JP3954993B2 - Vehicle object detection device - Google Patents

Vehicle object detection device Download PDF

Info

Publication number
JP3954993B2
JP3954993B2 JP2003271264A JP2003271264A JP3954993B2 JP 3954993 B2 JP3954993 B2 JP 3954993B2 JP 2003271264 A JP2003271264 A JP 2003271264A JP 2003271264 A JP2003271264 A JP 2003271264A JP 3954993 B2 JP3954993 B2 JP 3954993B2
Authority
JP
Japan
Prior art keywords
detection
peak
vehicle
roadside
peaks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003271264A
Other languages
Japanese (ja)
Other versions
JP2005030935A (en
Inventor
基一郎 澤本
宏行 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003271264A priority Critical patent/JP3954993B2/en
Priority to US10/682,296 priority patent/US6906661B2/en
Priority to DE10348216A priority patent/DE10348216B4/en
Publication of JP2005030935A publication Critical patent/JP2005030935A/en
Application granted granted Critical
Publication of JP3954993B2 publication Critical patent/JP3954993B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、FM−CW波(周波数変調連続波)を用いたレーダー装置で先行車等の物体を検知するための車両の物体検知装置に関する。   The present invention relates to a vehicle object detection device for detecting an object such as a preceding vehicle with a radar device using FM-CW waves (frequency modulated continuous waves).

かかる車両の物体検知装置は、下記特許文献1により公知である。   Such an object detection device for a vehicle is known from Patent Document 1 below.

図9に示すように、従来のFM−CW波を用いた物体検知装置は、タイミング信号生成回路1から入力されるタイミング信号に基づいて発振器3の発信作動がFM変調制御回路2により変調制御され、図10に実線で示すように、周波数が三角波状に変調された送信波がアンプ4およびサーキュレータ5を介して送受信アンテナ6から送信される。このFM−CW波が先行車等の物体に反射された反射波が送受信アンテナ6に受信されると、この受信波は、物体との距離に応じて、破線で示すように送信波の周波数が直線的に増加する上昇側では送信波よりも低い周波数で送信波から遅れて出現し、また送信波の周波数が直線的に減少する下降側では送信波よりも高い周波数で送信波から遅れて出現する。   As shown in FIG. 9, in the conventional object detection apparatus using the FM-CW wave, the transmission operation of the oscillator 3 is modulated and controlled by the FM modulation control circuit 2 based on the timing signal input from the timing signal generation circuit 1. As shown by a solid line in FIG. 10, a transmission wave whose frequency is modulated in a triangular wave shape is transmitted from the transmission / reception antenna 6 via the amplifier 4 and the circulator 5. When the reflected wave obtained by reflecting the FM-CW wave on an object such as a preceding vehicle is received by the transmission / reception antenna 6, the received wave has a frequency of the transmission wave as shown by a broken line according to the distance from the object. On the rising side, which increases linearly, it appears delayed from the transmitted wave at a frequency lower than the transmitted wave, and on the descending side, where the frequency of the transmitted wave decreases linearly, it appears delayed from the transmitted wave at a higher frequency than the transmitted wave. To do.

送受信アンテナ6で受信した受信波はサーキュレータ5を介してミキサ7に入力される。ミキサ7には、サーキュレータ5からの受信波の他に発振器3から出力される送信波から分配された送信波がアンプ8を介して入力されており、ミキサ7で送信波および受信波が混合されることにより、図10に示すように、送信波の周波数が直線的に増加する上昇側でピーク周波数Fupを有し、送信波の周波数が直線的に減少する下降側でピーク周波数Fdnを有するビート信号が生成される。   The received wave received by the transmission / reception antenna 6 is input to the mixer 7 via the circulator 5. In addition to the reception wave from the circulator 5, the transmission wave distributed from the transmission wave output from the oscillator 3 is input to the mixer 7 via the amplifier 8, and the transmission wave and the reception wave are mixed by the mixer 7. As shown in FIG. 10, the beat having the peak frequency Fup on the rising side where the frequency of the transmission wave increases linearly and the peak frequency Fdn on the falling side where the frequency of the transmission wave decreases linearly. A signal is generated.

ミキサ7で得られたビート信号はアンプ9で必要なレベルの振幅に増幅され、A/Dコンバータ10によりサンプリングタイム毎にA/D変換され、デジタル化された増幅データがメモリ11に時系列的に記憶保持される。このメモリ11には、タイミング信号生成回路1からタイミング信号が入力されており、そのタイミング信号に応じてメモリ11は、送受信波の周波数が増加する上昇側および前記周波数が減少する下降側毎にデータを記憶保持することになる。   The beat signal obtained by the mixer 7 is amplified to an amplitude of a necessary level by the amplifier 9, A / D converted by the A / D converter 10 at every sampling time, and the digitized amplified data is stored in the memory 11 in time series. Is stored in memory. A timing signal is input to the memory 11 from the timing signal generation circuit 1, and in accordance with the timing signal, the memory 11 stores data on the rising side where the frequency of the transmission / reception wave increases and on the falling side where the frequency decreases. Will be stored in memory.

メモリ11に記憶保持されたデータは周波数分析手段13、検知ピーク判定手段14および物体検知手段15を備えたCPU12に入力され、そのCPU12で前記入力データに基づく演算処理が実行される。   The data stored and held in the memory 11 is input to a CPU 12 including a frequency analysis unit 13, a detection peak determination unit 14, and an object detection unit 15, and the CPU 12 executes arithmetic processing based on the input data.

周波数分析手段13は、メモリ11に記憶されたビート信号のデータを周波数分析してスペクトル分布を求めるものであり、周波数分析の手法としては、FFT(高速フーリエ変換)が用いられる。   The frequency analysis means 13 performs frequency analysis on beat signal data stored in the memory 11 to obtain a spectrum distribution, and FFT (Fast Fourier Transform) is used as a frequency analysis technique.

検知ピーク判定手段14は、周波数分析手段13での周波数分析により得られたスペクトルデータを基に、検知レベルが所定の検知閾値以上で極大値となるスペクトル(ピーク信号)を検出する。図10に示すように、自車および先行車の相対速度がゼロの場合には、上昇側のピーク信号と下降側のピーク信号とが重なり合うが、図11に示すように、例えば自車が静止物に対して相対速度を持って接近している場合には、上昇側のピーク信号と下降側のピーク信号とは、物体との相対速度がゼロであるときのピーク位置を挟んで対称的に検知される。   The detection peak determination unit 14 detects a spectrum (peak signal) having a maximum value when the detection level is equal to or higher than a predetermined detection threshold, based on the spectrum data obtained by the frequency analysis in the frequency analysis unit 13. As shown in FIG. 10, when the relative speed of the host vehicle and the preceding vehicle is zero, the peak signal on the rising side and the peak signal on the lowering side overlap, but for example, the host vehicle is stationary as shown in FIG. When approaching an object with relative speed, the peak signal on the rising side and the peak signal on the descending side are symmetrical with respect to the peak position when the relative speed with respect to the object is zero. Detected.

