JP3797277B2 - Radar - Google Patents

Radar Download PDF

Info

Publication number
JP3797277B2
JP3797277B2 JP2002163349A JP2002163349A JP3797277B2 JP 3797277 B2 JP3797277 B2 JP 3797277B2 JP 2002163349 A JP2002163349 A JP 2002163349A JP 2002163349 A JP2002163349 A JP 2002163349A JP 3797277 B2 JP3797277 B2 JP 3797277B2
Authority
JP
Japan
Prior art keywords
pair
frequency
signal
modulation section
protrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002163349A
Other languages
Japanese (ja)
Other versions
JP2004012198A (en
Inventor
基 中西
徹 石井
哲 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2002163349A priority Critical patent/JP3797277B2/en
Priority to AU2003242381A priority patent/AU2003242381A1/en
Priority to EP03730562.0A priority patent/EP1510833B1/en
Priority to US10/516,924 priority patent/US7034743B2/en
Priority to PCT/JP2003/006373 priority patent/WO2003102623A1/en
Publication of JP2004012198A publication Critical patent/JP2004012198A/en
Application granted granted Critical
Publication of JP3797277B2 publication Critical patent/JP3797277B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/354Extracting wanted echo-signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/345Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using triangular modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/583Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/584Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/932Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles using own vehicle data, e.g. ground speed, steering wheel direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/356Receivers involving particularities of FFT processing

Description

【0001】
【発明の属する技術分野】
この発明は、連続波を周波数変調した電波を送受信して物標の探知を行うレーダに関するものである。
【0002】
【従来の技術】
従来、例えば車載用レーダとして、ミリ波を利用したFM−CWレーダが開発されている。FM−CWレーダは、連続波(CW)を周波数変調(FM)した電波を送受信して物標の探知を行う。すなわち、周波数が次第に上昇する上り変調区間と、周波数が次第に下降する下り変調区間とを繰り返す送信信号を送信し、物標からの反射信号を含む受信信号を受信するようにし、送信信号と受信信号との周波数差の信号であるビート信号の周波数スペクトルに基づいて物標の相対距離および相対速度を求めるものである。また、上記の動作を所定方位を向く1つのビームについて行い、そのビーム方位を順次変化させることによって、所定方位角範囲について分布する物標の方位を求める。
【0003】
【発明が解決しようとする課題】
物標が単一である場合には、上り変調区間と下り変調区間において、物標からの反射波に基づくビート信号の周波数スペクトルにそれぞれ単一の突出部が生じる。従って、その突出部のピーク周波数を、上り変調区間のビート信号の周波数(以下「アップビート周波数」という。)と下り変調区間のビート信号の周波数(以下「ダウンビート周波数」という。)とに基づいて、物標の相対距離および相対速度を求めることができる。
【0004】
ところが、探知範囲内に複数の物標が存在する場合には、同一ビームについて、上り変調区間と下り変調区間のそれぞれにおいて、周波数スペクトルに多数の突出部が生じる。そのため、複数のアップビート周波数と複数のダウンビート周波数との組み合わせ(以下「ペアリング」という。)にミスが生じるおそれがあった。
また、車載用レーダとして用いる場合に、車両と静止物との判定が重要となる。
【0005】
そこで、▲1▼特開平7−98375には、車速と同じ相対速度の物標を静止物と判定するようにしたレーダが示されている。▲2▼特開平5−232214には、車速と同じ相対速度でビート信号の周波数スペクトルが広がっているものを静止物と判定するレーダが示されている。▲3▼特開平11−211811には、ビート信号の周波数スペクトルに所定密度以上のピークが存在する時、連続路側物であるものと判定するようにしたレーダが示されている。また、▲4▼特開2000−147103には、過去の静止物位置データより静止物によるデータを推測するようにしたレーダが示されている。
【0006】
ところが、本願発明者らの研究によれば、このような従来のレーダには、次のような課題が有ることを見出した。
【0007】
▲1▼▲2▼のレーダにおいては、ペアリングにミスが生じると静止物の検知ができず、静止物の方向の或る距離に動体が存在するものとして誤検知してしまう。
【0008】
▲3▼のレーダにおいては、道路標識や何らかの支柱など、方位方向に狭い物標に対しては路側物として検知できない。
【0009】
▲4▼のレーダにおいては、連続路側物等は、常に同じ位置(方位)からの反射信号強度が大きいという訳ではないため、履歴から抽出するのは容易ではない。
【0010】
そこで、この発明の目的は、上述の問題を解消して、静止物の検知を容易且つ確実なものとし、ペアリングのミスも抑えるようにしたレーダを提供することにある。
【0011】
【課題を解決するための手段】
この発明は、周波数が次第に上昇する上り変調区間と、周波数が次第に下降する下り変調区間とが時間的に三角波状に繰り返し変化する送信信号を送信し、物標からの反射信号を含む受信信号を受信する送受信手段と、
前記送信信号と前記受信信号との周波数差の信号であるビート信号の周波数スペクトルに関するデータを求める周波数分析手段と、
同一物標に起因して生じた、前記上り変調区間のビート信号の周波数スペクトルに現れる第1突出部と、前記下り変調区間のビート信号の周波数スペクトルに現れる第2突出部とのペアを抽出するペア抽出手段と、
該ペアをなす2つの突出部の周波数に基づいて、物標の相対距離・相対速度の少なくとも一方を検知する手段とを備えたレーダにおいて、
当該レーダ以外の手段により測定された、当該レーダが搭載された移動体の移動速度のデータを入力する手段を設け、
前記ペア抽出手段が、前記移動速度のデータに基づき、静止物に対応した、上り変調区間と下り変調区間のビート信号の周波数スペクトルに現れる突出部の周波数差を逆算するとともに、該周波数差に対応する突出部の組み合わせのペア評価値には所定の重みを付けた上で、該ペア評価値の高い順に突出部の組み合わせを抽出するようにしたことを特徴としている。
【0012】
前記ペア抽出手段としては、第1突出部と第2突出部との信号強度の一致度を、前記周波数差に対応する突出部の組み合わせには所定の重みを付けた上で求め、一致度から前記ペア評価値を求める
【0013】
また、この発明は、前記送信信号のビーム方位を所定走査範囲に亘って変化させる走査手段を備え、前記ペア抽出手段を、第1突出部と第2突出部との方位の一致度、前記周波数差に対応する突出部の組み合わせには所定の重みを付けた上で求め、一致度から前記ペア評価値を求める
【0014】
また、この発明は、前記ペア抽出手段が、第1突出部と第2突出部との方位方向の信号強度プロファイルの相関度を、前記周波数差に対応する突出部の組み合わせには所定の重みを付けた上で求め、該相関度から前記ペア評価値を求める
【0015】
また、この発明は、静止物に対応した周波数差の関係となるペアが、方位方向または距離方向に所定数連続する場合に、それらを連続静止物と判定する手段を設けたことを特徴としている。
【0016】
また、この発明は、前記連続静止物の存在領域に、静止物に対応した周波数差の関係となるペアを検知したとき、そのペアの抽出が誤りであるものとして判定する手段を設けたことを特徴としている。
【0017】
また、この発明は、前記連続静止物より遠方に検知した物標に関しては、その検知結果を出力しないようにする手段を設けたことを特徴としている。
【0018】
【発明の実施の形態】
この発明の実施形態に係るレーダの構成をブロック図として図1に示す。
図1において、1はRFブロック、2は信号処理ブロックである。RFブロック1は、レーダ測定用の電波を送受信し、送信波と受信波とのビート信号を信号処理ブロック2へ出力する。信号処理ブロック2の変調カウンタ11は、結果的にDAコンバータ10から三角波信号を発生させるためのカウントを行い、その値をDAコンバータ10へ出力する。DAコンバータ10は、それをアナログ電圧信号に変換してRFブロック1のVCO(電圧制御発振器)8へ与える。これにより送信波をFM変調する。すなわち、VCO8の発振信号はアイソレータ7、カプラ6、サーキュレータ5を介して1次放射器4へ供給される。この1次放射器4は、誘電体レンズ3の焦点面または焦点面付近にあって、誘電体レンズ3は、1次放射器4から放射されるミリ波信号を鋭いビームとして送信する。物標(車両など)からの反射波が誘電体レンズ3を介し1次放射器4へ入射されると、受信信号がサーキュレータ5を介してミキサ9へ導かれる。ミキサ9には、この受信信号とカプラ6からの送信信号の一部であるローカル信号とを入力して、その周波数差の信号に相当するビート信号を中間周波信号として信号処理ブロック2のADコンバータ12へ出力する。ADコンバータ12は、これをデジタルデータに変換する。DSP(デジタル信号処理装置)13は、ADコンバータ12から入力したデータ列をFFT(高速フーリエ変換)処理して、後述するように、物標の相対距離および相対速度を算出する。
【0019】
RFブロック1内の16で示す部分は、1次放射器4を誘電体レンズ3の焦点面またはそれに平行な面内を平行移動させるスキャンユニットである。この1次放射器4が設けられている可動部と固定部側との間に0dBカプラを構成している。Mで示す部分は、その駆動用モータを示している。このモータによって、例えば100ms周期で−10度から+10度の範囲をビーム走査する。
信号処理ブロック2内の14は、変調カウンタ11およびスキャンユニット16を制御するマイクロプロセッサである。このマイクロプロセッサ14は、スキャンユニット16に対してビーム方位を所定角度に向けるとともに、その静止時間内に上り区間と下り区間の一山分の三角波でVCO8を変調するように、カウント周期を定める。このマイクロプロセッサ14が本発明に係る「走査手段」に相当する。マイクロプロセッサ14は、DSP13が求めた、上り変調区間の周波数スペクトルに現れる突出部と、下り変調区間の周波数スペクトルに現れる突出部とのペアを抽出(ペアリング)する。また、車速センサ15は自車速を検出するセンサであり、マイクロプロセッサ14は、この車速センサ15から自車速を読み取り、静止物に対応したペアを優先的にペアリングする。
【0020】
図2は、物標までの距離と相対速度に起因する、送信信号と受信信号の周波数変化のずれの例を示している。送信信号の周波数上昇時における送信信号と受信信号との周波数差がアップビートの周波数fBUであり、送信信号の周波数下降時における送信信号と受信信号との周波数差がダウンビートの周波数fBDである。Δfは周波数偏位幅である。この送信信号と受信信号の三角波の時間軸上のずれ(時間差)が、アンテナから物標までの電波の往復時間に相当する。また、送信信号と受信信号の周波数軸上のずれがドップラシフト量であり、これはアンテナに対する物標の相対速度に起因して生じる。この時間差とドップラシフト量によってアップビートfBUとダウンビートfBDの値が変化する。すなわち、このアップビートとダウンビートの周波数を検出することによって、レーダから物標までの距離およびレーダに対する物標の相対速度を算出する。
【0021】
図3は、レーダの送受信ビームの方位と複数の物標との関係の例を示している。ここでBoは自車に搭載されたレーダの正面方向である。B+1,B+2・・・は、正面から右方向にビーム方位を変異させた時の各ビーム方位を示している。同様に,B-1,B-2・・・は、正面から左方向にビーム方位を変異させた時の各ビーム方位を示している。
【0022】
図3において丸く示している物標OB2,OB5は、固定された路側物である。また、四角く表している物標OB1,OB3,OB4は、自車の前方に存在する他車である。矢印はそれらの走行方向を示している。
【0023】
図3において、OB2,OB5等の路側物や路上の駐車車両等の静止物の相対速度は、自車速と同一速度である。そこで、車速センサで求めた自車速のデータを利用してペアリングを行うことにより、ペアリング精度の向上を図る。
【0024】
渋滞のない通常の走行状態では、レーダが捉える物標はガードレール、標識、防音壁、街灯等の静止物の数の方が多い。また、走行している車両も渋滞時以外は所定の車間距離を保って走行していることが多いため、2台の車両が静止物と同程度の周波数差(アップビート周波数とダウンビート周波数の差)に相当する間隔になるような状況はほとんど生じない。
【0025】
そこで、静止物に対応した上り変調区間と下り変調区間の周波数スペクトルに表れる突出部の周波数差を自車速に基づいて逆算し、その周波数差に対応するペアをまず抽出し、その後、残った突出部同士の中でペアリングを行うことによって動体物の物標の距離・速度を算出する。
【0026】
図4は、上り変調区間と下り変調区間のビート信号の周波数スペクトルの例を示している。ここで実線は上り変調区間でのビート信号の周波数スペクトル、破線は下り変調区間でのビート信号の周波数スペクトルである。図4に示した周波数範囲では、上り変調区間でのビート信号に3つの突出部が、下り変調区間のビート信号に2つの突出部がそれぞれ生じている。そして、この時、自車速Vが100km/hである時、変調信号の中心周波数f0を、f0=76.5GHzとすれば、上り変調区間でのビート信号の周波数と、下り変調区間でのビート信号の周波数との差は次のようになる。
【0027】

Figure 0003797277
ここで、cは光速である。
【0028】
図4に示した例では、上り変調区間でのビート信号の周波数スペクトルに現れる2つの突出部と下り変調区間ビート信号の周波数スペクトルに現れる2つの突出部とが28.3kHzの周波数差を持つため、これらをそれぞれペアとして抽出する。すなわち2つの静止物が検知できる。
【0029】
但し、静止物に対応する周波数差となる突出部同士をペアとして抽出するだけでは次のような問題が生じる。
【0030】
上述の例で、周波数偏位幅Δf=300MHz、変調周期の逆数すなわち変調周期fmが500Hz、2台の車両が約14.1m間隔で100km/hで走行している時に、
ビート信号の周波数差fB (=fBU−fBD)は、
Figure 0003797277
ここで、Rは距離、cは光速である。
【0031】
この関係から、この2台の車両の反射波による突出部のピーク周波数間隔が静止物により生じる周波数差に略一致することになる。
【0032】
図6はその例について示している。図6は上り変調区間と下り変調区間について、ビート信号の周波数スペクトルと2つの車両の状態を示している。(A)は0km/hの車両すなわち静止車両によって生じるスペクトルを、また、(B)は自車両から所定距離離れた前方を、2つの車両が車間距離14.1mで100km/hで走行している時のスペクトルを示している。
【0033】
このように2つの物標により生じる2つの突出部同士のペアリングを行う際、静止物に対応する周波数差28.3kHzの組合せとなる突出部同士を優先的にペアとして抽出してしまうおそれがある。
【0034】
また、その他の状況として、急なカーブの存在する所や、危険な走行を行う車両が存在する場合等においても、走行物と静止物とを認識し誤るおそれが生じる。
【0035】
そこで、上り変調区間と下り変調区間でのビート信号の周波数差が静止物により生じる周波数差の関係になる組合せだけでペアリングするのではなく、よりペアらしいものをペアとして抽出するように次のような処理を行う。
【0036】
図5は、図1に示したDSP13およびマイクロプロセッサ14の処理手順を示すフローチャートである。まず、車速センサ15から自車速のデータを読み取る(s1)。続いて、スキャンユニット16の制御によって、ビームを初期方位に向ける(s2)。その状態で、A/Dコンバータ12により変換されたビート信号のディジタルデータを所定のサンプリング数だけ取得し、それについてFFT処理する(s3→s4)。
【0037】
続いて、周波数スペクトルの信号強度が山型に突出する部分を検出し、そのピーク周波数およびピーク周波数における信号強度を抽出する(s5)。
【0038】
その後、前回の隣接するビーム方位において抽出したピーク周波数およびその信号強度を参照して、今回のビーム方位におけるピーク周波数と、その信号強度をどのグループに入れるかを判定する(s6)。すなわち、ピーク周波数の周波数差が一定周波数以内であるものをグルーピングする。
【0039】
その後、ビーム方位をビーム1本分変位させ、同様の処理を行う(n7→s8→s3→・・・)。
【0040】
以上の処理を最終ビームまで繰り返し行うことによって、方位方向に所定幅広がる探知範囲について、上り変調区間と下り変調区間についてのビーム方位毎のピーク周波数スペクトルを求める。
【0041】
続いて、各グループの、代表方位、代表ピーク周波数、代表信号強度をペア候補、方位方向のレベルプロファイルを求める(s9)。例えばビーム方位方向と周波数軸方向に広がるグループの中心方位を代表方位とし、その方位において周波数軸上に広がる周波数範囲の中心を代表ピーク周波数とし、その代表ピーク周波数における信号強度を代表信号強度とする。また、グループの代表周波数における方位方向の信号強度変化を信号強度プロファイルとしてを求める。これらの各グループの代表値を上り変調区間と下り変調区間についてそれぞれ求める。
【0042】
その後、ペア候補のうち静止物に対応した周波数差の関係にあるペアが優先的にペアとなるように、一致度の重み付けを行った後、ペアリングを行う(s10→s11)。
【0043】
ここで、信号強度の一致度をMa、方位の一致度をMd、信号強度プロファイルの一致度をMcとし、ペアらしさを表すペア評価値の重みをmとすると、
ペア評価値Eは
E=m(Ma*Md*Mc) …(1)
として表される。これらの一致度Ma,Md,Mcは0〜1の係数、重みmは1以上の値である。
【0044】
ペア候補として抽出された突出部グループの代表値の全ての組合せについて、このペア評価値Eを求め、その値が最大となるものから順にペアとする。上記重みmは、静止物に対応する周波数差となるペアに対して、1を超える大きな値を与える。その他のペアに対してはm=1とする。
【0045】
上述の例では、信号強度の一致度、方位の一致度、信号強度プロファイルの一致度に対して重みmを掛けることによってペア評価値Eを求めるようにしたが、静止物に対応する周波数差の組合せが優先的にペアとして抽出されるように、上記3つの一致度を個別に修正するようにしてもよい。
【0046】
図7は信号強度の一致度を修正する例について示している。ここでA,Bは上り変調区間でのビート信号の周波数スペクトルに現れる突出部、α,βは下り変調区間でのビート信号の周波数スペクトルに現れる突出部である。ここで、図7に示した例では、αとAとの信号強度の差は3dB、αとBとの信号強度の差は1dBである。しかし、αとAとの組合せは、静止物に対応する周波数差であるので、その信号強度の差を3dBだけ小さくして信号強度の一致度を求める。したがって、αとAとは信号強度の差が修正後に0dBとなって、αとBとの組合せより、αとAとの組合せが優先される。修正後の信号強度一致度をMa′とすれば、全体のペア評価値Eは、
E=(Ma′*Md*Mc) …(2)
で表される。
【0047】
図8は方位の一致度を修正する例について示している。図8の(A)は、方位の異なるビーム毎の上り変調区間でのビート信号の周波数スペクトルに現れる突出部のピーク周波数を示す図、(B)は、下り変調区間でのビート信号の周波数スペクトルに現れる突出部のピーク周波数を示す図である。ここで横軸にビーム方位、縦軸に周波数スペクトルに含まれる突出部の周波数を採って直角座標で表している。
【0048】
この例では、(A)に示すように上り変調区間で、ビーム方位Bjおよび周波数Faを中心として、方位方向および周波数軸方向に突出部の広がったグループGu1が生じている。また、(B)に示すように下り変調区間でビーム方位Biおよび周波数Fbを中心として、方位方向および周波数軸方向に突出部の広がったグループGd1が生じている。また、下り変調区間でビーム方位Bkおよび周波数Fcを中心として、方位方向および周波数軸方向に突出部の広がったグループGd2が生じている。
【0049】
ここで、グループGu1の代表周波数Faと、グループGd2の代表周波数Fcとの周波数差が、静止物に対応する周波数差であるとき、グループGu1の代表方位BjとグループGd2の代表方位Bkとの方位角度差が±1.0°以内のものについては同一方位であるものとみなす。グループGu1の代表周波数FaとグループGd1の代表周波数Fbとの周波数差は、上記静止物に対応する周波数差ではないので、両グループの代表方位の角度差はBjとBiとの差のまま扱う。
【0050】
このようにして方位の一致度について修正を行う。この時の修正後の方位一致度をMd′とすれば、全体のペア評価値Eは、
E=(Ma*Md′*Mc) …(2)
で表される。
【0051】
図9は、信号強度プロファイルの一致度を修正する例について示している。
ここでグループGu1とGd1との代表周波数差が静止物に対応する周波数差であるので、両者の信号強度プロファイルの一致度を高める方向に修正する。たとえば信号強度プロファイルの一致度を相関係数として求める場合に、1.0との差を一定の割合で近づけた値(例えば1/2)で評価する。例えばグループGu1とGd1との信号強度プロファイルの相関係数が0.7、Gu1とGd2との信号強度プロファイルの相関係数が0.8である時、前者は0.7+(1−0.7)/2=0.85として、信号強度プロファイルの一致度を高める。
【0052】
この時の修正後の信号強度プロファイルの一致度をMc′とすれば、全体のペア評価値Eは、
E=(Ma*Md*Mc′) …(3)
で表される。
【0053】
次に、第2の実施形態に係るレーダにおける処理内容を図10〜図13を参照して説明する。
図10は第1の実施形態で示した方法により抽出したペアにより算出した各物標の位置を示している。黒丸は各物標の位置である。例えばカードレール、防音壁、中央分離帯、建物の壁面等の連続路側物であれば、図10の(A)に示すように静止物が近接して複数個検知される。このような連続する静止物を連続静止物として判定する。図10の(A)に示す例では、2つの連続静止物A1,A2を判定する。
【0054】
静止物が近接しているかどうかの判断は、所定距離、所定方位角度範囲内に検知された静止物をグループ化していくことにより行う。例えば図10の(B)に示すように、ある1つの静止物OBaから所定距離所定方位角度範囲内に存在する静止物OBbが存在すれば、それを同一グループとみなす。次に、この静止物OBbについて同様の処理を行い、次々とグループ化する。
【0055】
この処理は、図10の(C)に示すように直交座標上で行ってもよい。すなわち、直交座標上で所定距離範囲内に存在する静止物を逐次グループ化してもよい。
【0056】
このように連続静止物として判定された領域は、ガードレール、防音壁、中央分離帯、建物の壁面等であるので、普通はその領域内に動体物は存在し得ない。したがって、ペアとして抽出した周波数差から物標の位置および速度を算出した結果、上記連続静止物の領域内に動体物が擬似的に存在することとなった場合、そのペアはミスペアリングであったものとみなすことができる。例えば図11に示すように、連続静止物の領域A1内に擬似的に存在する速度30km/h,80km/hの動体物はミスペアリングによるものとみなす。同様に、連続静止物の領域A2内に擬似的に存在する速度20km/hの動体物はミスペアリングによるものとみなす。
【0057】
なお、現実に連続静止物の領域内に動体物が存在し、その探知結果を除去しても、道路上の走行物体の検出確率等に悪影響を与えることはない。
【0058】
また、連続静止物の領域より遠方に擬似的に検知された物標に関しては、例えば中央分離帯の向こう側の車線(対向車線)を走行している車両であったり、防音壁やトンネルの壁面等による鏡像であることが多いので、その探知結果も除去する。例えば図12において物標OBdは現実に自車両の前方を走行する車両であるが、OBeは連続静止物の領域A2によるOBdの鏡像であるか、A2が中央分離帯である時にその反対車線を逆走する車両である。したがって、このOBeに関する探知結果は除去し、ホスト装置へは出力しない。
【0059】
なお、道路上に存在する標識、陸橋等が静止物として検出される場合があるので、自車両の進行方向に存在する連続静止物より遠方の物標に関してはこの除去処理は行わない。なお、自車両の進行方向は、ステアリングホイールの操舵角、ヨーレート、カーナビ等の情報から検出することができる。
【0060】
図13は上述の処理手順を示すフローチャートである。この処理は第1の実施形態で図5に示した処理手順に続いて行うものである。
まず、上述した連続静止物の判定を行い、その存在する領域を求める(s21→s22)。続いて、その連続静止物の領域内に擬似的に動体物が存在することになるか否かを判定する(s23)。この連続静止物の領域内に動体物が擬似的に存在することになるような組み合わせ(ペアリング)をミスペアリングとして扱い、そのようなペアリングを避けるように再度ペアリングを行う(s24)。
【0061】
また連続静止物の領域より遠方に動体物が擬似的に存在する場合に、その物標の検知結果を除去する(s25)。その後、新たな探知結果のデータを作成し、ホスト装置へ出力する(s26)。
【0062】
【発明の効果】
この発明によれば、静止物に対応した上り変調区間と下り変調区間のビート信号の周波数スペクトルに現れる突出部に対応する突出部の組み合わせのペア評価値には所定の重みを付けた上で、該ペア評価値の高い順に突出部の組み合わせを抽出するようにしたので、静止物の検知が容易となり、静止物以外の、例えば前方の走行車両の探知がより確実に行えるようになる。
【0063】
また、この発明によれば、上り変調区間のビート信号の周波数スペクトルに現れる第1突出部と、下り変調区間のビート信号の周波数スペクトルに現れる第2突出部との信号強度の一致度を、前記周波数差に対応する突出部の組み合わせには所定の重みを付けた上で求め、該一致度から前記ペア評価値を求めるようにしたことにより、ミスペアリングとなる確率が相対的に抑えられ、静止物によるペアをより確実に抽出できるようになる。
【0064】
また、この発明によれば、送信信号のビーム方位を所定走査範囲に亘って変化させるようにし、前記第1突出部と前記第2突出部との方位の一致度を、前記周波数差に対応する突出部の組み合わせには所定の重みを付けた上で求め、該一致度から前記ペア評価値を求めることにより、ミスペアリングとなる確率が相対的に抑えられ、静止物によるペアをより確実に抽出できるようになる。
【0065】
同様に、方位方向の信号強度プロファイルの相関度を、前記周波数差に対応する突出部の組み合わせには所定の重みを付けた上で求め、該相関度から前記ペア評価値を求めることにより、ミスペアリングとなる確率が相対的に抑えられ、静止物によるペアをより確実に抽出できるようになる。
【0066】
また、この発明によれば、静止物に対応する周波数差の関係となるペアの方位方向または距離方向の連続性に基づいて連続静止物を判定するようにしたので、探知物標の大多数を占める連続静止物の存在領域を確実に検知でき、相対的に前方の走行車両等の動体物を確実に検知できるようになる。
【0067】
また、この発明によれば、前記連続静止物の存在領域に擬似的に動体物が検知された時、対応するペアの抽出が誤りであったものと判定するようにしたので、ペア抽出の誤りがより確実に抑えられる。
【0068】
また、この発明によれば、前記連続静止物より遠方に検知した物標については、その結果を出力しないようにしたので、探知した物標のうち、実質的に問題となる物標のみをホスト装置へ出力することができ、全体のデータ処理量を削減でき、探知結果に基づく処理を高速化できる。
【図面の簡単な説明】
【図1】レーダの構成を示すブロック図
【図2】同レーダの上り変調区間と下り変調区間に生じるビート信号の周波数差の例を示す図
【図3】自車両前方に存在する各種物標の例を示す図
【図4】上り変調区間と下り変調区間におけるビート信号の周波数スペクトルの例を示す図
【図5】同レーダの処理手順を示すフローチャート
【図6】自車両前方の車両の状態と周波数スペクトルの例を示す図
【図7】上り変調区間と下り変調区間におけるビート信号の周波数スペクトルに現れる突出部の信号強度の差の例を示す図
【図8】ビート信号の周波数スペクトルに現れる突出部のビーム方位および周波数軸上の分布の例を示す図
【図9】突出部グループの方位方向の信号強度プロファイルの例を示す図
【図10】連続静止物およびその存在領域の例を示す図
【図11】連続静止物領域中に擬似的に検知された動体物の例を示す図
【図12】連続静止物の領域とその他の検知された物標の位置関係の例を示す図
【図13】連続静止物に関する処理手順を示すフローチャート
【符号の説明】
1−RFブロック
2−信号処理ブロック
3−誘電体レンズ
4−1次放射器
5−サーキュレータ
6−カプラ
7−アイソレータ
8−VCO
9−ミキサ
16−スキャンユニット[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a radar that detects a target by transmitting and receiving radio waves obtained by frequency-modulating continuous waves.
[0002]
[Prior art]
Conventionally, for example, FM-CW radar using millimeter waves has been developed as a vehicle-mounted radar. The FM-CW radar detects a target by transmitting and receiving radio waves obtained by frequency modulation (FM) of a continuous wave (CW). That is, a transmission signal that repeats an uplink modulation interval in which the frequency gradually increases and a downlink modulation interval in which the frequency gradually decreases is transmitted so that a reception signal including a reflection signal from the target is received. The relative distance and the relative speed of the target are obtained based on the frequency spectrum of the beat signal that is a signal of the frequency difference between the target and the beat signal. Further, the above operation is performed for one beam directed in a predetermined direction, and the direction of the target distributed over the predetermined azimuth angle range is obtained by sequentially changing the beam direction.
[0003]
[Problems to be solved by the invention]
When there is a single target, a single protrusion occurs in the frequency spectrum of the beat signal based on the reflected wave from the target in the upstream modulation section and the downstream modulation section. Therefore, the peak frequency of the protruding portion is based on the frequency of the beat signal in the upstream modulation section (hereinafter referred to as “upbeat frequency”) and the frequency of the beat signal in the downstream modulation section (hereinafter referred to as “downbeat frequency”). Thus, the relative distance and relative speed of the target can be obtained.
[0004]
However, when there are a plurality of targets in the detection range, a large number of protrusions are generated in the frequency spectrum in each of the upstream modulation section and the downstream modulation section for the same beam. For this reason, there is a possibility that a mistake may occur in a combination (hereinafter referred to as “pairing”) of a plurality of upbeat frequencies and a plurality of downbeat frequencies.
In addition, when used as an on-vehicle radar, it is important to determine the vehicle and a stationary object.
[0005]
Therefore, (1) Japanese Patent Laid-Open No. 7-98375 discloses a radar in which a target having the same relative speed as the vehicle speed is determined as a stationary object. {Circle around (2)} Japanese Patent Laid-Open No. 5-232214 discloses a radar that determines that a signal having a wide frequency spectrum of beat signals at the same relative speed as the vehicle speed is a stationary object. (3) Japanese Laid-Open Patent Publication No. 11-211811 discloses a radar which is determined to be a continuous roadside object when a peak of a predetermined density or higher exists in the frequency spectrum of the beat signal. Also, {circle over (4)} JP-A-2000-147103 discloses a radar in which data based on a stationary object is estimated from past stationary object position data.
[0006]
However, according to the study by the present inventors, it has been found that such a conventional radar has the following problems.
[0007]
In the radar of (1) and (2), if an error occurs in pairing, a stationary object cannot be detected, and it is erroneously detected that a moving object exists at a certain distance in the direction of the stationary object.
[0008]
In the radar of (3), a target narrow in the azimuth direction such as a road sign or some support cannot be detected as a roadside object.
[0009]
In the radar of item (4), continuous roadside objects and the like do not always have a high reflected signal intensity from the same position (orientation), so it is not easy to extract from the history.
[0010]
Accordingly, an object of the present invention is to provide a radar which solves the above-described problems, makes it easy and reliable to detect a stationary object, and suppresses a pairing error.
[0011]
[Means for Solving the Problems]
The present invention transmits a transmission signal in which an uplink modulation section in which the frequency gradually increases and a downlink modulation section in which the frequency gradually decreases repeatedly change in a triangular wave shape in time, and a reception signal including a reflection signal from a target is obtained. A transmission / reception means for receiving;
Frequency analysis means for obtaining data relating to a frequency spectrum of a beat signal that is a signal of a frequency difference between the transmission signal and the reception signal;
A pair of a first protrusion that appears in the frequency spectrum of the beat signal in the upstream modulation section and a second protrusion that appears in the frequency spectrum of the beat signal in the downstream modulation section, caused by the same target, is extracted. A pair extraction means;
A radar having means for detecting at least one of a relative distance and a relative speed of a target on the basis of the frequencies of the two protruding portions forming the pair;
Provided with means for inputting data on the moving speed of a moving object equipped with the radar, measured by means other than the radar,
The pair extraction means back-calculates the frequency difference of the protruding portion appearing in the frequency spectrum of the beat signal in the upstream modulation section and the downstream modulation section, corresponding to the stationary object, based on the moving speed data, and corresponds to the frequency difference. Do A predetermined weight is assigned to the pair evaluation value of the combination of protrusions, and the combination of protrusions is selected in descending order of the pair evaluation value. It is characterized by being extracted.
[0012]
As the pair extraction means, the degree of coincidence of the signal intensity between the first protrusion and the second protrusion is determined. The combination of protrusions corresponding to the frequency difference is given a predetermined weight. Find and match Obtain the pair evaluation value from .
[0013]
In addition, the present invention includes a scanning unit that changes a beam direction of the transmission signal over a predetermined scanning range, and the pair extraction unit has the degree of coincidence of the direction between the first projecting portion and the second projecting portion. The combination of protrusions corresponding to the frequency difference is given a predetermined weight. Find and match Obtain the pair evaluation value from .
[0014]
Further, according to the present invention, the pair extraction means determines the correlation degree of the signal intensity profile in the azimuth direction between the first protrusion and the second protrusion. The combination of protrusions corresponding to the frequency difference is given a predetermined weight. The degree of correlation Obtain the pair evaluation value from .
[0015]
In addition, the present invention is characterized in that means for determining a continuous stationary object when a predetermined number of pairs having a frequency difference relationship corresponding to a stationary object continues in a azimuth direction or a distance direction is provided. .
[0016]
Further, the present invention is provided with means for determining in the existence region of the continuous stationary object that a pair having a frequency difference relationship corresponding to the stationary object is detected as an error when the pair is detected. It is a feature.
[0017]
In addition, the present invention is characterized by providing means for preventing the detection result of a target detected farther from the continuous stationary object from being output.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
A configuration of a radar according to an embodiment of the present invention is shown as a block diagram in FIG.
In FIG. 1, 1 is an RF block and 2 is a signal processing block. The RF block 1 transmits and receives radio waves for radar measurement, and outputs beat signals of transmission waves and reception waves to the signal processing block 2. As a result, the modulation counter 11 of the signal processing block 2 performs a count for generating a triangular wave signal from the DA converter 10 and outputs the value to the DA converter 10. The DA converter 10 converts it into an analog voltage signal and supplies it to a VCO (voltage controlled oscillator) 8 of the RF block 1. Thereby, the transmission wave is FM-modulated. That is, the oscillation signal of the VCO 8 is supplied to the primary radiator 4 through the isolator 7, the coupler 6, and the circulator 5. The primary radiator 4 is at or near the focal plane of the dielectric lens 3, and the dielectric lens 3 transmits a millimeter wave signal radiated from the primary radiator 4 as a sharp beam. When a reflected wave from a target (such as a vehicle) is incident on the primary radiator 4 via the dielectric lens 3, the received signal is guided to the mixer 9 via the circulator 5. The mixer 9 receives the received signal and a local signal that is a part of the transmission signal from the coupler 6, and uses the beat signal corresponding to the frequency difference signal as an intermediate frequency signal as an AD converter of the signal processing block 2. 12 is output. The AD converter 12 converts this into digital data. The DSP (digital signal processing device) 13 performs FFT (Fast Fourier Transform) processing on the data string input from the AD converter 12 and calculates the relative distance and relative speed of the target as will be described later.
[0019]
A portion indicated by 16 in the RF block 1 is a scanning unit that translates the primary radiator 4 in the focal plane of the dielectric lens 3 or in a plane parallel thereto. A 0 dB coupler is configured between the movable part provided with the primary radiator 4 and the fixed part side. A portion indicated by M indicates the driving motor. With this motor, for example, beam scanning is performed in a range of −10 degrees to +10 degrees in a cycle of 100 ms.
Reference numeral 14 in the signal processing block 2 is a microprocessor for controlling the modulation counter 11 and the scan unit 16. The microprocessor 14 directs the beam azimuth to the scan unit 16 at a predetermined angle and determines the count cycle so that the VCO 8 is modulated with a triangular wave of one mountain in the up and down sections within the stationary time. The microprocessor 14 corresponds to “scanning means” according to the present invention. The microprocessor 14 extracts (pairs) a pair of a protrusion that appears in the frequency spectrum in the upstream modulation section and a protrusion that appears in the frequency spectrum in the downstream modulation section, which are obtained by the DSP 13. The vehicle speed sensor 15 is a sensor that detects the vehicle speed, and the microprocessor 14 reads the vehicle speed from the vehicle speed sensor 15 and preferentially pairs a pair corresponding to a stationary object.
[0020]
FIG. 2 shows an example of the difference in frequency change between the transmission signal and the reception signal due to the distance to the target and the relative speed. The frequency difference between the transmission signal and the reception signal when the frequency of the transmission signal increases is the upbeat frequency f. BU The frequency difference between the transmission signal and the reception signal when the frequency of the transmission signal decreases is the frequency f of the downbeat. BD It is. Δf is a frequency deviation width. A shift (time difference) between the transmission signal and the reception signal on the time axis of the triangular wave corresponds to the round-trip time of the radio wave from the antenna to the target. Further, the shift on the frequency axis between the transmission signal and the reception signal is the Doppler shift amount, which is caused by the relative speed of the target with respect to the antenna. Upbeat f by this time difference and Doppler shift amount BU And downbeat f BD The value of changes. That is, by detecting the upbeat and downbeat frequencies, the distance from the radar to the target and the relative speed of the target with respect to the radar are calculated.
[0021]
FIG. 3 shows an example of the relationship between the direction of the transmission / reception beam of the radar and a plurality of targets. Here, Bo is the front direction of the radar mounted on the vehicle. B + 1, B + 2... Indicate the beam orientations when the beam orientation is changed from the front to the right. Similarly, B-1, B-2,... Indicate the beam orientations when the beam orientation is changed from the front to the left.
[0022]
The targets OB2 and OB5 shown in a circle in FIG. 3 are fixed roadside objects. In addition, the targets OB1, OB3, and OB4 represented by squares are other vehicles existing in front of the host vehicle. Arrows indicate their travel directions.
[0023]
In FIG. 3, the relative speed of a roadside object such as OB2 and OB5 and a stationary object such as a parked vehicle on the road is the same speed as the own vehicle speed. Therefore, pairing accuracy is improved by performing pairing using the vehicle speed data obtained by the vehicle speed sensor.
[0024]
In normal driving conditions without traffic jams, the number of targets captured by the radar is greater than that of stationary objects such as guardrails, signs, noise barriers, and street lights. In addition, since the traveling vehicle often travels at a predetermined inter-vehicle distance except during a traffic jam, the two vehicles have the same frequency difference (upbeat frequency and downbeat frequency) as a stationary object. There is almost no situation that results in an interval corresponding to (difference).
[0025]
Therefore, the frequency difference of the protruding portion appearing in the frequency spectrum of the up-modulation section and the down-modulation section corresponding to the stationary object is calculated backward based on the vehicle speed, and a pair corresponding to the frequency difference is first extracted, and then the remaining protrusion The distance and speed of the target of the moving object are calculated by performing pairing among the parts.
[0026]
FIG. 4 shows an example of the frequency spectrum of the beat signal in the upstream modulation section and the downstream modulation section. Here, the solid line represents the frequency spectrum of the beat signal in the upstream modulation section, and the broken line represents the frequency spectrum of the beat signal in the downstream modulation section. In the frequency range shown in FIG. 4, three protrusions occur in the beat signal in the upstream modulation section, and two protrusions occur in the beat signal in the downstream modulation section. At this time, when the vehicle speed V is 100 km / h, if the center frequency f0 of the modulation signal is f0 = 76.5 GHz, the frequency of the beat signal in the upstream modulation section and the beat in the downstream modulation section The difference from the signal frequency is as follows.
[0027]
Figure 0003797277
Here, c is the speed of light.
[0028]
In the example shown in FIG. 4, the two protrusions appearing in the frequency spectrum of the beat signal in the upstream modulation section and the two protrusions appearing in the frequency spectrum of the beat modulation section have a frequency difference of 28.3 kHz. These are each extracted as a pair. That is, two stationary objects can be detected.
[0029]
However, the following problem arises only by extracting the protrusions having a frequency difference corresponding to the stationary object as a pair.
[0030]
In the above example, when the frequency deviation width Δf = 300 MHz, the reciprocal of the modulation period, that is, the modulation period fm is 500 Hz, and two vehicles are traveling at 100 km / h at intervals of about 14.1 m,
Beat signal frequency difference f B (= F BU -F BD )
Figure 0003797277
Here, R is the distance, and c is the speed of light.
[0031]
From this relationship, the peak frequency interval of the protrusions due to the reflected waves of the two vehicles substantially matches the frequency difference caused by the stationary object.
[0032]
FIG. 6 shows an example. FIG. 6 shows the frequency spectrum of the beat signal and the states of the two vehicles for the upstream modulation section and the downstream modulation section. (A) shows a spectrum generated by a vehicle of 0 km / h, that is, a stationary vehicle, and (B) shows that two vehicles are traveling at a distance of 14.1 m at a distance of 100 km / h in front of the vehicle. The spectrum is shown.
[0033]
Thus, when performing pairing between two protrusions generated by two targets, there is a risk that the protrusions that are a combination of a frequency difference of 28.3 kHz corresponding to a stationary object are preferentially extracted as a pair. is there.
[0034]
Further, as other situations, there is a risk that a moving object and a stationary object may be recognized and mistaken even in a place where a sharp curve exists or a vehicle that performs dangerous traveling exists.
[0035]
Therefore, instead of pairing only with a combination in which the frequency difference of the beat signal between the upstream modulation section and the downstream modulation section is related to the frequency difference caused by the stationary object, the following pair is extracted so that a more likely pair is extracted as a pair. Perform the following process.
[0036]
FIG. 5 is a flowchart showing a processing procedure of the DSP 13 and the microprocessor 14 shown in FIG. First, the vehicle speed data is read from the vehicle speed sensor 15 (s1). Subsequently, the beam is directed to the initial direction under the control of the scan unit 16 (s2). In this state, digital data of the beat signal converted by the A / D converter 12 is acquired by a predetermined number of samplings, and FFT processing is performed on the digital data (s3 → s4).
[0037]
Subsequently, a portion where the signal intensity of the frequency spectrum protrudes in a mountain shape is detected, and the peak frequency and the signal intensity at the peak frequency are extracted (s5).
[0038]
Thereafter, with reference to the peak frequency extracted in the previous adjacent beam azimuth and its signal intensity, it is determined in which group the peak frequency in the current beam azimuth and the signal intensity are to be placed (s6). That is, those whose peak frequency difference is within a certain frequency are grouped.
[0039]
Thereafter, the beam azimuth is displaced by one beam, and the same processing is performed (n7 → s8 → s3 →...).
[0040]
By repeatedly performing the above processing up to the final beam, the peak frequency spectrum for each beam azimuth in the upstream modulation section and the downstream modulation section is obtained for the detection range extending in a predetermined width in the azimuth direction.
[0041]
Subsequently, the representative azimuth, the representative peak frequency, and the representative signal intensity of each group are found as a pair candidate and a level profile in the azimuth direction (s9). For example, the center direction of the group extending in the beam direction and the frequency axis direction is set as the representative direction, the center of the frequency range extending on the frequency axis in that direction is set as the representative peak frequency, and the signal intensity at the representative peak frequency is set as the representative signal intensity. . Further, a change in signal strength in the azimuth direction at the representative frequency of the group is obtained as a signal strength profile. Representative values of these groups are obtained for the upstream modulation section and the downstream modulation section, respectively.
[0042]
Thereafter, matching is weighted so that pairs having a frequency difference relationship corresponding to a stationary object among the pair candidates are preferentially paired, and then pairing is performed (s10 → s11).
[0043]
Here, when the coincidence degree of the signal intensity is Ma, the coincidence degree of the direction is Md, the coincidence degree of the signal intensity profile is Mc, and the weight of the pair evaluation value representing the pairiness is m.
Pair evaluation value E is
E = m (Ma * Md * Mc) (1)
Represented as: These matching degrees Ma, Md, and Mc are coefficients of 0 to 1, and the weight m is a value of 1 or more.
[0044]
The pair evaluation value E is obtained for all combinations of the representative values of the protruding portion groups extracted as the pair candidates, and the pairs are set in order from the largest value. The weight m gives a large value greater than 1 to a pair having a frequency difference corresponding to a stationary object. For other pairs, m = 1.
[0045]
In the above example, the pair evaluation value E is obtained by multiplying the degree of coincidence of the signal intensity, the degree of coincidence of the azimuth, and the degree of coincidence of the signal intensity profile by the weight m, but the frequency difference corresponding to the stationary object is obtained. The above three matching degrees may be individually corrected so that combinations are preferentially extracted as pairs.
[0046]
FIG. 7 shows an example of correcting the coincidence degree of signal strength. Here, A and B are protrusions appearing in the frequency spectrum of the beat signal in the upstream modulation section, and α and β are protrusions appearing in the frequency spectrum of the beat signal in the downstream modulation section. Here, in the example shown in FIG. 7, the difference in signal intensity between α and A is 3 dB, and the difference in signal intensity between α and B is 1 dB. However, since the combination of α and A is a frequency difference corresponding to a stationary object, the difference in signal intensity is reduced by 3 dB to obtain the degree of coincidence of signal intensity. Therefore, the difference between the signal strengths of α and A becomes 0 dB after correction, and the combination of α and A is prioritized over the combination of α and B. If the signal strength coincidence after correction is Ma ′, the overall pair evaluation value E is
E = (Ma ′ * Md * Mc) (2)
It is represented by
[0047]
FIG. 8 shows an example of correcting the degree of coincidence of directions. 8A shows the peak frequency of the protrusions appearing in the frequency spectrum of the beat signal in the upstream modulation section for each beam with different azimuth, and FIG. 8B shows the frequency spectrum of the beat signal in the downstream modulation section. It is a figure which shows the peak frequency of the protrusion part which appears in. Here, the horizontal axis represents the beam direction, and the vertical axis represents the frequency of the protrusion included in the frequency spectrum, which is expressed in rectangular coordinates.
[0048]
In this example, as shown in (A), in the upstream modulation section, a group Gu1 having protrusions extending in the azimuth direction and the frequency axis direction around the beam azimuth Bj and the frequency Fa is generated. Further, as shown in (B), a group Gd1 having protrusions extending in the azimuth direction and the frequency axis direction is generated around the beam azimuth Bi and the frequency Fb in the downstream modulation section. In the downlink modulation section, a group Gd2 in which protrusions spread in the azimuth direction and the frequency axis direction with respect to the beam azimuth Bk and the frequency Fc is generated.
[0049]
Here, when the frequency difference between the representative frequency Fa of the group Gu1 and the representative frequency Fc of the group Gd2 is a frequency difference corresponding to a stationary object, the orientation of the representative orientation Bj of the group Gu1 and the representative orientation Bk of the group Gd2 Those with an angle difference within ± 1.0 ° are considered to have the same orientation. Since the frequency difference between the representative frequency Fa of the group Gu1 and the representative frequency Fb of the group Gd1 is not a frequency difference corresponding to the stationary object, the angle difference between the representative directions of both groups is handled as the difference between Bj and Bi.
[0050]
In this way, the orientation coincidence is corrected. If the corrected orientation coincidence at this time is Md ′, the overall pair evaluation value E is
E = (Ma * Md ′ * Mc) (2)
It is represented by
[0051]
FIG. 9 shows an example of correcting the coincidence degree of signal intensity profiles.
Here, since the representative frequency difference between the groups Gu1 and Gd1 is a frequency difference corresponding to a stationary object, it is corrected so as to increase the degree of coincidence between the two signal intensity profiles. For example, when the degree of coincidence of the signal intensity profiles is obtained as a correlation coefficient, the evaluation is performed with a value (for example, 1/2) in which the difference from 1.0 is approximated at a constant rate. For example, when the correlation coefficient of the signal intensity profile between the groups Gu1 and Gd1 is 0.7 and the correlation coefficient of the signal intensity profile between the Gu1 and Gd2 is 0.8, the former is 0.7+ (1−0.7 ) /2=0.85, the coincidence degree of the signal intensity profiles is increased.
[0052]
If the degree of coincidence of the corrected signal intensity profile at this time is Mc ′, the overall pair evaluation value E is
E = (Ma * Md * Mc ′) (3)
It is represented by
[0053]
Next, processing contents in the radar according to the second embodiment will be described with reference to FIGS.
FIG. 10 shows the position of each target calculated by the pair extracted by the method shown in the first embodiment. The black circle is the position of each target. For example, in the case of a continuous roadside object such as a card rail, a soundproof wall, a median strip, or a wall of a building, a plurality of stationary objects are detected in proximity to each other as shown in FIG. Such a continuous stationary object is determined as a continuous stationary object. In the example shown in FIG. 10A, two continuous stationary objects A1 and A2 are determined.
[0054]
Whether a stationary object is close is determined by grouping stationary objects detected within a predetermined distance and a predetermined azimuth angle range. For example, as shown in FIG. 10B, if there is a stationary object OBb within a predetermined azimuth angle range from a certain stationary object OBa, it is regarded as the same group. Next, the same processing is performed on the stationary object OBb, and the stationary object OBb is grouped one after another.
[0055]
This processing may be performed on orthogonal coordinates as shown in FIG. That is, stationary objects existing within a predetermined distance range on the orthogonal coordinates may be sequentially grouped.
[0056]
Since the area determined as a continuous stationary object is a guardrail, a soundproof wall, a median strip, a wall surface of a building, or the like, normally there cannot be moving objects in the area. Therefore, when the position and velocity of the target are calculated from the frequency difference extracted as a pair, and a moving object is present in the region of the continuous stationary object, the pair is mispairing. Can be regarded as For example, as shown in FIG. 11, moving objects having speeds of 30 km / h and 80 km / h that exist in the region A1 of the continuous stationary object are considered to be due to mispairing. Similarly, a moving object having a speed of 20 km / h that exists in the continuous stationary object region A2 is considered to be caused by mispairing.
[0057]
Note that there are actually moving objects in the region of the continuous stationary object, and even if the detection result is removed, the detection probability of the traveling object on the road is not adversely affected.
[0058]
In addition, for a target that is detected in a distance from the area of the continuous stationary object, for example, a vehicle traveling in a lane (opposite lane) beyond the median strip, or a soundproof wall or a tunnel wall In many cases, the detection result is also removed. For example, in FIG. 12, the target OBd is a vehicle that actually travels in front of the host vehicle, but OBe is a mirror image of OBd by the area A2 of the continuous stationary object, or the opposite lane when A2 is the median strip. It is a vehicle that runs backward. Therefore, the detection result related to this OBe is removed and is not output to the host device.
[0059]
In addition, since signs, overpasses, and the like existing on the road may be detected as stationary objects, this removal process is not performed for targets farther than continuous stationary objects existing in the traveling direction of the host vehicle. Note that the traveling direction of the host vehicle can be detected from information such as the steering angle of the steering wheel, the yaw rate, and the car navigation system.
[0060]
FIG. 13 is a flowchart showing the above-described processing procedure. This processing is performed following the processing procedure shown in FIG. 5 in the first embodiment.
First, the above-described continuous stationary object is determined, and an area in which it exists is obtained (s21 → s22). Subsequently, it is determined whether or not a moving object is present in the region of the continuous stationary object (s23). A combination (pairing) in which a moving object exists in the continuous stationary object region is treated as mispairing, and pairing is performed again to avoid such pairing (s24). .
[0061]
If a moving object exists in a pseudo-distance from the continuous stationary object region, the detection result of the target is removed (s25). Thereafter, new detection result data is created and output to the host device (s26).
[0062]
【The invention's effect】
According to this invention, the protruding portion appearing in the frequency spectrum of the beat signal in the upstream modulation section and the downstream modulation section corresponding to the stationary object The pair evaluation value of the combination of protrusions corresponding to is given a predetermined weight, and the combination of protrusions is in descending order of the pair evaluation value Since the extraction is performed, detection of a stationary object becomes easy, and detection of, for example, a traveling vehicle ahead of the stationary object can be performed more reliably.
[0063]
In addition, according to the present invention, the degree of coincidence of the signal intensity between the first protrusion that appears in the frequency spectrum of the beat signal in the upstream modulation section and the second protrusion that appears in the frequency spectrum of the beat signal in the downstream modulation section Is obtained after a predetermined weight is added to the combination of protrusions corresponding to the frequency difference, and the pair evaluation value is obtained from the degree of coincidence. By doing so, the probability of mispairing is relatively suppressed, and pairs of stationary objects can be extracted more reliably.
[0064]
Further, according to the present invention, the beam orientation of the transmission signal is changed over a predetermined scanning range, and the degree of coincidence of the orientation between the first protrusion and the second protrusion is determined. The combination of protrusions corresponding to the frequency difference is obtained with a predetermined weight, and the pair evaluation value is obtained from the degree of coincidence. As a result, the probability of mispairing is relatively suppressed, and pairs of stationary objects can be extracted more reliably.
[0065]
Similarly, the signal strength profile in the azimuth direction The degree of correlation is obtained after a predetermined weight is added to the combination of protrusions corresponding to the frequency difference, and the pair evaluation value is obtained from the degree of correlation. As a result, the probability of mispairing is relatively suppressed, and pairs of stationary objects can be extracted more reliably.
[0066]
In addition, according to the present invention, since the continuous stationary object is determined based on the continuity in the azimuth direction or the distance direction of the pair that is related to the frequency difference corresponding to the stationary object, the majority of the detection targets are obtained. It is possible to reliably detect the area where the continuous stationary object occupies and to detect relatively moving objects such as a traveling vehicle ahead.
[0067]
Further, according to the present invention, when a moving object is detected in the presence region of the continuous stationary object, it is determined that the corresponding pair is extracted incorrectly. Is more reliably suppressed.
[0068]
In addition, according to the present invention, since the result of the target detected farther than the continuous stationary object is not output, only the target that is substantially problematic among the detected targets is hosted. The data can be output to the apparatus, the entire data processing amount can be reduced, and the processing based on the detection result can be accelerated.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a radar.
FIG. 2 is a diagram showing an example of a frequency difference between beat signals generated in an upstream modulation section and a downstream modulation section of the radar
FIG. 3 is a diagram showing examples of various targets existing in front of the host vehicle.
FIG. 4 is a diagram illustrating an example of a frequency spectrum of a beat signal in an upstream modulation section and a downstream modulation section
FIG. 5 is a flowchart showing a processing procedure of the radar.
FIG. 6 is a diagram illustrating an example of a state of a vehicle and a frequency spectrum in front of the host vehicle.
FIG. 7 is a diagram illustrating an example of a difference in signal strength between protrusions appearing in a frequency spectrum of a beat signal in an upstream modulation section and a downstream modulation section;
FIG. 8 is a diagram showing an example of the beam orientation and the distribution on the frequency axis of the protruding portion appearing in the frequency spectrum of the beat signal.
FIG. 9 is a diagram illustrating an example of a signal intensity profile in the azimuth direction of a protrusion group.
FIG. 10 is a diagram showing an example of a continuous stationary object and its existing area
FIG. 11 is a diagram showing an example of a moving object that is detected in a pseudo manner in a continuous stationary object region;
FIG. 12 is a diagram illustrating an example of a positional relationship between a continuous stationary object region and other detected targets;
FIG. 13 is a flowchart showing a processing procedure related to a continuous stationary object.
[Explanation of symbols]
1-RF block
2-signal processing block
3-dielectric lens
4-1 Primary radiator
5-circulator
6-coupler
7-Isolator
8-VCO
9-Mixer
16-scan unit

Claims (7)

周波数が次第に上昇する上り変調区間と、周波数が次第に下降する下り変調区間とを交互に繰り返す送信信号を送信し、物標からの反射信号を含む受信信号を受信する送受信手段と、
前記送信信号と前記受信信号との周波数差の信号であるビート信号の周波数スペクトルに関するデータを求める周波数分析手段と、
同一物標に起因して生じた、前記上り変調区間のビート信号の周波数スペクトルに現れる第1突出部と、前記下り変調区間のビート信号の周波数スペクトルに現れる第2突出部とのペアを抽出するペア抽出手段と、
該ペアをなす2つの突出部の周波数に基づいて、物標の相対距離・相対速度の少なくとも一方を検知する手段とを備えたレーダにおいて、
当該レーダが搭載された移動体の移動速度のデータを入力する手段を設け、
前記ペア抽出手段が、前記移動速度のデータに基づき、静止物に対応した、上り変調区間と下り変調区間のビート信号の周波数スペクトルに現れる突出部の周波数差を逆算するとともに、該周波数差に対応する突出部の組み合わせのペア評価値には所定の重みを付けた上で、該ペア評価値の高い順に突出部の組み合わせを抽出するようにしたレーダ。
A transmission / reception means for transmitting a transmission signal that alternately repeats an uplink modulation section in which the frequency gradually increases and a downlink modulation section in which the frequency gradually decreases, and that receives a reception signal including a reflection signal from a target; and
Frequency analysis means for obtaining data relating to a frequency spectrum of a beat signal that is a signal of a frequency difference between the transmission signal and the reception signal;
A pair of a first protrusion that appears in the frequency spectrum of the beat signal in the upstream modulation section and a second protrusion that appears in the frequency spectrum of the beat signal in the downstream modulation section, caused by the same target, is extracted. A pair extraction means;
A radar having means for detecting at least one of a relative distance and a relative speed of a target on the basis of the frequencies of the two protruding portions forming the pair;
A means for inputting data on the moving speed of the moving body on which the radar is mounted is provided.
The pair extraction means back-calculates the frequency difference of the protruding portion appearing in the frequency spectrum of the beat signal in the upstream modulation section and the downstream modulation section, corresponding to the stationary object, based on the moving speed data, and corresponds to the frequency difference. A radar which adds a predetermined weight to a pair evaluation value of a combination of protrusions to be extracted, and extracts a combination of protrusions in descending order of the pair evaluation value .
前記ペア抽出手段は、前記第1突出部と前記第2突出部との信号強度の一致度を、前記周波数差に対応する突出部の組み合わせには所定の重みを付けた上で求め、該一致度から前記ペア評価値を求めるようにした請求項1に記載のレーダ。The pair extraction means obtains the degree of coincidence of the signal strengths of the first protrusion and the second protrusion after giving a predetermined weight to the combination of the protrusions corresponding to the frequency difference. The radar according to claim 1, wherein the pair evaluation value is obtained from a degree. 前記送信信号のビーム方位を所定走査範囲に亘って変化させる走査手段を備え、前記ペア抽出手段は、前記第1突出部と前記第2突出部との方位の一致度を、前記周波数差に対応する突出部の組み合わせには所定の重みを付けた上で求め、該一致度から前記ペア評価値を求めるようにした請求項1または2に記載のレーダ。Scanning means for changing the beam azimuth of the transmission signal over a predetermined scanning range, the pair extraction means corresponds to the degree of coincidence of the orientation of the first protrusion and the second protrusion corresponding to the frequency difference The radar according to claim 1 or 2, wherein a combination of protrusions to be obtained is obtained after a predetermined weight is given , and the pair evaluation value is obtained from the degree of coincidence. 前記送信信号のビーム方位を所定走査範囲に亘って変化させる走査手段を備え、前記ペア抽出手段は、前記第1突出部と前記第2突出部との方位方向の信号強度プロファイルの相関度を、前記周波数差に対応する突出部の組み合わせには所定の重みを付けた上で求め、該相関度から前記ペア評価値を求めるようにした請求項1、2または3に記載のレーダ。Scanning means for changing the beam azimuth of the transmission signal over a predetermined scanning range, the pair extraction means, the correlation degree of the signal intensity profile in the azimuth direction of the first protrusion and the second protrusion , The radar according to claim 1, 2 or 3, wherein a pair of protrusions corresponding to the frequency difference is obtained with a predetermined weight, and the pair evaluation value is obtained from the degree of correlation. 前記周波数差の関係となるペアが、方位方向にまたは距離方向に所定数連続した場合に、それらを連続静止物と判定する手段を設けた請求項1〜4のいずれかに記載のレーダ。  The radar according to any one of claims 1 to 4, further comprising means for determining, when a predetermined number of pairs having a frequency difference relationship continue in the azimuth direction or the distance direction, as a continuous stationary object. 前記連続静止物の存在領域に、前記周波数差に対応しないペアによる物標を検知したとき、当該ペアの抽出が誤りであるものとして判定する手段を設けた請求項5に記載のレーダ。The radar according to claim 5, further comprising means for determining that the extraction of the pair is an error when a target of a pair not corresponding to the frequency difference is detected in the continuous stationary object existing region. 前記連続静止物より遠方に検知した物標に関しては、当該検知結果を出力しない手段を設けた請求項5または6に記載のレーダ。The radar according to claim 5 or 6, further comprising means for not outputting the detection result for a target detected farther than the continuous stationary object.
JP2002163349A 2002-06-04 2002-06-04 Radar Expired - Fee Related JP3797277B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002163349A JP3797277B2 (en) 2002-06-04 2002-06-04 Radar
AU2003242381A AU2003242381A1 (en) 2002-06-04 2003-05-22 Radar
EP03730562.0A EP1510833B1 (en) 2002-06-04 2003-05-22 Radar
US10/516,924 US7034743B2 (en) 2002-06-04 2003-05-22 Radar
PCT/JP2003/006373 WO2003102623A1 (en) 2002-06-04 2003-05-22 Radar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002163349A JP3797277B2 (en) 2002-06-04 2002-06-04 Radar

Publications (2)

Publication Number Publication Date
JP2004012198A JP2004012198A (en) 2004-01-15
JP3797277B2 true JP3797277B2 (en) 2006-07-12

Family

ID=29706631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002163349A Expired - Fee Related JP3797277B2 (en) 2002-06-04 2002-06-04 Radar

Country Status (5)

Country Link
US (1) US7034743B2 (en)
EP (1) EP1510833B1 (en)
JP (1) JP3797277B2 (en)
AU (1) AU2003242381A1 (en)
WO (1) WO2003102623A1 (en)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3991793B2 (en) * 2002-07-05 2007-10-17 株式会社村田製作所 Radar
JP3954951B2 (en) * 2002-10-17 2007-08-08 本田技研工業株式会社 Vehicle object detection device
JP3954993B2 (en) * 2003-07-07 2007-08-08 本田技研工業株式会社 Vehicle object detection device
JP2004226158A (en) * 2003-01-21 2004-08-12 Fujitsu Ten Ltd Fm-cw radar device
JP2005049281A (en) * 2003-07-30 2005-02-24 Denso Corp Method and device for recognizing object
WO2005066654A1 (en) * 2004-01-07 2005-07-21 Murata Manufacturing Co., Ltd. Radar
WO2006013689A1 (en) * 2004-08-06 2006-02-09 Murata Manufacturing Co., Ltd. Radar
JP4541101B2 (en) * 2004-10-21 2010-09-08 アルパイン株式会社 Other vehicle detector and other vehicle detection method
JP4529733B2 (en) * 2005-03-02 2010-08-25 株式会社デンソー In-vehicle radar system
JP4613711B2 (en) * 2005-06-27 2011-01-19 日産自動車株式会社 Object detection apparatus and object detection method
JP4956778B2 (en) * 2005-12-01 2012-06-20 日産自動車株式会社 Object detection apparatus and object detection method
JP4684876B2 (en) * 2005-12-14 2011-05-18 富士通テン株式会社 Radar device and method for detecting object of radar device
JP4793094B2 (en) * 2006-05-17 2011-10-12 株式会社デンソー Driving environment recognition device
JP2009014631A (en) * 2007-07-09 2009-01-22 Fujitsu Ten Ltd Radar device and method for detecting target thereof
JP4385065B2 (en) * 2007-09-06 2009-12-16 本田技研工業株式会社 Vehicle object detection device
US7733266B2 (en) 2007-09-06 2010-06-08 Honda Motor Co., Ltd. Control target recognition system and vehicle object detection system
US7612707B2 (en) * 2007-09-28 2009-11-03 Banner Engineering Corporation Configurable radar sensor
JP5061879B2 (en) * 2007-12-17 2012-10-31 富士通株式会社 FMCW radar equipment
JP2009271008A (en) * 2008-05-09 2009-11-19 Honda Motor Co Ltd Object sensor
JP2010002265A (en) * 2008-06-19 2010-01-07 Fujitsu Ltd Radar equipment, measurement method and measurement program
JP5317570B2 (en) * 2008-08-07 2013-10-16 富士通テン株式会社 Radar apparatus and target detection method
WO2010064283A1 (en) * 2008-12-05 2010-06-10 トヨタ自動車株式会社 Method for determining reliability of traveling direction vector and reliability determining device
DE112008004069B4 (en) * 2008-12-18 2014-09-04 Toyota Jidosha Kabushiki Kaisha radar system
JP2011069710A (en) 2009-09-25 2011-04-07 Fujitsu Ten Ltd Signal processor, radar apparatus, object detection system, signal processing method, and program
JP5018943B2 (en) 2010-09-07 2012-09-05 株式会社デンソー Radar equipment
JP5709476B2 (en) * 2010-11-10 2015-04-30 富士通テン株式会社 Radar equipment
US9024809B2 (en) * 2011-03-17 2015-05-05 Sony Corporation Object detection system and method
JP2012242166A (en) * 2011-05-17 2012-12-10 Fujitsu Ten Ltd Radar device
JP6280319B2 (en) * 2012-10-30 2018-02-14 株式会社デンソーテン Radar apparatus and signal processing method
JP6200644B2 (en) * 2012-12-07 2017-09-20 富士通テン株式会社 Radar apparatus and signal processing method
KR101826544B1 (en) 2012-12-27 2018-02-07 현대자동차 주식회사 Method for controlling vehicle during passing through the tunnel and system hereof
US9983294B2 (en) * 2013-02-01 2018-05-29 Mitsubishi Electric Corporation Radar system
JP6127554B2 (en) * 2013-02-08 2017-05-17 株式会社デンソー Radar equipment
US10222462B2 (en) * 2013-02-27 2019-03-05 Waymo Llc Adaptive algorithms for interrogating the viewable scene of an automotive radar
JP6294594B2 (en) 2013-04-19 2018-03-14 株式会社デンソーテン Radar apparatus and signal processing method
KR101892306B1 (en) * 2013-12-18 2018-08-27 주식회사 만도 Method and apparatus for detecting road environment based on frequency modulated continuous wave radar
JP2015155807A (en) * 2014-02-20 2015-08-27 富士通テン株式会社 Radar device, vehicle control system, and signal processing method
JP2016070772A (en) * 2014-09-30 2016-05-09 富士通テン株式会社 Rader system, vehicle control system, and signal processing method
CN107153189B (en) * 2017-04-18 2021-08-03 上海交通大学 Signal processing method for linear frequency modulation continuous wave radar ranging
KR20200113915A (en) * 2019-03-27 2020-10-07 주식회사 만도 Apparatus and method for controlling vehicle

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2765773B2 (en) * 1991-11-26 1998-06-18 富士通テン株式会社 Millimeter wave radar distance / velocity measurement system
JP3102224B2 (en) 1993-09-28 2000-10-23 トヨタ自動車株式会社 In-vehicle radar device
GB2283631B (en) * 1993-11-06 1998-04-29 Roke Manor Research Radar apparatus
JP3550829B2 (en) * 1995-01-24 2004-08-04 株式会社デンソー FM-CW radar device
JP3104599B2 (en) 1995-11-24 2000-10-30 トヨタ自動車株式会社 FM-CW radar device
JP3305624B2 (en) * 1997-07-16 2002-07-24 本田技研工業株式会社 Object detection device
JP2930236B1 (en) 1998-01-26 1999-08-03 本田技研工業株式会社 Radar equipment
JPH11271430A (en) 1998-03-25 1999-10-08 Toyota Central Res & Dev Lab Inc Radar equipment for automobile
JPH11271433A (en) * 1998-03-26 1999-10-08 Toyota Central Res & Dev Lab Inc Radar apparatus
JP3480486B2 (en) * 1998-08-18 2003-12-22 トヨタ自動車株式会社 FM-CW radar device
DE19942665B4 (en) 1998-09-07 2014-02-13 Denso Corporation FM CW radar apparatus for measuring the distance to a target and the relative velocity of the target
JP3371854B2 (en) 1998-09-07 2003-01-27 株式会社デンソー Ambient situation detection device and recording medium
JP3512066B2 (en) * 1998-12-10 2004-03-29 トヨタ自動車株式会社 Automotive radar equipment
JP4045043B2 (en) * 1999-02-24 2008-02-13 本田技研工業株式会社 Radar equipment
JP3489514B2 (en) * 1999-12-09 2004-01-19 株式会社デンソー FMCW radar equipment
JP2002236170A (en) * 2001-02-06 2002-08-23 Fujitsu Ten Ltd Fm-cw radar processing device
JP3788322B2 (en) * 2001-05-30 2006-06-21 株式会社村田製作所 Radar
JP3729127B2 (en) * 2001-12-13 2005-12-21 株式会社村田製作所 Radar
JP3753071B2 (en) * 2002-01-07 2006-03-08 株式会社村田製作所 Radar
US6906661B2 (en) * 2002-10-17 2005-06-14 Honda Motor Co., Ltd. Object-detecting system for vehicle

Also Published As

Publication number Publication date
US7034743B2 (en) 2006-04-25
EP1510833B1 (en) 2013-05-08
EP1510833A4 (en) 2011-03-02
AU2003242381A1 (en) 2003-12-19
EP1510833A1 (en) 2005-03-02
JP2004012198A (en) 2004-01-15
US20050174282A1 (en) 2005-08-11
WO2003102623A1 (en) 2003-12-11

Similar Documents

Publication Publication Date Title
JP3797277B2 (en) Radar
KR100662063B1 (en) Stationary object detection method for use with scanning radar
US6693583B2 (en) Object recognition apparatus and method thereof
JP3750102B2 (en) In-vehicle radar system
JP4093109B2 (en) Radar equipment for vehicles
JP5003674B2 (en) Radar device and moving body
US20100271257A1 (en) Radar apparatus
EP1310804B1 (en) Scan type radar device
JP3385304B2 (en) Automotive radar equipment
EP1369705A1 (en) Signal processing method for scanning radar
US20140159948A1 (en) Radar apparatus and signal processing method
EP1326087A2 (en) Apparatus and method for radar data processing
JP2004163340A (en) Onboard radar system
JP4079739B2 (en) Automotive radar equipment
JP3675758B2 (en) Data processing equipment for millimeter wave radar
JP4064693B2 (en) Scanning FM-CW radar signal processing method
JP3703756B2 (en) Radar equipment
US20130222176A1 (en) Radar apparatus
JP2008064743A (en) Vehicular radar device
JP3737048B2 (en) Radar equipment
JP2004286537A (en) Vehicle-mounted radar equipment
JP3230362B2 (en) Obstacle detection device
JPH05232214A (en) Fm-cw radar apparatus
JPH06207979A (en) Frequency modulation radar device
JP2007232747A (en) On-board radar device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060410

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees