be performed separately for each metal with a drying step interposed between the impregnations, or may be performed as a single co-impregnation step. The saturated carrier is then separated, drained and further dried to prepare for calcination. Calcination is generally performed at a temperature of about 480 ° F to about 1,200 ° F, more preferably about 800 ° F to about 1,100 ° F.
The hydrodesulfurization of the naphtha feedstock of the present invention can be performed under the following conditions.
Figure 0003955096
When the reaction pressure and hydrogen circulation rate are below these ranges, the catalyst deactivation rate increases and, as a result, the efficiency of selective hydroprocessing decreases. An excessively high reaction pressure increases energy and equipment costs and reduces marginal revenue.
It should be understood that the following examples are presented to illustrate the invention and do not impose any limitation.
Example 1:
A solution was prepared by adding 8.590 g of citric acid to 15 ml of deionized water followed by the addition of 2.840 g of cobalt carbonate. The resulting solution was heated to boiling and then maintained until the solution became clear. The heated solution was then cooled to approximately room temperature and 6.533 g of ammonium heptamolybdate was added. After the solution became clear, the solution was diluted to 73.3 ml with deionized water. 118.2 g of a transition alumina extrudate containing 84.6% solids by weight and the rest absorbed water was added to the solution and stirred for several minutes to wet all of the particles. Transition alumina extrudates are cylindrical, with an average diameter of 1/16 inch, a median pore diameter of 87 mm as measured by the mercury injection method, and a surface area of about 270 m.2/ g, and the pore volume is about 0.60cmThree/ g. After the particles were wetted, they were placed in an evaporating dish, air dried overnight under a hood, then dried at about 49 ° C. for 4 hours, and then calcined in air at 460 ° C. for 2 hours. The resulting catalyst is Catalyst A and is used in Example 3 below.
Example 2:
An isothermal upflow full vapor phase experiment was conducted using a small fixed bed unit and further using an intermediate catalytic cracking naphtha (ICN) feedstock. Naphtha had a boiling range of 80-156 ° C. (5% and 95% boiling boiling points), a total sulfur content of 740 wppm, and a bromine number of 46. In this example and all examples herein, olefin saturation was measured using the olefin bromine number test (ASTM 1159). The atomic molar ratio of cobalt to molybdenum was varied between 0.0 and 0.86 (CoO 0.0 to 2.4% by weight was added), and MoOThreeA series of catalysts with 5 wt% supported on alumina was prepared. MoO of these catalystsThreeSurface area is 1.0-2.0 × 10-Fourg MoOThree/ m2The average particle diameter was 1/32 inch, and the median pore diameter was 75 to 76 mm as measured by mercury injection method for fresh oxidized catalyst. 10% H2S / H2Using a gas blend, each catalyst was sulfided in situ at 370-400 ° C. for 8 hours, then cooled to 250 ° C., after which the naphtha feedstock was introduced. The reactor conditions for these tests were 275 ° C., 1000 SCF / B, 100% hydrogen process gas, total feed pressure 200 psig, and constant space velocity. Table I below lists the selectivity (x10) and the Co / Mo atomic molar ratio. Selectivity is already described in US Pat. No. 4,149,965 and is defined as the ratio of hydrodesulfurization rate constant to olefin hydrogenation rate constant:
Figure 0003955096
However, Sf, SpAre the feedstock and product sulfur levels, respectively, and BrfAnd BrpAre the bromine number levels of the feedstock and product, respectively. Table I shows that there is a maximum in selectivity when the Co / Mo molar ratio is greater than 0.0 and less than 0.86.
Figure 0003955096
Example 3:
For ICN feedstock (71-163 ° C, total sulfur content 775 wppm, bromine number 49.2), 274 ° C, total supply pressure 200 psig, process gas to oil ratio 2000 SCF / B, 100% hydrogen process gas and A pilot plant experiment of isothermal upflow full vapor phase was conducted under constant LHSV conditions. Under these conditions, the following three catalysts were tested. (1) Catalyst A: prepared according to Example 1 in this specification,Three5.2% by weight and 1.5% by weight CoO are supported on an alumina support and have a median pore diameter of 87 mm and a particle diameter of 1/16 inch (catalyst of the invention); (2) Catalyst B: 8.2% by weight of MoO And 2.4% by weight of CoO are supported on an alumina support and have a median pore diameter of 85Å and a particle diameter of 1/16 inch; and (3) Catalyst C: MoOThreeCommercial RT-2 catalyst containing about 12% by weight and 4% by weight CoO (median pore diameter 67mm and particle diameter 1/16 inch). The Co / Mo molar ratio for all three catalysts was 0.55-0.63. A fourth catalyst, Catalyst D, was also tested, but this catalyst was first tested for 24 days using a heavy catalytic cracked naphtha feedstock (total sulfur 1757 wppm and bromine number 29.7). Experiments were performed and then transferred to the ICN feedstock and conditions described above. Catalyst D is MoOThreeIt was a commercially available KF-742 catalyst having about 15 wt%, CoO 4 wt%, median pore diameter of 72 mm and particle diameter of 1.3 mm. 10% H2S / H2Using a gas blend, all catalysts were sulfided in situ at 370 ° C. for 15 hours, then cooled to 93 ° C., after which the first naphtha feedstock was introduced. After introducing the ICN feedstock, the catalyst was line-out over 4-11 days. Table II shows MoOThreeThe selectivity (× 10) is shown as a function of surface concentration. Catalyst A which is the catalyst of the present invention is MoO.ThreeSurface concentration is 2.9 × 10-Fourg MoOThree/ m2It shows a clear increase in selectivity when below. After reaching equilibrium at 2000 SCF / B, the ratio of process gas to oil was changed to 1000 SCF / B for the same catalyst. Similarly in this case, the catalyst A is MoO.ThreeSurface concentration is 2.9 × 10-Fourg MoOThree/ m2It shows a clear increase in selectivity when below.
Figure 0003955096
Example 4:
ICN feedstock oil (71-167 ° C, total sulfur content 922 wppm, bromine number 58 under conditions of total supply pressure 200 psig, process gas to oil ratio 1000 SCF / B, 100% hydrogen and 260-288 ° C ) Was used to investigate the temperature response of the three low metal catalysts. The experiment was conducted by full vapor phase operation in an isothermal upflow reactor. The catalyst is MoOThreeIt was prepared in the laboratory with varying contents ranging from 3.2 to 5.2 wt% and CoO contents ranging from 0.9 to 1.5 wt%. Three types of alumina carriers with significantly different median pore diameters were used. Of these carriers, those having a median pore diameter (MPD) of 58 mm are referred to as carriers X, those having an MPD of 87 mm are referred to as carriers Y, and those having an MPD of 131 mm are referred to as carriers Z. In order to separate the effect of pore diameter from the effect of temperature, the average particle diameter of the catalyst was both less than 1/16 inch. 10% H2S / H2Using a gas blend, each catalyst was sulfided in situ for 15 hours at 370 ° C., then cooled to 93 ° F., after which the ICN feedstock was introduced. The hydrodesulfurization (HDS) results as a function of catalyst and temperature are reported in Table III.
Figure 0003955096
For catalysts 2 and 3, the HDS% increased uniformly from 260 ° C to 288 ° C. However, catalyst 1 showed only a slight increase from 274 ° C. to 288 ° C., suggesting that HDS was constrained by diffusion due to the small average pore size of 58 cm. Accordingly, the catalyst of the present invention should have a median pore diameter of greater than 58 mm at moderate operating temperatures.
Example 5:
For heavy catalytic cracking naphtha (HCN) feedstock (71-228 ° C, total sulfur content 2075 wppm, bromine number 33.9), using the three catalysts listed in Table IV below, isothermal upflow total steam phase A pilot plant experiment was conducted. Two low metal CoMo catalysts were prepared using alumina with a median pore diameter of 87 Å (support Y) and 131 Å (support Z) as measured by mercury injection on an oxidized fresh catalyst. The third catalyst used was a commercially available highly active catalyst (KF-752) with a median pore diameter of 77 mm. In order to monitor the performance of this highly active catalyst at the same level as the low metal catalyst, a smaller volume of highly active catalyst was charged into the reactor (at a ratio of 1 / 4.7). For this reason, the space velocity used for this catalyst was very high. 10% H2S / H2Using a gas blend, each catalyst was sulfided in situ at 370 ° C. for 15 hours, then cooled to 93 ° C., after which the HCN feedstock was introduced.
First, the catalyst was lined out for 10 days under standard conditions of 296 ° C., 800 SCF / B, and a total feed pressure of 325 psig. After this period, the temperature was increased to 338 ° C. for each catalyst and the space velocity was doubled. Data were collected after one day contact with oil (Case I). After 8 days, the conditions were returned to baseline conditions. After 4 days, the conditions were changed to 3540 ° C. and 300 SCF / B, and the data was obtained after contact with oil again for 1 day (Case II). Table IV shows the% HDS results for the three catalysts.
Figure 0003955096
Comparison of the reference case with case I shows that the high activity catalyst showed the least increase in HDS levels. Comparing the reference case with Case II, it can be seen that the HDS level dropped dramatically for the high activity catalyst, but the HDS level for each of the low metal catalysts remained nearly constant. Cases I and II both suggest that HDS was severely constrained by diffusion with high activity catalysts when HCN feedstock was used at temperatures above 338 ° C. Thus, for higher temperature operation, the median pore diameter should be greater than about 77 mm.
Example 6:
Two very similar with boiling range 71-228 ° C, total sulfur content 1760 wppm (raw oil L) -2075 wppm (raw oil H), and bromine number 29.7 (raw oil L) -33.2 (raw oil H) A pilot plant experiment of the isothermal upflow full steam phase was performed using HCN feedstock. Low metal catalysts prepared in the laboratory and commercially produced low metal catalysts were compared to the commercially available catalysts RT-2 and KF-742. The low metal catalyst is a 1.3 mm asymmetrical tetralobal with a median pore diameter of 84-87 mm, and MoO supported on alumina.ThreeIt consisted of 4.2 wt% and CoO 1.2-1.3 wt%. Commercial RT-2 has a median pore diameter of 67 mm and about 12% by weight MoO.ThreeAnd 1/16 inch extrudate containing 4 wt% CoO. Commercially available KF-742 has a median pore diameter of 72 mm and about 15% by weight MoO.ThreeAnd 1.3 mm tetralobes containing 4 wt% CoO. 10% H2S / H2Using a gas blend, each catalyst was sulfided in situ at 370 ° C. for 15 hours, then cooled to 93 ° C., after which the naphtha feedstock was introduced. The reactor conditions for these tests were 302 ° C., 1000 SCF / B, 80% hydrogen / 20% methane process gas, and a total feed pressure of 325 psig. The space velocity was adjusted to obtain 96-99% HDS levels. Table V below summarizes HDS levels and olefin hydrogenation (OH) levels, along with calculated selectivity. The selectivity indicates that the low metal catalyst is most selective for HDS.
Figure 0003955096
Example 7:
For HCN feedstock (85-237 ° C, sulfur content 1760 wppm, bromine number 29.7), 288 ° C, total supply pressure 325 psig, process gas to oil ratio 1000 SCF / B, hydrogen 80% / methane 20% A pilot plant experiment of the isothermal upflow full vapor phase was performed under constant conditions of process gas and LHSV. MoO supported on an alumina support having a median pore diameter of 87 mmThreeA laboratory prepared catalyst containing 5.2 wt% and CoO 1.5 wt% was compared with a commercially available high activity CoMo catalyst KF-742. 10% H2S / H2Using a gas blend, both catalysts were sulfurized in situ at 370 ° C. for 15 hours, then cooled to 93 ° C., after which the HCN feedstock was introduced.Certain conditionsComparison shows that the low metal catalyst can achieve a sulfur removal level close to 90% and very little olefin hydrogenation.
Figure 0003955096
Example 8:
For ICN feedstock (71-166 ° C, total sulfur content 978 wppm, bromine number 49.7, API49.1, total nitrogen content 29 wppm), 274 ° C, total supply pressure 200 psig, 1000 SCF / B, 100% hydrogen A pilot plant experiment of isothermal upflow full vapor phase was performed under constant conditions of process gas and LHSV. Table VII gives a summary of the catalysts tested. Supports a and b were both alumina. 10% H2S / H2Using a gas blend, each catalyst was sulfurized in situ at 370 ° C. for 15 hours, then cooled to 93 ° C., after which the ICN feedstock was introduced. After the ICN feedstock was introduced, the catalyst was lined out over 10-11 days.
Figure 0003955096
FIG. 1 herein plots HDS relative activity against metal sulfide edge area for the catalysts listed in Table VII above. Relative HDS activity is calculated using a rate equation of 1.33ThreeCalculations were made for each catalyst based on weight, and normalized to the value for commercially available catalyst E (this value was taken as 100). The selectivity in Table VII is almost constant, so about 800 μmol O2/ g MoOThreeGreater than and about 2800 μmol O2/ g MoOThreeIf a smaller metal distribution is obtained, MoO than the reference catalyst EThreeIt is self-evident that a catalyst having a high HDS activity per unit weight and having a high selectivity can be obtained. MoOThreeThe HDS activity per unit weight is about 1200-2000 μmol O.2/ g MoOThreeA maximum appears in between.
Example 9:
New commercial catalyst of the present invention (1.3 mm asymmetric tetralobal, MoOThreeHCN feedstock (100 ~ 232 ° C, sulfur content 2200 wppm, bromine) in a commercial hydrotreating unit equipped with a fixed bed of 4.2 wt%, CoO1.2 wt%, alumina support with a median pore diameter of 87Å Value 21.1). After sulfurizing the catalyst, the HCN feedstock was hydrotreated according to standard commercial practice. Table VIII below summarizes the two conditions. That is, in condition A, the reactor supply port temperature is higher than the calculated value of the supply port dew point temperature, and in condition B, the reactor supply port temperature is lower than the calculated value of the dew point. Moving from condition A to condition B, the dew point at the feed port changed as a result of an increase in space velocity by 2.3 times and as a result of a further 45 psig increase in reactor pressure with the hydrogen flow rate approximately constant. . An increase in temperature for condition B indicates that the product was completely evaporated at the reactor outlet, i.e., it was operated through the dry spot in the reactor bed.
Figure 0003955096
Table VIII shows that the HDS levels for the two conditions are close, but the olefin hydrogenation is quite different (83% for condition A versus 33% for condition B). is there). This corresponds to the fact that the selectivity of condition B is increased by 2.7 times with respect to condition A. The significant suppression of olefin hydrogenation allowed significant octane savings of 3.5 for RON and 1.6 for MON, while maintaining HDS levels in excess of 90%. Note that the load octane loss (ΔRON + ΔMON) / 2 was only 0.65 in HDS 93%. In addition, a significant reduction in hydrogen consumption has been realized due to the reduced olefin hydrogenation level.
Example 10:
New commercial catalyst of the present invention (1.3 mm asymmetric tetralobal, MoOThreeHCN feedstock (100 ~ 232 ° C, sulfur content 2200 wppm, bromine) in a commercial hydrotreating unit equipped with a fixed bed of 4.2 wt%, CoO1.2 wt%, alumina support with a median pore diameter of 87Å Value 21.1). After sulfurizing the catalyst, the HCN feedstock was hydrotreated according to standard commercial practice. Table IX below summarizes the conditions for 10 experiments conducted in commercial units over 2 months. During this time, the total reactor pressure was 280-350 psig and the LHSV was varied to 2.85 times the reference level. Table IX also lists HDS% and OH% as average values over the period of each condition.
Figure 0003955096
The above conditions 1-3 are TDP/ TINThe ratio is less than 0.990, indicating a low selectivity value of 1.5 or less. Conditions 4-10 are TDP/ TINThe ratio is 0.990 or more, and shows a selectivity value of 1.88 to 3.2. From these data, for various commercial unit conditions using the catalyst of the present invention, TDP/ TINIt can be seen that as long as the ratio is 0.990 or more, a high selectivity value can be obtained.

Claims (12)

過度のオレフィン飽和を起こさずにナフサ原料油流れを水素化脱硫するための水素化脱硫触媒であって、該触媒は、
(a)無機耐火担体物質;
(b)1〜10重量%のMoO3
(c)0.1〜5重量%のCoO;
(d)0.1〜1.0のCo/Mo原子比;
(e)60Å〜200Åの細孔直径中央値;
(f)0.5×10-4〜3×10-4g MoO3/m2のMoO3表面濃度;及び
(g)2.0mm未満の平均粒子サイズ直径
を有することを特徴とする水素化脱硫触媒。
A hydrodesulfurization catalyst for hydrodesulfurizing a naphtha feed stream without causing excessive olefin saturation, the catalyst comprising:
(A) an inorganic refractory carrier material;
(B) 1 to 10 wt% of MoO 3;
(C) 0.1-5% by weight of CoO;
(D) a Co / Mo atomic ratio of 0.1 to 1.0;
(E) Median pore diameter of 60 to 200 cm;
(F) MoO 3 surface concentration of 0.5 × 10 −4 to 3 × 10 −4 g MoO 3 / m 2 ; and (g) hydrogenation having an average particle size diameter of less than 2.0 mm Desulfurization catalyst.
MoO3の量は2〜8重量%であり、CoOの量は0.5〜4重量%であり、無機耐火担体物質はアルミナ、シリカおよびシリカ−アルミナからなる群から選ばれ、Co/Mo原子比は0.20〜0.80であることを特徴とする請求項記載の水素化脱硫触媒。The amount of MoO 3 is 2 to 8% by weight, the amount of CoO is 0.5 to 4% by weight, the inorganic refractory support material is selected from the group consisting of alumina, silica and silica-alumina, and Co / Mo atoms The hydrodesulfurization catalyst according to claim 1 , wherein the ratio is 0.20 to 0.80. MoO3表面濃度は、0.75×10-4〜2.5×10-4であることを特徴とする請求項2に記載の水素化脱硫触媒The hydrodesulfurization catalyst according to claim 2, wherein the MoO 3 surface concentration is 0.75 × 10 −4 to 2.5 × 10 −4 . 細孔直径中央値は75Å〜175Åであることを特徴とする請求項3に記載の水素化脱硫触媒 The hydrodesulfurization catalyst according to claim 3, wherein the median pore diameter is 75 to 175 . 触媒は、酸素化学吸着により測定した場合、800〜2800μMol酸素/g MoO3の金属硫化物エッジ面積を有することを特徴とする請求項記載の水素化脱硫触媒。2. The hydrodesulfurization catalyst according to claim 1 , wherein the catalyst has a metal sulfide edge area of 800 to 2800 μMol oxygen / g MoO 3 when measured by oxygen chemisorption. 3 . 過度のオレフィン飽和を起こさずにナフサ原料油流れを水素化脱硫するための方法であって、次の(1)〜(3)を満たすことを特徴とする方法。
(1)該方法は、水素化脱硫触媒床を含有する水素化脱硫処理ユニットへ該ナフサ原料油流れを供給する工程を含む。
(2)該触媒は、
(a)無機耐火担体物質;
(b)2〜8重量%のMoO3
(c)0.5〜4重量%のCoO;
(d)0.20〜0.80のCo/Mo原子比;
(e)75Å〜175Åの細孔直径中央値;
(f)0.75×10-4〜2.5×10-4g MoO3/m2のMoO3表面濃度;及び
(g)1.6mm未満の平均粒子サイズ直径
を有する。
(3)該処理ユニットは、この反応ユニットへ仕込まれる供給原料油の供給口温度が該供給原料油の露点未満であり、かつ該供給原料油の100%が該触媒床中で蒸発するように操作される。
A method for hydrodesulfurizing a naphtha feed stream without causing excessive olefin saturation, wherein the following (1) to (3) are satisfied.
(1) The method includes supplying the naphtha feed stream to a hydrodesulfurization treatment unit containing a hydrodesulfurization catalyst bed.
(2) The catalyst
(A) an inorganic refractory carrier material;
(B) 2-8% by weight of MoO 3 ;
(C) 0.5-4 wt% CoO;
(D) Co / Mo atomic ratio of 0.20 to 0.80;
(E) Median pore diameter of 75 to 175 mm;
(F) MoO 3 surface concentration of 0.75 × 10 −4 to 2.5 × 10 −4 g MoO 3 / m 2 ; and (g) having an average particle size diameter of less than 1.6 mm.
(3) The processing unit is such that the feed port temperature of the feedstock charged to the reaction unit is less than the dew point of the feedstock and that 100% of the feedstock evaporates in the catalyst bed. Operated.
触媒は、酸素化学吸着により測定した場合、800〜2800μMol酸素/g MoO3の金属硫化物エッジ面積を有することを特徴とする請求項6に記載の方法。The catalyst, as measured by oxygen chemisorption method according to claim 6, characterized in that it comprises a metal sulfide edge area of 800~2800μMol oxygen / g MoO 3. 処理ユニットは、この反応ユニットへ仕込まれる供給原料油の供給口温度が該供給原料油の露点未満であり、かつ該供給原料油の100%が該触媒床中で蒸発するように操作されることを特徴とする請求項6に記載の方法。The treatment unit is operated so that the feed port temperature of the feedstock charged to the reaction unit is less than the dew point of the feedstock and 100% of the feedstock is evaporated in the catalyst bed. The method according to claim 6 . MoO3の量は2〜8重量%であり、CoOの量は0.5〜4重量%であり、無機耐火担体物質はアルミナ、シリカおよびシリカ−アルミナからなる群から選ばれ、Co/Mo原子比は0.20〜0.80であることを特徴とする請求項6記載の方法。The amount of MoO 3 is 2 to 8% by weight, the amount of CoO is 0.5 to 4% by weight, the inorganic refractory support material is selected from the group consisting of alumina, silica and silica-alumina, and Co / Mo atoms The method of claim 6 , wherein the ratio is between 0.20 and 0.80. MoO3表面濃度は、0.75×10-4〜2.5×10-4であることを特徴とする請求項9に記載の方法。The method according to claim 9, wherein the MoO 3 surface concentration is 0.75 × 10 −4 to 2.5 × 10 −4 . 細孔直径中央値は75Å〜175Åであることを特徴とする請求項10に記載の方法。The method according to claim 10, wherein the median pore diameter is 75 to 175. 触媒は、酸素化学吸着により測定した場合、800〜2800μMol酸素/g MoO3の金属硫化物エッジ面積を有することを特徴とする請求項6に記載の方法The catalyst, as measured by oxygen chemisorption method according to claim 6, characterized in that it comprises a metal sulfide edge area of 800~2800μMol oxygen / g MoO 3.
JP53295197A 1996-02-02 1997-01-30 Selective hydrodesulfurization catalyst and method Expired - Lifetime JP3955096B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US60127496A 1996-02-02 1996-02-02
US08/583,725 1996-02-02
US08/601,274 1996-02-02
US08/583,725 US6126814A (en) 1996-02-02 1996-02-02 Selective hydrodesulfurization process (HEN-9601)
PCT/US1997/001594 WO1997040120A1 (en) 1996-02-02 1997-01-30 Selective hydrodesulfurization catalyst and process

Publications (2)

Publication Number Publication Date
JP2000505358A JP2000505358A (en) 2000-05-09
JP3955096B2 true JP3955096B2 (en) 2007-08-08

Family

ID=27078881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53295197A Expired - Lifetime JP3955096B2 (en) 1996-02-02 1997-01-30 Selective hydrodesulfurization catalyst and method

Country Status (5)

Country Link
EP (1) EP0883663A4 (en)
JP (1) JP3955096B2 (en)
AU (1) AU2252797A (en)
CA (1) CA2244374C (en)
WO (1) WO1997040120A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7513989B1 (en) 1997-07-15 2009-04-07 Exxonmobil Research And Engineering Company Hydrocracking process using bulk group VIII/Group VIB catalysts
US7288182B1 (en) * 1997-07-15 2007-10-30 Exxonmobil Research And Engineering Company Hydroprocessing using bulk Group VIII/Group VIB catalysts
US5985136A (en) * 1998-06-18 1999-11-16 Exxon Research And Engineering Co. Two stage hydrodesulfurization process
US6413413B1 (en) 1998-12-31 2002-07-02 Catalytic Distillation Technologies Hydrogenation process
US6596157B2 (en) * 2000-04-04 2003-07-22 Exxonmobil Research And Engineering Company Staged hydrotreating method for naphtha desulfurization
US6673237B2 (en) 2001-11-28 2004-01-06 Corning Incorporated High performance monolith treater for gasoline upgrade
US6867338B2 (en) 2002-03-15 2005-03-15 Catalytic Distillation Technologies Selective hydrogenation of acetylenes and dienes in a hydrocarbon stream
US7220352B2 (en) * 2002-04-02 2007-05-22 Exxonmobil Research And Engineering Company Selective hydrodesulfurization of naphtha streams
JP4486330B2 (en) * 2003-07-14 2010-06-23 財団法人石油産業活性化センター Hydrodesulfurization catalyst and hydrodesulfurization method for gasoline fraction
US7776784B2 (en) 2003-07-14 2010-08-17 Nippon Oil Corporation Hydrodesulfurization catalyst and hydrodesulfurization process for gasoline fractions
JP4486329B2 (en) * 2003-07-14 2010-06-23 財団法人石油産業活性化センター Hydrodesulfurization catalyst and hydrodesulfurization method for gasoline fraction
WO2005012462A2 (en) * 2003-08-01 2005-02-10 Exxonmobil Research And Engineering Company A catalyst system and its use in manufacturing low sulfur fuels
AU2003289799A1 (en) * 2003-12-23 2005-07-14 China Petroleum And Chemical Corporation A process for reducing sulfur and olefin contents in gasoline
US7629289B2 (en) * 2004-06-23 2009-12-08 Uop Llc Selective naphtha desulfurization process and catalyst
CN101152631B (en) * 2006-09-29 2011-04-20 中国石油化工股份有限公司 Selective hydrogenation desulfurizing catalyzer and method of producing the same
JP5123635B2 (en) 2007-10-12 2013-01-23 Jx日鉱日石エネルギー株式会社 Method for producing gasoline base material and gasoline
JP5330056B2 (en) * 2009-03-30 2013-10-30 一般財団法人石油エネルギー技術センター Method for producing monocyclic aromatic hydrocarbons
JP4929311B2 (en) * 2009-04-27 2012-05-09 一般財団法人石油エネルギー技術センター Hydrodesulfurization catalyst and hydrodesulfurization method for gasoline fraction

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4016108A (en) * 1976-01-05 1977-04-05 Exxon Research And Engineering Company Preparation of catalysts of predetermined pore size distribution and pore volume
US4013547A (en) * 1976-01-22 1977-03-22 Union Oil Company Of California Desulfurization of residual petroleum oils with a catalyst calcined at higher temperatures
US4132632A (en) * 1978-03-31 1979-01-02 Standard Oil Company (Indiana) Selective hydrodesulfurization of cracked naphtha
US4328127A (en) * 1980-09-16 1982-05-04 Mobil Oil Corporation Residua demetalation/desulfurization catalyst
US4600703A (en) * 1983-12-19 1986-07-15 Intevep, S.A. Catalyst for the hydrocracking of heavy vacuum gas oils, method of preparation of catalyst and process for use thereof in the mild hydrocracking of heavy vacuum gas oils
US4717705A (en) * 1986-10-28 1988-01-05 Shell Oil Company Hydrotreating catalysts prepared from hydrogels
US4886582A (en) * 1988-06-29 1989-12-12 Union Oil Company Of California Resid hydroprocessing catalyst and method of preparation
US5266188A (en) * 1991-04-22 1993-11-30 Amoco Corporation Selective hydrotreating
US5169822A (en) * 1991-06-17 1992-12-08 Texaco Inc. Catalysts for removal of impurities by the hydroprocessing of hydrocarbons
US5275994A (en) * 1991-06-17 1994-01-04 Texaco Inc. Process for preparing a catalyst for removal of hydroprocessing impurities

Also Published As

Publication number Publication date
EP0883663A4 (en) 1999-12-29
JP2000505358A (en) 2000-05-09
WO1997040120A1 (en) 1997-10-30
CA2244374C (en) 2005-04-12
CA2244374A1 (en) 1997-10-30
AU2252797A (en) 1997-11-12
EP0883663A1 (en) 1998-12-16

Similar Documents

Publication Publication Date Title
US5985136A (en) Two stage hydrodesulfurization process
US6126814A (en) Selective hydrodesulfurization process (HEN-9601)
US6013598A (en) Selective hydrodesulfurization catalyst
JP3955096B2 (en) Selective hydrodesulfurization catalyst and method
US4140626A (en) Process for the selective desulfurization of cracked naphthas with magnesia-containing catalyst
US4132632A (en) Selective hydrodesulfurization of cracked naphtha
US6596157B2 (en) Staged hydrotreating method for naphtha desulfurization
JP4590259B2 (en) Multistage hydrodesulfurization of cracked naphtha stream in a stacked bed reactor
AU2001249836A1 (en) Staged hydrotreating method for naphtha desulfurization
EP1250401A1 (en) Naphtha desulfurization with reduced mercaptan formation
CA2361134C (en) Improved catalyst activation method for selective cat naphtha hydrodesulfurization
JP4740544B2 (en) Selective hydrodesulfurization of naphtha stream
US6589418B2 (en) Method for selective cat naphtha hydrodesulfurization
EP1682636B1 (en) Nitrogen removal from olefinic naphtha feedstreams to improve hydrodesulfurization versus olefin saturation selectivity
US7297252B2 (en) Catalyst activation in the presence of olefinic hydrocarbon for selective naphtha hydrodesulfurization
CS235073B2 (en) Method of heavy hydrocarbons fraction hydrogenation treatment containing metals,asphaltenes,sulphur and nitrogen compounds

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031226

A72 Notification of change in name of applicant

Free format text: JAPANESE INTERMEDIATE CODE: A721

Effective date: 20040114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070501

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term