物体検知手段15は、検知ピーク判定手段14で得られた上昇側のピーク周波数Fupおよび下降側のピーク周波数Fdnに基づいて、物体の相対距離および相対速度を算出する。   The object detection means 15 calculates the relative distance and relative speed of the object based on the rising peak frequency Fup and the falling peak frequency Fdn obtained by the detection peak determination means 14.

FM変調幅をΔfとし、光速をcとし、変調繰り返し周期をTmとし、自車と物体との距離をrとし、送信中心周波数をf0 とし、自車と物体との相対速度をvとしたとき、上昇側のピーク周波数Fupは、
Fup=(4・Δf・r)/(c・Tm)+{(2・f0 )/c}・v
…(1)
で与えられ、下降側のピーク周波数Fdnは、
Fdn=(4・Δf・r)/(c・Tm)−{(2・f0 )/c}・v
…(2)
で与えられる。ここでFM変調幅Δf、変調繰り返し周期Tm、送信中心周波数f0 を一定とすると、定数k1 ,k2 を用いて、
Fup=r・k1 +v・k2 …(3)
Fdn=r・k1 −v・k2 …(4)
で表される。
The FM modulation width is Δf, the speed of light is c, the modulation repetition period is Tm, the distance between the vehicle and the object is r, the transmission center frequency is f 0 , and the relative speed between the vehicle and the object is v. When the peak frequency Fup on the rising side is
Fup = (4 · Δf · r) / (c · Tm) + {(2 · f 0 ) / c} · v
... (1)
The descending peak frequency Fdn is given by
Fdn = (4 · Δf · r) / (c · Tm) − {(2 · f 0 ) / c} · v
... (2)
Given in. Here, if FM modulation width Δf, modulation repetition period Tm, and transmission center frequency f 0 are constant, constants k 1 and k 2 are used,
Fup = r · k 1 + v · k 2 (3)
Fdn = r · k 1 −v · k 2 (4)
It is represented by

(3)式および(4)式から明らかなように、自車と物体との相対速度vが存在しないとき(v=0)、上昇側のピーク周波数Fupと下降側のピーク周波数Fdnとが一致する(図10参照)。また自車と物体との相対速度vが存在するとき(v≠0)、上昇側のピーク周波数Fupと下降側のピーク周波数Fdnとは一致しない(図11参照)。そして両ピーク周波数Fup,Fdnの和に基づいて物体までの距離rを算出することができ、両ピーク周波数Fup,Fdnの差に基づいて物体との相対速度vを算出することができる。
特許第3305624号公報
As apparent from the equations (3) and (4), when the relative speed v between the vehicle and the object does not exist (v = 0), the peak frequency Fup on the rising side and the peak frequency Fdn on the descending side coincide with each other. (See FIG. 10). Further, when the relative speed v between the vehicle and the object exists (v ≠ 0), the ascending peak frequency Fup and the descending peak frequency Fdn do not coincide (see FIG. 11). The distance r to the object can be calculated based on the sum of the two peak frequencies Fup and Fdn, and the relative speed v with the object can be calculated based on the difference between the two peak frequencies Fup and Fdn.
Japanese Patent No. 3305624

ところで、図12に示すように、自車の前方に相対速度が異なる2台の先行車が存在する場合、各々の先行車について上昇側のピーク信号および下降側のピーク信号が発生するため、合計4個のピーク信号が得られることになる。従って、これら4個のピーク信号のペアリング(対になる上昇側のピーク信号および下降側のピーク信号の組み合わせ)を誤ると、物体の距離や相対速度を正しく検知できなくなる問題がある。   By the way, as shown in FIG. 12, when there are two preceding vehicles having different relative speeds in front of the host vehicle, an ascending peak signal and a descending peak signal are generated for each preceding vehicle. Four peak signals are obtained. Accordingly, if the pairing of these four peak signals (the combination of the rising peak signal and the falling peak signal to be paired) is incorrect, there is a problem that the distance and relative velocity of the object cannot be detected correctly.

上記特許文献に記載されたものは、時系列処理による過去の履歴データに基づいてペアリングを行うものであるが、全てのピーク信号の組み合わせについてペアリング処理を実行するために、ペアリングの結果が確定するのに長い時間が必要となり、車間距離制御装置のような迅速な制御を必要とするシステムに適用するには問題があった。   What is described in the above-mentioned patent document is to perform pairing based on past history data by time series processing, but in order to perform pairing processing for all combinations of peak signals, the result of pairing Therefore, it takes a long time to determine the problem, and there is a problem in applying it to a system that requires quick control such as an inter-vehicle distance control device.

レーダー装置を用いて車間距離制御等を行う場合に特に問題となるのは、先行車のような移動体のデータとガードレールや側壁のような路側物のデータとの識別であることから、移動体と路側物とを容易かつ確実に識別することができれば、レーダー装置の性能を大幅に高めることができる。   When performing inter-vehicle distance control, etc. using a radar device, it is particularly important to distinguish between data on a moving body such as a preceding vehicle and roadside objects such as guardrails and side walls. If the roadside object can be easily and reliably identified, the performance of the radar device can be greatly improved.

本発明は前述の事情に鑑みてなされたもので、FM−CW波を用いた物体検知装置において、移動体と路側物とを容易かつ確実に識別できるようにすることを目的とする。   The present invention has been made in view of the above-described circumstances, and an object of the present invention is to make it possible to easily and reliably identify a moving object and a roadside object in an object detection apparatus using FM-CW waves.

上記目的を達成するために、請求項1に記載された発明によれば、FM−CW波を送信して該FM−CW波の物体からの反射波を受信する送受信手段と、送信波および受信波を混合してビート信号を生成するミキサと、ミキサで得られたビート信号を周波数分析する周波数分析手段と、周波数分析手段による上昇側および下降側の周波数分析結果に基づき得られたピーク信号のうち、検知閾値以上のピーク信号を検知ピークとして判定する検知ピーク判定手段と、検知ピーク判定手段で得られた上昇側および下降側の検知ピークに基づいて物体との距離および物体との相対速度の少なくとも一方を算出する物体検知手段とを備えた車両の物体検知装置において、自車の現在位置を検出する自車位置検出手段と、地図情報を記憶する地図情報記憶手段と、自車位置検出手段により検出された自車位置情報および地図情報記憶手段から得られる地図情報に基づいて自車の進行方向の道路形状を予測する道路形状予測手段と、複数の検知方向における検知ピークおよび予測された自車の進行方向の道路形状に基づいて前記複数の検知方向における検知ピークのうちの少なくとも一部を路側物による検知ピークであると判定する路側物ピーク判定手段とを備え、物体検知手段は、路側物ピーク以外の検知ピークに基づいて物体との距離および物体との相対速度の少なくとも何れかを算出することを特徴とする車両の物体検知装置が提案される。 To achieve the above object, according to the first aspect of the present invention, a transmission / reception means for transmitting an FM-CW wave and receiving a reflected wave from an object of the FM-CW wave, a transmission wave and a reception wave A mixer that generates a beat signal by mixing waves, a frequency analysis unit that performs frequency analysis of the beat signal obtained by the mixer, and a peak signal obtained based on the frequency analysis results of the rising and falling sides by the frequency analyzing unit Among them, the detection peak determination means for determining a peak signal equal to or higher than the detection threshold as the detection peak, and the distance from the object and the relative speed with respect to the object based on the detection peaks on the rising side and the falling side obtained by the detection peak determination means In an object detection device for a vehicle comprising an object detection means for calculating at least one, a vehicle position detection means for detecting a current position of the own vehicle, and a map information storage for storing map information. Means, and the road shape estimation means for estimating the traveling direction of the road shape of the vehicle based on map information obtained from the vehicle position information detected and the map information storage unit by the vehicle position detecting means, a plurality of sensing directions Roadside object peak determination means for determining at least a part of the detection peaks in the plurality of detection directions as detection peaks due to roadside objects based on the detected peak in the vehicle and the predicted road shape in the traveling direction of the vehicle. An object detection device for a vehicle is provided, wherein the object detection means calculates at least one of a distance to the object and a relative speed to the object based on a detection peak other than the roadside object peak.

また請求項2に記載された発明によれば、FM−CW波を送信して該FM−CW波の物体からの反射波を受信する送受信手段と、送信波および受信波を混合してビート信号を生成するミキサと、ミキサで得られたビート信号を周波数分析する周波数分析手段と、周波数分析手段による上昇側および下降側の周波数分析結果に基づき得られたピーク信号のうち、検知閾値以上のピーク信号を検知ピークとして判定する検知ピーク判定手段と、検知ピーク判定手段で得られた上昇側および下降側の検知ピークに基づいて物体との距離および物体との相対速度の少なくとも一方を算出する物体検知手段とを備えた車両の物体検知装置において、路上に設けられた送信手段との間で通信を行うことで自車の進行方向の道路形状に関する情報を取得可能な路車間通信手段と、複数の検知方向における検知ピークおよび路車間通信手段により得られた自車の進行方向の道路形状に関する情報に基づいて前記複数の検知方向における検知ピークのうちの少なくとも一部を路側物による検知ピークであると判定する路側物ピーク判定手段とを備え、物体検知手段は、路側物ピーク以外の検知ピークに基づいて物体との距離および物体との相対速度の少なくとも何れかを算出することを特徴とする車両の物体検知装置が提案される。 According to the second aspect of the invention, the transmission / reception means for transmitting the FM-CW wave and receiving the reflected wave from the object of the FM-CW wave, and the beat signal by mixing the transmission wave and the reception wave Of the peak signal obtained based on the frequency analysis results of the rising and falling sides by the frequency analyzing means Object detection for calculating at least one of the distance to the object and the relative velocity with respect to the object based on the detection peak determination means for determining the signal as a detection peak and the detection peak on the rising side and the descending side obtained by the detection peak determination means Vehicle object detection device comprising means for obtaining information on the road shape in the traveling direction of the vehicle by communicating with transmission means provided on the road A road-to-vehicle communication unit, at least some of the detection peaks in the plurality of sensing directions based on the vehicle traveling direction of the road shape information regarding the obtained by detecting the peak and the road-vehicle communication means in a plurality of sensing directions Roadside object peak determination means for determining that the roadside object detection peak is detected, and the object detection means calculates at least one of the distance to the object and the relative speed with respect to the object based on the detection peak other than the roadside object peak. An object detection device for a vehicle is proposed.

また請求項3に記載された発明によれば、請求項1の構成に加えて、路側物ピーク判定手段は、複数の検知ピークを、その検知方向およびピーク周波数をそれぞれパラメータとする座標上に配置するとともに、前記道路形状予測手段により予測された道路形状と類似する検知ピークの配列を路側物による検知ピークであると判定することを特徴とする車両の物体検知装置が提案される。   According to the invention described in claim 3, in addition to the configuration of claim 1, the roadside object peak determination means arranges the plurality of detection peaks on coordinates having the detection direction and the peak frequency as parameters, respectively. In addition, an object detection apparatus for a vehicle is proposed in which an array of detection peaks similar to the road shape predicted by the road shape prediction means is determined to be detection peaks due to roadside objects.

また請求項4に記載された発明によれば、請求項2の構成に加えて、路側物ピーク判定手段は、複数の検知ピークを、その検知方向およびピーク周波数をそれぞれパラメータとする座標上に配置するとともに、前記路車間通信手段により取得された道路形状と類似する検知ピークの配列を路側物による検知ピークであると判定することを特徴とする車両の物体検知装置が提案される According to the invention described in claim 4, in addition to the configuration of claim 2, the roadside object peak determination means arranges the plurality of detection peaks on coordinates having the detection direction and the peak frequency as parameters, respectively. as well as, the object detecting apparatus for a vehicle, characterized in that to determine the sequence of the detection peaks similar to road shape obtained by the road-vehicle communication means to be detected peak due roadside object is proposed.

尚、実施例の送受信アンテナ6は本発明の送受信手段に対応する。   In addition, the transmission / reception antenna 6 of an Example respond | corresponds to the transmission / reception means of this invention.

請求項1の構成によれば、検知ピーク判定手段で判定した複数の検知方向における検知ピークおよび道路形状予測手段で予測した自車の進行方向の道路形状に基づいて、路側物ピーク判定手段が前記複数の検知方向における検知ピークのうちの少なくとも一部を路側物による検知ピークであると判定し、物体検知手段が路側物ピーク以外の検知ピークに基づいて物体との距離および物体との相対速度の少なくとも何れかを算出するので、路側物および移動体の両方が検知された場合に、路側物の検知データを除外して移動体の検知データのみを得ることができる。 According to the first aspect, based on the detected peak and the road shape prediction unit road shape in the traveling direction of the vehicle predicted by the plurality of detection direction determined by detecting the peak determination means, wherein the roadside object peak determining means It is determined that at least some of the detection peaks in a plurality of detection directions are detection peaks due to roadside objects, and the object detection means determines the distance to the object and the relative speed with respect to the object based on the detection peaks other than the roadside object peak. Since at least one of them is calculated, when both the roadside object and the moving object are detected, the detection data of the roadside object can be excluded and only the detection data of the moving object can be obtained.

請求項2の構成によれば、検知ピーク判定手段で判定した複数の検知方向における検知ピークおよび路車間通信手段により得られた自車の進行方向の道路形状に関する情報に基づいて、路側物ピーク判定手段が前記複数の検知方向における検知ピークのうちの少なくとも一部を路側物による検知ピークであると判定し、物体検知手段が路側物ピーク以外の検知ピークに基づいて物体との距離および物体との相対速度の少なくとも何れかを算出するので、路側物および移動体の両方が検知された場合に、路側物の検知データを除外して移動体の検知データのみを得ることができる。 According to the configuration of the second aspect, the roadside object peak determination is based on the detection peaks in the plurality of detection directions determined by the detection peak determination means and the information on the road shape in the traveling direction of the own vehicle obtained by the road-to-vehicle communication means. The means determines that at least some of the detection peaks in the plurality of detection directions are detection peaks due to roadside objects, and the object detection means determines the distance between the object and the object based on the detection peaks other than the roadside object peaks. Since at least one of the relative speeds is calculated, when both the roadside object and the moving object are detected, the detection data of the roadside object can be excluded and only the detection data of the moving object can be obtained.

請求項3の構成によれば、複数の検知ピークを検知方向およびピーク周波数をパラメータとする座標上に配置し、座標上に示した道路形状予測手段で予測した道路形状と類似する検知ピークの配列を路側物による検知ピークであると判定するので、移動体の検知ピークと路側物の検知ピークとを容易かつ確実に識別することができる。   According to the configuration of claim 3, a plurality of detection peaks are arranged on the coordinates having the detection direction and the peak frequency as parameters, and an array of detection peaks similar to the road shape predicted by the road shape prediction means indicated on the coordinates. Therefore, the detection peak of the moving object and the detection peak of the roadside object can be easily and reliably identified.

請求項4の構成によれば、複数の検知ピークを検知方向およびピーク周波数をパラメータとする座標上に配置し、座標上に示した路車間通信手段により得られた道路形状と類似する検知ピークの配列を路側物による検知ピークであると判定するので、移動体の検知ピークと路側物の検知ピークとを容易かつ確実に識別することができる According to the configuration of claim 4, a plurality of detection peaks are arranged on the coordinates having the detection direction and the peak frequency as parameters, and detection peaks similar to the road shape obtained by the road-to-vehicle communication means indicated on the coordinates are displayed. Since the arrangement is determined to be a detection peak due to a roadside object, the detection peak of the moving object and the detection peak of the roadside object can be easily and reliably identified .

以下、本発明の実施の形態を、添付図面に示した本発明の実施例に基づいて説明する。   Hereinafter, embodiments of the present invention will be described based on examples of the present invention shown in the accompanying drawings.

図1〜図7は本発明の第1実施例を示すもので、図1は物体検知装置の全体構成図、図2は自車、先行車および道路の位置関係を示す図、図3はチャンネルch3の上昇側および下降側のピーク信号の4種類のペアリングを示す図、図4は作用を説明するフローチャート、図5はペアリングを行うために二次元座標を示す図、図6はチャンネルch3の上昇側および下降側のピーク信号の最終的なペアリングを示す図、図7は路側物の下降側の検知ピークが欠落している場合を示す、前記図5に対応する図である。   1 to 7 show a first embodiment of the present invention. FIG. 1 is an overall configuration diagram of an object detection device, FIG. 2 is a diagram showing the positional relationship between a host vehicle, a preceding vehicle, and a road, and FIG. FIG. 4 is a flowchart illustrating the operation, FIG. 5 is a diagram illustrating two-dimensional coordinates for performing pairing, and FIG. 6 is a channel ch3. FIG. 7 is a diagram corresponding to FIG. 5, showing the final pairing of the peak signals on the ascending side and the descending side of FIG.

図1には本実施例の物体検知装置のCPU12の回路構成が示される。CPU12以外の構成および作用は、図9のものと同一である。図9で説明した従来のCPU12は、周波数分析手段13と、検知ピーク判定手段14と、物体検知手段15とを備えていたが、本実施例のCPU12は更に自車位置検出手段21と、地図情報記憶手段22と、道路形状予測手段23と、路側物ピーク判定手段17とを備えている。   FIG. 1 shows a circuit configuration of the CPU 12 of the object detection apparatus of the present embodiment. The configuration and operation other than the CPU 12 are the same as those in FIG. The conventional CPU 12 described in FIG. 9 includes the frequency analysis means 13, the detection peak determination means 14, and the object detection means 15. However, the CPU 12 of this embodiment further includes the vehicle position detection means 21 and a map. Information storage means 22, road shape prediction means 23, and roadside object peak determination means 17 are provided.

自車位置検出手段21はGPS衛星からの電波を受信することで自車の現在位置を検出する。地図情報記憶手段22はDVD等の記憶媒体よりなり、広範囲の道路データを座標点の集合として記憶している。道路形状予測手段23は、自車位置検出手段21で検出した自車位置と、地図情報記憶手段22に記憶された道路データとに基づいて、自車の進行方向の道路形状を予測する。自車位置検出手段21、地図情報記憶手段22、道路形状予測手段23の機能はナビゲーションシステムに備えられているものであり、既存のナビゲーションシステムをそのまま利用することができる。   The own vehicle position detection means 21 detects the current position of the own vehicle by receiving radio waves from GPS satellites. The map information storage means 22 comprises a storage medium such as a DVD and stores a wide range of road data as a set of coordinate points. The road shape prediction means 23 predicts the road shape in the traveling direction of the own vehicle based on the own vehicle position detected by the own vehicle position detection means 21 and the road data stored in the map information storage means 22. The functions of the vehicle position detection means 21, the map information storage means 22, and the road shape prediction means 23 are provided in the navigation system, and the existing navigation system can be used as it is.

路側物ピーク判定手段17は、道路形状予測手段23で予測した自車の進行方向の道路形状に基づいて、検知ピーク判定手段14で得られた検知ピークのうちから路側物の検知ピークを除外することで、本来検知すべき先行車等の移動体の検知ピークを識別し、物体検知手段15が移動体だけを的確に検知できるようにする。   The roadside object peak determination means 17 excludes roadside object detection peaks from the detection peaks obtained by the detection peak determination means 14 based on the road shape in the traveling direction of the host vehicle predicted by the road shape prediction means 23. Thus, the detection peak of a moving body such as a preceding vehicle that should be detected is identified, and the object detection means 15 can accurately detect only the moving body.

図2には自車が先行車に追従走行している状態が示されており、自車に搭載した物体検知装置の5個のチャンネルch1〜ch5のうち、2個のチャンネルch1,ch2はガードレールのような路側物F1,F2のみを検知し、他の2個チャンネルch3,ch4は路側物F3,F4と先行車のリフレクタのような移動体M1,M2を検知し、残りの1個のチャンネルch5は何も検知していないとする。   FIG. 2 shows a state in which the host vehicle is following the preceding vehicle. Of the five channels ch1 to ch5 of the object detection device mounted on the host vehicle, two channels ch1 and ch2 are guardrails. Only the roadside objects F1 and F2 are detected, and the other two channels ch3 and ch4 detect the roadside objects F3 and F4 and the moving bodies M1 and M2 such as the reflectors of the preceding vehicle, and the remaining one channel. It is assumed that nothing is detected in ch5.

ここで、チャンネルch3(チャンネルch4も同様)に着目すると、チャンネルch3は路側物F3と移動体M1の両方を同時に検知しているため、図3に示すように、上昇側のピーク信号はup1,up2の2個が出現し、下降側のピーク信号もdn1,dn2の2個が出現する。従って、表1に示すように、上昇側の2個のピーク信号up1,up2と、下降側の2個のピーク信号dn1,dn2のペアリングはPair1〜Pair4の4通りが存在することになり、そのペアリングが確定しないとチャンネルch3で検知した路側物F3と移動体M1とを識別できないことになる。   Here, paying attention to the channel ch3 (the same applies to the channel ch4), the channel ch3 detects both the roadside object F3 and the moving body M1 at the same time. As shown in FIG. Two up2 appear, and two descending peak signals dn1 and dn2 appear. Accordingly, as shown in Table 1, there are four pairs of Pair1 to Pair4 of the pair of peak signals up1 and up2 on the rising side and the pair of peak signals dn1 and dn2 on the descending side, If the pairing is not confirmed, the roadside object F3 detected by the channel ch3 and the moving body M1 cannot be identified.

Figure 0003954993
Figure 0003954993

そこで、本実施例では以下のようにして前記ペアリングを確定している。   Therefore, in the present embodiment, the pairing is determined as follows.

図4のフローチャートにおいて、先ずステップS1で道路形状予測手段23により自車の進行方向の道路形状を予測する。続くステップS2で、周波数分析手段13によりメモリ11に記憶されたビート信号のデータをFFT処理して検知スペクトラムを求める。続くステップS3で、検知ピーク判定手段14により、検知スペクトラムのうちから4個の路側物F1〜F4および2個の移動体M1,M2に対応する上昇側の合計6個のピーク周波数Fupおよび下降側の合計6個のピーク周波数Fdnを、各チャンネルch1〜ch5に対応して抽出する。続くステップS4で、チャンネルch1〜ch5の上昇側の6個のピーク周波数Fupと、下降側の6個のピーク周波数Fdnとを、それぞれ異なる二次元座標上にプロットする。この二次元座標は角度と半径とをパラメータとする極座標であって、各チャンネルch1〜ch5の方向が角度に相当し、検知した物体の距離(ピーク周波数)が半径に相当する。また二次元座標には、予測した道路形状を併せて表示する。 In the flowchart of FIG. 4, first, the road shape in the traveling direction of the host vehicle is predicted by the road shape prediction means 23 in step S1. In the subsequent step S2, the beat signal data stored in the memory 11 by the frequency analysis means 13 is subjected to FFT processing to obtain a detection spectrum. In the following step S3, the detection peak determination means 14 causes the total of six peak frequencies Fup on the rising side corresponding to the four roadside objects F1 to F4 and the two moving bodies M1 and M2 from the detection spectrum and the lowering side. a total of six of the peak frequency Fdn of, to extract so as to correspond to each channel ch1~ch5. In subsequent step S4, the six peak frequencies Fup on the rising side and the six peak frequencies Fdn on the descending side of the channels ch1 to ch5 are plotted on different two-dimensional coordinates. This two-dimensional coordinate is a polar coordinate having an angle and a radius as parameters, the direction of each channel ch1 to ch5 corresponds to the angle, and the distance (peak frequency) of the detected object corresponds to the radius. The two-dimensional coordinates are displayed together with the predicted road shape.

図5(A)の二次元座標には上昇側の6個のピーク周波数Fupと予測した道路形状とが表示されており、そのうち4個の点f1〜f4は道路形状に沿うように配列されているために、4個の路側物F1〜F4に対応すると判断される。一方、残りの2個の点m1,m2は道路形状に沿っておらず、従って先行車のリフレクタである移動体M1,M2に対応すると判断される。図5(B)の二次元座標には下降側の6個のピーク周波数Fdnと予測した道路形状とが表示されており、そのうち4個の点f1〜f4は道路形状に沿うように配列されているために、4個の路側物F1〜F4に対応すると判断される。一方、残りの2個の点m1,m2は道路形状に沿っておらず、従って先行車のリフレクタである移動体M1,M2に対応すると判断される。   In the two-dimensional coordinates of FIG. 5A, six peak frequencies Fup on the rising side and the predicted road shape are displayed. Of these, four points f1 to f4 are arranged along the road shape. Therefore, it is determined to correspond to the four roadside objects F1 to F4. On the other hand, it is determined that the remaining two points m1 and m2 do not follow the road shape, and therefore correspond to the moving bodies M1 and M2 that are the reflectors of the preceding vehicle. In the two-dimensional coordinates of FIG. 5B, six descending peak frequencies Fdn and predicted road shapes are displayed, and four points f1 to f4 are arranged along the road shape. Therefore, it is determined to correspond to the four roadside objects F1 to F4. On the other hand, it is determined that the remaining two points m1 and m2 do not follow the road shape, and therefore correspond to the moving bodies M1 and M2 that are the reflectors of the preceding vehicle.

以上のことから、ステップS5で、図5(A),(B)の二次元座標の各6個の点f1〜f4,m1,m2のうちから、路側物F1〜F4に対応する点f1〜f4(×印を付けたもの)のピーク信号を除外する。即ち、図6に示すチャンネルch3の例では、上昇側の検知ピークup1,up2のうち路側物F3に対応する検知ピークup2が除外され、かつ下降側の検知ピークdn1,dn2のうち路側物F3に対応する検知ピークdn2が除外される。しかして、ステップS6で、表2に示す楕円で囲ったPair1(つまり検知ピークup1,dn1)が移動体M1に対応するものであると判定することができる。   From the above, in step S5, the points f1 to f4 corresponding to the roadside objects F1 to F4 among the six points f1 to f4, m1, and m2 of the two-dimensional coordinates in FIGS. The peak signal of f4 (marked with x) is excluded. That is, in the example of the channel ch3 shown in FIG. 6, the detection peak up2 corresponding to the roadside object F3 is excluded from the detection peaks up1 and up2 on the rising side, and the roadside object F3 is detected among the detection peaks dn1 and dn2 on the lowering side. The corresponding detection peak dn2 is excluded. Therefore, in step S6, it can be determined that Pair1 (that is, detection peaks up1, dn1) surrounded by an ellipse shown in Table 2 corresponds to the moving object M1.

Figure 0003954993
Figure 0003954993

続くステップS6で、除外されなかった2個の検知ピーク(表2の例では、up1,dn1)をペアリングし、ステップS7で前記ペアリングされた検知ピークup1,dn1に対応する上昇側のピーク周波数Fupおよび下降側のピーク周波数Fdnに基づいて物体の距離および相対速度を算出することにより、図5の点m1、つまり図2における路側物F1〜F4を除いた移動体M1だけを検知することができる。同様にしてチャンネルch4についても、図5の点m2、つまり図2における路側物F1〜F4を除いた移動体M2だけを検知することができる。   In the subsequent step S6, two detection peaks that are not excluded (up1, dn1 in the example of Table 2) are paired, and in step S7, the rising peaks corresponding to the paired detection peaks up1, dn1 By detecting the distance and relative speed of the object based on the frequency Fup and the descending peak frequency Fdn, only the moving object M1 excluding the point m1 in FIG. 5, that is, the roadside objects F1 to F4 in FIG. Can do. Similarly, for the channel ch4, only the moving body M2 excluding the point m2 in FIG. 5, that is, the roadside objects F1 to F4 in FIG. 2, can be detected.

このように、検知ピーク判定手段14により得られた複数の検知ピークのうち、道路形状に沿うように配置された検知ピークを路側物によるものと判定して除外するので、必要とする移動体の検知ピークを容易かつ確実に抽出することができ、従来の複雑で時間の掛かるペアリング作業を必要とせずに移動体だけを検知することができる。   Thus, since the detection peak arranged along the road shape is determined to be due to the roadside object among the plurality of detection peaks obtained by the detection peak determination means 14, the necessary mobile object is excluded. A detection peak can be easily and reliably extracted, and only a moving object can be detected without requiring a conventional complicated and time-consuming pairing operation.

また図5において、例えば上昇側の4個の点f1〜f4(図5(A)参照)が道路形状とマッチングして路側物F1〜F4であると判定された場合、それらに対応する下降側の4個の点f1〜f4(図5(B)参照)を、道路形状とのマッチングを行うことなく、路側物F1〜F4であると判定することができる。逆に、下降側の4個の点f1〜f4(図5(B)参照)が道路形状とマッチングして路側物F1〜F4であると判定された場合、それらに対応する上降側の4個の点f1〜f4(図5(A)参照)を、道路形状とのマッチングを行うことなく、路側物F1〜F4であると判定することができる。これにより、路側物の判定を一層速やかに行うことが可能となる。   Further, in FIG. 5, for example, when four points f1 to f4 on the ascending side (see FIG. 5A) are matched with the road shape and determined to be roadside objects F1 to F4, the corresponding descending side These four points f1 to f4 (see FIG. 5B) can be determined as roadside objects F1 to F4 without matching with the road shape. On the other hand, if the four points f1 to f4 on the descending side (see FIG. 5B) match the road shape and are determined to be the roadside objects F1 to F4, the four on the descending side corresponding to them. The points f1 to f4 (see FIG. 5A) can be determined as the roadside objects F1 to F4 without matching with the road shape. Thereby, it becomes possible to determine a roadside thing more rapidly.

また図7(B)に示すように、例えば路側物F3,F4に対応する下降側の点f3′,f4′の検知ピークが何らかの理由で欠落しているような場合でも、図7(A)に示す上昇側の点f3,f4の検知ピークとの比較により、その欠落を判定することが可能となる。   Further, as shown in FIG. 7B, for example, even if the detection peaks of the descending points f3 ′ and f4 ′ corresponding to the roadside objects F3 and F4 are missing for some reason, FIG. It is possible to determine the lack thereof by comparison with the detection peaks of the rising points f3 and f4 shown in FIG.

次に、図8に基づいて本発明の第2実施例を説明する。   Next, a second embodiment of the present invention will be described with reference to FIG.

図1(第1実施例)および図8を比較すると明らかなように、第2実施例の物体検知装置のCPU12には、第1実施例の自車位置検出手段21、地図情報記憶手段22および道路形状予測手段23の代わりに、路車間通信手段25を備えている。路車間通信手段25は、路側に所定間隔で設けられたビーコン等の送信手段26との間で通信を行うことで、自車の進行方向の道路形状に関する情報を取得することができる。   As is clear from a comparison of FIG. 1 (first embodiment) and FIG. 8, the CPU 12 of the object detection device of the second embodiment has the vehicle position detection means 21, map information storage means 22 of the first embodiment, and Instead of the road shape prediction means 23, a road-to-vehicle communication means 25 is provided. The road-to-vehicle communication means 25 can acquire information on the road shape in the traveling direction of the host vehicle by communicating with the transmission means 26 such as a beacon provided at a predetermined interval on the road side.

従って、路側物ピーク判定手段17は、路車間通信手段25により取得した自車の進行方向の道路形状に基づいて、第1実施例と同様に検知ピーク判定手段14で得られた検知ピークのうちから路側物の検知ピークを除外することで、本来検知すべき先行車等の移動体の検知ピークを識別し、物体検知手段15が移動体だけを的確に検知できるようにする。   Accordingly, the roadside object peak determining means 17 is based on the road shape in the traveling direction of the own vehicle acquired by the road-to-vehicle communication means 25, out of the detected peaks obtained by the detected peak determining means 14 as in the first embodiment. By removing the detection peak of the roadside object from the detection peak, the detection peak of the moving body such as the preceding vehicle to be originally detected is identified, and the object detecting means 15 can accurately detect only the moving body.

しかして、この第2実施例によっても、上述した第1実施例と同様の作用効果を達成することができる。   Thus, the second embodiment can achieve the same effects as those of the first embodiment described above.

以上、本発明の実施例を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。   Although the embodiments of the present invention have been described above, various design changes can be made without departing from the scope of the present invention.

例えば、送信用アンテナおよび受信用アンテナをそれぞれ別個に設置することにより、サーキュレータ5を用いない構成としても良い。   For example, the circulator 5 may not be used by separately installing a transmitting antenna and a receiving antenna.

また実施例では路側物以外の物体を便宜上移動体と称しているが、この移動体には道路上に停止した車両等も含まれるものとする。   In the embodiment, an object other than a roadside object is referred to as a moving object for convenience. However, the moving object includes a vehicle stopped on the road.

本発明の第1実施例に係る物体検知装置の全体構成図1 is an overall configuration diagram of an object detection apparatus according to a first embodiment of the present invention. 自車、先行車および道路の位置関係を示す図A diagram showing the positional relationship between the vehicle, the preceding vehicle, and the road チャンネルch3の上昇側および下降側のピーク信号の4種類のペアリングを示す図The figure which shows four types of pairing of the peak signal of the rising side and falling side of channel ch3 作用を説明するフローチャートFlow chart explaining operation ペアリングを行うために二次元座標を示す図Diagram showing 2D coordinates for pairing チャンネルch3の上昇側および下降側のピーク信号の最終的なペアリングを示す図The figure which shows the final pairing of the peak signal of the rising side and falling side of channel ch3 路側物の下降側の検知ピークが欠落している場合を示す、前記図5に対応する図The figure corresponding to the said FIG. 5 which shows the case where the detection peak of the descending side of a roadside thing is missing. 本発明の第2実施例に係る物体検知装置の全体構成図Overall configuration diagram of an object detection apparatus according to a second embodiment of the present invention 従来の物体検知装置の全体構成図Overall configuration diagram of a conventional object detection device 相対速度がゼロの移動体に追従走行する場合のレーダー装置の作用説明図Action diagram of radar device when traveling following a moving body with zero relative speed 静止物に接近走行する場合のレーダー装置の作用説明図Action diagram of the radar device when traveling close to a stationary object 相対速度が異なる複数の移動体に追従走行する場合のレーダー装置の作用説明図Action diagram of the radar device when traveling following a plurality of moving bodies with different relative speeds

符号の説明Explanation of symbols

6 送受信アンテナ(送受信手段)
7 ミキサ
13 周波数分析手段
14 検知ピーク判定手段
15 物体検知手段
17 路側物ピーク判定手段
21 自車位置検出手段
22 地図情報記憶手段
23 道路形状予測手段
25 路車間通信手段
26 送信手段
6 Transmission / reception antenna (transmission / reception means)
7 mixer 13 frequency analysis means 14 detection peak determination means 15 object detection means 17 roadside object peak determination means 21 own vehicle position detection means 22 map information storage means 23 road shape prediction means 25 road-to-vehicle communication means 26 transmission means

Claims (4)

FM−CW波を送信して該FM−CW波の物体からの反射波を受信する送受信手段(6)と、
送信波および受信波を混合してビート信号を生成するミキサ(7)と、
ミキサ(7)で得られたビート信号を周波数分析する周波数分析手段(13)と、
周波数分析手段(13)による上昇側および下降側の周波数分析結果に基づき得られたピーク信号のうち、検知閾値以上のピーク信号を検知ピークとして判定する検知ピーク判定手段(14)と、
検知ピーク判定手段(14)で得られた上昇側および下降側の検知ピークに基づいて物体との距離および物体との相対速度の少なくとも一方を算出する物体検知手段(15)と、
を備えた車両の物体検知装置において、
自車の現在位置を検出する自車位置検出手段(21)と、
地図情報を記憶する地図情報記憶手段(22)と、
自車位置検出手段(21)により検出された自車位置情報および地図情報記憶手段(22)から得られる地図情報に基づいて自車の進行方向の道路形状を予測する道路形状予測手段(23)と、
複数の検知方向における検知ピークおよび予測された自車の進行方向の道路形状に基づいて前記複数の検知方向における検知ピークのうちの少なくとも一部を路側物による検知ピークであると判定する路側物ピーク判定手段(17)とを備え、
物体検知手段(15)は、路側物ピーク以外の検知ピークに基づいて物体との距離および物体との相対速度の少なくとも何れかを算出することを特徴とする車両の物体検知装置。
A transmission / reception means (6) for transmitting an FM-CW wave and receiving a reflected wave from an object of the FM-CW wave;
A mixer (7) for generating a beat signal by mixing a transmission wave and a reception wave;
Frequency analysis means (13) for frequency analysis of the beat signal obtained by the mixer (7);
Detection peak determination means (14) for determining, as a detection peak, a peak signal equal to or higher than a detection threshold among peak signals obtained based on the frequency analysis results on the rising side and the falling side by the frequency analysis means (13);
An object detection means (15) for calculating at least one of the distance to the object and the relative speed with respect to the object based on the detection peaks on the rising side and the falling side obtained by the detection peak determination means (14);
In a vehicle object detection device comprising:
Own vehicle position detecting means (21) for detecting the current position of the own vehicle;
Map information storage means (22) for storing map information;
Road shape prediction means (23) for predicting the road shape in the traveling direction of the own vehicle based on the own vehicle position information detected by the own vehicle position detection means (21) and the map information obtained from the map information storage means (22). When,
A plurality of at least a portion of a detection peak due roadside object determines roadside object peak of detecting peaks in the detection peak and predicted the plurality of sensing direction based on the traveling direction of the road shape of the vehicle in the detection direction Determination means (17),
An object detection device (15) for calculating a vehicle object, wherein the object detection means (15) calculates at least one of a distance to the object and a relative speed to the object based on a detection peak other than the roadside object peak.
FM−CW波を送信して該FM−CW波の物体からの反射波を受信する送受信手段(6)と、
送信波および受信波を混合してビート信号を生成するミキサ(7)と、
ミキサ(7)で得られたビート信号を周波数分析する周波数分析手段(13)と、
周波数分析手段(13)による上昇側および下降側の周波数分析結果に基づき得られたピーク信号のうち、検知閾値以上のピーク信号を検知ピークとして判定する検知ピーク判定手段(14)と、
検知ピーク判定手段(14)で得られた上昇側および下降側の検知ピークに基づいて物体との距離および物体との相対速度の少なくとも一方を算出する物体検知手段(15)と、
を備えた車両の物体検知装置において、
路上に設けられた送信手段(26)との間で通信を行うことで自車の進行方向の道路形状に関する情報を取得可能な路車間通信手段(25)と、
複数の検知方向における検知ピークおよび路車間通信手段(25)により得られた自車の進行方向の道路形状に関する情報に基づいて前記複数の検知方向における検知ピークのうちの少なくとも一部を路側物による検知ピークであると判定する路側物ピーク判定手段(17)とを備え、
物体検知手段(15)は、路側物ピーク以外の検知ピークに基づいて物体との距離および物体との相対速度の少なくとも何れかを算出することを特徴とする車両の物体検知装置。
A transmission / reception means (6) for transmitting an FM-CW wave and receiving a reflected wave from an object of the FM-CW wave;
A mixer (7) for generating a beat signal by mixing a transmission wave and a reception wave;
Frequency analysis means (13) for frequency analysis of the beat signal obtained by the mixer (7);
Detection peak determination means (14) for determining, as a detection peak, a peak signal equal to or higher than a detection threshold among peak signals obtained based on the frequency analysis results on the rising side and the falling side by the frequency analysis means (13);
An object detection means (15) for calculating at least one of the distance to the object and the relative speed with respect to the object based on the detection peaks on the rising side and the falling side obtained by the detection peak determination means (14);
In a vehicle object detection device comprising:
Road-to-vehicle communication means (25) capable of acquiring information on the road shape in the traveling direction of the host vehicle by communicating with transmission means (26) provided on the road;
Based on the detection peaks in the plurality of detection directions and the information on the road shape in the traveling direction of the own vehicle obtained by the road-to-vehicle communication means (25), at least some of the detection peaks in the plurality of detection directions are caused by roadside objects. Roadside object peak determination means (17) for determining that it is a detection peak,
An object detection device (15) for calculating a vehicle object, wherein the object detection means (15) calculates at least one of a distance to the object and a relative speed to the object based on a detection peak other than the roadside object peak.
路側物ピーク判定手段(17)は、複数の検知ピークを、その検知方向およびピーク周波数をそれぞれパラメータとする座標上に配置するとともに、前記道路形状予測手段(23)により予測された道路形状と類似する検知ピークの配列を路側物による検知ピークであると判定することを特徴とする、請求項1に記載の車両の物体検知装置。   The roadside object peak determination means (17) arranges a plurality of detection peaks on coordinates using the detection direction and the peak frequency as parameters, respectively, and is similar to the road shape predicted by the road shape prediction means (23). The vehicle object detection device according to claim 1, wherein an array of detection peaks to be detected is determined to be a detection peak due to a roadside object. 路側物ピーク判定手段(17)は、複数の検知ピークを、その検知方向およびピーク周波数をそれぞれパラメータとする座標上に配置するとともに、前記路車間通信手段(25)により取得された道路形状と類似する検知ピークの配列を路側物による検知ピークであると判定することを特徴とする、請求項2に記載の車両の物体検知装置 The roadside object peak determination means (17) arranges a plurality of detection peaks on coordinates having the detection direction and the peak frequency as parameters, respectively, and is similar to the road shape acquired by the road-vehicle communication means (25). The vehicle object detection device according to claim 2, wherein an array of detection peaks to be determined is a detection peak due to a roadside object .
JP2003271264A 2002-10-17 2003-07-07 Vehicle object detection device Expired - Fee Related JP3954993B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003271264A JP3954993B2 (en) 2003-07-07 2003-07-07 Vehicle object detection device
US10/682,296 US6906661B2 (en) 2002-10-17 2003-10-10 Object-detecting system for vehicle
DE10348216A DE10348216B4 (en) 2002-10-17 2003-10-16 Object detection system for a vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003271264A JP3954993B2 (en) 2003-07-07 2003-07-07 Vehicle object detection device

Publications (2)

Publication Number Publication Date
JP2005030935A JP2005030935A (en) 2005-02-03
JP3954993B2 true JP3954993B2 (en) 2007-08-08

Family

ID=34209197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003271264A Expired - Fee Related JP3954993B2 (en) 2002-10-17 2003-07-07 Vehicle object detection device

Country Status (1)

Country Link
JP (1) JP3954993B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3954951B2 (en) * 2002-10-17 2007-08-08 本田技研工業株式会社 Vehicle object detection device
JP4529733B2 (en) * 2005-03-02 2010-08-25 株式会社デンソー In-vehicle radar system
JP4385065B2 (en) * 2007-09-06 2009-12-16 本田技研工業株式会社 Vehicle object detection device
US7733266B2 (en) 2007-09-06 2010-06-08 Honda Motor Co., Ltd. Control target recognition system and vehicle object detection system
KR102202354B1 (en) * 2013-11-06 2021-01-13 현대모비스 주식회사 Fmcw radar system for detecting target using representative value and method thereof
JP2016070772A (en) * 2014-09-30 2016-05-09 富士通テン株式会社 Rader system, vehicle control system, and signal processing method
FR3109452B1 (en) 2020-04-16 2022-03-11 Renault Sas Method for detecting a traffic jam situation on a motor vehicle.

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3102224B2 (en) * 1993-09-28 2000-10-23 トヨタ自動車株式会社 In-vehicle radar device
JPH10221451A (en) * 1997-02-04 1998-08-21 Toyota Motor Corp Radar equipment for vehicle
JP2930236B1 (en) * 1998-01-26 1999-08-03 本田技研工業株式会社 Radar equipment
JP3405327B2 (en) * 2000-07-28 2003-05-12 株式会社デンソー Object recognition method and apparatus, recording medium
JP4664478B2 (en) * 2000-10-24 2011-04-06 本田技研工業株式会社 Vehicle trajectory prediction device
JP3603018B2 (en) * 2000-12-12 2004-12-15 独立行政法人科学技術振興機構 Electric vehicle control device
JP4698048B2 (en) * 2001-03-19 2011-06-08 富士通テン株式会社 FM-CW radar on-road stationary object detection method
JP4803336B2 (en) * 2001-07-19 2011-10-26 三菱自動車工業株式会社 Obstacle information presentation device
JP4843880B2 (en) * 2001-08-09 2011-12-21 日産自動車株式会社 Road environment detection device
JP3797277B2 (en) * 2002-06-04 2006-07-12 株式会社村田製作所 Radar
JP3954951B2 (en) * 2002-10-17 2007-08-08 本田技研工業株式会社 Vehicle object detection device

Also Published As

Publication number Publication date
JP2005030935A (en) 2005-02-03

Similar Documents

Publication Publication Date Title
US6888494B2 (en) FMCW radar system
KR102099851B1 (en) Method of clustering targets detected by automotive radar system and apparatus for the same
JP4678945B2 (en) Scanning radar stationary object detection method
EP2453259B1 (en) Radar device
US9952314B2 (en) Method and device for sensing road environment based on frequency modulated continuous wave radar
EP3588133A1 (en) Method and apparatus for operating radar
JP2004163340A (en) Onboard radar system
JP4287403B2 (en) Object detection device
US20090102698A1 (en) Measuring device and method
JP2018115931A (en) Radar device and method for detecting target
US11802939B2 (en) Method and apparatus with radar signal processing
EP1837678B1 (en) Measuring apparatus and measuring method
JP2019032285A (en) Radar device and target detection method
JP2019039686A (en) Radar device and target detection method
US6906661B2 (en) Object-detecting system for vehicle
JP3954993B2 (en) Vehicle object detection device
JP2019109179A (en) Object detection device for vehicle
US7312745B2 (en) Radar
JP5436652B1 (en) Vehicle periphery monitoring device and vehicle periphery monitoring method
US11892557B2 (en) Radar device
JP3954951B2 (en) Vehicle object detection device
JP2010237087A (en) Radar apparatus and method for measuring radio wave arrival direction using the same
KR20220066796A (en) Method and apparatus for radar signal processing
KR102126071B1 (en) Method and apparatus for detecting a target
JP2006126133A (en) Radar for sensing object of specific area

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070427

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees